[7493339] | 1 | %======================================================================
|
---|
| 2 | \chapter{Variadic Functions}
|
---|
| 3 | %======================================================================
|
---|
| 4 |
|
---|
[f92aa32] | 5 | \section{Design Criteria} % TODO: better section name???
|
---|
[7493339] | 6 | C provides variadic functions through the manipulation of @va_list@ objects.
|
---|
[12d3187] | 7 | In C, a variadic function is one which contains at least one parameter, followed by @...@ as the last token in the parameter list.
|
---|
| 8 | In particular, some form of \emph{argument descriptor} or \emph{sentinel value} is needed to inform the function of the number of arguments and their types.
|
---|
[7493339] | 9 | Two common argument descriptors are format strings or counter parameters.
|
---|
[12d3187] | 10 | It is important to note that both of these mechanisms are inherently redundant, because they require the user to explicitly specify information that the compiler already knows \footnote{While format specifiers can convey some information the compiler does not know, such as whether to print a number in decimal or hexadecimal, the number of arguments is wholly redundant.}.
|
---|
[7493339] | 11 | This required repetition is error prone, because it is easy for the user to add or remove arguments without updating the argument descriptor.
|
---|
| 12 | In addition, C requires the programmer to hard code all of the possible expected types.
|
---|
| 13 | As a result, it is cumbersome to write a function that is open to extension.
|
---|
[0eb18557] | 14 | For example, a simple function to sum $N$ @int@s,
|
---|
[7493339] | 15 | \begin{cfacode}
|
---|
| 16 | int sum(int N, ...) {
|
---|
| 17 | va_list args;
|
---|
| 18 | va_start(args, N);
|
---|
| 19 | int ret = 0;
|
---|
| 20 | while(N) {
|
---|
| 21 | ret += va_arg(args, int); // have to specify type
|
---|
| 22 | N--;
|
---|
| 23 | }
|
---|
| 24 | va_end(args);
|
---|
| 25 | return ret;
|
---|
| 26 | }
|
---|
| 27 | sum(3, 10, 20, 30); // need to keep counter in sync
|
---|
| 28 | \end{cfacode}
|
---|
[0eb18557] | 29 | The @va_list@ type is a special C data type that abstracts variadic-argument manipulation.
|
---|
[7493339] | 30 | The @va_start@ macro initializes a @va_list@, given the last named parameter.
|
---|
| 31 | Each use of the @va_arg@ macro allows access to the next variadic argument, given a type.
|
---|
| 32 | Since the function signature does not provide any information on what types can be passed to a variadic function, the compiler does not perform any error checks on a variadic call.
|
---|
| 33 | As such, it is possible to pass any value to the @sum@ function, including pointers, floating-point numbers, and structures.
|
---|
| 34 | In the case where the provided type is not compatible with the argument's actual type after default argument promotions, or if too many arguments are accessed, the behaviour is undefined \cite[p.~81]{C11}.
|
---|
| 35 | Furthermore, there is no way to perform the necessary error checks in the @sum@ function at run-time, since type information is not carried into the function body.
|
---|
[0eb18557] | 36 | Since they rely on programmer convention rather than compile-time checks, variadic functions are unsafe.
|
---|
[7493339] | 37 |
|
---|
| 38 | In practice, compilers can provide warnings to help mitigate some of the problems.
|
---|
[0eb18557] | 39 | For example, GCC provides the @format@ attribute to specify that a function uses a format string, which allows the compiler to perform some checks related to the standard format-specifiers.
|
---|
| 40 | Unfortunately, this approach does not permit extensions to the format-string syntax, so a programmer cannot extend the attribute to warn for mismatches with custom types.
|
---|
[7493339] | 41 |
|
---|
| 42 | As a result, C's variadic functions are a deficient language feature.
|
---|
| 43 | Two options were examined to provide better, type-safe variadic functions in \CFA.
|
---|
| 44 | \subsection{Whole Tuple Matching}
|
---|
| 45 | Option 1 is to change the argument matching algorithm, so that type parameters can match whole tuples, rather than just their components.
|
---|
| 46 | This option could be implemented with two phases of argument matching when a function contains type parameters and the argument list contains tuple arguments.
|
---|
| 47 | If flattening and structuring fail to produce a match, a second attempt at matching the function and argument combination is made where tuple arguments are not expanded and structure must match exactly, modulo non-tuple implicit conversions.
|
---|
| 48 | For example:
|
---|
| 49 | \begin{cfacode}
|
---|
| 50 | forall(otype T, otype U | { T g(U); })
|
---|
| 51 | void f(T, U);
|
---|
| 52 |
|
---|
| 53 | [int, int] g([int, int, int, int]);
|
---|
| 54 |
|
---|
| 55 | f([1, 2], [3, 4, 5, 6]);
|
---|
| 56 | \end{cfacode}
|
---|
| 57 | With flattening and structuring, the call is first transformed into @f(1, 2, 3, 4, 5, 6)@.
