source: doc/theses/mike_brooks_MMath/background.tex @ feb999f

Last change on this file since feb999f was 2d82999, checked in by Michael Brooks <mlbrooks@…>, 2 months ago

clear out draft content and link syntactic reference figures

  • Property mode set to 100644
File size: 20.1 KB
Line 
1\chapter{Background}
2
3Since this work builds on C, it is necessary to explain the C mechanisms and their shortcomings for array, linked list, and string,
4
5
6\section{Array}
7
8At the start, the C programming language made a significant design mistake.
9\begin{quote}
10In C, there is a strong relationship between pointers and arrays, strong enough that pointers and arrays really should be treated simultaneously.
11Any operation which can be achieved by array subscripting can also be done with pointers.~\cite[p.~93]{C:old}
12\end{quote}
13Accessing any storage requires pointer arithmetic, even if it is just base-displacement addressing in an instruction.
14The conjoining of pointers and arrays could also be applied to structures, where a pointer references a structure field like an array element.
15Finally, while subscripting involves pointer arithmetic (as does field references @x.y.z@), it is very complex for multi-dimensional arrays and requires array descriptors to know stride lengths along dimensions.
16Many C errors result from performing pointer arithmetic instead of using subscripting.
17Some C textbooks erroneously teach pointer arithmetic suggesting it is faster than subscripting.
18
19C semantics want a programmer to \emph{believe} an array variable is a ``pointer to its first element.''
20This desire becomes apparent by a detailed inspection of an array declaration.
21\lstinput{34-34}{bkgd-carray-arrty.c}
22The inspection begins by using @sizeof@ to provide definite program semantics for the intuition of an expression's type.
23\lstinput{35-36}{bkgd-carray-arrty.c}
24Now consider the sizes of expressions derived from @ar@, modified by adding ``pointer to'' and ``first element'' (and including unnecessary parentheses to avoid confusion about precedence).
25\lstinput{37-40}{bkgd-carray-arrty.c}
26Given the size of @float@ is 4, the size of @ar@ with 10 floats being 40 bytes is common reasoning for C programmers.
27Equally, C programmers know the size of a \emph{pointer} to the first array element is 8 (or 4 depending on the addressing architecture).
28% Now, set aside for a moment the claim that this first assertion is giving information about a type.
29Clearly, an array and a pointer to its first element are different things.
30
31In fact, the idea that there is such a thing as a pointer to an array may be surprising and it is not the same thing as a pointer to the first element.
32\lstinput{42-45}{bkgd-carray-arrty.c}
33The first assignment gets
34\begin{cfa}
35warning: assignment to `float (*)[10]' from incompatible pointer type `float *'
36\end{cfa}
37and the second assignment gets the opposite.
38
39The inspection now refutes any suggestion that @sizeof@ is informing about allocation rather than type information.
40Note, @sizeof@ has two forms, one operating on an expression and the other on a type.
41Using the type form yields the same results as the prior expression form.
42\lstinput{46-49}{bkgd-carray-arrty.c}
43The results are also the same when there is \emph{no allocation} using a pointer-to-array type.
44\lstinput{51-57}{bkgd-carray-arrty.c}
45Hence, in all cases, @sizeof@ is informing about type information.
46
47So, thinking of an array as a pointer to its first element is too simplistic an analogue and it is not backed up the type system.
48This misguided analogue can be forced onto single-dimension arrays but there is no advantage other than possibly teaching beginning programmers about basic runtime array-access.
49
50Continuing, a shortened form for declaring local variables exists, provided that length information is given in the initializer:
51\lstinput{59-62}{bkgd-carray-arrty.c}
52In these declarations, the resulting types are both arrays, but their lengths are inferred.
53
54My contribution is enabled by recognizing
55\begin{itemize}
56        \item There is value in using a type that knows how big the whole thing is.
57        \item The type pointer to (first) element does not.
58        \item C \emph{has} a type that knows the whole picture: array, e.g. @T[10]@.
59        \item This type has all the usual derived forms, which also know the whole picture.  A usefully noteworthy example is pointer to array, e.g. @T(*)[10]@.
60\end{itemize}
61
62Each of these sections, which introduces another layer of of the C arrays' story,
63concludes with an \emph{Unfortunate Syntactic Reference}.
64It shows how to spell the types under discussion,
65along with interactions with orthogonal (but easily confused) language features.
66Alternate spellings are listed within a row.
67The simplest occurrences of types distinguished in the preceding discussion are marked with $\triangleright$.
