[0bb691b1] | 1 | #!/usr/bin/python3
|
---|
| 2 | """
|
---|
| 3 | Python Script to plot values obtained by the rmit.py script
|
---|
| 4 | Runs a R.I.P.L.
|
---|
| 5 |
|
---|
| 6 | ./plot.py
|
---|
| 7 | -t trials
|
---|
| 8 | -o option:values
|
---|
| 9 | """
|
---|
| 10 |
|
---|
| 11 | import argparse
|
---|
| 12 | import itertools
|
---|
| 13 | import json
|
---|
| 14 | import math
|
---|
| 15 | import numpy
|
---|
| 16 | import re
|
---|
[57af3f3] | 17 | import statistics
|
---|
[0bb691b1] | 18 | import sys
|
---|
| 19 |
|
---|
| 20 | import matplotlib.pyplot as plt
|
---|
| 21 | from matplotlib.ticker import EngFormatter
|
---|
| 22 |
|
---|
[44706d1] | 23 | class Field:
|
---|
[76f5e9f] | 24 | def __init__(self, unit, _min, _log, _name=None):
|
---|
[44706d1] | 25 | self.unit = unit
|
---|
| 26 | self.min = _min
|
---|
[e9c5db2] | 27 | self.log = _log
|
---|
[76f5e9f] | 28 | self.name = _name
|
---|
[44706d1] | 29 |
|
---|
| 30 | field_names = {
|
---|
[e9c5db2] | 31 | "ns per ops" : Field('ns' , 0, False),
|
---|
| 32 | "Number of processors" : Field('' , 1, False),
|
---|
| 33 | "Ops per procs" : Field('Ops' , 0, False),
|
---|
| 34 | "Ops per threads" : Field('Ops' , 0, False),
|
---|
[76f5e9f] | 35 | "ns per ops/procs" : Field('' , 0, False, _name = "Latency (ns $/$ (Processor $\\times$ Operation))" ),
|
---|
[3b5dcfa] | 36 | "Number of threads" : Field('' , 1, False),
|
---|
[e9c5db2] | 37 | "Total Operations(ops)" : Field('Ops' , 0, False),
|
---|
| 38 | "Ops/sec/procs" : Field('Ops' , 0, False),
|
---|
| 39 | "Total blocks" : Field('Blocks', 0, False),
|
---|
[76f5e9f] | 40 | "Ops per second" : Field('' , 0, False),
|
---|
[e9c5db2] | 41 | "Cycle size (# thrds)" : Field('thrd' , 1, False),
|
---|
| 42 | "Duration (ms)" : Field('ms' , 0, False),
|
---|
[3b5dcfa] | 43 | "Target QPS" : Field('' , 0, False),
|
---|
| 44 | "Actual QPS" : Field('' , 0, False),
|
---|
| 45 | "Average Read Latency" : Field('us' , 0, True),
|
---|
[e9c5db2] | 46 | "Median Read Latency" : Field('us' , 0, True),
|
---|
| 47 | "Tail Read Latency" : Field('us' , 0, True),
|
---|
[3b5dcfa] | 48 | "Average Update Latency": Field('us' , 0, True),
|
---|
[e9c5db2] | 49 | "Median Update Latency" : Field('us' , 0, True),
|
---|
| 50 | "Tail Update Latency" : Field('us' , 0, True),
|
---|
[3b5dcfa] | 51 | "Update Ratio" : Field('\%' , 0, False),
|
---|
[44706d1] | 52 | }
|
---|
[0bb691b1] | 53 |
|
---|
[76f5e9f] | 54 | def plot(in_data, x, y, options):
|
---|
[0bb691b1] | 55 | fig, ax = plt.subplots()
|
---|
[44706d1] | 56 | colors = itertools.cycle(['#0095e3','#006cb4','#69df00','#0aa000','#fb0300','#e30002','#fd8f00','#ff7f00','#8f00d6','#4b009a','#ffff00','#b13f00'])
|
---|
[57af3f3] | 57 | series = {} # scatter data for each individual data point
|
---|
| 58 | groups = {} # data points for x value
|
---|
[e9c5db2] | 59 |
|
---|
| 60 | print("Preparing Data")
|
---|
| 61 |
|
---|
[57af3f3] | 62 | for entry in in_data:
|
---|
| 63 | name = entry[0]
|
---|
| 64 | if not name in series:
|
---|
| 65 | series[name] = {'x':[], 'y':[]}
|
---|
| 66 |
|
---|
| 67 | if not name in groups:
|
---|
| 68 | groups[name] = {}
|
---|
[0bb691b1] | 69 |
|
---|
| 70 | if x in entry[2] and y in entry[2]:
|
---|
[57af3f3] | 71 | xval = entry[2][x]
|
---|
| 72 | yval = entry[2][y]
|
---|
| 73 | series[name]['x'].append(xval)
|
---|
| 74 | series[name]['y'].append(yval)
|
---|
| 75 |
|
---|
| 76 | if not xval in groups[name]:
|
---|
| 77 | groups[name][xval] = []
|
---|
| 78 |
|
---|
| 79 | groups[name][xval].append(yval)
|
---|
| 80 |
|
---|
[e9c5db2] | 81 | print("Preparing Lines")
|
---|
| 82 |
|
---|
[57af3f3] | 83 | lines = {} # lines from groups with min, max, median, etc.
