source: libcfa/src/concurrency/ready_queue.cfa@ fadfabf

ADT arm-eh ast-experimental enum forall-pointer-decay jacob/cs343-translation new-ast-unique-expr pthread-emulation qualifiedEnum
Last change on this file since fadfabf was c993b15, checked in by Thierry Delisle <tdelisle@…>, 4 years ago

Changed RW lock to avoid hitting the global array on schedule.

  • Property mode set to 100644
File size: 22.3 KB
RevLine 
[7768b8d]1//
2// Cforall Version 1.0.0 Copyright (C) 2019 University of Waterloo
3//
4// The contents of this file are covered under the licence agreement in the
5// file "LICENCE" distributed with Cforall.
6//
7// ready_queue.cfa --
8//
9// Author : Thierry Delisle
10// Created On : Mon Nov dd 16:29:18 2019
11// Last Modified By :
12// Last Modified On :
13// Update Count :
14//
15
16#define __cforall_thread__
[1b143de]17// #define __CFA_DEBUG_PRINT_READY_QUEUE__
[7768b8d]18
[7a2972b9]19// #define USE_MPSC
[1eb239e4]20
[9cc3a18]21#define USE_RELAXED_FIFO
22// #define USE_WORK_STEALING
23
[7768b8d]24#include "bits/defs.hfa"
25#include "kernel_private.hfa"
26
27#define _GNU_SOURCE
28#include "stdlib.hfa"
[61d7bec]29#include "math.hfa"
[7768b8d]30
[04b5cef]31#include <unistd.h>
32
[13c5e19]33#include "ready_subqueue.hfa"
34
[7768b8d]35static const size_t cache_line_size = 64;
36
[d2fadeb]37#if !defined(__CFA_NO_STATISTICS__)
38 #define __STATS(...) __VA_ARGS__
39#else
40 #define __STATS(...)
41#endif
42
[dca5802]43// No overriden function, no environment variable, no define
44// fall back to a magic number
45#ifndef __CFA_MAX_PROCESSORS__
[b388ee81]46 #define __CFA_MAX_PROCESSORS__ 1024
[dca5802]47#endif
[7768b8d]48
[9cc3a18]49#if defined(USE_RELAXED_FIFO)
50 #define BIAS 4
51 #define READYQ_SHARD_FACTOR 4
[5f6a172]52 #define SEQUENTIAL_SHARD 1
[9cc3a18]53#elif defined(USE_WORK_STEALING)
54 #define READYQ_SHARD_FACTOR 2
[5f6a172]55 #define SEQUENTIAL_SHARD 2
[9cc3a18]56#else
57 #error no scheduling strategy selected
58#endif
59
[d2fadeb]60static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats));
61static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats));
[431cd4f]62static inline struct $thread * search(struct cluster * cltr);
[d2fadeb]63static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred);
[9cc3a18]64
[04b5cef]65
[dca5802]66// returns the maximum number of processors the RWLock support
[7768b8d]67__attribute__((weak)) unsigned __max_processors() {
68 const char * max_cores_s = getenv("CFA_MAX_PROCESSORS");
69 if(!max_cores_s) {
[504a7dc]70 __cfadbg_print_nolock(ready_queue, "No CFA_MAX_PROCESSORS in ENV\n");
[dca5802]71 return __CFA_MAX_PROCESSORS__;
[7768b8d]72 }
73
74 char * endptr = 0p;
75 long int max_cores_l = strtol(max_cores_s, &endptr, 10);
76 if(max_cores_l < 1 || max_cores_l > 65535) {
[504a7dc]77 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS out of range : %ld\n", max_cores_l);
[dca5802]78 return __CFA_MAX_PROCESSORS__;
[7768b8d]79 }
80 if('\0' != *endptr) {
[504a7dc]81 __cfadbg_print_nolock(ready_queue, "CFA_MAX_PROCESSORS not a decimal number : %s\n", max_cores_s);
[dca5802]82 return __CFA_MAX_PROCESSORS__;
[7768b8d]83 }
84
85 return max_cores_l;
86}
87
88//=======================================================================
89// Cluster wide reader-writer lock
90//=======================================================================