68The Type column gives the spelling used in a cast or error message (though note Section TODO points out that some types cannot be casted to).
69The Declaration column gives the spelling used in an object declaration, such as variable or aggregate member; parameter declarations (section TODO) follow entirely different rules.
70
71After all, reading a C array type is easy: just read it from the inside out, and know when to look left and when to look right!
72
73
74\CFA-specific spellings (not yet introduced) are also included here for referenceability; these can be skipped on linear reading.
75The \CFA-C column gives the, more fortunate, ``new'' syntax of section TODO, for spelling \emph{exactly the same type}.
76This fortunate syntax does not have different spellings for types vs declarations;
77a declaration is always the type followed by the declared identifier name;
78for the example of letting @x@ be a \emph{pointer to array}, the declaration is spelled:
79\begin{cfa}
80[ * [10] T ] x;
81\end{cfa}
82The \CFA-Full column gives the spelling of a different type, introduced in TODO, which has all of my contributed improvements for safety and ergonomics.
83
84\VRef[Figure]{bkgd:ar:usr:avp} gives this reference for the discussion so far.
85
86\begin{figure}
87\centering
88\setlength{\tabcolsep}{3pt}
89\begin{tabular}{llllll}
90        & Description & Type & Declaration & \CFA-C  & \CFA-Full \\ \hline
91        $\triangleright$ & val.
92            & @T@
93            & @T x;@
94            & @[ T ]@
95            & 
96            \\ \hline
97        & \pbox{20cm}{ \vspace{2pt} val.\\ \footnotesize{no writing the val.\ in \lstinline{x}}   }\vspace{2pt}
98            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T} \\ \lstinline{T const}   }
99            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T x;} \\ \lstinline{T const x;}   }
100            & @[ const T ]@
101            & 
102            \\ \hline \hline
103        $\triangleright$ & ptr.\ to val.
104            & @T *@
105            & @T * x;@
106            & @[ * T ]@
107            &
108            \\ \hline
109        & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}}   }\vspace{2pt}
110            & @T * const@
111            & @T * const x;@
112            & @[ const * T ]@
113            & 
114            \\ \hline
115        & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*x}}   }\vspace{2pt}
116            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T *} \\ \lstinline{T const *}   }
117            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x;} \\ \lstinline{T const * x;}   }
118            & @[ * const T ]@
119            & 
120            \\ \hline \hline
121        $\triangleright$ & ar.\ of val.
122            & @T[10]@
123            & @T x[10];@
124            & @[ [10] T ]@
125            & @[ array(T, 10) ]@
126            \\ \hline
127        & \pbox{20cm}{ \vspace{2pt} ar.\ of val.\\ \footnotesize{no writing the val.\ in \lstinline{x[5]}}   }\vspace{2pt}
128            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T[10]} \\ \lstinline{T const[10]}   }
129            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T x[10];} \\ \lstinline{T const x[10];}   }
130            & @[ [10] const T ]@
131            & @[ const array(T, 10) ]@
132            \\ \hline
133        & ar.\ of ptr.\ to val.
134            & @T*[10]@
135            & @T *x[10];@
136            & @[ [10] * T ]@
137            & @[ array(* T, 10) ]@
138            \\ \hline
139        & \pbox{20cm}{ \vspace{2pt} ar.\ of ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x[5]}}   }\vspace{2pt}
140            & @T * const [10]@
141            & @T * const x[10];@
142            & @[ [10] const * T ]@
143            & @[ array(const * T, 10) ]@
144            \\ \hline
145        & \pbox{20cm}{ \vspace{2pt} ar.\ of ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*(x[5])}}   }\vspace{2pt}
146            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * [10]} \\ \lstinline{T const * [10]}   }
147            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x[10];} \\ \lstinline{T const * x[10];}   }
148            & @[ [10] * const T ]@
149            & @[ array(* const T, 10) ]@
150            \\ \hline \hline
151        $\triangleright$ & ptr.\ to ar.\ of val.
