| [a493682] | 1 | //
 | 
|---|
| [53ba273] | 2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // The contents of this file are covered under the licence agreement in the
 | 
|---|
 | 5 | // file "LICENCE" distributed with Cforall.
 | 
|---|
| [a493682] | 6 | //
 | 
|---|
 | 7 | // rational.c --
 | 
|---|
 | 8 | //
 | 
|---|
| [53ba273] | 9 | // Author           : Peter A. Buhr
 | 
|---|
 | 10 | // Created On       : Wed Apr  6 17:54:28 2016
 | 
|---|
 | 11 | // Last Modified By : Peter A. Buhr
 | 
|---|
| [92211d9] | 12 | // Last Modified On : Fri Oct  6 07:52:13 2023
 | 
|---|
 | 13 | // Update Count     : 198
 | 
|---|
| [a493682] | 14 | //
 | 
|---|
| [53ba273] | 15 | 
 | 
|---|
| [58b6d1b] | 16 | #include "rational.hfa"
 | 
|---|
 | 17 | #include "fstream.hfa"
 | 
|---|
 | 18 | #include "stdlib.hfa"
 | 
|---|
| [53ba273] | 19 | 
 | 
|---|
| [0aa4beb] | 20 | #pragma GCC visibility push(default)
 | 
|---|
 | 21 | 
 | 
|---|
| [541dbc09] | 22 | forall( T | arithmetic( T ) ) {
 | 
|---|
| [3ce0d440] | 23 |         // helper routines
 | 
|---|
 | 24 | 
 | 
|---|
 | 25 |         // Calculate greatest common denominator of two numbers, the first of which may be negative. Used to reduce
 | 
|---|
 | 26 |         // rationals.  alternative: https://en.wikipedia.org/wiki/Binary_GCD_algorithm
 | 
|---|
| [5dc4c7e] | 27 |         static T gcd( T a, T b ) {
 | 
|---|
| [f6a4917] | 28 |                 for () {                                                                                // Euclid's algorithm
 | 
|---|
| [5dc4c7e] | 29 |                         T r = a % b;
 | 
|---|
 | 30 |                   if ( r == (T){0} ) break;
 | 
|---|
| [3ce0d440] | 31 |                         a = b;
 | 
|---|
 | 32 |                         b = r;
 | 
|---|
 | 33 |                 } // for
 | 
|---|
 | 34 |                 return b;
 | 
|---|
 | 35 |         } // gcd
 | 
|---|
 | 36 | 
 | 
|---|
| [5dc4c7e] | 37 |         static T simplify( T & n, T & d ) {
 | 
|---|
 | 38 |                 if ( d == (T){0} ) {
 | 
|---|
| [ff2a33e] | 39 |                         abort | "Invalid rational number construction: denominator cannot be equal to 0.";
 | 
|---|
| [3ce0d440] | 40 |                 } // exit
 | 
|---|
| [541dbc09] | 41 |                 if ( d < (T){0} ) { d = -d; n = -n; }                   // move sign to numerator
 | 
|---|
| [3ce0d440] | 42 |                 return gcd( abs( n ), d );                                              // simplify
 | 
|---|
| [541dbc09] | 43 |         } // simplify
 | 
|---|
| [3ce0d440] | 44 | 
 | 
|---|
 | 45 |         // constructors
 | 
|---|
 | 46 | 
 | 
|---|
| [541dbc09] | 47 |         void ?{}( rational(T) & r, zero_t ) {
 | 
|---|
| [5dc4c7e] | 48 |                 r{ (T){0}, (T){1} };
 | 
|---|
| [3ce0d440] | 49 |         } // rational
 | 
|---|
 | 50 | 
 | 
|---|
| [541dbc09] | 51 |         void ?{}( rational(T) & r, one_t ) {
 | 
|---|
| [5dc4c7e] | 52 |                 r{ (T){1}, (T){1} };
 | 
|---|
| [3ce0d440] | 53 |         } // rational
 | 
|---|
 | 54 | 
 | 
|---|
| [541dbc09] | 55 |         void ?{}( rational(T) & r ) {
 | 
|---|