[b388ee81]91void ?{}(__scheduler_RWLock_t & this) {
[7768b8d]92 this.max = __max_processors();
93 this.alloc = 0;
94 this.ready = 0;
95 this.data = alloc(this.max);
[c993b15]96 this.write_lock = false;
[7768b8d]97
98 /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.alloc), &this.alloc));
99 /*paranoid*/ verify(__atomic_is_lock_free(sizeof(this.ready), &this.ready));
100
101}
[b388ee81]102void ^?{}(__scheduler_RWLock_t & this) {
[7768b8d]103 free(this.data);
104}
105
106
107//=======================================================================
108// Lock-Free registering/unregistering of threads
[c993b15]109unsigned register_proc_id( void ) with(*__scheduler_lock) {
[b388ee81]110 __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p for RW-Lock\n", proc);
[c993b15]111 bool * handle = (bool *)&kernelTLS().sched_lock;
[504a7dc]112
[7768b8d]113 // Step - 1 : check if there is already space in the data
114 uint_fast32_t s = ready;
115
116 // Check among all the ready
117 for(uint_fast32_t i = 0; i < s; i++) {
[c993b15]118 bool * volatile * cell = (bool * volatile *)&data[i]; // Cforall is bugged and the double volatiles causes problems
119 /* paranoid */ verify( handle != *cell );
120
121 bool * null = 0p; // Re-write every loop since compare thrashes it
122 if( __atomic_load_n(cell, (int)__ATOMIC_RELAXED) == null
123 && __atomic_compare_exchange_n( cell, &null, handle, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
124 /* paranoid */ verify(i < ready);
125 /* paranoid */ verify( (kernelTLS().sched_id = i, true) );
126 return i;
[7768b8d]127 }
128 }
129
[b388ee81]130 if(max <= alloc) abort("Trying to create more than %ud processors", __scheduler_lock->max);
[7768b8d]131
132 // Step - 2 : F&A to get a new spot in the array.
133 uint_fast32_t n = __atomic_fetch_add(&alloc, 1, __ATOMIC_SEQ_CST);
[b388ee81]134 if(max <= n) abort("Trying to create more than %ud processors", __scheduler_lock->max);
[7768b8d]135
136 // Step - 3 : Mark space as used and then publish it.
[c993b15]137 data[n] = handle;
[fd9b524]138 while() {
[7768b8d]139 unsigned copy = n;
140 if( __atomic_load_n(&ready, __ATOMIC_RELAXED) == n
141 && __atomic_compare_exchange_n(&ready, &copy, n + 1, true, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
142 break;
[fd9b524]143 Pause();
[7768b8d]144 }
145
[1b143de]146 __cfadbg_print_safe(ready_queue, "Kernel : Registering proc %p done, id %lu\n", proc, n);
[504a7dc]147
[7768b8d]148 // Return new spot.
[c993b15]149 /* paranoid */ verify(n < ready);
150 /* paranoid */ verify( (kernelTLS().sched_id = n, true) );
151 return n;
[7768b8d]152}
153
[c993b15]154void unregister_proc_id( unsigned id ) with(*__scheduler_lock) {
155 /* paranoid */ verify(id < ready);
156 /* paranoid */ verify(id == kernelTLS().sched_id);
157 /* paranoid */ verify(data[id] == &kernelTLS().sched_lock);
158
159 bool * volatile * cell = (bool * volatile *)&data[id]; // Cforall is bugged and the double volatiles causes problems
160
161 __atomic_store_n(cell, 0p, __ATOMIC_RELEASE);
[504a7dc]162
163 __cfadbg_print_safe(ready_queue, "Kernel : Unregister proc %p\n", proc);
[7768b8d]164}
165
166//-----------------------------------------------------------------------
167// Writer side : acquire when changing the ready queue, e.g. adding more
168// queues or removing them.
