| 1 | #pragma once
|
|---|
| 2 |
|
|---|
| 3 |
|
|---|
| 4 |
|
|---|
| 5 | forall( __CFA_tysys_id_only_X & ) struct tag {};
|
|---|
| 6 | #define ttag(T) ((tag(T)){})
|
|---|
| 7 | #define ztag(n) ttag(n)
|
|---|
| 8 |
|
|---|
| 9 | #ifdef __CFA_DEBUG__
|
|---|
| 10 | #define subcheck( arr, sub, len ) \
|
|---|
| 11 | if ( (sub) < 0 || (sub) >= (len) ) \
|
|---|
| 12 | abort( "Subscript %ld exceeds dimension range [0,%zu) for array %p.\n", \
|
|---|
| 13 | (sub), (len), (arr) )
|
|---|
| 14 | #define subchecku( arr, sub, len ) \
|
|---|
| 15 | if ( (sub) >= (len) ) \
|
|---|
| 16 | abort( "Subscript %ld exceeds dimension range [0,%zu) for array %p.\n", \
|
|---|
| 17 | (sub), (len), (arr) )
|
|---|
| 18 | #else
|
|---|
| 19 | #define subcheck( arr, sub, len ) do {} while (0)
|
|---|
| 20 | #define subchecku( arr, sub, len ) do {} while (0)
|
|---|
| 21 | #endif
|
|---|
| 22 |
|
|---|
| 23 | //
|
|---|
| 24 | // The `array` macro is the public interface.
|
|---|
| 25 | // It computes the type of a dense (trivially strided) array.
|
|---|
| 26 | // All user-declared objects are dense arrays.
|
|---|
| 27 | //
|
|---|
| 28 | // The `arpk` (ARray with PacKing info explicit) type is, generally, a slice with _any_ striding.
|
|---|
| 29 | // This type is meant for internal use.
|
|---|
| 30 | // CFA programmers should not instantiate it directly, nor access its field.
|
|---|
| 31 | // CFA programmers should call ?[?] on it.
|
|---|
| 32 | // Yet user-given `array(stuff)` expands to `arpk(stuff')`.
|
|---|
| 33 | // The comments here explain the resulting internals.
|
|---|
| 34 | //
|
|---|
| 35 | // Just as a plain-C "multidimesional" array is really array-of-array-of-...,
|
|---|
| 36 | // so does arpk generally show up as arpk-of-arpk-of...
|
|---|
| 37 | //
|
|---|
| 38 | // In the example of `array(float, 3, 4, 5) a;`,
|
|---|
| 39 | // `typeof(a)` is an `arpk` instantiation.
|
|---|
| 40 | // These comments explain _its_ arguments, i.e. those of the topmost `arpk` level.
|
|---|
| 41 | //
|
|---|
| 42 | // [N] : the number of elements in `a`; 3 in the example
|
|---|
| 43 | // S : carries the stride size (distance in bytes between &myA[0] and &myA[1]), in sizeof(S);
|
|---|
| 44 | // same as Timmed when striding is trivial, same as Timmed in the example
|
|---|
| 45 | // Timmed : (T-immediate) the inner type; conceptually, `typeof(a)` is "arpk of Timmed";
|
|---|
| 46 | // array(float, 4, 5) in the example
|
|---|
| 47 | // Tbase : (T-base) the deepest element type that is not arpk; float in the example
|
|---|
| 48 | //
|
|---|
| 49 | forall( [N], S & | sized(S), Timmed &, Tbase & ) {
|
|---|
| 50 | //
|
|---|
| 51 | // Single-dim array struct (with explicit packing and atom)
|
|---|
| 52 | //
|
|---|
| 53 | struct arpk {
|
|---|
| 54 | S strides[N];
|
|---|
| 55 | };
|
|---|
| 56 |
|
|---|
| 57 | // About the choice of integral types offered as subscript overloads:
|
|---|
| 58 | // Intent is to cover these use cases:
|
|---|
| 59 | // a[0] // i : zero_t
|
|---|
| 60 | // a[1] // i : one_t
|
|---|
| 61 | // a[2] // i : int
|
|---|
| 62 | // float foo( ptrdiff_t i ) { return a[i]; } // i : ptrdiff_t
|
|---|
| 63 | // float foo( size_t i ) { return a[i]; } // i : size_t
|
|---|
| 64 | // forall( [N] ) ... for( i; N ) { total += a[i]; } // i : typeof( sizeof(42) )
|
|---|
| 65 | // for( i; 5 ) { total += a[i]; } // i : int
|
|---|
| 66 | //
|
|---|
| 67 | // It gets complicated by:
|
|---|
| 68 | // - CFA does overloading on concrete types, like int and unsigned int, not on typedefed
|
|---|
| 69 | // types like size_t. So trying to overload on ptrdiff_t vs int works in 64-bit mode
|
|---|
| 70 | // but not in 32-bit mode.