| [5dc4c7e] | 56 |                 r{ (T){0}, (T){1} };
 | 
|---|
| [3ce0d440] | 57 |         } // rational
 | 
|---|
 | 58 | 
 | 
|---|
| [541dbc09] | 59 |         void ?{}( rational(T) & r, T n ) {
 | 
|---|
| [5dc4c7e] | 60 |                 r{ n, (T){1} };
 | 
|---|
| [f00b2c2c] | 61 |         } // rational
 | 
|---|
 | 62 | 
 | 
|---|
| [541dbc09] | 63 |         void ?{}( rational(T) & r, T n, T d ) {
 | 
|---|
 | 64 |                 T t = simplify( n, d );                                                 // simplify
 | 
|---|
| [5dc4c7e] | 65 |                 r.[numerator, denominator] = [n / t, d / t];
 | 
|---|
| [f00b2c2c] | 66 |         } // rational
 | 
|---|
| [3ce0d440] | 67 | 
 | 
|---|
 | 68 |         // getter for numerator/denominator
 | 
|---|
 | 69 | 
 | 
|---|
| [541dbc09] | 70 |         T numerator( rational(T) r ) {
 | 
|---|
| [3ce0d440] | 71 |                 return r.numerator;
 | 
|---|
 | 72 |         } // numerator
 | 
|---|
 | 73 | 
 | 
|---|
| [541dbc09] | 74 |         T denominator( rational(T) r ) {
 | 
|---|
| [3ce0d440] | 75 |                 return r.denominator;
 | 
|---|
 | 76 |         } // denominator
 | 
|---|
 | 77 | 
 | 
|---|
| [92211d9] | 78 |         [ T, T ] ?=?( & [ T, T ] dst, rational(T) src ) {
 | 
|---|
 | 79 |                 return dst = src.[ numerator, denominator ];
 | 
|---|
| [3ce0d440] | 80 |         } // ?=?
 | 
|---|
 | 81 | 
 | 
|---|
 | 82 |         // setter for numerator/denominator
 | 
|---|
 | 83 | 
 | 
|---|
| [541dbc09] | 84 |         T numerator( rational(T) r, T n ) {
 | 
|---|
| [5dc4c7e] | 85 |                 T prev = r.numerator;
 | 
|---|
| [541dbc09] | 86 |                 T t = gcd( abs( n ), r.denominator );                   // simplify
 | 
|---|
| [0087e0e] | 87 |                 r.[numerator, denominator] = [n / t, r.denominator / t];
 | 
|---|
| [3ce0d440] | 88 |                 return prev;
 | 
|---|
 | 89 |         } // numerator
 | 
|---|
 | 90 | 
 | 
|---|
| [541dbc09] | 91 |         T denominator( rational(T) r, T d ) {
 | 
|---|
| [5dc4c7e] | 92 |                 T prev = r.denominator;
 | 
|---|
| [541dbc09] | 93 |                 T t = simplify( r.numerator, d );                               // simplify
 | 
|---|
| [0087e0e] | 94 |                 r.[numerator, denominator] = [r.numerator / t, d / t];
 | 
|---|
| [3ce0d440] | 95 |                 return prev;
 | 
|---|
 | 96 |         } // denominator
 | 
|---|
 | 97 | 
 | 
|---|
 | 98 |         // comparison
 | 
|---|
 | 99 | 
 | 
|---|
| [541dbc09] | 100 |         int ?==?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 101 |                 return l.numerator * r.denominator == l.denominator * r.numerator;
 | 
|---|
 | 102 |         } // ?==?
 | 
|---|
 | 103 | 
 | 
|---|
| [541dbc09] | 104 |         int ?!=?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 105 |                 return ! ( l == r );
 | 
|---|
 | 106 |         } // ?!=?
 | 
|---|
 | 107 | 
 | 
|---|
| [541dbc09] | 108 |         int ?!=?( rational(T) l, zero_t ) {
 | 
|---|
 | 109 |                 return ! ( l == (rational(T)){ 0 } );
 | 
|---|
| [5dc4c7e] | 110 |         } // ?!=?
