1 | \chapter{Background}
|
---|
2 |
|
---|
3 | Since this work builds on C, it is necessary to explain the C mechanisms and their shortcomings for array, linked list, and string,
|
---|
4 |
|
---|
5 |
|
---|
6 | \section{Array}
|
---|
7 |
|
---|
8 | At the start, the C programming language made a significant design mistake.
|
---|
9 | \begin{quote}
|
---|
10 | In C, there is a strong relationship between pointers and arrays, strong enough that pointers and arrays really should be treated simultaneously.
|
---|
11 | Any operation which can be achieved by array subscripting can also be done with pointers.~\cite[p.~93]{C:old}
|
---|
12 | \end{quote}
|
---|
13 | Accessing any storage requires pointer arithmetic, even if it is just base-displacement addressing in an instruction.
|
---|
14 | The conjoining of pointers and arrays could also be applied to structures, where a pointer references a structure field like an array element.
|
---|
15 | Finally, while subscripting involves pointer arithmetic (as does field references @x.y.z@), it is very complex for multi-dimensional arrays and requires array descriptors to know stride lengths along dimensions.
|
---|
16 | Many C errors result from performing pointer arithmetic instead of using subscripting.
|
---|
17 | Some C textbooks erroneously teach pointer arithmetic suggesting it is faster than subscripting.
|
---|
18 |
|
---|
19 | C semantics want a programmer to \emph{believe} an array variable is a ``pointer to its first element.''
|
---|
20 | This desire becomes apparent by a detailed inspection of an array declaration.
|
---|
21 | \lstinput{34-34}{bkgd-carray-arrty.c}
|
---|
22 | The inspection begins by using @sizeof@ to provide definite program semantics for the intuition of an expression's type.
|
---|
23 | \lstinput{35-36}{bkgd-carray-arrty.c}
|
---|
24 | Now consider the sizes of expressions derived from @ar@, modified by adding ``pointer to'' and ``first element'' (and including unnecessary parentheses to avoid confusion about precedence).
|
---|
25 | \lstinput{37-40}{bkgd-carray-arrty.c}
|
---|
26 | Given the size of @float@ is 4, the size of @ar@ with 10 floats being 40 bytes is common reasoning for C programmers.
|
---|
27 | Equally, C programmers know the size of a \emph{pointer} to the first array element is 8 (or 4 depending on the addressing architecture).
|
---|
28 | % Now, set aside for a moment the claim that this first assertion is giving information about a type.
|
---|
29 | Clearly, an array and a pointer to its first element are different things.
|
---|
30 |
|
---|
31 | In fact, the idea that there is such a thing as a pointer to an array may be surprising and it is not the same thing as a pointer to the first element.
|
---|
32 | \lstinput{42-45}{bkgd-carray-arrty.c}
|
---|
33 | The first assignment gets
|
---|
34 | \begin{cfa}
|
---|
35 | warning: assignment to `float (*)[10]' from incompatible pointer type `float *'
|
---|
36 | \end{cfa}
|
---|
37 | and the second assignment gets the opposite.
|
---|
38 |
|
---|
39 | The inspection now refutes any suggestion that @sizeof@ is informing about allocation rather than type information.
|
---|
40 | Note, @sizeof@ has two forms, one operating on an expression and the other on a type.
|
---|
41 | Using the type form yields the same results as the prior expression form.
|
---|
42 | \lstinput{46-49}{bkgd-carray-arrty.c}
|
---|
43 | The results are also the same when there is \emph{no allocation} using a pointer-to-array type.
|
---|
44 | \lstinput{51-57}{bkgd-carray-arrty.c}
|
---|
45 | Hence, in all cases, @sizeof@ is informing about type information.
|
---|
46 |
|
---|
47 | So, thinking of an array as a pointer to its first element is too simplistic an analogue and it is not backed up the type system.
|
---|
48 | This misguided analogue can be forced onto single-dimension arrays but there is no advantage other than possibly teaching beginning programmers about basic runtime array-access.
