1 | \chapter{Background}
|
---|
2 |
|
---|
3 | This chapter states facts about the prior work, upon which my contributions build.
|
---|
4 | Each receives a justification of the extent to which its statement is phrased to provoke controversy or surprise.
|
---|
5 |
|
---|
6 | \section{C}
|
---|
7 |
|
---|
8 | \subsection{Common knowledge}
|
---|
9 |
|
---|
10 | The reader is assumed to have used C or \CC for the coursework of at least four university-level courses, or have equivalent experience.
|
---|
11 | The current discussion introduces facts, unaware of which, such a functioning novice may be operating.
|
---|
12 |
|
---|
13 | % TODO: decide if I'm also claiming this collection of facts, and test-oriented presentation is a contribution; if so, deal with (not) arguing for its originality
|
---|
14 |
|
---|
15 | \subsection{Convention: C is more touchable than its standard}
|
---|
16 |
|
---|
17 | When it comes to explaining how C works, I like illustrating definite program semantics.
|
---|
18 | I prefer doing so, over a quoting manual's suggested programmer's intuition, or showing how some compiler writers chose to model their problem.
|
---|
19 | To illustrate definite program semantics, I devise a program, whose behaviour exercises the point at issue, and I show its behaviour.
|
---|
20 |
|
---|
21 | This behaviour is typically one of
|
---|
22 | \begin{itemize}
|
---|
23 | \item my statement that the compiler accepts or rejects the program
|
---|
24 | \item the program's printed output, which I show
|
---|
25 | \item my implied assurance that its assertions do not fail when run
|
---|
26 | \end{itemize}
|
---|
27 |
|
---|
28 | The compiler whose program semantics is shown is
|
---|
29 | \begin{lstlisting}
|
---|
30 | $ gcc --version
|
---|
31 | gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0
|
---|
32 | \end{lstlisting}
|
---|
33 | running on Architecture @x86_64@, with the same environment targeted.
|
---|
34 |
|
---|
35 | Unless explicit discussion ensues about differences among compilers or with (versions of) the standard, it is further implied that there exists a second version of GCC and some version of Clang, running on and for the same platform, that give substantially similar behaviour.
|
---|
36 | In this case, I do not argue that my sample of major Linux compilers is doing the right thing with respect to the C standard.
|
---|
37 |
|
---|
38 |
|
---|
39 | \subsection{C reports many ill-typed expressions as warnings}
|
---|
40 |
|
---|
41 | TODO: typeset
|
---|
42 | \lstinputlisting[language=C, firstline=13, lastline=56]{bkgd-c-tyerr.c}
|
---|
43 |
|
---|
44 |
|
---|
45 | \section{C Arrays}
|
---|
46 |
|
---|
47 | \subsection{C has an array type (!)}
|
---|
48 |
|
---|
49 | TODO: typeset
|
---|
50 | \lstinputlisting[language=C, firstline=35, lastline=116]{bkgd-carray-arrty.c}
|
---|
51 |
|
---|
52 | My contribution is enabled by recognizing
|
---|
53 | \begin{itemize}
|
---|
54 | \item There is value in using a type that knows how big the whole thing is.
|
---|
55 | \item The type pointer to (first) element does not.
|
---|
56 | \item C \emph{has} a type that knows the whole picture: array, e.g. @T[10]@.
|
---|
57 | \item This type has all the usual derived forms, which also know the whole picture. A usefully noteworthy example is pointer to array, e.g. @T(*)[10]@.
|
---|
58 | \end{itemize}
|
---|
59 |
|
---|
60 | Each of these sections, which introduces another layer of of the C arrays' story,
|
---|
61 | concludes with an \emph{Unfortunate Syntactic Reference}.
|
---|
62 | It shows how to spell the types under discussion,
|
---|
63 | along with interactions with orthogonal (but easily confused) language features.
|
---|
64 | Alterrnate spellings are listed withing a row.
|
---|
65 | The simplest occurrences of types distinguished in the preceding discussion are marked with $\triangleright$.
|
---|
66 | The Type column gives the spelling used in a cast or error message (though note Section TODO points out that some types cannot be casted to).