|
---|
| 58 | Since the first argument of type @T@ does not have a tuple type, unification decides that @T=int@ and @1@ is matched as the first parameter.
|
---|
| 59 | Likewise, @U@ does not have a tuple type, so @U=int@ and @2@ is accepted as the second parameter.
|
---|
| 60 | There are now no remaining formal parameters, but there are remaining arguments and the function is not variadic, so the match fails.
|
---|
| 61 |
|
---|
| 62 | With the addition of an exact matching attempt, @T=[int,int]@ and @U=[int,int,int,int]@, and so the arguments type check.
|
---|
| 63 | Likewise, when inferring assertion @g@, an exact match is found.
|
---|
| 64 |
|
---|
[f92aa32] | 65 | This approach is strict with respect to argument structure, by nature, which makes it syntactically awkward to use in ways that the existing tuple design is not.
|
---|
| 66 | For example, consider a @new@ function that allocates memory using @malloc@, and constructs the result using arbitrary arguments.
|
---|
[7493339] | 67 | \begin{cfacode}
|
---|
| 68 | struct Array;
|
---|
| 69 | void ?{}(Array *, int, int, int);
|
---|
| 70 |
|
---|
| 71 | forall(dtype T, otype Params | sized(T) | { void ?{}(T *, Params); })
|
---|
| 72 | T * new(Params p) {
|
---|
| 73 | return malloc(){ p };
|
---|
| 74 | }
|
---|
| 75 | Array(int) * x = new([1, 2, 3]);
|
---|
| 76 | \end{cfacode}
|
---|
| 77 | The call to @new@ is not particularly appealing, since it requires the use of square brackets at the call-site, which is not required in any other function call.
|
---|
| 78 | This shifts the burden from the compiler to the programmer, which is almost always wrong, and creates an odd inconsistency within the language.
|
---|
| 79 | Similarly, in order to pass 0 variadic arguments, an explicit empty tuple must be passed into the argument list, otherwise the exact matching rule would not have an argument to bind against.
|
---|
| 80 |
|
---|
[0eb18557] | 81 | It should be otherwise noted that the addition of an exact matching rule only affects the outcome for polymorphic type-binding when tuples are involved.
|
---|
[7493339] | 82 | For non-tuple arguments, exact matching and flattening and structuring are equivalent.
|
---|
[0eb18557] | 83 | For tuple arguments to a function without polymorphic formal-parameters, flattening and structuring work whenever an exact match would have worked, since the tuple is flattened and implicitly restructured to its original structure.
|
---|
[7493339] | 84 | Thus there is nothing to be gained from permitting the exact matching rule to take effect when a function does not contain polymorphism and none of the arguments are tuples.
|
---|
| 85 |
|
---|
| 86 | Overall, this option takes a step in the right direction, but is contrary to the flexibility of the existing tuple design.
|
---|
| 87 |
|
---|
| 88 | \subsection{A New Typeclass}
|
---|
| 89 | A second option is the addition of another kind of type parameter, @ttype@.
|
---|
| 90 | Matching against a @ttype@ parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types.
|
---|
| 91 | In a given parameter list, there should be at most one @ttype@ parameter that must occur last, otherwise the call can never resolve, given the previous rule.
|
---|
| 92 | This idea essentially matches normal variadic semantics, with a strong feeling of similarity to \CCeleven variadic templates.
|
---|
| 93 | As such, @ttype@ variables are also referred to as argument packs.
|
---|
| 94 | This approach is the option that has been added to \CFA.
|
---|
| 95 |
|
---|
| 96 | Like variadic templates, the main way to manipulate @ttype@ polymorphic functions is through recursion.
|
---|
| 97 | Since nothing is known about a parameter pack by default, assertion parameters are key to doing anything meaningful.
|
---|
| 98 | Unlike variadic templates, @ttype@ polymorphic functions can be separately compiled.
|
---|
| 99 |
|
---|
| 100 | For example, a simple translation of the C sum function using @ttype@ is
|
---|
| 101 | \begin{cfacode}
|
---|
| 102 | int sum(void){ return 0; } // (0)
|
---|
| 103 | forall(ttype Params | { int sum(Params); })
|
---|
| 104 | int sum(int x, Params rest) { // (1)
|
---|
| 105 | return x+sum(rest);
|
---|
| 106 | }
|
---|
| 107 | sum(10, 20, 30);
|
---|
| 108 | \end{cfacode}
|
---|
| 109 | Since (0) does not accept any arguments, it is not a valid candidate function for the call @sum(10, 20, 30)@.
|
---|
| 110 | In order to call (1), @10@ is matched with @x@, and the argument resolution moves on to the argument pack @rest@, which consumes the remainder of the argument list and @Params@ is bound to @[20, 30]@.