|
---|
| 84 | for name, data in groups.items():
|
---|
| 85 | if not name in lines:
|
---|
| 86 | lines[name] = { 'x': [], 'min':[], 'max':[], 'med':[], 'avg':[] }
|
---|
| 87 |
|
---|
| 88 | for xkey in sorted(data):
|
---|
| 89 | ys = data[xkey]
|
---|
| 90 | lines[name]['x'] .append(xkey)
|
---|
| 91 | lines[name]['min'].append(min(ys))
|
---|
| 92 | lines[name]['max'].append(max(ys))
|
---|
| 93 | lines[name]['med'].append(statistics.median(ys))
|
---|
| 94 | lines[name]['avg'].append(statistics.mean(ys))
|
---|
| 95 |
|
---|
[e9c5db2] | 96 | print("Making Plots")
|
---|
| 97 |
|
---|
[1f4fde5] | 98 | for name, data in sorted(series.items()):
|
---|
[57af3f3] | 99 | _col = next(colors)
|
---|
| 100 | plt.scatter(data['x'], data['y'], color=_col, label=name, marker='x')
|
---|
| 101 | plt.plot(lines[name]['x'], lines[name]['min'], '--', color=_col)
|
---|
| 102 | plt.plot(lines[name]['x'], lines[name]['max'], '--', color=_col)
|
---|
| 103 | plt.plot(lines[name]['x'], lines[name]['med'], '-', color=_col)
|
---|
[0bb691b1] | 104 |
|
---|
[e9c5db2] | 105 | print("Calculating Extremums")
|
---|
| 106 |
|
---|
[0bb691b1] | 107 | mx = max([max(s['x']) for s in series.values()])
|
---|
| 108 | my = max([max(s['y']) for s in series.values()])
|
---|
| 109 |
|
---|
[e9c5db2] | 110 | print("Finishing Plots")
|
---|
| 111 |
|
---|
[76f5e9f] | 112 | plt.ylabel(field_names[y].name if field_names[y].name else y)
|
---|
[e9c5db2] | 113 | # plt.xticks(range(1, math.ceil(mx) + 1))
|
---|
[76f5e9f] | 114 | plt.xlabel(field_names[x].name if field_names[x].name else x)
|
---|
[0bb691b1] | 115 | plt.grid(b = True)
|
---|
[44706d1] | 116 | ax.xaxis.set_major_formatter( EngFormatter(unit=field_names[x].unit) )
|
---|
[76f5e9f] | 117 | if options.logx:
|
---|
| 118 | ax.set_xscale('log')
|
---|
| 119 | elif field_names[x].log:
|
---|
[e9c5db2] | 120 | ax.set_xscale('log')
|
---|
| 121 | else:
|
---|
| 122 | plt.xlim(field_names[x].min, mx + 0.25)
|
---|
| 123 |
|
---|
[44706d1] | 124 | ax.yaxis.set_major_formatter( EngFormatter(unit=field_names[y].unit) )
|
---|
[76f5e9f] | 125 | if options.logy:
|
---|
| 126 | ax.set_yscale('log')
|
---|
| 127 | elif field_names[y].log:
|
---|
[e9c5db2] | 128 | ax.set_yscale('log')
|
---|
| 129 | else:
|
---|
[76f5e9f] | 130 | plt.ylim(field_names[y].min, options.MaxY if options.MaxY else my*1.2)
|
---|
[e9c5db2] | 131 |
|
---|
[44706d1] | 132 | plt.legend(loc='upper left')
|
---|
[e9c5db2] | 133 |
|
---|
| 134 | print("Results Ready")
|
---|
[76f5e9f] | 135 | if options.out:
|
---|
| 136 | plt.savefig(options.out, bbox_inches='tight')
|
---|
[f34f95c] | 137 | else:
|
---|
| 138 | plt.show()
|
---|
[0bb691b1] | 139 |
|
---|
| 140 |
|
---|
| 141 | if __name__ == "__main__":
