1 | //
|
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2023 University of Waterloo
|
---|
3 | //
|
---|
4 | // The contents of this file are covered under the licence agreement in the
|
---|
5 | // file "LICENCE" distributed with Cforall.
|
---|
6 | //
|
---|
7 | // raii.hfa -- PUBLIC
|
---|
8 | // Utilities for advanced RAII (constructor/destructor) patterns
|
---|
9 | //
|
---|
10 | // Author : Mike Brooks
|
---|
11 | // Created On : Fri Sep 22 15:00:00 2023
|
---|
12 | // Last Modified By :
|
---|
13 | // Last Modified On :
|
---|
14 | // Update Count :
|
---|
15 | //
|
---|
16 | #pragma once
|
---|
17 |
|
---|
18 | // Provides access to unititialized storage.
|
---|
19 | // Intended to make cheap delayed intialization possible.
|
---|
20 | // Similar to uC++ uNoCtor.
|
---|
21 | // Regardless of what constructors T offers, the declaration
|
---|
22 | // uninit(T) x;
|
---|
23 | // makes x:
|
---|
24 | // - assignable to T,
|
---|
25 | // - be, at first, uninitialized, and
|
---|
26 | // - receive a T-destructor call when x goes out of scope.
|
---|
27 | // This sitation means the user becomes responsible for making a placement constructor call
|
---|
28 | // on x before its first use, even if this first use is the implicit destructor call.
|
---|
29 | // This sitation contrasts with that of
|
---|
30 | // T y @= {};
|
---|
31 | // in that y does not receive an implied destructor call when it goes out of scope.
|
---|
32 | // This sitation contrasts with that of
|
---|
33 | // optional(T) z;
|
---|
34 | // in that z receives a T-destructor call conditionally upon the runtime-tracked state,
|
---|
35 | // and that z's assignability to T is guarded by the runtime-tracked state.
|
---|
36 | //
|
---|
37 | // Implementation note: the uninit RAII that follows is a parade of cfa-cpp quirk exploitations.
|
---|
38 | //
|
---|
39 | forall( T* )
|
---|
40 | struct uninit {
|
---|
41 | inline T;
|
---|
42 | };
|
---|
43 |
|
---|
44 | // Parameterless ctor: leaves bits within uninitialized.
|
---|
45 | forall( T* )
|
---|
46 | void ?{}( uninit(T) & this ) {
|
---|
47 |
|
---|
48 | // Implementation takes advantage of CFA-available unsoundness.
|
---|
49 | // It could be called a bug; if it's fixed, then uninit needs an escape hatch,
|
---|
50 | // or to find a different loophole.
|
---|
51 |
|
---|
52 | // Fundamental unsoundness: Here is a constructor for a T, whatever T is.
|
---|
53 | // Sound compiler reaction: We don't know what fields T has,
|
---|
54 | // so the programmer is surely failing to initialize all of T's fields,
|
---|
55 | // for some choice of T.
|
---|
56 | // Current compiler reaction: Ok, it initializes all the fields we know about.
|
---|
57 | void ?{}( T & ) {}
|
---|
58 |
|
---|
59 | // Now for some ado about nothing.
|
---|
60 | // We need to call the above constructor on the inline T field.
|
---|
61 | // Becasue the compiler holds us accountable for intizliing every field of uninit(T).
|
---|
62 | // We are happy to do so and are not trying to get out of it.
|
---|
63 | // But the compiler doesn't recognize this form as a field initialization
|
---|
64 | // T & inner = this;
|
---|
65 | // ( inner ){};
|
---|
66 | // And the compiler doesn't offer this feature
|
---|
67 | // ( (return T &) this ){};
|
---|
68 | // It does recognize this form...
|
---|
69 |
|
---|
70 | ( (T&) this ){};
|
---|
71 |
|
---|
72 | // ...though it probably shouldn't.
|
---|
73 | // The problem with this form is that it doesn't actually mean the Plan-9 base field.
|
---|
74 | // It means to reinterpret `this` with type T.
|
---|
75 | // For a plan-9 use in which the base-type field is not first,
|
---|
76 | // this form would send the wrong address to the called ctor.
|
---|
77 | // Fortunately, uninit has the base-type field first.
|
---|
78 | // For an RAII use in which the constructor does something,
|
---|
79 | // getting the wrong address would matter.
|
---|
80 | // Fortunately, ?{}(T&) is a no-op.
|
---|
81 | }
|
---|
82 |
|
---|
83 | // dtor: pass-through
|
---|
84 | forall( T* | { void ^?{}( T& ); } )
|
---|
85 | void ^?{}( uninit(T) & this) {
|
---|
86 | // an inner dtor call is implied
|
---|
87 |
|
---|
88 | // In fact, an autogen'd dtor would have sufficed.
|
---|
89 | // But there is no autogen'd dtor because no T-dtor is asserted on the struct declaration.
|
---|
90 | // Adding assertions to the struct decl would make the intended ctor (implemented above)
|
---|
91 | // a less preferred candidate than the declared, but undefined, (ugh!) autogen ctor.
|
---|
92 | }
|
---|
93 |
|
---|
94 | // Optional explicit inner-ctor invoation helper.
|
---|
95 | // Generally optional, because 1 and 2 below are equivalent:
|
---|
96 | // struct Foo;
|
---|
97 | // void ?{}( Foo &, X, Y, Z );
|
---|
98 | // uninit(Foo) uf;
|
---|
99 | // ?( uf ){ x, y, z }; // 1
|
---|
100 | // emplace( uf, x, y, z ); // 2
|
---|
101 | // Is necessary for reaching a parameterless constructor
|
---|
102 | // void ?{}( Foo & );
|
---|
103 | // ?( uf ){}; // calls ?{}( uninit(Foo) & ), which does nothing
|
---|
104 | // emplace( uf ); // calls ?{}( Foo & ), probably what you want
|
---|
105 | forall( T*, Args... | { void ?{}( T&, Args ); } )
|
---|
106 | void emplace( uninit(T) & this, Args a ) {
|
---|
107 | T & inner = this;
|
---|
108 | ( inner ){ a };
|
---|
109 | }
|
---|