|
|---|
| 71 | //
|
|---|
| 72 | // cfa -m32 (and gcc) cfa -m64 (and gcc)
|
|---|
| 73 | // ptrdiff_t int long int
|
|---|
| 74 | // size_t unsigned int unsigned long int
|
|---|
| 75 | // typeof( sizeof(42) ) unsigned int unsigned long int
|
|---|
| 76 | // int int int
|
|---|
| 77 | //
|
|---|
| 78 | // So the solution must support types {zero_t, one_t, int, unsigned int, long int, unsigned long int}
|
|---|
| 79 | //
|
|---|
| 80 | // The solution cannot rely on implicit conversions (e.g. just have one overload for ptrdiff_t)
|
|---|
| 81 | // because assertion satisfaction requires types to match exacly. Both higher-dimensional
|
|---|
| 82 | // subscripting and operations on slices use asserted subscript operators. The test case
|
|---|
| 83 | // array-collections/array-sbscr-types covers the combinations. Mike beleives that commenting out
|
|---|
| 84 | // any of the current overloads leads to one of those cases failing, either on 64- or 32-bit.
|
|---|
| 85 | // Mike is open to being shown a smaller set of overloads that still passes the test.
|
|---|
| 86 |
|
|---|
| 87 |
|
|---|
| 88 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, zero_t ) {
|
|---|
| 89 | subcheck( a, 0L, N );
|
|---|
| 90 | return (Timmed &)a.strides[0];
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, one_t ) {
|
|---|
| 94 | subcheck( a, 1L, N );
|
|---|
| 95 | return (Timmed &)a.strides[1];
|
|---|
| 96 | }
|
|---|
| 97 |
|
|---|
| 98 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, int i ) {
|
|---|
| 99 | subcheck( a, (long int)i, N );
|
|---|
| 100 | return (Timmed &)a.strides[i];
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, int i ) {
|
|---|
| 104 | subcheck( a, (long int)i, N );
|
|---|
| 105 | return (Timmed &)a.strides[i];
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
|
|---|
| 109 | subchecku( a, (unsigned long int)i, N );
|
|---|
| 110 | return (Timmed &)a.strides[i];
|
|---|
| 111 | }
|
|---|
| 112 |
|
|---|
| 113 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned int i ) {
|
|---|
| 114 | subchecku( a, (unsigned long int)i, N );
|
|---|
| 115 | return (Timmed &)a.strides[i];
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, long int i ) {
|
|---|
| 119 | subcheck( a, i, N );
|
|---|
| 120 | return (Timmed &)a.strides[i];
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, long int i ) {
|
|---|
| 124 | subcheck( a, i, N );
|
|---|
| 125 | return (Timmed &)a.strides[i];
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | static inline Timmed & ?[?]( arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
|
|---|
| 129 | subchecku( a, i, N );
|
|---|
| 130 | return (Timmed &)a.strides[i];
|
|---|
| 131 | }
|
|---|
| 132 |
|
|---|
| 133 | static inline const Timmed & ?[?]( const arpk( N, S, Timmed, Tbase ) & a, unsigned long int i ) {
|
|---|
| 134 | subchecku( a, i, N );
|
|---|
| 135 | return (Timmed &)a.strides[i];
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 | static inline size_t len( arpk( N, S, Timmed, Tbase ) & ) {
|
|---|
| 139 | return N;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | static inline void __taglen( tag(arpk( N, S, Timmed, Tbase )), tag(N) ) {}
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | // RAII pattern has workarounds for
|
|---|
| 146 | // - Trac 226: Simplest handling would be, require immediate element to be otype, let autogen
|
|---|
| 147 | // raii happen. Performance on even a couple dimensions is unacceptable because of exponential
|
|---|
| 148 | // thunk creation: ?{}() needs all four otype funcs from next level, so does ^?{}(), so do the
|
|---|
| 149 | // other two. This solution offers ?{}() that needs only ?{}(), and similar for ^?{}.