152            & @T(*)[10]@
153            & @T (*x)[10];@
154            & @[ * [10] T ]@
155            & @[ * array(T, 10) ]@
156            \\ \hline
157        & \pbox{20cm}{ \vspace{2pt} ptr.\ to ar.\ of val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}}   }\vspace{2pt}
158            & @T(* const)[10]@
159            & @T (* const x)[10];@
160            & @[ const * [10] T ]@
161            & @[ const * array(T, 10) ]@
162            \\ \hline
163        & \pbox{20cm}{ \vspace{2pt} ptr.\ to ar.\ of val.\\ \footnotesize{no writing the val.\ in \lstinline{(*x)[5]}}   }\vspace{2pt}
164            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T(*)[10]} \\ \lstinline{T const (*) [10]}   }
165            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T (*x)[10];} \\ \lstinline{T const (*x)[10];}   }
166            & @[ * [10] const T ]@
167            & @[ * const array(T, 10) ]@
168            \\ \hline
169        & ptr.\ to ar.\ of ptr.\ to val.
170            & @T*(*)[10]@
171            & @T *(*x)[10];@
172            & @[ * [10] * T ]@
173            & @[ * array(* T, 10) ]@
174            \\ \hline
175\end{tabular}
176\caption{Unfortunate Syntactic Reference for Array vs Pointer.  Includes interaction with constness.}
177\label{bkgd:ar:usr:avp}
178\end{figure}
179
180
181
182
183
184TODO: Address these parked unfortunate syntaxes
185\begin{itemize}
186        \item static
187        \item star as dimension
188        \item under pointer decay:                              int p1[const 3]  being  int const *p1
189\end{itemize}
190
191
192\subsection{Arrays decay and pointers diffract}
193
194The last section established the difference between these four types:
195\lstinput{3-6}{bkgd-carray-decay.c}
196But the expression used for obtaining the pointer to the first element is pedantic.
197The root of all C programmer experience with arrays is the shortcut
198\lstinput{8-8}{bkgd-carray-decay.c}
199which reproduces @pa0@, in type and value:
200\lstinput{9-9}{bkgd-carray-decay.c}
201The validity of this initialization is unsettling, in the context of the facts established in the last section.
202Notably, it initializes name @pa0x@ from expression @ar@, when they are not of the same type:
203\lstinput{10-10}{bkgd-carray-decay.c}
204
205So, C provides an implicit conversion from @float[10]@ to @float*@, as described in ARM-6.3.2.1.3:
206\begin{quote}
207Except when it is the operand of the @sizeof@ operator, or the unary @&@ operator, or is a
208string literal used to initialize an array
209an expression that has type ``array of type'' is
210converted to an expression with type ``pointer to type'' that points to the initial element of
211the array object
212\end{quote}
213
214This phenomenon is the famous ``pointer decay,'' which is a decay of an array-typed expression into a pointer-typed one.
215
216It is worthy to note that the list of exception cases does not feature the occurrence of @ar@ in @ar[i]@.
217Thus, subscripting happens on pointers, not arrays.
218
219Subscripting proceeds first with pointer decay, if needed.  Next, ARM-6.5.2.1.2 explains that @ar[i]@ is treated as if it were @(*((a)+(i)))@.
220ARM-6.5.6.8 explains that the addition, of a pointer with an integer type,  is defined only when the pointer refers to an element that is in an array, with a meaning of ``@i@ elements away from,'' which is valid if @ar@ is big enough and @i@ is small enough.
221Finally, ARM-6.5.3.2.4 explains that the @*@ operator's result is the referenced element.
222
223Taken together, these rules also happen to illustrate that @ar[i]@ and @i[a]@ mean the same thing.
224
225Subscripting a pointer when the target is standard-inappropriate is still practically well-defined.
226While the standard affords a C compiler freedom about the meaning of an out-of-bound access,
227or of subscripting a pointer that does not refer to an array element at all,
228the fact that C is famously both generally high-performance, and specifically not bound-checked,
229leads to an expectation that the runtime handling is uniform across legal and illegal accesses.
230Moreover, consider the common pattern of subscripting on a @malloc@ result:
231\begin{cfa}
232float * fs = malloc( 10 * sizeof(float) );
233fs[5] = 3.14;
234\end{cfa}
235The @malloc@ behaviour is specified as returning a pointer to ``space for an object whose size is'' as requested (ARM-7.22.3.4.2).
236But program says \emph{nothing} more about this pointer value, that might cause its referent to \emph{be} an array, before doing the subscript.
237
238Under this assumption, a pointer being subscripted (or added to, then dereferenced)
239by any value (positive, zero, or negative), gives a view of the program's entire address space,
240centred around the @p@ address, divided into adjacent @sizeof(*p)@ chunks,
241each potentially (re)interpreted as @typeof(*p)@.
242
243I call this phenomenon ``array diffraction,''  which is a diffraction of a single-element pointer
244into the assumption that its target is in the middle of an array whose size is unlimited in both directions.