|
---|
| 111 | In order to finish the resolution of @sum@, an assertion parameter that matches @int sum(int, int)@ is required.
|
---|
[f92aa32] | 112 | Like in the previous iteration, (0) is not a valid candidate, so (1) is examined with @Params@ bound to @[int]@, requiring the assertion @int sum(int)@.
|
---|
[7493339] | 113 | Next, (0) fails, and to satisfy (1) @Params@ is bound to @[]@, requiring an assertion @int sum()@.
|
---|
| 114 | Finally, (0) matches and (1) fails, which terminates the recursion.
|
---|
| 115 | Effectively, this traces as @sum(10, 20, 30)@ $\rightarrow$ @10+sum(20, 30)@ $\rightarrow$ @10+(20+sum(30))@ $\rightarrow$ @10+(20+(30+sum()))@ $\rightarrow$ @10+(20+(30+0))@.
|
---|
| 116 |
|
---|
| 117 | Interestingly, this version does not require any form of argument descriptor, since the \CFA type system keeps track of all of these details.
|
---|
| 118 | It might be reasonable to take the @sum@ function a step further to enforce a minimum number of arguments, which could be done simply
|
---|
| 119 | \begin{cfacode}
|
---|
| 120 | int sum(int x, int y){
|
---|
| 121 | return x+y;
|
---|
| 122 | }
|
---|
| 123 | forall(ttype Params | { int sum(int, Params); })
|
---|
| 124 | int sum(int x, int y, Params rest) {
|
---|
| 125 | return sum(x+y, rest);
|
---|
| 126 | }
|
---|
| 127 | sum(10); // invalid
|
---|
| 128 | sum(10, 20); // valid
|
---|
| 129 | sum(10, 20, 30); // valid
|
---|
| 130 | ...
|
---|
| 131 | \end{cfacode}
|
---|
| 132 |
|
---|
| 133 | One more iteration permits the summation of any summable type, as long as all arguments are the same type.
|
---|
| 134 | \begin{cfacode}
|
---|
| 135 | trait summable(otype T) {
|
---|
| 136 | T ?+?(T, T);
|
---|
| 137 | };
|
---|
| 138 | forall(otype R | summable(R))
|
---|
| 139 | R sum(R x, R y){
|
---|
| 140 | return x+y;
|
---|
| 141 | }
|
---|
| 142 | forall(otype R, ttype Params
|
---|
| 143 | | summable(R)
|
---|
| 144 | | { R sum(R, Params); })
|
---|
| 145 | R sum(R x, R y, Params rest) {
|
---|
| 146 | return sum(x+y, rest);
|
---|
| 147 | }
|
---|
| 148 | sum(3, 10, 20, 30);
|
---|
| 149 | \end{cfacode}
|
---|
| 150 | Unlike C, it is not necessary to hard code the expected type.
|
---|
| 151 | This @sum@ function is naturally open to extension, in that any user-defined type with a @?+?@ operator is automatically able to be used with the @sum@ function.
|
---|
| 152 | That is to say, the programmer who writes @sum@ does not need full program knowledge of every possible data type, unlike what is necessary to write an equivalent function using the standard C mechanisms.
|
---|
| 153 |
|
---|
[12d3187] | 154 | \begin{sloppypar}
|
---|
[7493339] | 155 | Going one last step, it is possible to achieve full generality in \CFA, allowing the summation of arbitrary lists of summable types.
|
---|
| 156 | \begin{cfacode}
|
---|
| 157 | trait summable(otype T1, otype T2, otype R) {
|
---|
| 158 | R ?+?(T1, T2);
|
---|
| 159 | };
|
---|
| 160 | forall(otype T1, otype T2, otype R | summable(T1, T2, R))
|
---|
| 161 | R sum(T1 x, T2 y) {
|
---|
| 162 | return x+y;
|
---|
| 163 | }
|
---|
[0eb18557] | 164 | forall(otype T1, otype T2, otype T3, otype R, ttype Params
|
---|
[7493339] | 165 | | summable(T1, T2, T3)
|
---|
| 166 | | { R sum(T3, Params); })
|
---|
| 167 | R sum(T1 x, T2 y, Params rest ) {
|
---|
| 168 | return sum(x+y, rest);
|
---|
| 169 | }
|
---|
| 170 | sum(3, 10.5, 20, 30.3);
|
---|
| 171 | \end{cfacode}
|
---|
| 172 | The \CFA translator requires adding explicit @double ?+?(int, double)@ and @double ?+?(double, int)@ functions for this call to work, since implicit conversions are not supported for assertions.
|
---|
[12d3187] | 173 | \end{sloppypar}
|
---|
[7493339] | 174 |
|
---|
| 175 | A notable limitation of this approach is that it heavily relies on recursive assertions.
|
---|
| 176 | The \CFA translator imposes a limitation on the depth of the recursion for assertion satisfaction.