|
---|
49 |
|
---|
50 | Continuing, a shortened form for declaring local variables exists, provided that length information is given in the initializer:
|
---|
51 | \lstinput{59-62}{bkgd-carray-arrty.c}
|
---|
52 | In these declarations, the resulting types are both arrays, but their lengths are inferred.
|
---|
53 |
|
---|
54 | My contribution is enabled by recognizing
|
---|
55 | \begin{itemize}
|
---|
56 | \item There is value in using a type that knows how big the whole thing is.
|
---|
57 | \item The type pointer to (first) element does not.
|
---|
58 | \item C \emph{has} a type that knows the whole picture: array, e.g. @T[10]@.
|
---|
59 | \item This type has all the usual derived forms, which also know the whole picture. A usefully noteworthy example is pointer to array, e.g. @T(*)[10]@.
|
---|
60 | \end{itemize}
|
---|
61 |
|
---|
62 | Each of these sections, which introduces another layer of of the C arrays' story,
|
---|
63 | concludes with an \emph{Unfortunate Syntactic Reference}.
|
---|
64 | It shows how to spell the types under discussion,
|
---|
65 | along with interactions with orthogonal (but easily confused) language features.
|
---|
66 | Alternate spellings are listed within a row.
|
---|
67 | The simplest occurrences of types distinguished in the preceding discussion are marked with $\triangleright$.
|
---|
68 | The Type column gives the spelling used in a cast or error message (though note Section TODO points out that some types cannot be casted to).
|
---|
69 | The Declaration column gives the spelling used in an object declaration, such as variable or aggregate member; parameter declarations (section TODO) follow entirely different rules.
|
---|
70 |
|
---|
71 | After all, reading a C array type is easy: just read it from the inside out, and know when to look left and when to look right!
|
---|
72 |
|
---|
73 |
|
---|
74 | \CFA-specific spellings (not yet introduced) are also included here for referenceability; these can be skipped on linear reading.
|
---|
75 | The \CFA-C column gives the, more fortunate, ``new'' syntax of section TODO, for spelling \emph{exactly the same type}.
|
---|
76 | This fortunate syntax does not have different spellings for types vs declarations;
|
---|
77 | a declaration is always the type followed by the declared identifier name;
|
---|
78 | for the example of letting @x@ be a \emph{pointer to array}, the declaration is spelled:
|
---|
79 | \begin{cfa}
|
---|
80 | [ * [10] T ] x;
|
---|
81 | \end{cfa}
|
---|
82 | The \CFA-Full column gives the spelling of a different type, introduced in TODO, which has all of my contributed improvements for safety and ergonomics.
|
---|
83 |
|
---|
84 | \VRef[Figure]{bkgd:ar:usr:avp} gives this reference for the discussion so far.
|
---|
85 |
|
---|
86 | \begin{figure}
|
---|
87 | \centering
|
---|
88 | \setlength{\tabcolsep}{3pt}
|
---|
89 | \begin{tabular}{llllll}
|
---|
90 | & Description & Type & Declaration & \CFA-C & \CFA-Full \\ \hline
|
---|
91 | $\triangleright$ & val.
|
---|
92 | & @T@
|
---|
93 | & @T x;@
|
---|
94 | & @[ T ]@
|
---|
95 | &
|
---|
96 | \\ \hline
|
---|
97 | & \pbox{20cm}{ \vspace{2pt} val.\\ \footnotesize{no writing the val.\ in \lstinline{x}} }\vspace{2pt}
|
---|
98 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T} \\ \lstinline{T const} }
|
---|
99 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T x;} \\ \lstinline{T const x;} }
|
---|
100 | & @[ const T ]@
|
---|
101 | &
|
---|
102 | \\ \hline \hline
|
---|
103 | $\triangleright$ & ptr.\ to val.