 | 
|---|
 | 111 | 
 | 
|---|
| [541dbc09] | 112 |         int ?<?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 113 |                 return l.numerator * r.denominator < l.denominator * r.numerator;
 | 
|---|
 | 114 |         } // ?<?
 | 
|---|
 | 115 | 
 | 
|---|
| [541dbc09] | 116 |         int ?<=?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 117 |                 return l.numerator * r.denominator <= l.denominator * r.numerator;
 | 
|---|
 | 118 |         } // ?<=?
 | 
|---|
 | 119 | 
 | 
|---|
| [541dbc09] | 120 |         int ?>?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 121 |                 return ! ( l <= r );
 | 
|---|
 | 122 |         } // ?>?
 | 
|---|
 | 123 | 
 | 
|---|
| [541dbc09] | 124 |         int ?>=?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 125 |                 return ! ( l < r );
 | 
|---|
 | 126 |         } // ?>=?
 | 
|---|
 | 127 | 
 | 
|---|
 | 128 |         // arithmetic
 | 
|---|
 | 129 | 
 | 
|---|
| [541dbc09] | 130 |         rational(T) +?( rational(T) r ) {
 | 
|---|
 | 131 |                 return (rational(T)){ r.numerator, r.denominator };
 | 
|---|
| [3ce0d440] | 132 |         } // +?
 | 
|---|
| [53ba273] | 133 | 
 | 
|---|
| [541dbc09] | 134 |         rational(T) -?( rational(T) r ) {
 | 
|---|
 | 135 |                 return (rational(T)){ -r.numerator, r.denominator };
 | 
|---|
| [3ce0d440] | 136 |         } // -?
 | 
|---|
 | 137 | 
 | 
|---|
| [541dbc09] | 138 |         rational(T) ?+?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 139 |                 if ( l.denominator == r.denominator ) {                 // special case
 | 
|---|
| [541dbc09] | 140 |                         return (rational(T)){ l.numerator + r.numerator, l.denominator };
 | 
|---|
| [3ce0d440] | 141 |                 } else {
 | 
|---|
| [541dbc09] | 142 |                         return (rational(T)){ l.numerator * r.denominator + l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| [3ce0d440] | 143 |                 } // if
 | 
|---|
 | 144 |         } // ?+?
 | 
|---|
 | 145 | 
 | 
|---|
| [541dbc09] | 146 |         rational(T) ?+=?( rational(T) & l, rational(T) r ) {
 | 
|---|
| [5dc4c7e] | 147 |                 l = l + r;
 | 
|---|
 | 148 |                 return l;
 | 
|---|
 | 149 |         } // ?+?
 | 
|---|
 | 150 | 
 | 
|---|
| [541dbc09] | 151 |         rational(T) ?+=?( rational(T) & l, one_t ) {
 | 
|---|
 | 152 |                 l = l + (rational(T)){ 1 };
 | 
|---|
| [5dc4c7e] | 153 |                 return l;
 | 
|---|
 | 154 |         } // ?+?
 | 
|---|
 | 155 | 
 | 
|---|
| [541dbc09] | 156 |         rational(T) ?-?( rational(T) l, rational(T) r ) {
 | 
|---|
| [3ce0d440] | 157 |                 if ( l.denominator == r.denominator ) {                 // special case
 | 
|---|
| [541dbc09] | 158 |                         return (rational(T)){ l.numerator - r.numerator, l.denominator };
 | 
|---|
| [3ce0d440] | 159 |                 } else {
 | 
|---|
| [541dbc09] | 160 |                         return (rational(T)){ l.numerator * r.denominator - l.denominator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| [3ce0d440] | 161 |                 } // if
 | 
|---|
 | 162 |         } // ?-?
 | 
|---|
 | 163 | 
 | 
|---|
| [541dbc09] | 164 |         rational(T) ?-=?( rational(T) & l, rational(T) r ) {
 | 
|---|
| [5dc4c7e] | 165 |                 l = l - r;
 | 
|---|
 | 166 |                 return l;
 | 
|---|
 | 167 |         } // ?-?