[b388ee81]169uint_fast32_t ready_mutate_lock( void ) with(*__scheduler_lock) {
[8fc652e0]170 /* paranoid */ verify( ! __preemption_enabled() );
[c993b15]171 /* paranoid */ verify( ! kernelTLS().sched_lock );
[62502cc4]172
[7768b8d]173 // Step 1 : lock global lock
174 // It is needed to avoid processors that register mid Critical-Section
175 // to simply lock their own lock and enter.
[c993b15]176 __atomic_acquire( &write_lock );
[7768b8d]177
178 // Step 2 : lock per-proc lock
179 // Processors that are currently being registered aren't counted
180 // but can't be in read_lock or in the critical section.
181 // All other processors are counted
182 uint_fast32_t s = ready;
183 for(uint_fast32_t i = 0; i < s; i++) {
[c993b15]184 volatile bool * llock = data[i];
185 if(llock) __atomic_acquire( llock );
[7768b8d]186 }
187
[8fc652e0]188 /* paranoid */ verify( ! __preemption_enabled() );
[7768b8d]189 return s;
190}
191
[b388ee81]192void ready_mutate_unlock( uint_fast32_t last_s ) with(*__scheduler_lock) {
[8fc652e0]193 /* paranoid */ verify( ! __preemption_enabled() );
[62502cc4]194
[7768b8d]195 // Step 1 : release local locks
196 // This must be done while the global lock is held to avoid
197 // threads that where created mid critical section
198 // to race to lock their local locks and have the writer
199 // immidiately unlock them
200 // Alternative solution : return s in write_lock and pass it to write_unlock
201 for(uint_fast32_t i = 0; i < last_s; i++) {
[c993b15]202 volatile bool * llock = data[i];
203 if(llock) __atomic_store_n(llock, (bool)false, __ATOMIC_RELEASE);
[7768b8d]204 }
205
206 // Step 2 : release global lock
[c993b15]207 /*paranoid*/ assert(true == write_lock);
208 __atomic_store_n(&write_lock, (bool)false, __ATOMIC_RELEASE);
[62502cc4]209
[8fc652e0]210 /* paranoid */ verify( ! __preemption_enabled() );
[7768b8d]211}
212
213//=======================================================================
[9cc3a18]214// Cforall Ready Queue used for scheduling
[b798713]215//=======================================================================
216void ?{}(__ready_queue_t & this) with (this) {
[28d73c1]217 lanes.data = 0p;
[9cc3a18]218 lanes.tscs = 0p;
[28d73c1]219 lanes.count = 0;
[b798713]220}
221
222void ^?{}(__ready_queue_t & this) with (this) {
[5f6a172]223 verify( SEQUENTIAL_SHARD == lanes.count );
[dca5802]224 free(lanes.data);
[9cc3a18]225 free(lanes.tscs);
[dca5802]226}
227
[64a7146]228//-----------------------------------------------------------------------
[431cd4f]229#if defined(USE_RELAXED_FIFO)
230 //-----------------------------------------------------------------------
231 // get index from random number with or without bias towards queues
232 static inline [unsigned, bool] idx_from_r(unsigned r, unsigned preferred) {
233 unsigned i;
234 bool local;
235 unsigned rlow = r % BIAS;
236 unsigned rhigh = r / BIAS;
237 if((0 != rlow) && preferred >= 0) {
238 // (BIAS - 1) out of BIAS chances
239 // Use perferred queues
240 i = preferred + (rhigh % READYQ_SHARD_FACTOR);
241 local = true;
242 }
243 else {
244 // 1 out of BIAS chances
245 // Use all queues
246 i = rhigh;
247 local = false;
248 }
249 return [i, local];
250 }
251
252 __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
253 __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
[1b143de]254
[431cd4f]255 const bool external = (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