|
---|
[f92aa32] | 177 | Currently, the limit is set to 4, which means that the first version of the @sum@ function is limited to at most 5 arguments, while the second version can support up to 6 arguments.
|
---|
[7493339] | 178 | The limit is set low due to inefficiencies in the current implementation of the \CFA expression resolver.
|
---|
| 179 | There is ongoing work to improve the performance of the resolver, and with noticeable gains, the limit can be relaxed to allow longer argument lists to @ttype@ functions.
|
---|
| 180 |
|
---|
| 181 | C variadic syntax and @ttype@ polymorphism probably should not be mixed, since it is not clear where to draw the line to decide which arguments belong where.
|
---|
[f92aa32] | 182 | Furthermore, it might be desirable to disallow polymorphic functions to use C variadic syntax to encourage a \CFA style.
|
---|
[7493339] | 183 | Aside from calling C variadic functions, it is not obvious that there is anything that can be done with C variadics that could not also be done with @ttype@ parameters.
|
---|
| 184 |
|
---|
| 185 | Variadic templates in \CC require an ellipsis token to express that a parameter is a parameter pack and to expand a parameter pack.
|
---|
| 186 | \CFA does not need an ellipsis in either case, since the type class @ttype@ is only used for variadics.
|
---|
| 187 | An alternative design is to use an ellipsis combined with an existing type class.
|
---|
[0eb18557] | 188 | This approach was not taken because the largest benefit of the ellipsis token in \CC is the ability to expand a parameter pack within an expression, \eg, in fold expressions, which requires compile-time knowledge of the structure of the parameter pack, which is not available in \CFA.
|
---|
[7493339] | 189 | \begin{cppcode}
|
---|
| 190 | template<typename... Args>
|
---|
| 191 | void f(Args &... args) {
|
---|
| 192 | g(&args...); // expand to addresses of pack elements
|
---|
| 193 | }
|
---|
| 194 | \end{cppcode}
|
---|
| 195 | As such, the addition of an ellipsis token would be purely an aesthetic change in \CFA today.
|
---|
| 196 |
|
---|
| 197 | It is possible to write a type-safe variadic print routine, which can replace @printf@
|
---|
| 198 | \begin{cfacode}
|
---|
| 199 | struct S { int x, y; };
|
---|
| 200 | forall(otype T, ttype Params |
|
---|
| 201 | { void print(T); void print(Params); })
|
---|
| 202 | void print(T arg, Params rest) {
|
---|
| 203 | print(arg);
|
---|
| 204 | print(rest);
|
---|
| 205 | }
|
---|
| 206 | void print(char * x) { printf("%s", x); }
|
---|
| 207 | void print(int x) { printf("%d", x); }
|
---|
| 208 | void print(S s) { print("{ ", s.x, ",", s.y, " }"); }
|
---|
| 209 | print("s = ", (S){ 1, 2 }, "\n");
|
---|
| 210 | \end{cfacode}
|
---|
| 211 | This example routine showcases a variadic-template-like decomposition of the provided argument list.
|
---|
| 212 | The individual @print@ routines allow printing a single element of a type.
|
---|
| 213 | The polymorphic @print@ allows printing any list of types, as long as each individual type has a @print@ function.
|
---|
| 214 | The individual print functions can be used to build up more complicated @print@ routines, such as for @S@, which is something that cannot be done with @printf@ in C.
|
---|
| 215 |
|
---|
| 216 | It is also possible to use @ttype@ polymorphism to provide arbitrary argument forwarding functions.
|
---|
| 217 | For example, it is possible to write @new@ as a library function.
|
---|
| 218 | \begin{cfacode}
|
---|
| 219 | struct Array;
|
---|
| 220 | void ?{}(Array *, int, int, int);
|
---|
| 221 |
|
---|
| 222 | forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); })
|
---|
| 223 | T * new(Params p) {
|
---|
| 224 | return malloc(){ p }; // construct result of malloc
|
---|
| 225 | }
|
---|
| 226 | Array * x = new(1, 2, 3);
|
---|
| 227 | \end{cfacode}
|
---|
| 228 | In the call to @new@, @Array@ is selected to match @T@, and @Params@ is expanded to match @[int, int, int, int]@. To satisfy the assertions, a constructor with an interface compatible with @void ?{}(Array *, int, int, int)@ must exist in the current scope.
|
---|
| 229 |
|
---|
[12d3187] | 230 | The @new@ function provides the combination of polymorphic @malloc@ with a constructor call, so that it becomes impossible to forget to construct dynamically-allocated objects.
|
---|
[0eb18557] | 231 | This approach provides the type-safety of @new@ in \CC, without the need to specify the allocated type, thanks to return-type inference.