 | 
|---|
 | 168 | 
 | 
|---|
| [541dbc09] | 169 |         rational(T) ?-=?( rational(T) & l, one_t ) {
 | 
|---|
 | 170 |                 l = l - (rational(T)){ 1 };
 | 
|---|
| [5dc4c7e] | 171 |                 return l;
 | 
|---|
 | 172 |         } // ?-?
 | 
|---|
 | 173 | 
 | 
|---|
| [541dbc09] | 174 |         rational(T) ?*?( rational(T) l, rational(T) r ) {
 | 
|---|
 | 175 |                 return (rational(T)){ l.numerator * r.numerator, l.denominator * r.denominator };
 | 
|---|
| [5dc4c7e] | 176 |         } // ?*?
 | 
|---|
 | 177 | 
 | 
|---|
| [541dbc09] | 178 |         rational(T) ?*=?( rational(T) & l, rational(T) r ) {
 | 
|---|
| [5dc4c7e] | 179 |                 return l = l * r;
 | 
|---|
| [3ce0d440] | 180 |         } // ?*?
 | 
|---|
 | 181 | 
 | 
|---|
| [541dbc09] | 182 |         rational(T) ?/?( rational(T) l, rational(T) r ) {
 | 
|---|
| [5dc4c7e] | 183 |                 if ( r.numerator < (T){0} ) {
 | 
|---|
| [0087e0e] | 184 |                         r.[numerator, denominator] = [-r.numerator, -r.denominator];
 | 
|---|
| [3ce0d440] | 185 |                 } // if
 | 
|---|
| [541dbc09] | 186 |                 return (rational(T)){ l.numerator * r.denominator, l.denominator * r.numerator };
 | 
|---|
| [5dc4c7e] | 187 |         } // ?/?
 | 
|---|
 | 188 | 
 | 
|---|
| [541dbc09] | 189 |         rational(T) ?/=?( rational(T) & l, rational(T) r ) {
 | 
|---|
| [5dc4c7e] | 190 |                 return l = l / r;
 | 
|---|
| [3ce0d440] | 191 |         } // ?/?
 | 
|---|
 | 192 | 
 | 
|---|
 | 193 |         // I/O
 | 
|---|
 | 194 | 
 | 
|---|
| [5dc4c7e] | 195 |         forall( istype & | istream( istype ) | { istype & ?|?( istype &, T & ); } )
 | 
|---|
| [541dbc09] | 196 |         istype & ?|?( istype & is, rational(T) & r ) {
 | 
|---|
| [3ce0d440] | 197 |                 is | r.numerator | r.denominator;
 | 
|---|
| [5dc4c7e] | 198 |                 T t = simplify( r.numerator, r.denominator );
 | 
|---|
| [3ce0d440] | 199 |                 r.numerator /= t;
 | 
|---|
 | 200 |                 r.denominator /= t;
 | 
|---|
 | 201 |                 return is;
 | 
|---|
 | 202 |         } // ?|?
 | 
|---|
 | 203 | 
 | 
|---|
| [5dc4c7e] | 204 |         forall( ostype & | ostream( ostype ) | { ostype & ?|?( ostype &, T ); } ) {
 | 
|---|
| [541dbc09] | 205 |                 ostype & ?|?( ostype & os, rational(T) r ) {
 | 
|---|
| [200fcb3] | 206 |                         return os | r.numerator | '/' | r.denominator;
 | 
|---|
 | 207 |                 } // ?|?