|
---|
67 | The Declaration column gives the spelling used in an object declaration, such as variable or aggregate member; parameter declarations (section TODO) follow entirely different rules.
|
---|
68 |
|
---|
69 | After all, reading a C array type is easy: just read it from the inside out, and know when to look left and when to look right!
|
---|
70 |
|
---|
71 |
|
---|
72 | \CFA-specific spellings (not yet introduced) are also included here for referenceability; these can be skipped on linear reading.
|
---|
73 | The \CFA-C column gives the, more fortunate, ``new'' syntax of section TODO, for spelling \emph{exactly the same type}.
|
---|
74 | This fortunate syntax does not have different spellings for types vs declarations;
|
---|
75 | a declaration is always the type followed by the declared identifier name;
|
---|
76 | for the example of letting @x@ be a \emph{pointer to array}, the declaration is spelled:
|
---|
77 | \begin{lstlisting}
|
---|
78 | [ * [10] T ] x;
|
---|
79 | \end{lstlisting}
|
---|
80 | The \CFA-Full column gives the spelling of a different type, introduced in TODO, which has all of my contributed improvements for safety and ergonomics.
|
---|
81 |
|
---|
82 | \noindent
|
---|
83 | \textbf{Unfortunate Syntactic Reference}
|
---|
84 |
|
---|
85 | \noindent
|
---|
86 | \begin{tabular}{llllll}
|
---|
87 | & Description & Type & Declaration & \CFA-C & \CFA-Full \\ \hline
|
---|
88 | $\triangleright$ & val.
|
---|
89 | & @T@
|
---|
90 | & @T x;@
|
---|
91 | & @[ T ]@
|
---|
92 | &
|
---|
93 | \\ \hline
|
---|
94 | & \pbox{20cm}{ \vspace{2pt} val.\\ \footnotesize{no writing the val.\ in \lstinline{x}} }\vspace{2pt}
|
---|
95 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T} \\ \lstinline{T const} }
|
---|
96 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T x;} \\ \lstinline{T const x;} }
|
---|
97 | & @[ const T ]@
|
---|
98 | &
|
---|
99 | \\ \hline
|
---|
100 | $\triangleright$ & ptr.\ to val.
|
---|
101 | & @T *@
|
---|
102 | & @T * x;@
|
---|
103 | & @[ * T ]@
|
---|
104 | &
|
---|
105 | \\ \hline
|
---|
106 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}} }\vspace{2pt}
|
---|
107 | & @T * const@
|
---|
108 | & @T * const x;@
|
---|
109 | & @[ const * T ]@
|
---|
110 | &
|
---|
111 | \\ \hline
|
---|
112 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*x}} }\vspace{2pt}
|
---|
113 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T *} \\ \lstinline{T const *} }
|
---|
114 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x;} \\ \lstinline{T const * x;} }
|
---|
115 | & @[ * const T ]@
|
---|
116 | &
|
---|
117 | \\ \hline
|
---|
118 | $\triangleright$ & ar.\ of val.
|
---|
119 | & @T[10]@
|
---|
120 | & @T x[10];@
|
---|
121 | & @[ [10] T ]@
|
---|
122 | & @[ array(T, 10) ]@
|
---|
123 | \\ \hline
|
---|
124 | & \pbox{20cm}{ \vspace{2pt} ar.\ of val.\\ \footnotesize{no writing the val.\ in \lstinline{x[5]}} }\vspace{2pt}
|
---|
125 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T[10]} \\ \lstinline{T const[10]} }
|
---|
126 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T x[10];} \\ \lstinline{T const x[10];} }
|
---|
127 | & @[ [10] const T ]@
|
---|
128 | & @[ const array(T, 10) ]@
|
---|
129 | \\ \hline
|
---|
130 | & ar.\ of ptr.\ to val.