256 /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
[fd1f65e]257
[431cd4f]258 // write timestamp
259 thrd->link.ts = rdtscl();
[b798713]260
[431cd4f]261 bool local;
262 int preferred = external ? -1 : kernelTLS().this_processor->rdq.id;
[52769ba]263
[431cd4f]264 // Try to pick a lane and lock it
265 unsigned i;
266 do {
267 // Pick the index of a lane
268 unsigned r = __tls_rand_fwd();
269 [i, local] = idx_from_r(r, preferred);
[772411a]270
[431cd4f]271 i %= __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
272
273 #if !defined(__CFA_NO_STATISTICS__)
[d2fadeb]274 if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
275 else if(local) __tls_stats()->ready.push.local.attempt++;
276 else __tls_stats()->ready.push.share.attempt++;
[431cd4f]277 #endif
[b798713]278
[431cd4f]279 #if defined(USE_MPSC)
280 // mpsc always succeeds
281 } while( false );
282 #else
283 // If we can't lock it retry
284 } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
285 #endif
286
287 // Actually push it
288 push(lanes.data[i], thrd);
289
290 #if !defined(USE_MPSC)
291 // Unlock and return
292 __atomic_unlock( &lanes.data[i].lock );
293 #endif
294
295 // Mark the current index in the tls rng instance as having an item
296 __tls_rand_advance_bck();
297
298 __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
299
300 // Update statistics
[b798713]301 #if !defined(__CFA_NO_STATISTICS__)
[d2fadeb]302 if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
303 else if(local) __tls_stats()->ready.push.local.success++;
304 else __tls_stats()->ready.push.share.success++;
[b798713]305 #endif
[431cd4f]306 }
[b798713]307
[431cd4f]308 // Pop from the ready queue from a given cluster
309 __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
310 /* paranoid */ verify( lanes.count > 0 );
311 /* paranoid */ verify( kernelTLS().this_processor );
312 /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
[b798713]313
[431cd4f]314 unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
315 int preferred = kernelTLS().this_processor->rdq.id;
[dca5802]316
317
[431cd4f]318 // As long as the list is not empty, try finding a lane that isn't empty and pop from it
319 for(25) {
320 // Pick two lists at random
321 unsigned ri = __tls_rand_bck();
322 unsigned rj = __tls_rand_bck();
[c426b03]323
[431cd4f]324 unsigned i, j;
325 __attribute__((unused)) bool locali, localj;
326 [i, locali] = idx_from_r(ri, preferred);
327 [j, localj] = idx_from_r(rj, preferred);
[1b143de]328
[431cd4f]329 i %= count;
330 j %= count;
[9cc3a18]331
[431cd4f]332 // try popping from the 2 picked lists
[d2fadeb]333 struct $thread * thrd = try_pop(cltr, i, j __STATS(, *(locali || localj ? &__tls_stats()->ready.pop.local : &__tls_stats()->ready.pop.help)));
[431cd4f]334 if(thrd) {
335 return thrd;
336 }
337 }
[13c5e19]338
[431cd4f]339 // All lanes where empty return 0p
340 return 0p;
341 }
[772411a]342
[fc59df78]343 __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) { return pop_fast(cltr); }
344 __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) {
[431cd4f]345 return search(cltr);
346 }
347#endif
348#if defined(USE_WORK_STEALING)
349 __attribute__((hot)) void push(struct cluster * cltr, struct $thread * thrd) with (cltr->ready_queue) {
350 __cfadbg_print_safe(ready_queue, "Kernel : Pushing %p on cluster %p\n", thrd, cltr);
[772411a]351
[431cd4f]352 const bool external = (!kernelTLS().this_processor) || (cltr != kernelTLS().this_processor->cltr);