|
|---|
| 150 |
|
|---|
| 151 | // skip initializing elements
|
|---|
| 152 | // array(float, 5) x = { delay_init };
|
|---|
| 153 | enum () delay_init_t { delay_init };
|
|---|
| 154 | forall( [N], S & | sized(S), Timmed &, Tbase & )
|
|---|
| 155 | static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this, delay_init_t ) {
|
|---|
| 156 | void ?{}( S (&)[N] ) {}
|
|---|
| 157 | ?{}(this.strides);
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | // call default ctor on elements
|
|---|
| 161 | // array(float, 5) x;
|
|---|
| 162 | forall( [N], S & | sized(S), Timmed &, Tbase & | { void ?{}( Timmed & ); } )
|
|---|
| 163 | static inline void ?{}( arpk( N, S, Timmed, Tbase ) & this ) {
|
|---|
| 164 | ?{}( this, delay_init );
|
|---|
| 165 | for (i; N) ?{}( (Timmed &)this.strides[i] );
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 | forall( [N], S & | sized(S), Timmed &, Tbase & | { void ^?{}( Timmed & ); } )
|
|---|
| 169 | static inline void ^?{}( arpk( N, S, Timmed, Tbase ) & this ) {
|
|---|
| 170 | void ^?{}( S (&)[N] ) {}
|
|---|
| 171 | ^?{}(this.strides);
|
|---|
| 172 |
|
|---|
| 173 | for (i; N ) {
|
|---|
| 174 | ^?{}( (Timmed &)this.strides[N-i-1] );
|
|---|
| 175 | }
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 |
|
|---|
| 179 | //
|
|---|
| 180 | // Sugar for declaring array structure instances
|
|---|
| 181 | //
|
|---|
| 182 |
|
|---|
| 183 | forall( Te * )
|
|---|
| 184 | static inline Te mkar_( tag(Te) ) {}
|
|---|
| 185 |
|
|---|
| 186 | forall( [N], ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } )
|
|---|
| 187 | static inline arpk( N, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(N), ZTags ) {}
|
|---|
| 188 |
|
|---|
| 189 | // based on https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros
|
|---|
| 190 |
|
|---|
| 191 | // Make a FOREACH macro
|
|---|
| 192 | #define FE_0(WHAT)
|
|---|
| 193 | #define FE_1(WHAT, X) WHAT(X)
|
|---|
| 194 | #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__)
|
|---|
| 195 | #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__)
|
|---|
| 196 | #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__)
|
|---|
| 197 | #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__)
|
|---|
| 198 | //... repeat as needed
|
|---|
| 199 |
|
|---|
| 200 | #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME
|
|---|
| 201 | #define FOR_EACH(action,...) \
|
|---|
| 202 | GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__)
|
|---|
| 203 |
|
|---|
| 204 | #define COMMA_ttag(X) , ttag(X)
|
|---|
| 205 | #define array( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) )
|
|---|
| 206 |
|
|---|
| 207 | #define COMMA_ztag(X) , ztag(X)
|
|---|
| 208 | #define zarray( TE, ...) typeof( mkar_( ttag(TE) FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) )
|
|---|
| 209 |
|
|---|
| 210 | //
|
|---|
| 211 | // Sugar for multidimensional indexing
|
|---|
| 212 | //
|
|---|
| 213 |
|
|---|
| 214 | // Core -[[-,-,-]] operator
|
|---|
| 215 |
|
|---|
| 216 | #ifdef TRY_BROKEN_DESIRED_MD_SUBSCRIPT
|
|---|
| 217 |
|
|---|
| 218 | // Desired form. One definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__)
|
|---|
| 219 |
|
|---|
| 220 | forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } )
|
|---|
| 221 | static inline TC & ?[?]( TA & this, IxAB ab, IxBC bc ) {
|
|---|
| 222 | return this[ab][bc];
|
|---|
| 223 | }
|
|---|
| 224 |
|
|---|
| 225 | #else
|
|---|
| 226 |
|
|---|
| 227 | // Workaround form. Listing all possibilities up to 4 dims.