|
---|
131 | & @T*[10]@
|
---|
132 | & @T *x[10];@
|
---|
133 | & @[ [10] * T ]@
|
---|
134 | & @[ array(* T, 10) ]@
|
---|
135 | \\ \hline
|
---|
136 | & \pbox{20cm}{ \vspace{2pt} ar.\ of ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x[5]}} }\vspace{2pt}
|
---|
137 | & @T * const [10]@
|
---|
138 | & @T * const x[10];@
|
---|
139 | & @[ [10] const * T ]@
|
---|
140 | & @[ array(const * T, 10) ]@
|
---|
141 | \\ \hline
|
---|
142 | & \pbox{20cm}{ \vspace{2pt} ar.\ of ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*(x[5])}} }\vspace{2pt}
|
---|
143 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * [10]} \\ \lstinline{T const * [10]} }
|
---|
144 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x[10];} \\ \lstinline{T const * x[10];} }
|
---|
145 | & @[ [10] * const T ]@
|
---|
146 | & @[ array(* const T, 10) ]@
|
---|
147 | \\ \hline
|
---|
148 | $\triangleright$ & ptr.\ to ar.\ of val.
|
---|
149 | & @T(*)[10]@
|
---|
150 | & @T (*x)[10];@
|
---|
151 | & @[ * [10] T ]@
|
---|
152 | & @[ * array(T, 10) ]@
|
---|
153 | \\ \hline
|
---|
154 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to ar.\ of val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}} }\vspace{2pt}
|
---|
155 | & @T(* const)[10]@
|
---|
156 | & @T (* const x)[10];@
|
---|
157 | & @[ const * [10] T ]@
|
---|
158 | & @[ const * array(T, 10) ]@
|
---|
159 | \\ \hline
|
---|
160 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to ar.\ of val.\\ \footnotesize{no writing the val.\ in \lstinline{(*x)[5]}} }\vspace{2pt}
|
---|
161 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T(*)[10]} \\ \lstinline{T const (*) [10]} }
|
---|
162 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T (*x)[10];} \\ \lstinline{T const (*x)[10];} }
|
---|
163 | & @[ * [10] const T ]@
|
---|
164 | & @[ * const array(T, 10) ]@
|
---|
165 | \\ \hline
|
---|
166 | & ptr.\ to ar.\ of ptr.\ to val.
|
---|
167 | & @T*(*)[10]@
|
---|
168 | & @T *(*x)[10];@
|
---|
169 | & @[ * [10] * T ]@
|
---|
170 | & @[ * array(* T, 10) ]@
|
---|
171 | \\ \hline
|
---|
172 | \end{tabular}
|
---|
173 |
|
---|
174 |
|
---|
175 | \subsection{Arrays decay and pointers diffract}
|
---|
176 |
|
---|
177 | TODO: typeset
|
---|
178 | \lstinputlisting[language=C, firstline=4, lastline=26]{bkgd-carray-decay.c}
|
---|
179 |
|
---|
180 |
|
---|
181 | So, C provides an implicit conversion from @float[10]@ to @float*@, as described in ARM-6.3.2.1.3:
|
---|
182 |
|
---|
183 | \begin{quote}
|
---|
184 | Except when it is the operand of the @sizeof@ operator, or the unary @&@ operator, or is a
|
---|
185 | string literal used to initialize an array
|
---|
186 | an expression that has type ``array of type'' is
|
---|
187 | converted to an expression with type ``pointer to type'' that points to the initial element of
|
---|
188 | the array object
|
---|
189 | \end{quote}
|
---|
190 |
|
---|
191 | This phenomenon is the famous ``pointer decay,'' which is a decay of an array-typed expression into a pointer-typed one.
|
---|
192 |
|
---|
193 | It is worthy to note that the list of exception cases does not feature the occurrence of @a@ in @a[i]@.
|
---|
194 | Thus, subscripting happens on pointers, not arrays.
|
---|
195 |
|
---|
196 | Subscripting proceeds first with pointer decay, if needed. Next, ARM-6.5.2.1.2 explains that @a[i]@ is treated as if it were @(*((a)+(i)))@.
|
---|
197 | ARM-6.5.6.8 explains that the addition, of a pointer with an integer type, is defined only when the pointer refers to an element that is in an array, with a meaning of ``@i@ elements away from,'' which is valid if @a@ is big enough and @i@ is small enough.
|
---|
198 | Finally, ARM-6.5.3.2.4 explains that the @*@ operator's result is the referenced element.
|
---|
199 |
|
---|
200 | Taken together, these rules also happen to illustrate that @a[i]@ and @i[a]@ mean the same thing.