 | 
|---|
| [5454d77] | 208 |                 OSTYPE_VOID_IMPL( rational(T) )
 | 
|---|
| [200fcb3] | 209 |         } // distribution
 | 
|---|
| [3ce0d440] | 210 | } // distribution
 | 
|---|
| [630a82a] | 211 | 
 | 
|---|
| [541dbc09] | 212 | forall( T | arithmetic( T ) | { T ?\?( T, unsigned long ); } ) {
 | 
|---|
 | 213 |         rational(T) ?\?( rational(T) x, long int y ) {
 | 
|---|
| [5dc4c7e] | 214 |                 if ( y < 0 ) {
 | 
|---|
| [541dbc09] | 215 |                         return (rational(T)){ x.denominator \ -y, x.numerator \ -y };
 | 
|---|
| [5dc4c7e] | 216 |                 } else {
 | 
|---|
| [541dbc09] | 217 |                         return (rational(T)){ x.numerator \ y, x.denominator \ y };
 | 
|---|
| [5dc4c7e] | 218 |                 } // if
 | 
|---|
 | 219 |         } // ?\?
 | 
|---|
 | 220 | 
 | 
|---|
| [541dbc09] | 221 |         rational(T) ?\=?( rational(T) & x, long int y ) {
 | 
|---|
| [5dc4c7e] | 222 |                 return x = x \ y;
 | 
|---|
 | 223 |         } // ?\?
 | 
|---|
 | 224 | } // distribution
 | 
|---|
| [0087e0e] | 225 | 
 | 
|---|
| [630a82a] | 226 | // conversion
 | 
|---|
 | 227 | 
 | 
|---|
| [541dbc09] | 228 | forall( T | arithmetic( T ) | { double convert( T ); } )
 | 
|---|
 | 229 | double widen( rational(T) r ) {
 | 
|---|
| [6c6455f] | 230 |         return convert( r.numerator ) / convert( r.denominator );
 | 
|---|
 | 231 | } // widen
 | 
|---|
 | 232 | 
 | 
|---|
| [541dbc09] | 233 | forall( T | arithmetic( T ) | { double convert( T ); T convert( double ); } )
 | 
|---|
 | 234 | rational(T) narrow( double f, T md ) {
 | 
|---|
| [3ce0d440] | 235 |         // http://www.ics.uci.edu/~eppstein/numth/frap.c
 | 
|---|
| [541dbc09] | 236 |         if ( md <= (T){1} ) {                                                           // maximum fractional digits too small?
 | 
|---|
 | 237 |                 return (rational(T)){ convert( f ), (T){1}};    // truncate fraction
 | 
|---|
| [6c6455f] | 238 |         } // if
 | 
|---|
 | 239 | 
 | 
|---|
 | 240 |         // continued fraction coefficients
 | 
|---|
| [5dc4c7e] | 241 |         T m00 = {1}, m11 = { 1 }, m01 = { 0 }, m10 = { 0 };
 | 
|---|
 | 242 |         T ai, t;
 | 
|---|
| [6c6455f] | 243 | 
 | 
|---|
 | 244 |         // find terms until denom gets too big
 | 
|---|
| [f6a4917] | 245 |         for () {
 | 
|---|
| [6c6455f] | 246 |                 ai = convert( f );
 | 
|---|
 | 247 |           if ( ! (m10 * ai + m11 <= md) ) break;
 | 
|---|
 | 248 |                 t = m00 * ai + m01;
 | 
|---|
 | 249 |                 m01 = m00;
 | 
|---|
 | 250 |                 m00 = t;
 | 
|---|
 | 251 |                 t = m10 * ai + m11;
 | 
|---|
 | 252 |                 m11 = m10;
 | 
|---|
 | 253 |                 m10 = t;
 | 
|---|
 | 254 |                 double temp = convert( ai );
 | 
|---|
 | 255 |           if ( f == temp ) break;                                                       // prevent division by zero
 | 
|---|
 | 256 |                 f = 1 / (f - temp);
 | 
|---|
 | 257 |           if ( f > (double)0x7FFFFFFF ) break;                          // representation failure
 | 
|---|
 | 258 |         } // for
 | 
|---|
| [541dbc09] | 259 |         return (rational(T)){ m00, m10 };
 | 
|---|
| [6c6455f] | 260 | } // narrow
 | 
|---|
| [53ba273] | 261 | 
 | 
|---|
 | 262 | // Local Variables: //
 | 
|---|
 | 263 | // tab-width: 4 //
 | 
|---|
 | 264 | // End: //
 | 
|---|