353 /* paranoid */ verify(external || kernelTLS().this_processor->rdq.id < lanes.count );
[772411a]354
[431cd4f]355 // write timestamp
356 thrd->link.ts = rdtscl();
357
358 // Try to pick a lane and lock it
359 unsigned i;
360 do {
[d2fadeb]361 #if !defined(__CFA_NO_STATISTICS__)
362 if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.attempt, 1, __ATOMIC_RELAXED);
363 else __tls_stats()->ready.push.local.attempt++;
364 #endif
365
[431cd4f]366 if(unlikely(external)) {
367 i = __tls_rand() % lanes.count;
368 }
369 else {
370 processor * proc = kernelTLS().this_processor;
371 unsigned r = proc->rdq.its++;
372 i = proc->rdq.id + (r % READYQ_SHARD_FACTOR);
[13c5e19]373 }
[431cd4f]374
375
376 #if defined(USE_MPSC)
377 // mpsc always succeeds
378 } while( false );
379 #else
380 // If we can't lock it retry
381 } while( !__atomic_try_acquire( &lanes.data[i].lock ) );
[13c5e19]382 #endif
383
[431cd4f]384 // Actually push it
385 push(lanes.data[i], thrd);
[13c5e19]386
[431cd4f]387 #if !defined(USE_MPSC)
388 // Unlock and return
389 __atomic_unlock( &lanes.data[i].lock );
390 #endif
391
[d2fadeb]392 #if !defined(__CFA_NO_STATISTICS__)
393 if(unlikely(external)) __atomic_fetch_add(&cltr->stats->ready.push.extrn.success, 1, __ATOMIC_RELAXED);
394 else __tls_stats()->ready.push.local.success++;
395 #endif
396
[431cd4f]397 __cfadbg_print_safe(ready_queue, "Kernel : Pushed %p on cluster %p (idx: %u, mask %llu, first %d)\n", thrd, cltr, i, used.mask[0], lane_first);
[13c5e19]398 }
399
[431cd4f]400 // Pop from the ready queue from a given cluster
401 __attribute__((hot)) $thread * pop_fast(struct cluster * cltr) with (cltr->ready_queue) {
402 /* paranoid */ verify( lanes.count > 0 );
403 /* paranoid */ verify( kernelTLS().this_processor );
404 /* paranoid */ verify( kernelTLS().this_processor->rdq.id < lanes.count );
405
406 processor * proc = kernelTLS().this_processor;
407
408 if(proc->rdq.target == -1u) {
409 proc->rdq.target = __tls_rand() % lanes.count;
410 unsigned it1 = proc->rdq.itr;
411 unsigned it2 = proc->rdq.itr + 1;
412 unsigned idx1 = proc->rdq.id + (it1 % READYQ_SHARD_FACTOR);
[ddd473f]413 unsigned idx2 = proc->rdq.id + (it2 % READYQ_SHARD_FACTOR);
[431cd4f]414 unsigned long long tsc1 = ts(lanes.data[idx1]);
415 unsigned long long tsc2 = ts(lanes.data[idx2]);
416 proc->rdq.cutoff = min(tsc1, tsc2);
[341aa39]417 if(proc->rdq.cutoff == 0) proc->rdq.cutoff = -1ull;
[431cd4f]418 }
[341aa39]419 else {
420 unsigned target = proc->rdq.target;
[431cd4f]421 proc->rdq.target = -1u;
[341aa39]422 if(lanes.tscs[target].tv < proc->rdq.cutoff) {
423 $thread * t = try_pop(cltr, target __STATS(, __tls_stats()->ready.pop.help));
424 if(t) return t;
425 }
[431cd4f]426 }
[13c5e19]427
[431cd4f]428 for(READYQ_SHARD_FACTOR) {
429 unsigned i = proc->rdq.id + (--proc->rdq.itr % READYQ_SHARD_FACTOR);
[d2fadeb]430 if($thread * t = try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.local))) return t;
[431cd4f]431 }
432 return 0p;
[1eb239e4]433 }
434
[431cd4f]435 __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr) with (cltr->ready_queue) {
[fc59df78]436 unsigned i = __tls_rand() % lanes.count;
437 return try_pop(cltr, i __STATS(, __tls_stats()->ready.pop.steal));
438 }
[431cd4f]439
[fc59df78]440 __attribute__((hot)) struct $thread * pop_search(struct cluster * cltr) with (cltr->ready_queue) {
[431cd4f]441 return search(cltr);