|
---|
201 |
|
---|
202 | Subscripting a pointer when the target is standard-inappropriate is still practically well-defined.
|
---|
203 | While the standard affords a C compiler freedom about the meaning of an out-of-bound access,
|
---|
204 | or of subscripting a pointer that does not refer to an array element at all,
|
---|
205 | the fact that C is famously both generally high-performance, and specifically not bound-checked,
|
---|
206 | leads to an expectation that the runtime handling is uniform across legal and illegal accesses.
|
---|
207 | Moreover, consider the common pattern of subscripting on a malloc result:
|
---|
208 | \begin{lstlisting}
|
---|
209 | float * fs = malloc( 10 * sizeof(float) );
|
---|
210 | fs[5] = 3.14;
|
---|
211 | \end{lstlisting}
|
---|
212 | The @malloc@ behaviour is specified as returning a pointer to ``space for an object whose size is'' as requested (ARM-7.22.3.4.2).
|
---|
213 | But program says \emph{nothing} more about this pointer value, that might cause its referent to \emph{be} an array, before doing the subscript.
|
---|
214 |
|
---|
215 | Under this assumption, a pointer being subscripted (or added to, then dereferenced)
|
---|
216 | by any value (positive, zero, or negative), gives a view of the program's entire address space,
|
---|
217 | centred around the @p@ address, divided into adjacent @sizeof(*p)@ chunks,
|
---|
218 | each potentially (re)interpreted as @typeof(*p)@.
|
---|
219 |
|
---|
220 | I call this phenomenon ``array diffraction,'' which is a diffraction of a single-element pointer
|
---|
221 | into the assumption that its target is in the middle of an array whose size is unlimited in both directions.
|
---|
222 |
|
---|
223 | No pointer is exempt from array diffraction.
|
---|
224 |
|
---|
225 | No array shows its elements without pointer decay.
|
---|
226 |
|
---|
227 | A further pointer--array confusion, closely related to decay, occurs in parameter declarations.
|
---|
228 | ARM-6.7.6.3.7 explains that when an array type is written for a parameter,
|
---|
229 | the parameter's type becomes a type that I summarize as being the array-decayed type.
|
---|
230 | The respective handlings of the following two parameter spellings shows that the array-spelled one is really, like the other, a pointer.
|
---|
231 | \lstinputlisting[language=C, firstline=40, lastline=44]{bkgd-carray-decay.c}
|
---|
232 | As the @sizeof(x)@ meaning changed, compared with when run on a similarly-spelled local variariable declaration,
|
---|
233 | GCC also gives this code the warning: ```sizeof' on array function parameter `x' will return size of `float *'.''
|
---|
234 |
|
---|
235 | The caller of such a function is left with the reality that a pointer parameter is a pointer, no matter how it's spelled:
|
---|
236 | \lstinputlisting[language=C, firstline=60, lastline=63]{bkgd-carray-decay.c}
|
---|
237 | This fragment gives no warnings.
|
---|
238 |
|
---|
239 | The shortened parameter syntax @T x[]@ is a further way to spell ``pointer.''
|
---|
240 | Note the opposite meaning of this spelling now, compared with its use in local variable declarations.
|
---|
241 | This point of confusion is illustrated in:
|
---|
242 | \lstinputlisting[language=C, firstline=80, lastline=87]{bkgd-carray-decay.c}
|
---|
243 | The basic two meanings, with a syntactic difference helping to distinguish,
|
---|
244 | are illustrated in the declarations of @ca@ vs.\ @cp@,
|
---|
245 | whose subsequent @edit@ calls behave differently.
|
---|
246 | The syntax-caused confusion is in the comparison of the first and last lines,
|
---|
247 | both of which use a literal to initialze an object decalared with spelling @T x[]@.
|
---|
248 | But these initialized declarations get opposite meanings,
|
---|
249 | depending on whether the object is a local variable or a parameter.
|
---|
250 |
|
---|
251 |
|
---|
252 | In sumary, when a funciton is written with an array-typed parameter,
|
---|
253 | \begin{itemize}
|
---|
254 | \item an appearance of passing an array by value is always an incorrect understanding
|
---|
255 | \item a dimension value, if any is present, is ignorred
|
---|
256 | \item pointer decay is forced at the call site and the callee sees the parameter having the decayed type
|
---|
257 | \end{itemize}
|
---|
258 |
|
---|
259 | Pointer decay does not affect pointer-to-array types, because these are already pointers, not arrays.
