[cfbc56ec] | 1 | //
|
---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2023 University of Waterloo
|
---|
| 3 | //
|
---|
| 4 | // The contents of this file are covered under the licence agreement in the
|
---|
| 5 | // file "LICENCE" distributed with Cforall.
|
---|
| 6 | //
|
---|
| 7 | // raii.hfa -- PUBLIC
|
---|
| 8 | // Utilities for advanced RAII (constructor/destructor) patterns
|
---|
| 9 | //
|
---|
| 10 | // Author : Mike Brooks
|
---|
| 11 | // Created On : Fri Sep 22 15:00:00 2023
|
---|
| 12 | // Last Modified By :
|
---|
| 13 | // Last Modified On :
|
---|
| 14 | // Update Count :
|
---|
| 15 | //
|
---|
| 16 | #pragma once
|
---|
| 17 |
|
---|
| 18 | // Provides access to unititialized storage.
|
---|
| 19 | // Intended to make cheap delayed intialization possible.
|
---|
| 20 | // Similar to uC++ uNoCtor.
|
---|
| 21 | // Regardless of what constructors T offers, the declaration
|
---|
| 22 | // uninit(T) x;
|
---|
| 23 | // makes x:
|
---|
| 24 | // - assignable to T,
|
---|
| 25 | // - be, at first, uninitialized, and
|
---|
| 26 | // - receive a T-destructor call when x goes out of scope.
|
---|
| 27 | // This sitation means the user becomes responsible for making a placement constructor call
|
---|
| 28 | // on x before its first use, even if this first use is the implicit destructor call.
|
---|
| 29 | // This sitation contrasts with that of
|
---|
| 30 | // T y @= {};
|
---|
| 31 | // in that y does not receive an implied destructor call when it goes out of scope.
|
---|
| 32 | // This sitation contrasts with that of
|
---|
| 33 | // optional(T) z;
|
---|
| 34 | // in that z receives a T-destructor call conditionally upon the runtime-tracked state,
|
---|
| 35 | // and that z's assignability to T is guarded by the runtime-tracked state.
|
---|
| 36 | //
|
---|
| 37 | // Implementation note: the uninit RAII that follows is a parade of cfa-cpp quirk exploitations.
|
---|
| 38 | //
|
---|
| 39 | forall( T* )
|
---|
| 40 | struct uninit {
|
---|
| 41 | inline T;
|
---|
| 42 | };
|
---|
| 43 |
|
---|
| 44 | // Parameterless ctor: leaves bits within uninitialized.
|
---|
| 45 | forall( T* )
|
---|
| 46 | void ?{}( uninit(T) & this ) {
|
---|
| 47 |
|
---|
| 48 | // Implementation takes advantage of CFA-available unsoundness.
|
---|
| 49 | // It could be called a bug; if it's fixed, then uninit needs an escape hatch,
|
---|
| 50 | // or to find a different loophole.
|
---|
| 51 |
|
---|
| 52 | // Fundamental unsoundness: Here is a constructor for a T, whatever T is.
|
---|
| 53 | // Sound compiler reaction: We don't know what fields T has,
|
---|
| 54 | // so the programmer is surely failing to initialize all of T's fields,
|
---|
| 55 | // for some choice of T.
|
---|
| 56 | // Current compiler reaction: Ok, it initializes all the fields we know about.
|
---|
| 57 | void ?{}( T & ) {}
|
---|
| 58 |
|
---|
| 59 | // Now for some ado about nothing.
|
---|
| 60 | // We need to call the above constructor on the inline T field.
|
---|
| 61 | // Becasue the compiler holds us accountable for intizliing every field of uninit(T).
|
---|
| 62 | // We are happy to do so and are not trying to get out of it.
|
---|
| 63 | // But the compiler doesn't recognize this form as a field initialization
|
---|
| 64 | // T & inner = this;
|
---|
| 65 | // ( inner ){};
|
---|
| 66 | // And the compiler doesn't offer this feature
|
---|
| 67 | // ( (return T &) this ){};
|
---|
| 68 | // It does recognize this form...
|
---|
| 69 |
|
---|
| 70 | ( (T&) this ){};
|
---|
| 71 |
|
---|
| 72 | // ...though it probably shouldn't.
|
---|
| 73 | // The problem with this form is that it doesn't actually mean the Plan-9 base field.
|
---|
| 74 | // It means to reinterpret `this` with type T.
|
---|
| 75 | // For a plan-9 use in which the base-type field is not first,
|
---|
| 76 | // this form would send the wrong address to the called ctor.
|
---|
| 77 | // Fortunately, uninit has the base-type field first.
|
---|
| 78 | // For an RAII use in which the constructor does something,
|
---|
| 79 | // getting the wrong address would matter.
|
---|
| 80 | // Fortunately, ?{}(T&) is a no-op.
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | // dtor: pass-through
|
---|
| 84 | forall( T* | { void ^?{}( T& ); } )
|
---|
| 85 | void ^?{}( uninit(T) & this) {
|
---|
| 86 | // an inner dtor call is implied
|
---|
| 87 |
|
---|
| 88 | // In fact, an autogen'd dtor would have sufficed.
|
---|
| 89 | // But there is no autogen'd dtor because no T-dtor is asserted on the struct declaration.
|
---|
| 90 | // Adding assertions to the struct decl would make the intended ctor (implemented above)
|
---|
| 91 | // a less preferred candidate than the declared, but undefined, (ugh!) autogen ctor.
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | // Optional explicit inner-ctor invoation helper.
|
---|
| 95 | // Generally optional, because 1 and 2 below are equivalent:
|
---|
| 96 | // struct Foo;
|
---|
| 97 | // void ?{}( Foo &, X, Y, Z );
|
---|
| 98 | // uninit(Foo) uf;
|
---|
| 99 | // ?( uf ){ x, y, z }; // 1
|
---|
| 100 | // emplace( uf, x, y, z ); // 2
|
---|
| 101 | // Is necessary for reaching a parameterless constructor
|
---|
| 102 | // void ?{}( Foo & );
|
---|
| 103 | // ?( uf ){}; // calls ?{}( uninit(Foo) & ), which does nothing
|
---|
| 104 | // emplace( uf ); // calls ?{}( Foo & ), probably what you want
|
---|
| 105 | forall( T*, Args... | { void ?{}( T&, Args ); } )
|
---|
| 106 | void emplace( uninit(T) & this, Args a ) {
|
---|
| 107 | T & inner = this;
|
---|
| 108 | ( inner ){ a };
|
---|
| 109 | }
|
---|