|
|---|
| 228 |
|
|---|
| 229 | forall( TA &, TB &, TC &, IxAB_0, IxBC | { TB & ?[?]( TA &, IxAB_0 ); TC & ?[?]( TB &, IxBC ); } )
|
|---|
| 230 | static inline TC & ?[?]( TA & this, IxAB_0 ab, IxBC bc ) {
|
|---|
| 231 | return this[ab][bc];
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1 ); TC & ?[?]( TB &, IxBC ); } )
|
|---|
| 235 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxBC bc ) {
|
|---|
| 236 | return this[[ab0,ab1]][bc];
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|
| 239 | forall( TA &, TB &, TC &, IxAB_0, IxAB_1, IxAB_2, IxBC | { TB & ?[?]( TA &, IxAB_0, IxAB_1, IxAB_2 ); TC & ?[?]( TB &, IxBC ); } )
|
|---|
| 240 | static inline TC & ?[?]( TA & this, IxAB_0 ab0, IxAB_1 ab1, IxAB_2 ab2, IxBC bc ) {
|
|---|
| 241 | return this[[ab0,ab1,ab2]][bc];
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | // Further form of -[-,-,-] that avoids using the trait system.
|
|---|
| 245 | // Above overloads work for any type with (recursively valid) subscript operator,
|
|---|
| 246 | // provided said subscript is passed as an assertion.
|
|---|
| 247 | // Below works only on arpk variations but never passes its subscript though an assertion.
|
|---|
| 248 | //
|
|---|
| 249 | // When arpk implements the trait used above,
|
|---|
| 250 | // the critical assertion is backed by a nontrivial thunk.
|
|---|
| 251 | // There is no "thunk problem" (lifetime) issue, when used as shown in the test suite.
|
|---|
| 252 | // But the optimizer has shown difficulty removing these thunks in cases where "it should,"
|
|---|
| 253 | // i.e. when all user code is in one compilation unit.
|
|---|
| 254 | // Not that every attempt at removing such a thunk fails; cases have been found going both ways.
|
|---|
| 255 | // Cases have been found with unnecessary bound-checks removed successfully,
|
|---|
| 256 | // on user code written against the overloads below,
|
|---|
| 257 | // but where these bound checks (which occur within `call`ed thunks) are not removed,
|
|---|
| 258 | // on user code written against the overloads above.
|
|---|
| 259 | //
|
|---|
| 260 | // The overloads below provide specializations of the above
|
|---|
| 261 | // that are a little harder to use than the ones above,
|
|---|
| 262 | // but where array API erasure has been seen to be more effective.
|
|---|
| 263 | // Note that the style below does not appeal to a case where thunk inlining is more effective;
|
|---|
| 264 | // rather, it simply does not rely on thunks in the first place.
|
|---|
| 265 | //
|
|---|
| 266 | // Both usage styles are shown in test array-md-sbscr-cases#numSubscrTypeCompatibility,
|
|---|
| 267 | // with the more general one above being "high abstraction,"
|
|---|
| 268 | // and the more performant one below being "mid abstraction" and "low abstraction."
|
|---|
| 269 | //
|
|---|
| 270 | // A breadth of index types is not given here (providing -[size_t,size_t,...] only)
|
|---|
| 271 | // because these declarations are not feeding a trait, so safe implicit arithmetic conversion kiks in.
|
|---|
| 272 | // Even so, there may still be an un-met need for accepting
|
|---|
| 273 | // either ptrdiff_t or size_t (signed or unsigned)
|
|---|
| 274 | // because Mike has seen the optimizer resist removing bound checks when sign-conversion is in play.
|
|---|
| 275 | // "Only size_t" is meeting today's need
|
|---|
| 276 | // and no solution is known that avoids 2^D overloads for D dimensions
|
|---|
| 277 | // while offering multiple subscript types and staying assertion-free.
|
|---|
| 278 | //
|
|---|
| 279 | // This approach, of avoiding traits entirely, is likely incompatible with the original desire
|
|---|
| 280 | // to have one recursive multidimensional subscript operator (TRY_BROKEN_DESIRED_MD_SUBSCRIPT).
|
|---|
| 281 | // To make a single declaration work,
|
|---|
| 282 | // we would probably have to get better at coaxing the optimizer into inlining thunks.