245
246No pointer is exempt from array diffraction.
247
248No array shows its elements without pointer decay.
249
250A further pointer--array confusion, closely related to decay, occurs in parameter declarations.
251ARM-6.7.6.3.7 explains that when an array type is written for a parameter,
252the parameter's type becomes a type that I summarize as being the array-decayed type.
253The respective handlings of the following two parameter spellings shows that the array-spelled one is really, like the other, a pointer.
254\lstinput{12-16}{bkgd-carray-decay.c}
255As the @sizeof(x)@ meaning changed, compared with when run on a similarly-spelled local variable declaration,
256GCC also gives this code the warning: ```sizeof' on array function parameter `x' will return size of `float *'.''
257
258The caller of such a function is left with the reality that a pointer parameter is a pointer, no matter how it's spelled:
259\lstinput{18-21}{bkgd-carray-decay.c}
260This fragment gives no warnings.
261
262The shortened parameter syntax @T x[]@ is a further way to spell ``pointer.''
263Note the opposite meaning of this spelling now, compared with its use in local variable declarations.
264This point of confusion is illustrated in:
265\lstinput{23-30}{bkgd-carray-decay.c}
266The basic two meanings, with a syntactic difference helping to distinguish,
267are illustrated in the declarations of @ca@ vs.\ @cp@,
268whose subsequent @edit@ calls behave differently.
269The syntax-caused confusion is in the comparison of the first and last lines,
270both of which use a literal to initialize an object declared with spelling @T x[]@.
271But these initialized declarations get opposite meanings,
272depending on whether the object is a local variable or a parameter.
273
274
275In summary, when a function is written with an array-typed parameter,
276\begin{itemize}
277        \item an appearance of passing an array by value is always an incorrect understanding
278        \item a dimension value, if any is present, is ignored
279        \item pointer decay is forced at the call site and the callee sees the parameter having the decayed type
280\end{itemize}
281
282Pointer decay does not affect pointer-to-array types, because these are already pointers, not arrays.
283As a result, a function with a pointer-to-array parameter sees the parameter exactly as the caller does:
284\lstinput{32-42}{bkgd-carray-decay.c}
285
286\VRef[Figure]{bkgd:ar:usr:decay-parm} gives the reference for the decay phenomenon seen in parameter decalarations.
287
288\begin{figure}
289\centering
290\begin{tabular}{llllll}
291        & Description & Type & Param. Decl & \CFA-C  \\ \hline
292        $\triangleright$ & ptr.\ to val.
293            & @T *@
294            & \pbox{20cm}{ \vspace{2pt} \lstinline{T * x,} \\ \lstinline{T x[10],} \\ \lstinline{T x[],}   }\vspace{2pt}
295            & \pbox{20cm}{ \vspace{2pt} \lstinline{[ * T ]} \\ \lstinline{[ [10] T ]} \\ \lstinline{[ [] T  ]}   }
296            \\ \hline
297        & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}}   }\vspace{2pt}
298            & @T * const@
299            & \pbox{20cm}{ \vspace{2pt} \lstinline{T * const x,} \\ \lstinline{T x[const 10],} \\ \lstinline{T x[const],}   }\vspace{2pt}
300            & \pbox{20cm}{ \vspace{2pt} \lstinline{[ const * T ]} \\ \lstinline{[ [const 10] T ]} \\ \lstinline{[ [const] T  ]}   }
301            \\ \hline
302        & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*x}}   }\vspace{2pt}
303            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T *} \\ \lstinline{T const *}   }
304            & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x,} \\ \lstinline{T const * x,} \\ \lstinline{const T x[10],} \\ \lstinline{T const x[10],} \\ \lstinline{const T x[],} \\ \lstinline{T const x[],}   }\vspace{2pt}
305            & \pbox{20cm}{ \vspace{2pt} \lstinline{[* const T]} \\ \lstinline{[ [10] const T ]} \\ \lstinline{[ [] const T  ]}   }
306            \\ \hline \hline
307        $\triangleright$ & ptr.\ to ar.\ of val.
308            & @T(*)[10]@
309            & \pbox{20cm}{ \vspace{2pt} \lstinline{T (*x)[10],} \\ \lstinline{T x[3][10],} \\ \lstinline{T x[][10],}   }\vspace{2pt}
310            & \pbox{20cm}{ \vspace{2pt} \lstinline{[* [10] T]} \\ \lstinline{[ [3] [10] T ]} \\ \lstinline{[ [] [10] T  ]}   }
311            \\ \hline
312        & ptr.\ to ptr.\ to val.