|
---|
| 232 |
|
---|
[7493339] | 233 | \section{Implementation}
|
---|
| 234 |
|
---|
| 235 | The definition of @new@
|
---|
| 236 | \begin{cfacode}
|
---|
| 237 | forall(dtype T | sized(T)) T * malloc();
|
---|
| 238 |
|
---|
| 239 | forall(dtype T, ttype Params | sized(T) | { void ?{}(T *, Params); })
|
---|
| 240 | T * new(Params p) {
|
---|
| 241 | return malloc(){ p }; // construct result of malloc
|
---|
| 242 | }
|
---|
| 243 | \end{cfacode}
|
---|
[0eb18557] | 244 | generates the following
|
---|
[7493339] | 245 | \begin{cfacode}
|
---|
| 246 | void *malloc(long unsigned int _sizeof_T, long unsigned int _alignof_T);
|
---|
| 247 |
|
---|
| 248 | void *new(
|
---|
| 249 | void (*_adapter_)(void (*)(), void *, void *),
|
---|
| 250 | long unsigned int _sizeof_T,
|
---|
| 251 | long unsigned int _alignof_T,
|
---|
| 252 | long unsigned int _sizeof_Params,
|
---|
| 253 | long unsigned int _alignof_Params,
|
---|
| 254 | void (* _ctor_T)(void *, void *),
|
---|
| 255 | void *p
|
---|
| 256 | ){
|
---|
| 257 | void *_retval_new;
|
---|
| 258 | void *_tmp_cp_ret0;
|
---|
| 259 | void *_tmp_ctor_expr0;
|
---|
| 260 | _retval_new=
|
---|
| 261 | (_adapter_(_ctor_T,
|
---|
| 262 | (_tmp_ctor_expr0=(_tmp_cp_ret0=malloc(_sizeof_2tT, _alignof_2tT),
|
---|
| 263 | _tmp_cp_ret0)),
|
---|
| 264 | p),
|
---|
| 265 | _tmp_ctor_expr0); // ?{}
|
---|
| 266 | *(void **)&_tmp_cp_ret0; // ^?{}
|
---|
| 267 | return _retval_new;
|
---|
| 268 | }
|
---|
| 269 | \end{cfacode}
|
---|
| 270 | The constructor for @T@ is called indirectly through the adapter function on the result of @malloc@ and the parameter pack.
|
---|
[0eb18557] | 271 | The variable that is allocated and constructed is then returned from @new@.
|
---|
[7493339] | 272 |
|
---|
| 273 | A call to @new@
|
---|
| 274 | \begin{cfacode}
|
---|
| 275 | struct S { int x, y; };
|
---|
| 276 | void ?{}(S *, int, int);
|
---|
| 277 |
|
---|
| 278 | S * s = new(3, 4);
|
---|
| 279 | \end{cfacode}
|
---|
| 280 | Generates the following
|
---|
| 281 | \begin{cfacode}
|
---|
| 282 | struct _tuple2_ { // _tuple2_(T0, T1)
|
---|
| 283 | void *field_0;
|
---|
| 284 | void *field_1;
|
---|
| 285 | };
|
---|
| 286 | struct _conc__tuple2_0 { // _tuple2_(int, int)
|
---|
| 287 | int field_0;
|
---|
| 288 | int field_1;
|
---|
| 289 | };
|
---|
| 290 | struct _conc__tuple2_0 _tmp_cp1; // tuple argument to new
|
---|
| 291 | struct S *_tmp_cp_ret1; // return value from new
|
---|
| 292 | void _thunk0( // ?{}(S *, [int, int])
|
---|
| 293 | struct S *_p0,
|
---|
| 294 | struct _conc__tuple2_0 _p1
|
---|
| 295 | ){
|
---|
| 296 | _ctor_S(_p0, _p1.field_0, _p1.field_1); // restructure tuple parameter
|
---|
| 297 | }
|
---|
| 298 | void _adapter(void (*_adaptee)(), void *_p0, void *_p1){
|
---|
| 299 | // apply adaptee to arguments after casting to actual types
|
---|
| 300 | ((void (*)(struct S *, struct _conc__tuple2_0))_adaptee)(
|
---|
| 301 | _p0,
|
---|
| 302 | *(struct _conc__tuple2_0 *)_p1
|
---|
| 303 | );
|
---|
| 304 | }
|
---|
| 305 | struct S *s = (struct S *)(_tmp_cp_ret1=
|
---|
| 306 | new(
|
---|
| 307 | _adapter,
|
---|
| 308 | sizeof(struct S),
|
---|
| 309 | __alignof__(struct S),
|
---|
| 310 | sizeof(struct _conc__tuple2_0),
|
---|
| 311 | __alignof__(struct _conc__tuple2_0),
|
---|
| 312 | (void (*)(void *, void *))&_thunk0,
|
---|
| 313 | (({ // copy construct tuple argument to new
|
---|
| 314 | int *__multassign_L0 = (int *)&_tmp_cp1.field_0;
|
---|
| 315 | int *__multassign_L1 = (int *)&_tmp_cp1.field_1;
|
---|
| 316 | int __multassign_R0 = 3;
|
---|
| 317 | int __multassign_R1 = 4;
|
---|
| 318 | ((*__multassign_L0=__multassign_R0 /* ?{} */) ,
|
---|
| 319 | (*__multassign_L1=__multassign_R1 /* ?{} */));
|
---|
| 320 | }), &_tmp_cp1)
|
---|
| 321 | ), _tmp_cp_ret1);
|
---|
| 322 | *(struct S **)&_tmp_cp_ret1; // ^?{} // destroy return value from new
|
---|
| 323 | ({ // destroy argument temporary
|
---|
| 324 | int *__massassign_L0 = (int *)&_tmp_cp1.field_0;
|
---|
| 325 | int *__massassign_L1 = (int *)&_tmp_cp1.field_1;
|
---|
| 326 | ((*__massassign_L0 /* ^?{} */) , (*__massassign_L1 /* ^?{} */));
|
---|
| 327 | });
|
---|
| 328 | \end{cfacode}
|
---|
| 329 | Of note, @_thunk0@ is generated to translate calls to @?{}(S *, [int, int])@ into calls to @?{}(S *, int, int)@.