|
---|
104 | & @T *@
|
---|
105 | & @T * x;@
|
---|
106 | & @[ * T ]@
|
---|
107 | &
|
---|
108 | \\ \hline
|
---|
109 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}} }\vspace{2pt}
|
---|
110 | & @T * const@
|
---|
111 | & @T * const x;@
|
---|
112 | & @[ const * T ]@
|
---|
113 | &
|
---|
114 | \\ \hline
|
---|
115 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*x}} }\vspace{2pt}
|
---|
116 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T *} \\ \lstinline{T const *} }
|
---|
117 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x;} \\ \lstinline{T const * x;} }
|
---|
118 | & @[ * const T ]@
|
---|
119 | &
|
---|
120 | \\ \hline \hline
|
---|
121 | $\triangleright$ & ar.\ of val.
|
---|
122 | & @T[10]@
|
---|
123 | & @T x[10];@
|
---|
124 | & @[ [10] T ]@
|
---|
125 | & @[ array(T, 10) ]@
|
---|
126 | \\ \hline
|
---|
127 | & \pbox{20cm}{ \vspace{2pt} ar.\ of val.\\ \footnotesize{no writing the val.\ in \lstinline{x[5]}} }\vspace{2pt}
|
---|
128 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T[10]} \\ \lstinline{T const[10]} }
|
---|
129 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T x[10];} \\ \lstinline{T const x[10];} }
|
---|
130 | & @[ [10] const T ]@
|
---|
131 | & @[ const array(T, 10) ]@
|
---|
132 | \\ \hline
|
---|
133 | & ar.\ of ptr.\ to val.
|
---|
134 | & @T*[10]@
|
---|
135 | & @T *x[10];@
|
---|
136 | & @[ [10] * T ]@
|
---|
137 | & @[ array(* T, 10) ]@
|
---|
138 | \\ \hline
|
---|
139 | & \pbox{20cm}{ \vspace{2pt} ar.\ of ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x[5]}} }\vspace{2pt}
|
---|
140 | & @T * const [10]@
|
---|
141 | & @T * const x[10];@
|
---|
142 | & @[ [10] const * T ]@
|
---|
143 | & @[ array(const * T, 10) ]@
|
---|
144 | \\ \hline
|
---|
145 | & \pbox{20cm}{ \vspace{2pt} ar.\ of ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*(x[5])}} }\vspace{2pt}
|
---|
146 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * [10]} \\ \lstinline{T const * [10]} }
|
---|
147 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x[10];} \\ \lstinline{T const * x[10];} }
|
---|
148 | & @[ [10] * const T ]@
|
---|
149 | & @[ array(* const T, 10) ]@
|
---|
150 | \\ \hline \hline
|
---|
151 | $\triangleright$ & ptr.\ to ar.\ of val.
|
---|
152 | & @T(*)[10]@
|
---|
153 | & @T (*x)[10];@
|
---|
154 | & @[ * [10] T ]@
|
---|
155 | & @[ * array(T, 10) ]@
|
---|
156 | \\ \hline
|
---|
157 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to ar.\ of val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}} }\vspace{2pt}
|
---|
158 | & @T(* const)[10]@
|
---|
159 | & @T (* const x)[10];@
|
---|
160 | & @[ const * [10] T ]@
|
---|
161 | & @[ const * array(T, 10) ]@
|
---|
162 | \\ \hline
|
---|
163 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to ar.\ of val.\\ \footnotesize{no writing the val.\ in \lstinline{(*x)[5]}} }\vspace{2pt}
|
---|
164 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T(*)[10]} \\ \lstinline{T const (*) [10]} }
|
---|
165 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T (*x)[10];} \\ \lstinline{T const (*x)[10];} }
|
---|
166 | & @[ * [10] const T ]@
|
---|
167 | & @[ * const array(T, 10) ]@
|
---|
168 | \\ \hline
|
---|
169 | & ptr.\ to ar.\ of ptr.\ to val.