442 }
443#endif
[1eb239e4]444
[9cc3a18]445//=======================================================================
446// Various Ready Queue utilities
447//=======================================================================
448// these function work the same or almost the same
449// whether they are using work-stealing or relaxed fifo scheduling
[1eb239e4]450
[9cc3a18]451//-----------------------------------------------------------------------
452// try to pop from a lane given by index w
[d2fadeb]453static inline struct $thread * try_pop(struct cluster * cltr, unsigned w __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
454 __STATS( stats.attempt++; )
455
[dca5802]456 // Get relevant elements locally
457 __intrusive_lane_t & lane = lanes.data[w];
458
[b798713]459 // If list looks empty retry
[d2fadeb]460 if( is_empty(lane) ) {
461 __STATS( stats.espec++; )
462 return 0p;
463 }
[b798713]464
465 // If we can't get the lock retry
[d2fadeb]466 if( !__atomic_try_acquire(&lane.lock) ) {
467 __STATS( stats.elock++; )
468 return 0p;
469 }
[b798713]470
471 // If list is empty, unlock and retry
[dca5802]472 if( is_empty(lane) ) {
473 __atomic_unlock(&lane.lock);
[d2fadeb]474 __STATS( stats.eempty++; )
[b798713]475 return 0p;
476 }
477
478 // Actually pop the list
[504a7dc]479 struct $thread * thrd;
[343d10e]480 thrd = pop(lane);
[b798713]481
[dca5802]482 /* paranoid */ verify(thrd);
483 /* paranoid */ verify(lane.lock);
[b798713]484
485 // Unlock and return
[dca5802]486 __atomic_unlock(&lane.lock);
[b798713]487
[dca5802]488 // Update statistics
[d2fadeb]489 __STATS( stats.success++; )
[b798713]490
[431cd4f]491 #if defined(USE_WORK_STEALING)
492 lanes.tscs[w].tv = thrd->link.ts;
[9cc3a18]493 #endif
[d72c074]494
[dca5802]495 // return the popped thread
[b798713]496 return thrd;
497}
[04b5cef]498
[9cc3a18]499//-----------------------------------------------------------------------
500// try to pop from any lanes making sure you don't miss any threads push
501// before the start of the function
[431cd4f]502static inline struct $thread * search(struct cluster * cltr) with (cltr->ready_queue) {
[9cc3a18]503 /* paranoid */ verify( lanes.count > 0 );
504 unsigned count = __atomic_load_n( &lanes.count, __ATOMIC_RELAXED );
505 unsigned offset = __tls_rand();
506 for(i; count) {
507 unsigned idx = (offset + i) % count;
[d2fadeb]508 struct $thread * thrd = try_pop(cltr, idx __STATS(, __tls_stats()->ready.pop.search));
[9cc3a18]509 if(thrd) {
510 return thrd;
511 }
[13c5e19]512 }
[9cc3a18]513
514 // All lanes where empty return 0p
515 return 0p;
[b798713]516}
517
518//-----------------------------------------------------------------------
[9cc3a18]519// Check that all the intrusive queues in the data structure are still consistent
[b798713]520static void check( __ready_queue_t & q ) with (q) {
[7a2972b9]521 #if defined(__CFA_WITH_VERIFY__) && !defined(USE_MPSC)
[b798713]522 {
[dca5802]523 for( idx ; lanes.count ) {
524 __intrusive_lane_t & sl = lanes.data[idx];
525 assert(!lanes.data[idx].lock);
[b798713]526
527 assert(head(sl)->link.prev == 0p );
528 assert(head(sl)->link.next->link.prev == head(sl) );
529 assert(tail(sl)->link.next == 0p );
530 assert(tail(sl)->link.prev->link.next == tail(sl) );
531
[7a2972b9]532 if(is_empty(sl)) {
[b798713]533 assert(tail(sl)->link.prev == head(sl));
534 assert(head(sl)->link.next == tail(sl));
[1b143de]535 } else {
