| 1 |  | 
|---|
| 2 |  | 
|---|
| 3 | // a type whose size is n | 
|---|
| 4 | #define Z(n) char[n] | 
|---|
| 5 |  | 
|---|
| 6 | // the inverse of Z(-) | 
|---|
| 7 | #define z(Zn) sizeof(Zn) | 
|---|
| 8 |  | 
|---|
| 9 | // if you're expecting a Z(n), say so, by asking for a ztype, instead of dtype or otype | 
|---|
| 10 | #define ztype(Zn) Zn & | sized(Zn) | 
|---|
| 11 |  | 
|---|
| 12 | forall( T & ) struct tag {}; | 
|---|
| 13 | #define ttag(T) ((tag(T)){}) | 
|---|
| 14 | #define ztag(n) ttag(Z(n)) | 
|---|
| 15 |  | 
|---|
| 16 |  | 
|---|
| 17 | // | 
|---|
| 18 | // Single-dim array sruct (with explicit packing and atom) | 
|---|
| 19 | // | 
|---|
| 20 |  | 
|---|
| 21 | forall( ztype(Zn), ztype(S), Timmed &, Tbase & ) { | 
|---|
| 22 | struct arpk { | 
|---|
| 23 | S strides[z(Zn)]; | 
|---|
| 24 | }; | 
|---|
| 25 |  | 
|---|
| 26 | Timmed & ?[?]( arpk(Zn, S, Timmed, Tbase) & a, ptrdiff_t i ) { | 
|---|
| 27 | return (Timmed &) a.strides[i]; | 
|---|
| 28 | } | 
|---|
| 29 |  | 
|---|
| 30 | // workaround #226 (and array relevance thereof demonstrated in mike102/otype-slow-ndims.cfa) | 
|---|
| 31 | void ?{}( arpk(Zn, S, Timmed, Tbase) & this ) { | 
|---|
| 32 | void ?{}( S (&inner)[z(Zn)] ) {} | 
|---|
| 33 | ?{}(this.strides); | 
|---|
| 34 | } | 
|---|
| 35 | void ^?{}( arpk(Zn, S, Timmed, Tbase) & this ) { | 
|---|
| 36 | void ^?{}( S (&inner)[z(Zn)] ) {} | 
|---|
| 37 | ^?{}(this.strides); | 
|---|
| 38 | } | 
|---|
| 39 | } | 
|---|
| 40 |  | 
|---|
| 41 | // | 
|---|
| 42 | // Sugar for declaring array structure instances | 
|---|
| 43 | // | 
|---|
| 44 |  | 
|---|
| 45 | forall( Te ) | 
|---|
| 46 | Te mkar_( tag(Te) ) {} | 
|---|
| 47 |  | 
|---|
| 48 | forall( ztype(Zn), ZTags ... , Trslt &, Tatom & | { Trslt mkar_( tag(Tatom), ZTags ); } ) | 
|---|
| 49 | arpk(Zn, Trslt, Trslt, Tatom) mkar_( tag(Tatom), tag(Zn), ZTags ) {} | 
|---|
| 50 |  | 
|---|
| 51 | // stolen from https://stackoverflow.com/questions/1872220/is-it-possible-to-iterate-over-arguments-in-variadic-macros | 
|---|
| 52 |  | 
|---|
| 53 | // Make a FOREACH macro | 
|---|
| 54 | #define FE_0(WHAT) | 
|---|
| 55 | #define FE_1(WHAT, X) WHAT(X) | 
|---|
| 56 | #define FE_2(WHAT, X, ...) WHAT(X)FE_1(WHAT, __VA_ARGS__) | 
|---|
| 57 | #define FE_3(WHAT, X, ...) WHAT(X)FE_2(WHAT, __VA_ARGS__) | 
|---|
| 58 | #define FE_4(WHAT, X, ...) WHAT(X)FE_3(WHAT, __VA_ARGS__) | 
|---|
| 59 | #define FE_5(WHAT, X, ...) WHAT(X)FE_4(WHAT, __VA_ARGS__) | 
|---|
| 60 | //... repeat as needed | 
|---|
| 61 |  | 
|---|
| 62 | #define GET_MACRO(_0,_1,_2,_3,_4,_5,NAME,...) NAME | 
|---|
| 63 | #define FOR_EACH(action,...) \ | 
|---|
| 64 | GET_MACRO(_0,__VA_ARGS__,FE_5,FE_4,FE_3,FE_2,FE_1,FE_0)(action,__VA_ARGS__) | 
|---|
| 65 |  | 
|---|
| 66 | #define COMMA_ttag(X) , ttag(X) | 
|---|
| 67 | #define array( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ttag, __VA_ARGS__ ) ) ) | 
|---|
| 68 |  | 
|---|