|
---|
170 | & @T*(*)[10]@
|
---|
171 | & @T *(*x)[10];@
|
---|
172 | & @[ * [10] * T ]@
|
---|
173 | & @[ * array(* T, 10) ]@
|
---|
174 | \\ \hline
|
---|
175 | \end{tabular}
|
---|
176 | \caption{Unfortunate Syntactic Reference for Array vs Pointer. Includes interaction with constness.}
|
---|
177 | \label{bkgd:ar:usr:avp}
|
---|
178 | \end{figure}
|
---|
179 |
|
---|
180 |
|
---|
181 |
|
---|
182 |
|
---|
183 |
|
---|
184 | TODO: Address these parked unfortunate syntaxes
|
---|
185 | \begin{itemize}
|
---|
186 | \item static
|
---|
187 | \item star as dimension
|
---|
188 | \item under pointer decay: int p1[const 3] being int const *p1
|
---|
189 | \end{itemize}
|
---|
190 |
|
---|
191 |
|
---|
192 | \subsection{Arrays decay and pointers diffract}
|
---|
193 |
|
---|
194 | The last section established the difference between these four types:
|
---|
195 | \lstinput{3-6}{bkgd-carray-decay.c}
|
---|
196 | But the expression used for obtaining the pointer to the first element is pedantic.
|
---|
197 | The root of all C programmer experience with arrays is the shortcut
|
---|
198 | \lstinput{8-8}{bkgd-carray-decay.c}
|
---|
199 | which reproduces @pa0@, in type and value:
|
---|
200 | \lstinput{9-9}{bkgd-carray-decay.c}
|
---|
201 | The validity of this initialization is unsettling, in the context of the facts established in the last section.
|
---|
202 | Notably, it initializes name @pa0x@ from expression @ar@, when they are not of the same type:
|
---|
203 | \lstinput{10-10}{bkgd-carray-decay.c}
|
---|
204 |
|
---|
205 | So, C provides an implicit conversion from @float[10]@ to @float*@, as described in ARM-6.3.2.1.3:
|
---|
206 | \begin{quote}
|
---|
207 | Except when it is the operand of the @sizeof@ operator, or the unary @&@ operator, or is a
|
---|
208 | string literal used to initialize an array
|
---|
209 | an expression that has type ``array of type'' is
|
---|
210 | converted to an expression with type ``pointer to type'' that points to the initial element of
|
---|
211 | the array object
|
---|
212 | \end{quote}
|
---|
213 |
|
---|
214 | This phenomenon is the famous ``pointer decay,'' which is a decay of an array-typed expression into a pointer-typed one.
|
---|
215 |
|
---|
216 | It is worthy to note that the list of exception cases does not feature the occurrence of @ar@ in @ar[i]@.
|
---|
217 | Thus, subscripting happens on pointers, not arrays.
|
---|
218 |
|
---|
219 | Subscripting proceeds first with pointer decay, if needed. Next, ARM-6.5.2.1.2 explains that @ar[i]@ is treated as if it were @(*((a)+(i)))@.
|
---|
220 | ARM-6.5.6.8 explains that the addition, of a pointer with an integer type, is defined only when the pointer refers to an element that is in an array, with a meaning of ``@i@ elements away from,'' which is valid if @ar@ is big enough and @i@ is small enough.
|
---|
221 | Finally, ARM-6.5.3.2.4 explains that the @*@ operator's result is the referenced element.
|
---|
222 |
|
---|
223 | Taken together, these rules also happen to illustrate that @ar[i]@ and @i[a]@ mean the same thing.
|
---|
224 |
|
---|
225 | Subscripting a pointer when the target is standard-inappropriate is still practically well-defined.
|
---|
226 | While the standard affords a C compiler freedom about the meaning of an out-of-bound access,
|
---|
227 | or of subscripting a pointer that does not refer to an array element at all,
|
---|
228 | the fact that C is famously both generally high-performance, and specifically not bound-checked,
|
---|
229 | leads to an expectation that the runtime handling is uniform across legal and illegal accesses.