|
|---|
| 283 |
|
|---|
| 284 | forall( [N2], S2*, [N1], S1*, Timmed1, Tbase )
|
|---|
| 285 | static inline Timmed1 & ?[?]( arpk( N2, S2, arpk( N1, S1, Timmed1, Tbase ), Tbase ) & this, size_t ix2, size_t ix1 ) {
|
|---|
| 286 | return this[ix2][ix1];
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 | forall( [N3], S3*, [N2], S2*, [N1], S1*, Timmed1, Tbase )
|
|---|
| 290 | static inline Timmed1 & ?[?]( arpk( N3, S3, arpk( N2, S2, arpk( N1, S1, Timmed1, Tbase ), Tbase ), Tbase ) & this, size_t ix3, size_t ix2, size_t ix1 ) {
|
|---|
| 291 | return this[ix3][ix2][ix1];
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | forall( [N4], S4*, [N3], S3*, [N2], S2*, [N1], S1*, Timmed1, Tbase )
|
|---|
| 295 | static inline Timmed1 & ?[?]( arpk( N4, S4, arpk( N3, S3, arpk( N2, S2, arpk( N1, S1, Timmed1, Tbase ), Tbase ), Tbase ), Tbase ) & this, size_t ix4, size_t ix3, size_t ix2, size_t ix1 ) {
|
|---|
| 296 | return this[ix4][ix3][ix2][ix1];
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 |
|
|---|
| 300 |
|
|---|
| 301 | #endif
|
|---|
| 302 |
|
|---|
| 303 | // Available for users to work around Trac #265
|
|---|
| 304 | // If `a[...0...]` isn't working, try `a[...ix0...]` instead.
|
|---|
| 305 |
|
|---|
| 306 | #define ix0 ((ptrdiff_t)0)
|
|---|
| 307 |
|
|---|
| 308 |
|
|---|
| 309 |
|
|---|
| 310 | //
|
|---|
| 311 | // Rotation
|
|---|
| 312 | //
|
|---|
| 313 |
|
|---|
| 314 | // Base
|
|---|
| 315 | forall( [Nq], Sq & | sized(Sq), Tbase & )
|
|---|
| 316 | static inline tag(arpk( Nq, Sq, Tbase, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(Tbase ) ) {
|
|---|
| 317 | tag(arpk( Nq, Sq, Tbase, Tbase )) ret;
|
|---|
| 318 | return ret;
|
|---|
| 319 | }
|
|---|
| 320 |
|
|---|
| 321 | // Rec
|
|---|
| 322 | forall( [Nq], Sq & | sized(Sq), [N], S & | sized(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Nq), tag(Sq), tag(recq) ); } )
|
|---|
| 323 | static inline tag(arpk( N, S, recr, Tbase )) enq_( tag(Tbase ), tag(Nq), tag(Sq), tag(arpk( N, S, recq, Tbase )) ) {
|
|---|
| 324 | tag(arpk( N, S, recr, Tbase )) ret;
|
|---|
| 325 | return ret;
|
|---|
| 326 | }
|
|---|
| 327 |
|
|---|
| 328 | // Wrapper
|
|---|
| 329 | extern struct all_t {} all;
|
|---|
| 330 | forall( [N], S & | sized(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(N), tag(S), tag(Te) ); } )
|
|---|
| 331 | static inline result & ?[?]( arpk( N, S, Te, Tbase ) & this, all_t ) {
|
|---|
| 332 | return (result&) this;
|
|---|
| 333 | }
|
|---|
| 334 |
|
|---|
| 335 | //
|
|---|
| 336 | // Trait of array or slice
|
|---|
| 337 | //
|
|---|
| 338 |
|
|---|
| 339 | // desired:
|
|---|
| 340 | // forall( A &, Tv &, [N] )
|
|---|
| 341 | // trait ar {
|
|---|
| 342 | // Tv& ?[?]( A &, zero_t );
|
|---|
| 343 | // Tv& ?[?]( A &, one_t );
|
|---|
| 344 | // Tv& ?[?]( A &, int );
|
|---|
| 345 | // ...
|
|---|
| 346 | // size_t len( A & );
|
|---|
| 347 | // void __taglen( tag(C), tag(N) );
|
|---|
| 348 | // };
|
|---|
| 349 |
|
|---|
| 350 | // working around N's not being accepted as arguments to traits
|
|---|
| 351 |
|
|---|
| 352 | #define ar( A, Tv, N ) { \
|
|---|
| 353 | Tv& ?[?]( A &, zero_t ); \
|
|---|
| 354 | Tv& ?[?]( A &, one_t ); \
|
|---|
| 355 | Tv& ?[?]( A &, int ); \
|
|---|
| 356 | Tv& ?[?]( A &, unsigned int ); \
|
|---|
| 357 | Tv& ?[?]( A &, long int ); \
|
|---|
| 358 | Tv& ?[?]( A &, unsigned long int ); \
|
|---|
| 359 | size_t len( A & ); \
|
|---|
| 360 | void __taglen( tag(A), tag(N) ); \
|
|---|
| 361 | }
|
|---|