|
---|
260 | As a result, a function with a pointer-to-array parameter sees the parameter exactly as the caller does:
|
---|
261 | \lstinputlisting[language=C, firstline=100, lastline=110]{bkgd-carray-decay.c}
|
---|
262 |
|
---|
263 |
|
---|
264 | \noindent
|
---|
265 | \textbf{Unfortunate Syntactic Reference}
|
---|
266 |
|
---|
267 | \noindent
|
---|
268 | (Parameter declaration; ``no writing'' refers to the callee's ability)
|
---|
269 |
|
---|
270 | \noindent
|
---|
271 | \begin{tabular}{llllll}
|
---|
272 | & Description & Type & Param. Decl & \CFA-C \\ \hline
|
---|
273 | $\triangleright$ & ptr.\ to val.
|
---|
274 | & @T *@
|
---|
275 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T * x,} \\ \lstinline{T x[10],} \\ \lstinline{T x[],} }\vspace{2pt}
|
---|
276 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ * T ]} \\ \lstinline{[ [10] T ]} \\ \lstinline{[ [] T ]} }
|
---|
277 | \\ \hline
|
---|
278 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the ptr.\ in \lstinline{x}} }\vspace{2pt}
|
---|
279 | & @T * const@
|
---|
280 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T * const x,} \\ \lstinline{T x[const 10],} \\ \lstinline{T x[const],} }\vspace{2pt}
|
---|
281 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ const * T ]} \\ \lstinline{[ [const 10] T ]} \\ \lstinline{[ [const] T ]} }
|
---|
282 | \\ \hline
|
---|
283 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{*x}} }\vspace{2pt}
|
---|
284 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T *} \\ \lstinline{T const *} }
|
---|
285 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const T * x,} \\ \lstinline{T const * x,} \\ \lstinline{const T x[10],} \\ \lstinline{T const x[10],} \\ \lstinline{const T x[],} \\ \lstinline{T const x[],} }\vspace{2pt}
|
---|
286 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[* const T]} \\ \lstinline{[ [10] const T ]} \\ \lstinline{[ [] const T ]} }
|
---|
287 | \\ \hline
|
---|
288 | $\triangleright$ & ptr.\ to ar.\ of val.
|
---|
289 | & @T(*)[10]@
|
---|
290 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T (*x)[10],} \\ \lstinline{T x[3][10],} \\ \lstinline{T x[][10],} }\vspace{2pt}
|
---|
291 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[* [10] T]} \\ \lstinline{[ [3] [10] T ]} \\ \lstinline{[ [] [10] T ]} }
|
---|
292 | \\ \hline
|
---|
293 | & ptr.\ to ptr.\ to val.
|
---|
294 | & @T **@
|
---|
295 | & \pbox{20cm}{ \vspace{2pt} \lstinline{T ** x,} \\ \lstinline{T *x[10],} \\ \lstinline{T *x[],} }\vspace{2pt}
|
---|
296 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ * * T ]} \\ \lstinline{[ [10] * T ]} \\ \lstinline{[ [] * T ]} }
|
---|
297 | \\ \hline
|
---|
298 | & \pbox{20cm}{ \vspace{2pt} ptr.\ to ptr.\ to val.\\ \footnotesize{no writing the val.\ in \lstinline{**argv}} }\vspace{2pt}
|
---|
299 | & @const char **@
|
---|
300 | & \pbox{20cm}{ \vspace{2pt} \lstinline{const char *argv[],} \\ \footnotesize{(others elided)} }\vspace{2pt}
|
---|
301 | & \pbox{20cm}{ \vspace{2pt} \lstinline{[ [] * const char ]} \\ \footnotesize{(others elided)} }
|
---|
302 | \\ \hline
|
---|
303 | \end{tabular}
|
---|
304 |
|
---|
305 |
|
---|
306 |
|
---|
307 | \subsection{Lengths may vary, checking does not}
|
---|
308 |
|
---|
309 | When the desired number of elements is unknown at compile time,
|
---|
310 | a variable-length array is a solution:
|
---|
311 | \begin{lstlisting}
|
---|
312 | int main( int argc, const char *argv[] ) {
|
---|
313 |
|
---|
314 | assert( argc == 2 );
|
---|
315 | size_t n = atol( argv[1] );
|
---|
316 | assert( 0 < n && n < 1000 );
|
---|
317 |
|
---|
318 | float a[n];
|
---|
319 | float b[10];
|
---|
320 |
|
---|
321 | // ... discussion continues here
|
---|
322 | }
|
---|
323 | \end{lstlisting}
|
---|
324 | This arrangement allocates @n@ elements on the @main@ stack frame for @a@,
|
---|
325 | just as it puts 10 elements on the @main@ stack frame for @b@.