|
---|
230 | Moreover, consider the common pattern of subscripting on a @malloc@ result:
|
---|
231 | \begin{cfa}
|
---|
232 | float * fs = malloc( 10 * sizeof(float) );
|
---|
233 | fs[5] = 3.14;
|
---|
234 | \end{cfa}
|
---|
235 | The @malloc@ behaviour is specified as returning a pointer to ``space for an object whose size is'' as requested (ARM-7.22.3.4.2).
|
---|
236 | But program says \emph{nothing} more about this pointer value, that might cause its referent to \emph{be} an array, before doing the subscript.
|
---|
237 |
|
---|
238 | Under this assumption, a pointer being subscripted (or added to, then dereferenced)
|
---|
239 | by any value (positive, zero, or negative), gives a view of the program's entire address space,
|
---|
240 | centred around the @p@ address, divided into adjacent @sizeof(*p)@ chunks,
|
---|
241 | each potentially (re)interpreted as @typeof(*p)@.
|
---|
242 |
|
---|
243 | I call this phenomenon ``array diffraction,'' which is a diffraction of a single-element pointer
|
---|
244 | into the assumption that its target is in the middle of an array whose size is unlimited in both directions.
|
---|
245 |
|
---|
246 | No pointer is exempt from array diffraction.
|
---|
247 |
|
---|
248 | No array shows its elements without pointer decay.
|
---|
249 |
|
---|
250 | A further pointer--array confusion, closely related to decay, occurs in parameter declarations.
|
---|
251 | ARM-6.7.6.3.7 explains that when an array type is written for a parameter,
|
---|
252 | the parameter's type becomes a type that I summarize as being the array-decayed type.
|
---|
253 | The respective handlings of the following two parameter spellings shows that the array-spelled one is really, like the other, a pointer.
|
---|
254 | \lstinput{12-16}{bkgd-carray-decay.c}
|
---|
255 | As the @sizeof(x)@ meaning changed, compared with when run on a similarly-spelled local variable declaration,
|
---|
256 | GCC also gives this code the warning: ```sizeof' on array function parameter `x' will return size of `float *'.''
|
---|
257 |
|
---|
258 | The caller of such a function is left with the reality that a pointer parameter is a pointer, no matter how it's spelled:
|
---|
259 | \lstinput{18-21}{bkgd-carray-decay.c}
|
---|
260 | This fragment gives no warnings.
|
---|
261 |
|
---|
262 | The shortened parameter syntax @T x[]@ is a further way to spell ``pointer.''
|
---|
263 | Note the opposite meaning of this spelling now, compared with its use in local variable declarations.
|
---|
264 | This point of confusion is illustrated in:
|
---|
265 | \lstinput{23-30}{bkgd-carray-decay.c}
|
---|
266 | The basic two meanings, with a syntactic difference helping to distinguish,
|
---|
267 | are illustrated in the declarations of @ca@ vs.\ @cp@,
|
---|
268 | whose subsequent @edit@ calls behave differently.
|
---|
269 | The syntax-caused confusion is in the comparison of the first and last lines,
|
---|
270 | both of which use a literal to initialize an object declared with spelling @T x[]@.
|
---|
271 | But these initialized declarations get opposite meanings,
|
---|
272 | depending on whether the object is a local variable or a parameter.
|
---|
273 |
|
---|
274 |
|
---|
275 | In summary, when a function is written with an array-typed parameter,
|
---|
276 | \begin{itemize}
|
---|
277 | \item an appearance of passing an array by value is always an incorrect understanding
|
---|
278 | \item a dimension value, if any is present, is ignored
|
---|
279 | \item pointer decay is forced at the call site and the callee sees the parameter having the decayed type
|
---|
280 | \end{itemize}
|
---|
281 |
|
---|
282 | Pointer decay does not affect pointer-to-array types, because these are already pointers, not arrays.
|
---|
283 | As a result, a function with a pointer-to-array parameter sees the parameter exactly as the caller does:
|
---|
284 | \lstinput{32-42}{bkgd-carray-decay.c}
|
---|
285 |
|
---|
286 | \VRef[Figure]{bkgd:ar:usr:decay-parm} gives the reference for the decay phenomenon seen in parameter decalarations.