| 69 | #define COMMA_ztag(X) , ztag(X) | 
|---|
| 70 | #define zarray( TE, ...) typeof( mkar_( ttag(TE)  FOR_EACH( COMMA_ztag, __VA_ARGS__ ) ) ) | 
|---|
| 71 |  | 
|---|
| 72 | // | 
|---|
| 73 | // Sugar for multidimensional indexing | 
|---|
| 74 | // | 
|---|
| 75 |  | 
|---|
| 76 | // Core -[[-,-,-]] operator | 
|---|
| 77 |  | 
|---|
| 78 | // Desired form, one definition with recursion on IxBC (worked until Jan 2021, see trac #__TODO__) | 
|---|
| 79 | // forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 80 | // TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { | 
|---|
| 81 | //     return this[ab][bc]; | 
|---|
| 82 | // } | 
|---|
| 83 |  | 
|---|
| 84 | // Workaround form.  Listing all possibilities up to 4 dims. | 
|---|
| 85 | forall( TA &, TB &, IxAB | { TB & ?[?]( TA &, IxAB ); } | 
|---|
| 86 | , TC &, IxBC | { TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 87 | TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { | 
|---|
| 88 | return this[ab][bc]; | 
|---|
| 89 | } | 
|---|
| 90 | // forall( TA &, TB &, TC &, IxAB, IxBC ... | { TB & ?[?]( TA &, IxAB ); TC & ?[?]( TB &, IxBC ); } ) | 
|---|
| 91 | // TC & ?[?]( TA & this, IxAB ab, IxBC bc ) { | 
|---|
| 92 | //     return this[ab][bc]; | 
|---|
| 93 | // } | 
|---|
| 94 |  | 
|---|
| 95 | // Adapters for "indexed by ptrdiff_t" implies "indexed by [this other integral type]" | 
|---|
| 96 | // Work around restriction that assertions underlying -[[-,-,-]] must match excatly | 
|---|
| 97 | forall( C &, E & | { E & ?[?]( C &, ptrdiff_t ); } ) { | 
|---|
| 98 |  | 
|---|
| 99 | // Targeted to support:  for( i; z(N) ) ... a[[ ..., i, ... ]] | 
|---|
| 100 | E & ?[?]( C & this, size_t i ) { | 
|---|
| 101 | return this[ (ptrdiff_t) i ]; | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | // Targeted to support:  for( i; 5 ) ... a[[ ..., i, ... ]] | 
|---|
| 105 | E & ?[?]( C & this, int i ) { | 
|---|
| 106 | return this[ (ptrdiff_t) i ]; | 
|---|
| 107 | } | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | // | 
|---|
| 111 | // Rotation | 
|---|
| 112 | // | 
|---|
| 113 |  | 
|---|
| 114 | // Base | 
|---|
| 115 | forall( ztype(Zq), ztype(Sq), Tbase & ) | 
|---|
| 116 | tag(arpk(Zq, Sq, Tbase, Tbase)) enq_( tag(Tbase), tag(Zq), tag(Sq), tag(Tbase) ) {} | 
|---|
| 117 |  | 
|---|
| 118 | // Rec | 
|---|
| 119 | forall( ztype(Zq), ztype(Sq), ztype(Z), ztype(S), recq &, recr &, Tbase & | { tag(recr) enq_( tag(Tbase), tag(Zq), tag(Sq), tag(recq) ); } ) | 
|---|
| 120 | tag(arpk(Z, S, recr, Tbase)) enq_( tag(Tbase), tag(Zq), tag(Sq), tag(arpk(Z, S, recq, Tbase)) ) {} | 
|---|
| 121 |  | 
|---|
| 122 | // Wrapper | 
|---|
| 123 | struct all_t {} all; | 
|---|
| 124 | forall( ztype(Z), ztype(S), Te &, result &, Tbase & | { tag(result) enq_( tag(Tbase), tag(Z), tag(S), tag(Te) ); } ) | 
|---|
| 125 | result & ?[?]( arpk(Z, S, Te, Tbase) & this, all_t ) { | 
|---|
| 126 | return (result&) this; | 
|---|
| 127 | } | 
|---|