313            & @T **@
314            & \pbox{20cm}{ \vspace{2pt} \lstinline{T ** x,} \\ \lstinline{T *x[10],} \\ \lstinline{T *x[],}   }\vspace{2pt}
315            & \pbox{20cm}{ \vspace{2pt} \lstinline{[ * * T ]} \\ \lstinline{[ [10] * T ]} \\ \lstinline{[ [] * T  ]}   }
316            \\ \hline
317        & \pbox{20cm}{ \vspace{2pt} ptr.\ to ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{**argv}}   }\vspace{2pt}
318            & @const char **@
319            & \pbox{20cm}{ \vspace{2pt} \lstinline{const char *argv[],} \\ \footnotesize{(others elided)}   }\vspace{2pt}
320            & \pbox{20cm}{ \vspace{2pt} \lstinline{[ [] * const char ]} \\ \footnotesize{(others elided)}   }
321            \\ \hline
322\end{tabular}
323\caption{Unfortunate Syntactic Reference for Decay during Parameter-Passing.  Includes interaction with constness, where ``no writing'' refers to a restriction on the callee's ability.}
324\label{bkgd:ar:usr:decay-parm}
325\end{figure}
326
327
328\subsection{Lengths may vary, checking does not}
329
330When the desired number of elements is unknown at compile time,
331a variable-length array is a solution:
332\begin{cfa}
333int main( int argc, const char *argv[] ) {
334        assert( argc == 2 );
335        size_t n = atol( argv[1] );
336        assert( 0 < n && n < 1000 );
337
338        float ar[n];
339        float b[10];
340
341        // ... discussion continues here
342}
343\end{cfa}
344This arrangement allocates @n@ elements on the @main@ stack frame for @ar@, just as it puts 10 elements on the @main@ stack frame for @b@.
345The variable-sized allocation of @ar@ is provided by @alloca@.
346
347In a situation where the array sizes are not known to be small enough for stack allocation to be sensible, corresponding heap allocations are achievable as:
348\begin{cfa}
349float *ax1 = malloc( sizeof( float[n] ) );
350float *ax2 = malloc( n * sizeof( float ) );
351float *bx1 = malloc( sizeof( float[1000000] ) );
352float *bx2 = malloc( 1000000 * sizeof( float ) );
353\end{cfa}
354
355
356VLA
357
358Parameter dependency
359
360Checking is best-effort / unsound
361
362Limited special handling to get the dimension value checked (static)
363
364
365
366\subsection{C has full-service, dynamically sized, multidimensional arrays (and \CC does not)}
367
368In C and \CC, ``multidimensional array'' means ``array of arrays.''  Other meanings are discussed in TODO.
369
370Just as an array's element type can be @float@, so can it be @float[10]@.
371
372While any of @float*@, @float[10]@ and @float(*)[10]@ are easy to tell apart from @float@, telling them apart from each other may need occasional reference back to TODO intro section.
373The sentence derived by wrapping each type in @-[3]@ follows.
374
375While any of @float*[3]@, @float[3][10]@ and @float(*)[3][10]@ are easy to tell apart from @float[3]@,
376telling them apart from each other is what it takes to know what ``array of arrays'' really means.
377
378Pointer decay affects the outermost array only
379
380TODO: unfortunate syntactic reference with these cases:
381
382\begin{itemize}
383        \item ar. of ar. of val (be sure about ordering of dimensions when the declaration is dropped)
384        \item ptr. to ar. of ar. of val
385\end{itemize}
386
387
388\subsection{Arrays are (but) almost values}
389
390Has size; can point to
391
392Can't cast to
393
394Can't pass as value
395
396Can initialize
397
398Can wrap in aggregate
399
400Can't assign
401
402
403\subsection{Returning an array is (but) almost possible}
404
405
406\subsection{The pointer-to-array type has been noticed before}
407
408\subsection{Multi-Dimensional}
409
410As in the last section, we inspect the declaration ...
411\lstinput{16-18}{bkgd-carray-mdim.c}
412The significant axis of deriving expressions from @ar@ is now ``itself,'' ``first element'' or ``first grand-element (meaning, first element of first element).''
413\lstinput{20-44}{bkgd-carray-mdim.c}
414
415
416\section{Linked List}
417
418
419\section{String}
Note: See TracBrowser for help on using the repository browser.