|
---|
287 |
|
---|
288 | \begin{figure}
|
---|
289 | \centering
|
---|
290 | \begin{tabular}{llllll}
|
---|
291 | & Description & Type & Param. Decl & \CFA-C \\ \hline
|
---|
292 | $\triangleright$ & ptr.\ to val.
|
---|
293 | & @T *@
|
---|
294 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T * x,} \\ \lstinline{T x[10],} \\ \lstinline{T x[],} }\vspace{2pt}
|
---|
295 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ * T ]} \\ \lstinline{[ [10] T ]} \\ \lstinline{[ [] T ]} }
|
---|
296 | \\ \hline
|
---|
297 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}} }\vspace{2pt}
|
---|
298 | & @T * const@
|
---|
299 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T * const x,} \\ \lstinline{T x[const 10],} \\ \lstinline{T x[const],} }\vspace{2pt}
|
---|
300 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ const * T ]} \\ \lstinline{[ [const 10] T ]} \\ \lstinline{[ [const] T ]} }
|
---|
301 | \\ \hline
|
---|
302 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*x}} }\vspace{2pt}
|
---|
303 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T *} \\ \lstinline{T const *} }
|
---|
304 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x,} \\ \lstinline{T const * x,} \\ \lstinline{const T x[10],} \\ \lstinline{T const x[10],} \\ \lstinline{const T x[],} \\ \lstinline{T const x[],} }\vspace{2pt}
|
---|
305 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[* const T]} \\ \lstinline{[ [10] const T ]} \\ \lstinline{[ [] const T ]} }
|
---|
306 | \\ \hline \hline
|
---|
307 | $\triangleright$ & ptr.\ to ar.\ of val.
|
---|
308 | & @T(*)[10]@
|
---|
309 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T (*x)[10],} \\ \lstinline{T x[3][10],} \\ \lstinline{T x[][10],} }\vspace{2pt}
|
---|
310 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[* [10] T]} \\ \lstinline{[ [3] [10] T ]} \\ \lstinline{[ [] [10] T ]} }
|
---|
311 | \\ \hline
|
---|
312 | & ptr.\ to ptr.\ to val.
|
---|
313 | & @T **@
|
---|
314 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T ** x,} \\ \lstinline{T *x[10],} \\ \lstinline{T *x[],} }\vspace{2pt}
|
---|
315 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ * * T ]} \\ \lstinline{[ [10] * T ]} \\ \lstinline{[ [] * T ]} }
|
---|
316 | \\ \hline
|
---|
317 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{**argv}} }\vspace{2pt}
|
---|
318 | & @const char **@
|
---|
319 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const char *argv[],} \\ \footnotesize{(others elided)} }\vspace{2pt}
|
---|
320 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ [] * const char ]} \\ \footnotesize{(others elided)} }
|
---|
321 | \\ \hline
|
---|
322 | \end{tabular}
|
---|
323 | \caption{Unfortunate Syntactic Reference for Decay during Parameter-Passing. Includes interaction with constness, where ``no writing'' refers to a restriction on the callee's ability.}
|
---|
324 | \label{bkgd:ar:usr:decay-parm}
|
---|
325 | \end{figure}
|
---|
326 |
|
---|
327 |
|
---|
328 | \subsection{Lengths may vary, checking does not}
|
---|
329 |
|
---|
330 | When the desired number of elements is unknown at compile time,
|
---|
331 | a variable-length array is a solution:
|
---|
332 | \begin{cfa}
|
---|
333 | int main( int argc, const char *argv[] ) {
|
---|
334 | assert( argc == 2 );
|
---|
335 | size_t n = atol( argv[1] );
|
---|
336 | assert( 0 < n && n < 1000 );
|
---|
337 |
|
---|
338 | float ar[n];
|
---|
339 | float b[10];
|
---|
340 |
|
---|
341 | // ... discussion continues here
|
---|
342 | }
|
---|
343 | \end{cfa}
|
---|
344 | This arrangement allocates @n@ elements on the @main@ stack frame for @ar@, just as it puts 10 elements on the @main@ stack frame for @b@.