|
---|
326 | The variable-sized allocation of @a@ is provided by @alloca@.
|
---|
327 |
|
---|
328 | In a situation where the array sizes are not known to be small enough
|
---|
329 | for stack allocation to be sensible,
|
---|
330 | corresponding heap allocations are achievable as:
|
---|
331 | \begin{lstlisting}
|
---|
332 | float *ax1 = malloc( sizeof( float[n] ) );
|
---|
333 | float *ax2 = malloc( n * sizeof( float ) );
|
---|
334 | float *bx1 = malloc( sizeof( float[1000000] ) );
|
---|
335 | float *bx2 = malloc( 1000000 * sizeof( float ) );
|
---|
336 | \end{lstlisting}
|
---|
337 |
|
---|
338 |
|
---|
339 | VLA
|
---|
340 |
|
---|
341 | Parameter dependency
|
---|
342 |
|
---|
343 | Checking is best-effort / unsound
|
---|
344 |
|
---|
345 | Limited special handling to get the dimension value checked (static)
|
---|
346 |
|
---|
347 |
|
---|
348 |
|
---|
349 | \subsection{C has full-service, dynamically sized, multidimensional arrays (and \CC does not)}
|
---|
350 |
|
---|
351 | In C and \CC, ``multidimensional array'' means ``array of arrays.'' Other meanings are discussed in TODO.
|
---|
352 |
|
---|
353 | Just as an array's element type can be @float@, so can it be @float[10]@.
|
---|
354 |
|
---|
355 | While any of @float*@, @float[10]@ and @float(*)[10]@ are easy to tell apart from @float@,
|
---|
356 | telling them apart from each other may need occasional reference back to TODO intro section.
|
---|
357 | The sentence derived by wrapping each type in @-[3]@ follows.
|
---|
358 |
|
---|
359 | While any of @float*[3]@, @float[3][10]@ and @float(*)[3][10]@ are easy to tell apart from @float[3]@,
|
---|
360 | telling them apart from each other is what it takes to know what ``array of arrays'' really means.
|
---|
361 |
|
---|
362 |
|
---|
363 | Pointer decay affects the outermost array only
|
---|
364 |
|
---|
365 |
|
---|
366 | TODO: unfortunate syntactic reference with these cases:
|
---|
367 |
|
---|
368 | \begin{itemize}
|
---|
369 | \item ar. of ar. of val (be sure about ordering of dimensions when the declaration is dropped)
|
---|
370 | \item ptr. to ar. of ar. of val
|
---|
371 | \end{itemize}
|
---|
372 |
|
---|
373 |
|
---|
374 |
|
---|
375 |
|
---|
376 |
|
---|
377 | \subsection{Arrays are (but) almost values}
|
---|
378 |
|
---|
379 | Has size; can point to
|
---|
380 |
|
---|
381 | Can't cast to
|
---|
382 |
|
---|
383 | Can't pass as value
|
---|
384 |
|
---|
385 | Can initialize
|
---|
386 |
|
---|
387 | Can wrap in aggregate
|
---|
388 |
|
---|
389 | Can't assign
|
---|
390 |
|
---|
391 |
|
---|
392 | \subsection{Returning an array is (but) almost possible}
|
---|
393 |
|
---|
394 |
|
---|
395 |
|
---|
396 |
|
---|
397 | \subsection{The pointer-to-array type has been noticed before}
|
---|
398 |
|
---|
399 |
|
---|
400 | \section{\CFA}
|
---|
401 |
|
---|
402 | Traditionally, fixing C meant leaving the C-ism alone, while providing a better alternative beside it.