536 assert(tail(sl)->link.prev != head(sl));
537 assert(head(sl)->link.next != tail(sl));
[b798713]538 }
539 }
540 }
541 #endif
542}
543
[9cc3a18]544//-----------------------------------------------------------------------
545// Given 2 indexes, pick the list with the oldest push an try to pop from it
[d2fadeb]546static inline struct $thread * try_pop(struct cluster * cltr, unsigned i, unsigned j __STATS(, __stats_readyQ_pop_t & stats)) with (cltr->ready_queue) {
[9cc3a18]547 // Pick the bet list
548 int w = i;
549 if( __builtin_expect(!is_empty(lanes.data[j]), true) ) {
550 w = (ts(lanes.data[i]) < ts(lanes.data[j])) ? i : j;
551 }
552
[d2fadeb]553 return try_pop(cltr, w __STATS(, stats));
[9cc3a18]554}
555
[b798713]556// Call this function of the intrusive list was moved using memcpy
[dca5802]557// fixes the list so that the pointers back to anchors aren't left dangling
558static inline void fix(__intrusive_lane_t & ll) {
[7a2972b9]559 #if !defined(USE_MPSC)
560 // if the list is not empty then follow he pointer and fix its reverse
561 if(!is_empty(ll)) {
562 head(ll)->link.next->link.prev = head(ll);
563 tail(ll)->link.prev->link.next = tail(ll);
564 }
565 // Otherwise just reset the list
566 else {
567 verify(tail(ll)->link.next == 0p);
568 tail(ll)->link.prev = head(ll);
569 head(ll)->link.next = tail(ll);
570 verify(head(ll)->link.prev == 0p);
571 }
572 #endif
[b798713]573}
574
[9cc3a18]575static void assign_list(unsigned & value, dlist(processor, processor) & list, unsigned count) {
[a017ee7]576 processor * it = &list`first;
577 for(unsigned i = 0; i < count; i++) {
578 /* paranoid */ verifyf( it, "Unexpected null iterator, at index %u of %u\n", i, count);
[431cd4f]579 it->rdq.id = value;
580 it->rdq.target = -1u;
[9cc3a18]581 value += READYQ_SHARD_FACTOR;
[a017ee7]582 it = &(*it)`next;
583 }
584}
585
[9cc3a18]586static void reassign_cltr_id(struct cluster * cltr) {
[a017ee7]587 unsigned preferred = 0;
[9cc3a18]588 assign_list(preferred, cltr->procs.actives, cltr->procs.total - cltr->procs.idle);
589 assign_list(preferred, cltr->procs.idles , cltr->procs.idle );
[a017ee7]590}
591
[431cd4f]592static void fix_times( struct cluster * cltr ) with( cltr->ready_queue ) {
593 #if defined(USE_WORK_STEALING)
594 lanes.tscs = alloc(lanes.count, lanes.tscs`realloc);
595 for(i; lanes.count) {
596 lanes.tscs[i].tv = ts(lanes.data[i]);
597 }
598 #endif
599}
600
[dca5802]601// Grow the ready queue
[a017ee7]602void ready_queue_grow(struct cluster * cltr) {
[bd0bdd37]603 size_t ncount;
[a017ee7]604 int target = cltr->procs.total;
[bd0bdd37]605
[64a7146]606 /* paranoid */ verify( ready_mutate_islocked() );
[504a7dc]607 __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue\n");
[b798713]608
[dca5802]609 // Make sure that everything is consistent
610 /* paranoid */ check( cltr->ready_queue );
611
612 // grow the ready queue
[b798713]613 with( cltr->ready_queue ) {
[39fc03e]614 // Find new count
615 // Make sure we always have atleast 1 list
[bd0bdd37]616 if(target >= 2) {
[9cc3a18]617 ncount = target * READYQ_SHARD_FACTOR;
[bd0bdd37]618 } else {
[5f6a172]619 ncount = SEQUENTIAL_SHARD;
[bd0bdd37]620 }
[b798713]621
[dca5802]622 // Allocate new array (uses realloc and memcpies the data)
[ceb7db8]623 lanes.data = alloc( ncount, lanes.data`realloc );
[b798713]624
625 // Fix the moved data
[dca5802]626 for( idx; (size_t)lanes.count ) {
627 fix(lanes.data[idx]);
[b798713]628 }
629