|
---|
345 | The variable-sized allocation of @ar@ is provided by @alloca@.
|
---|
346 |
|
---|
347 | In a situation where the array sizes are not known to be small enough for stack allocation to be sensible, corresponding heap allocations are achievable as:
|
---|
348 | \begin{cfa}
|
---|
349 | float *ax1 = malloc( sizeof( float[n] ) );
|
---|
350 | float *ax2 = malloc( n * sizeof( float ) );
|
---|
351 | float *bx1 = malloc( sizeof( float[1000000] ) );
|
---|
352 | float *bx2 = malloc( 1000000 * sizeof( float ) );
|
---|
353 | \end{cfa}
|
---|
354 |
|
---|
355 |
|
---|
356 | VLA
|
---|
357 |
|
---|
358 | Parameter dependency
|
---|
359 |
|
---|
360 | Checking is best-effort / unsound
|
---|
361 |
|
---|
362 | Limited special handling to get the dimension value checked (static)
|
---|
363 |
|
---|
364 |
|
---|
365 |
|
---|
366 | \subsection{C has full-service, dynamically sized, multidimensional arrays (and \CC does not)}
|
---|
367 |
|
---|
368 | In C and \CC, ``multidimensional array'' means ``array of arrays.'' Other meanings are discussed in TODO.
|
---|
369 |
|
---|
370 | Just as an array's element type can be @float@, so can it be @float[10]@.
|
---|
371 |
|
---|
372 | While any of @float*@, @float[10]@ and @float(*)[10]@ are easy to tell apart from @float@, telling them apart from each other may need occasional reference back to TODO intro section.
|
---|
373 | The sentence derived by wrapping each type in @-[3]@ follows.
|
---|
374 |
|
---|
375 | While any of @float*[3]@, @float[3][10]@ and @float(*)[3][10]@ are easy to tell apart from @float[3]@,
|
---|
376 | telling them apart from each other is what it takes to know what ``array of arrays'' really means.
|
---|
377 |
|
---|
378 | Pointer decay affects the outermost array only
|
---|
379 |
|
---|
380 | TODO: unfortunate syntactic reference with these cases:
|
---|
381 |
|
---|
382 | \begin{itemize}
|
---|
383 | \item ar. of ar. of val (be sure about ordering of dimensions when the declaration is dropped)
|
---|
384 | \item ptr. to ar. of ar. of val
|
---|
385 | \end{itemize}
|
---|
386 |
|
---|
387 |
|
---|
388 | \subsection{Arrays are (but) almost values}
|
---|
389 |
|
---|
390 | Has size; can point to
|
---|
391 |
|
---|
392 | Can't cast to
|
---|
393 |
|
---|
394 | Can't pass as value
|
---|
395 |
|
---|
396 | Can initialize
|
---|
397 |
|
---|
398 | Can wrap in aggregate
|
---|
399 |
|
---|
400 | Can't assign
|
---|
401 |
|
---|
402 |
|
---|
403 | \subsection{Returning an array is (but) almost possible}
|
---|
404 |
|
---|
405 |
|
---|
406 | \subsection{The pointer-to-array type has been noticed before}
|
---|
407 |
|
---|
408 | \subsection{Multi-Dimensional}
|
---|
409 |
|
---|
410 | As in the last section, we inspect the declaration ...
|
---|
411 | \lstinput{16-18}{bkgd-carray-mdim.c}
|
---|
412 | The significant axis of deriving expressions from @ar@ is now ``itself,'' ``first element'' or ``first grand-element (meaning, first element of first element).''
|
---|
413 | \lstinput{20-44}{bkgd-carray-mdim.c}
|
---|
414 |
|
---|
415 |
|
---|
416 | \section{Linked List}
|
---|
417 |
|
---|
418 |
|
---|
419 | \section{String}
|
---|