|
---|
403 | (For later: That's what I offer with array.hfa, but in the future-work vision for arrays, the fix includes helping programmers stop accidentally using a broken C-ism.)
|
---|
404 |
|
---|
405 | \subsection{\CFA features interacting with arrays}
|
---|
406 |
|
---|
407 | Prior work on \CFA included making C arrays, as used in C code from the wild,
|
---|
408 | work, if this code is fed into @cfacc@.
|
---|
409 | The quality of this this treatment was fine, with no more or fewer bugs than is typical.
|
---|
410 |
|
---|
411 | More mixed results arose with feeding these ``C'' arrays into preexisting \CFA features.
|
---|
412 |
|
---|
413 | A notable success was with the \CFA @alloc@ function,
|
---|
414 | which type information associated with a polymorphic return type
|
---|
415 | replaces @malloc@'s use of programmer-supplied size information.
|
---|
416 | \begin{lstlisting}
|
---|
417 | // C, library
|
---|
418 | void * malloc( size_t );
|
---|
419 | // C, user
|
---|
420 | struct tm * el1 = malloc( sizeof(struct tm) );
|
---|
421 | struct tm * ar1 = malloc( 10 * sizeof(struct tm) );
|
---|
422 |
|
---|
423 | // CFA, library
|
---|
424 | forall( T * ) T * alloc();
|
---|
425 | // CFA, user
|
---|
426 | tm * el2 = alloc();
|
---|
427 | tm (*ar2)[10] = alloc();
|
---|
428 | \end{lstlisting}
|
---|
429 | The alloc polymorphic return compiles into a hidden parameter, which receives a compiler-generated argument.
|
---|
430 | This compiler's argument generation uses type information from the left-hand side of the initialization to obtain the intended type.
|
---|
431 | Using a compiler-produced value eliminates an opportunity for user error.
|
---|
432 |
|
---|
433 | TODO: fix in following: even the alloc call gives bad code gen: verify it was always this way; walk back the wording about things just working here; assignment (rebind) seems to offer workaround, as in bkgd-cfa-arrayinteract.cfa
|
---|
434 |
|
---|
435 | Bringing in another \CFA feature, reference types, both resolves a sore spot of the last example, and gives a first example of an array-interaction bug.
|
---|
436 | In the last example, the choice of ``pointer to array'' @ar2@ breaks a parallel with @ar1@.
|
---|
437 | They are not subscripted in the same way.
|
---|
438 | \begin{lstlisting}
|
---|
439 | ar1[5];
|
---|
440 | (*ar2)[5];
|
---|
441 | \end{lstlisting}
|
---|
442 | Using ``reference to array'' works at resolving this issue. TODO: discuss connection with Doug-Lea \CC proposal.
|
---|
443 | \begin{lstlisting}
|
---|
444 | tm (&ar3)[10] = *alloc();
|
---|
445 | ar3[5];
|
---|
446 | \end{lstlisting}
|
---|
447 | The implicit size communication to @alloc@ still works in the same ways as for @ar2@.
|
---|
448 |
|
---|
449 | Using proper array types (@ar2@ and @ar3@) addresses a concern about using raw element pointers (@ar1@), albeit a theoretical one.
|
---|
450 | TODO xref C standard does not claim that @ar1@ may be subscripted,
|
---|
451 | because no stage of interpreting the construction of @ar1@ has it be that ``there is an \emph{array object} here.''
|
---|
452 | But both @*ar2@ and the referent of @ar3@ are the results of \emph{typed} @alloc@ calls,
|
---|
453 | where the type requested is an array, making the result, much more obviously, an array object.
|
---|
454 |
|
---|
455 | The ``reference to array'' type has its sore spots too. TODO see also @dimexpr-match-c/REFPARAM_CALL (under TRY_BUG_1)@
|
---|
456 |
|
---|
457 |
|
---|
458 |
|
---|
459 | TODO: I fixed a bug associated with using an array as a T. I think. Did I really? What was the bug?
|
---|