|
---|
| 142 | # ================================================================================
|
---|
| 143 | # parse command line arguments
|
---|
[e9c5db2] | 144 | parser = argparse.ArgumentParser(description='Python Script to draw R.M.I.T. results')
|
---|
| 145 | parser.add_argument('-f', '--file', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Input file")
|
---|
| 146 | parser.add_argument('-o', '--out', nargs='?', type=str, default=None, help="Output file")
|
---|
| 147 | parser.add_argument('-y', nargs='?', type=str, default="", help="Which field to use as the Y axis")
|
---|
| 148 | parser.add_argument('-x', nargs='?', type=str, default="", help="Which field to use as the X axis")
|
---|
[76f5e9f] | 149 | parser.add_argument('--logx', action='store_true', help="if set, makes the x-axis logscale")
|
---|
| 150 | parser.add_argument('--logy', action='store_true', help="if set, makes the y-axis logscale")
|
---|
| 151 | parser.add_argument('--MaxY', nargs='?', type=int, help="maximum value of the y-axis")
|
---|
[e9c5db2] | 152 |
|
---|
| 153 | options = parser.parse_args()
|
---|
[0bb691b1] | 154 |
|
---|
| 155 | # ================================================================================
|
---|
| 156 | # load data
|
---|
| 157 | try :
|
---|
| 158 | data = json.load(options.file)
|
---|
| 159 | except :
|
---|
| 160 | print('ERROR: could not read input', file=sys.stderr)
|
---|
| 161 | parser.print_help(sys.stderr)
|
---|
| 162 | sys.exit(1)
|
---|
| 163 |
|
---|
| 164 | # ================================================================================
|
---|
| 165 | # identify the keys
|
---|
| 166 |
|
---|
| 167 | series = set()
|
---|
| 168 | fields = set()
|
---|
| 169 |
|
---|
| 170 | for entry in data:
|
---|
| 171 | series.add(entry[0])
|
---|
| 172 | for label in entry[2].keys():
|
---|
| 173 | fields.add(label)
|
---|
| 174 |
|
---|
[f34f95c] | 175 | if not options.out :
|
---|
| 176 | print(series)
|
---|
[e9c5db2] | 177 | print("fields: ", ' '.join(fields))
|
---|
[f34f95c] | 178 |
|
---|
[e9c5db2] | 179 | wantx = "Number of processors"
|
---|
| 180 | wanty = "ns per ops"
|
---|
| 181 |
|
---|
| 182 | if options.x:
|
---|
| 183 | if options.x in field_names.keys():
|
---|
| 184 | wantx = options.x
|
---|
| 185 | else:
|
---|
| 186 | print("Could not find X key '{}', defaulting to '{}'".format(options.x, wantx))
|
---|
| 187 |
|
---|
| 188 | if options.y:
|
---|
| 189 | if options.y in field_names.keys():
|
---|
| 190 | wanty = options.y
|
---|
| 191 | else:
|
---|
| 192 | print("Could not find Y key '{}', defaulting to '{}'".format(options.y, wanty))
|
---|
| 193 |
|
---|
| 194 |
|
---|
[76f5e9f] | 195 | plot(data, wantx, wanty, options)
|
---|