|
---|
| 330 | The call to @new@ constructs a tuple argument using the supplied arguments.
|
---|
| 331 |
|
---|
| 332 | The @print@ function
|
---|
| 333 | \begin{cfacode}
|
---|
| 334 | forall(otype T, ttype Params |
|
---|
| 335 | { void print(T); void print(Params); })
|
---|
| 336 | void print(T arg, Params rest) {
|
---|
| 337 | print(arg);
|
---|
| 338 | print(rest);
|
---|
| 339 | }
|
---|
| 340 | \end{cfacode}
|
---|
[0eb18557] | 341 | generates the following
|
---|
[7493339] | 342 | \begin{cfacode}
|
---|
| 343 | void print_variadic(
|
---|
| 344 | void (*_adapterF_7tParams__P)(void (*)(), void *),
|
---|
| 345 | void (*_adapterF_2tT__P)(void (*)(), void *),
|
---|
| 346 | void (*_adapterF_P2tT2tT__MP)(void (*)(), void *, void *),
|
---|
| 347 | void (*_adapterF2tT_P2tT2tT_P_MP)(void (*)(), void *, void *, void *),
|
---|
| 348 | long unsigned int _sizeof_T,
|
---|
| 349 | long unsigned int _alignof_T,
|
---|
| 350 | long unsigned int _sizeof_Params,
|
---|
| 351 | long unsigned int _alignof_Params,
|
---|
| 352 | void *(*_assign_TT)(void *, void *),
|
---|
| 353 | void (*_ctor_T)(void *),
|
---|
| 354 | void (*_ctor_TT)(void *, void *),
|
---|
| 355 | void (*_dtor_T)(void *),
|
---|
| 356 | void (*print_T)(void *),
|
---|
| 357 | void (*print_Params)(void *),
|
---|
| 358 | void *arg,
|
---|
| 359 | void *rest
|
---|
| 360 | ){
|
---|
| 361 | void *_tmp_cp0 = __builtin_alloca(_sizeof_T);
|
---|
| 362 | _adapterF_2tT__P( // print(arg)
|
---|
| 363 | ((void (*)())print_T),
|
---|
| 364 | (_adapterF_P2tT2tT__MP( // copy construct argument
|
---|
| 365 | ((void (*)())_ctor_TT),
|
---|
| 366 | _tmp_cp0,
|
---|
| 367 | arg
|
---|
| 368 | ), _tmp_cp0)
|
---|
| 369 | );
|
---|
| 370 | _dtor_T(_tmp_cp0); // destroy argument temporary
|
---|
| 371 | _adapterF_7tParams__P( // print(rest)
|
---|
| 372 | ((void (*)())print_Params),
|
---|
| 373 | rest
|
---|
| 374 | );
|
---|
| 375 | }
|
---|
| 376 | \end{cfacode}
|
---|
| 377 | The @print_T@ routine is called indirectly through an adapter function with a copy constructed argument, followed by an indirect call to @print_Params@.