630 // Construct new data
[dca5802]631 for( idx; (size_t)lanes.count ~ ncount) {
632 (lanes.data[idx]){};
[b798713]633 }
634
635 // Update original
[dca5802]636 lanes.count = ncount;
[b798713]637 }
638
[9cc3a18]639 fix_times(cltr);
640
641 reassign_cltr_id(cltr);
[a017ee7]642
[b798713]643 // Make sure that everything is consistent
[dca5802]644 /* paranoid */ check( cltr->ready_queue );
645
[504a7dc]646 __cfadbg_print_safe(ready_queue, "Kernel : Growing ready queue done\n");
[dca5802]647
[64a7146]648 /* paranoid */ verify( ready_mutate_islocked() );
[b798713]649}
650
[dca5802]651// Shrink the ready queue
[a017ee7]652void ready_queue_shrink(struct cluster * cltr) {
[64a7146]653 /* paranoid */ verify( ready_mutate_islocked() );
[504a7dc]654 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue\n");
[dca5802]655
656 // Make sure that everything is consistent
657 /* paranoid */ check( cltr->ready_queue );
658
[a017ee7]659 int target = cltr->procs.total;
660
[b798713]661 with( cltr->ready_queue ) {
[39fc03e]662 // Remember old count
[dca5802]663 size_t ocount = lanes.count;
[b798713]664
[39fc03e]665 // Find new count
666 // Make sure we always have atleast 1 list
[5f6a172]667 lanes.count = target >= 2 ? target * READYQ_SHARD_FACTOR: SEQUENTIAL_SHARD;
[39fc03e]668 /* paranoid */ verify( ocount >= lanes.count );
[9cc3a18]669 /* paranoid */ verify( lanes.count == target * READYQ_SHARD_FACTOR || target < 2 );
[dca5802]670
671 // for printing count the number of displaced threads
[504a7dc]672 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
[dca5802]673 __attribute__((unused)) size_t displaced = 0;
674 #endif
[b798713]675
676 // redistribute old data
[dca5802]677 for( idx; (size_t)lanes.count ~ ocount) {
678 // Lock is not strictly needed but makes checking invariants much easier
[1b143de]679 __attribute__((unused)) bool locked = __atomic_try_acquire(&lanes.data[idx].lock);
[b798713]680 verify(locked);
[dca5802]681
682 // As long as we can pop from this lane to push the threads somewhere else in the queue
683 while(!is_empty(lanes.data[idx])) {
[504a7dc]684 struct $thread * thrd;
[343d10e]685 thrd = pop(lanes.data[idx]);
[dca5802]686
[b798713]687 push(cltr, thrd);
[dca5802]688
689 // for printing count the number of displaced threads
[504a7dc]690 #if defined(__CFA_DEBUG_PRINT__) || defined(__CFA_DEBUG_PRINT_READY_QUEUE__)
[dca5802]691 displaced++;
692 #endif
[b798713]693 }
694
[dca5802]695 // Unlock the lane
696 __atomic_unlock(&lanes.data[idx].lock);
[b798713]697
698 // TODO print the queue statistics here
699
[dca5802]700 ^(lanes.data[idx]){};
[b798713]701 }
702
[504a7dc]703 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue displaced %zu threads\n", displaced);
[c84b4be]704
[dca5802]705 // Allocate new array (uses realloc and memcpies the data)
[ceb7db8]706 lanes.data = alloc( lanes.count, lanes.data`realloc );
[b798713]707
708 // Fix the moved data
[dca5802]709 for( idx; (size_t)lanes.count ) {
710 fix(lanes.data[idx]);
[b798713]711 }
712 }
713
[9cc3a18]714 fix_times(cltr);
715
716 reassign_cltr_id(cltr);
[a017ee7]717
[b798713]718 // Make sure that everything is consistent
[dca5802]719 /* paranoid */ check( cltr->ready_queue );
720
[504a7dc]721 __cfadbg_print_safe(ready_queue, "Kernel : Shrinking ready queue done\n");
[64a7146]722 /* paranoid */ verify( ready_mutate_islocked() );
[fd9b524]723}
Note: See TracBrowser for help on using the repository browser.