|
---|
| 378 |
|
---|
| 379 | A call to print
|
---|
| 380 | \begin{cfacode}
|
---|
| 381 | void print(const char * x) { printf("%s", x); }
|
---|
| 382 | void print(int x) { printf("%d", x); }
|
---|
| 383 |
|
---|
| 384 | print("x = ", 123, ".\n");
|
---|
| 385 | \end{cfacode}
|
---|
[0eb18557] | 386 | generates the following
|
---|
[7493339] | 387 | \begin{cfacode}
|
---|
| 388 | void print_string(const char *x){
|
---|
| 389 | int _tmp_cp_ret0;
|
---|
| 390 | (_tmp_cp_ret0=printf("%s", x)) , _tmp_cp_ret0;
|
---|
| 391 | *(int *)&_tmp_cp_ret0; // ^?{}
|
---|
| 392 | }
|
---|
| 393 | void print_int(int x){
|
---|
| 394 | int _tmp_cp_ret1;
|
---|
| 395 | (_tmp_cp_ret1=printf("%d", x)) , _tmp_cp_ret1;
|
---|
| 396 | *(int *)&_tmp_cp_ret1; // ^?{}
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 | struct _tuple2_ { // _tuple2_(T0, T1)
|
---|
| 400 | void *field_0;
|
---|
| 401 | void *field_1;
|
---|
| 402 | };
|
---|
| 403 | struct _conc__tuple2_0 { // _tuple2_(int, const char *)
|
---|
| 404 | int field_0;
|
---|
| 405 | const char *field_1;
|
---|
| 406 | };
|
---|
| 407 | struct _conc__tuple2_0 _tmp_cp6; // _tuple2_(int, const char *)
|
---|
| 408 | const char *_thunk0(const char **_p0, const char *_p1){
|
---|
| 409 | // const char * ?=?(const char **, const char *)
|
---|
| 410 | return *_p0=_p1;
|
---|
| 411 | }
|
---|
| 412 | void _thunk1(const char **_p0){ // void ?{}(const char **)
|
---|
| 413 | *_p0; // ?{}
|
---|
| 414 | }
|
---|
| 415 | void _thunk2(const char **_p0, const char *_p1){
|
---|
| 416 | // void ?{}(const char **, const char *)
|
---|
| 417 | *_p0=_p1; // ?{}
|
---|
| 418 | }
|
---|
| 419 | void _thunk3(const char **_p0){ // void ^?{}(const char **)
|
---|
| 420 | *_p0; // ^?{}
|
---|
| 421 | }
|
---|
[0111dc7] | 422 | void _thunk4(struct _conc__tuple2_0 _p0){
|
---|
| 423 | // void print([int, const char *])
|
---|
[7493339] | 424 | struct _tuple1_ { // _tuple1_(T0)
|
---|
| 425 | void *field_0;
|
---|
| 426 | };
|
---|
| 427 | struct _conc__tuple1_1 { // _tuple1_(const char *)
|
---|
| 428 | const char *field_0;
|
---|
| 429 | };
|
---|
| 430 | void _thunk5(struct _conc__tuple1_1 _pp0){ // void print([const char *])
|
---|
| 431 | print_string(_pp0.field_0); // print(rest.0)
|
---|
| 432 | }
|
---|
[0111dc7] | 433 | void _adapter_i_pii_(
|
---|
| 434 | void (*_adaptee)(),
|
---|
| 435 | void *_ret,
|
---|
| 436 | void *_p0,
|
---|
| 437 | void *_p1
|
---|
| 438 | ){
|
---|
[7493339] | 439 | *(int *)_ret=((int (*)(int *, int))_adaptee)(_p0, *(int *)_p1);
|
---|
| 440 | }
|
---|
| 441 | void _adapter_pii_(void (*_adaptee)(), void *_p0, void *_p1){
|
---|
| 442 | ((void (*)(int *, int ))_adaptee)(_p0, *(int *)_p1);
|
---|
| 443 | }
|
---|
| 444 | void _adapter_i_(void (*_adaptee)(), void *_p0){
|
---|
| 445 | ((void (*)(int))_adaptee)(*(int *)_p0);
|
---|
| 446 | }
|
---|
| 447 | void _adapter_tuple1_5_(void (*_adaptee)(), void *_p0){
|
---|
[0111dc7] | 448 | ((void (*)(struct _conc__tuple1_1 ))_adaptee)(
|
---|
| 449 | *(struct _conc__tuple1_1 *)_p0
|
---|
| 450 | );
|
---|
[7493339] | 451 | }
|
---|
| 452 | print_variadic(
|
---|
| 453 | _adapter_tuple1_5,
|
---|
| 454 | _adapter_i_,
|
---|
| 455 | _adapter_pii_,
|
---|
| 456 | _adapter_i_pii_,
|
---|
| 457 | sizeof(int),
|
---|
| 458 | __alignof__(int),
|
---|
| 459 | sizeof(struct _conc__tuple1_1),
|
---|
| 460 | __alignof__(struct _conc__tuple1_1),
|
---|
[0111dc7] | 461 | (void *(*)(void *, void *))_assign_i, // int ?=?(int *, int)
|
---|
| 462 | (void (*)(void *))_ctor_i, // void ?{}(int *)
|
---|
| 463 | (void (*)(void *, void *))_ctor_ii, // void ?{}(int *, int)
|
---|
| 464 | (void (*)(void *))_dtor_ii, // void ^?{}(int *)
|
---|
| 465 | (void (*)(void *))print_int, // void print(int)
|
---|
| 466 | (void (*)(void *))&_thunk5, // void print([const char *])
|
---|
| 467 | &_p0.field_0, // rest.0
|
---|
| 468 | &(struct _conc__tuple1_1 ){ _p0.field_1 }// [rest.1]
|
---|
[7493339] | 469 | );
|
---|
| 470 | }
|
---|
| 471 | struct _tuple1_ { // _tuple1_(T0)
|
---|
| 472 | void *field_0;
|
---|
| 473 | };
|
---|
| 474 | struct _conc__tuple1_6 { // _tuple_1(const char *)
|
---|
| 475 | const char *field_0;
|
---|
| 476 | };
|
---|
| 477 | const char *_temp0;
|
---|
| 478 | _temp0="x = ";
|
---|
| 479 | void _adapter_pstring_pstring_string(
|
---|
| 480 | void (*_adaptee)(),
|
---|
| 481 | void *_ret,
|
---|
| 482 | void *_p0,
|
---|
| 483 | void *_p1
|
---|
| 484 | ){
|
---|
| 485 | *(const char **)_ret=
|
---|
| 486 | ((const char *(*)(const char **, const char *))_adaptee)(
|
---|
| 487 | _p0,
|
---|
| 488 | *(const char **)_p1
|
---|
| 489 | );
|
---|
| 490 | }
|
---|
| 491 | void _adapter_pstring_string(void (*_adaptee)(), void *_p0, void *_p1){
|
---|
[0111dc7] | 492 | ((void (*)(const char **, const char *))_adaptee)(
|
---|
| 493 | _p0,
|
---|
| 494 | *(const char **)_p1
|
---|
| 495 | );
|
---|
[7493339] | 496 | }
|
---|
| 497 | void _adapter_string_(void (*_adaptee)(), void *_p0){
|
---|
| 498 | ((void (*)(const char *))_adaptee)(*(const char **)_p0);
|
---|
| 499 | }
|
---|
| 500 | void _adapter_tuple2_0_(void (*_adaptee)(), void *_p0){
|
---|
[0111dc7] | 501 | ((void (*)(struct _conc__tuple2_0 ))_adaptee)(
|
---|
| 502 | *(struct _conc__tuple2_0 *)_p0
|
---|
| 503 | );
|
---|
[7493339] | 504 | }
|
---|
| 505 | print_variadic(
|
---|
| 506 | _adapter_tuple2_0_,
|
---|
| 507 | _adapter_string_,
|
---|
| 508 | _adapter_pstring_string_,
|
---|
| 509 | _adapter_pstring_pstring_string_,
|
---|
| 510 | sizeof(const char *),
|
---|
| 511 | __alignof__(const char *),
|
---|
| 512 | sizeof(struct _conc__tuple2_0 ),
|
---|
| 513 | __alignof__(struct _conc__tuple2_0 ),
|
---|
[0111dc7] | 514 | &_thunk0, // const char * ?=?(const char **, const char *)
|
---|
| 515 | &_thunk1, // void ?{}(const char **)
|
---|
| 516 | &_thunk2, // void ?{}(const char **, const char *)
|
---|
| 517 | &_thunk3, // void ^?{}(const char **)
|
---|
| 518 | print_string, // void print(const char *)
|
---|
| 519 | &_thunk4, // void print([int, const char *])
|
---|
[7493339] | 520 | &_temp0, // "x = "
|
---|
| 521 | (({ // copy construct tuple argument to print
|
---|
| 522 | int *__multassign_L0 = (int *)&_tmp_cp6.field_0;
|
---|
| 523 | const char **__multassign_L1 = (const char **)&_tmp_cp6.field_1;
|
---|
| 524 | int __multassign_R0 = 123;
|
---|
| 525 | const char *__multassign_R1 = ".\n";
|
---|
| 526 | ((*__multassign_L0=__multassign_R0 /* ?{} */),
|
---|
| 527 | (*__multassign_L1=__multassign_R1 /* ?{} */));
|
---|
| 528 | }), &_tmp_cp6) // [123, ".\n"]
|
---|
| 529 | );
|
---|
| 530 | ({ // destroy argument temporary
|
---|
| 531 | int *__massassign_L0 = (int *)&_tmp_cp6.field_0;
|
---|
| 532 | const char **__massassign_L1 = (const char **)&_tmp_cp6.field_1;
|
---|
| 533 | ((*__massassign_L0 /* ^?{} */) , (*__massassign_L1 /* ^?{} */));
|
---|
| 534 | });
|
---|
| 535 | \end{cfacode}
|
---|
| 536 | The type @_tuple2_@ is generated to allow passing the @rest@ argument to @print_variadic@.
|
---|
| 537 | Thunks 0 through 3 provide wrappers for the @otype@ parameters for @const char *@, while @_thunk4@ translates a call to @print([int, const char *])@ into a call to @print_variadic(int, [const char *])@.
|
---|
| 538 | This all builds to a call to @print_variadic@, with the appropriate copy construction of the tuple argument.
|
---|