1 | #!/usr/bin/python3
|
---|
2 | """
|
---|
3 | Python Script to plot values obtained by the rmit.py script
|
---|
4 | Runs a R.I.P.L.
|
---|
5 |
|
---|
6 | ./plot.py
|
---|
7 | -t trials
|
---|
8 | -o option:values
|
---|
9 | """
|
---|
10 |
|
---|
11 | import argparse
|
---|
12 | import itertools
|
---|
13 | import json
|
---|
14 | import math
|
---|
15 | import numpy
|
---|
16 | import re
|
---|
17 | import statistics
|
---|
18 | import sys
|
---|
19 |
|
---|
20 | import matplotlib.pyplot as plt
|
---|
21 | from matplotlib.ticker import EngFormatter
|
---|
22 |
|
---|
23 | class Field:
|
---|
24 | def __init__(self, unit, _min, _log, _name=None):
|
---|
25 | self.unit = unit
|
---|
26 | self.min = _min
|
---|
27 | self.log = _log
|
---|
28 | self.name = _name
|
---|
29 |
|
---|
30 | field_names = {
|
---|
31 | "ns per ops" : Field('ns' , 0, False),
|
---|
32 | "Number of processors" : Field('' , 1, False),
|
---|
33 | "Ops per procs" : Field('Ops' , 0, False),
|
---|
34 | "Ops per threads" : Field('Ops' , 0, False),
|
---|
35 | "ns per ops/procs" : Field('' , 0, False, _name = "Latency (ns $/$ (Processor $\\times$ Operation))" ),
|
---|
36 | "Number of threads" : Field('' , 1, False),
|
---|
37 | "Total Operations(ops)" : Field('Ops' , 0, False),
|
---|
38 | "Ops/sec/procs" : Field('Ops' , 0, False),
|
---|
39 | "Total blocks" : Field('Blocks', 0, False),
|
---|
40 | "Ops per second" : Field('' , 0, False),
|
---|
41 | "Cycle size (# thrds)" : Field('thrd' , 1, False),
|
---|
42 | "Duration (ms)" : Field('ms' , 0, False),
|
---|
43 | "Target QPS" : Field('' , 0, False),
|
---|
44 | "Actual QPS" : Field('' , 0, False),
|
---|
45 | "Average Read Latency" : Field('us' , 0, True),
|
---|
46 | "Median Read Latency" : Field('us' , 0, True),
|
---|
47 | "Tail Read Latency" : Field('us' , 0, True),
|
---|
48 | "Average Update Latency": Field('us' , 0, True),
|
---|
49 | "Median Update Latency" : Field('us' , 0, True),
|
---|
50 | "Tail Update Latency" : Field('us' , 0, True),
|
---|
51 | "Update Ratio" : Field('\%' , 0, False),
|
---|
52 | }
|
---|
53 |
|
---|
54 | def plot(in_data, x, y, options):
|
---|
55 | fig, ax = plt.subplots()
|
---|
56 | colors = itertools.cycle(['#0095e3','#006cb4','#69df00','#0aa000','#fb0300','#e30002','#fd8f00','#ff7f00','#8f00d6','#4b009a','#ffff00','#b13f00'])
|
---|
57 | series = {} # scatter data for each individual data point
|
---|
58 | groups = {} # data points for x value
|
---|
59 |
|
---|
60 | print("Preparing Data")
|
---|
61 |
|
---|
62 | for entry in in_data:
|
---|
63 | name = entry[0]
|
---|
64 | if not name in series:
|
---|
65 | series[name] = {'x':[], 'y':[]}
|
---|
66 |
|
---|
67 | if not name in groups:
|
---|
68 | groups[name] = {}
|
---|
69 |
|
---|
70 | if x in entry[2] and y in entry[2]:
|
---|
71 | xval = entry[2][x]
|
---|
72 | yval = entry[2][y]
|
---|
73 | series[name]['x'].append(xval)
|
---|
74 | series[name]['y'].append(yval)
|
---|
75 |
|
---|
76 | if not xval in groups[name]:
|
---|
77 | groups[name][xval] = []
|
---|
78 |
|
---|
79 | groups[name][xval].append(yval)
|
---|
80 |
|
---|
81 | print("Preparing Lines")
|
---|
82 |
|
---|
83 | lines = {} # lines from groups with min, max, median, etc.
|
---|
84 | for name, data in groups.items():
|
---|
85 | if not name in lines:
|
---|
86 | lines[name] = { 'x': [], 'min':[], 'max':[], 'med':[], 'avg':[] }
|
---|
87 |
|
---|
88 | for xkey in sorted(data):
|
---|
89 | ys = data[xkey]
|
---|
90 | lines[name]['x'] .append(xkey)
|
---|
91 | lines[name]['min'].append(min(ys))
|
---|
92 | lines[name]['max'].append(max(ys))
|
---|
93 | lines[name]['med'].append(statistics.median(ys))
|
---|
94 | lines[name]['avg'].append(statistics.mean(ys))
|
---|
95 |
|
---|
96 | print("Making Plots")
|
---|
97 |
|
---|
98 | for name, data in sorted(series.items()):
|
---|
99 | _col = next(colors)
|
---|
100 | plt.scatter(data['x'], data['y'], color=_col, label=name, marker='x')
|
---|
101 | plt.plot(lines[name]['x'], lines[name]['min'], '--', color=_col)
|
---|
102 | plt.plot(lines[name]['x'], lines[name]['max'], '--', color=_col)
|
---|
103 | plt.plot(lines[name]['x'], lines[name]['med'], '-', color=_col)
|
---|
104 |
|
---|
105 | print("Calculating Extremums")
|
---|
106 |
|
---|
107 | mx = max([max(s['x']) for s in series.values()])
|
---|
108 | my = max([max(s['y']) for s in series.values()])
|
---|
109 |
|
---|
110 | print("Finishing Plots")
|
---|
111 |
|
---|
112 | plt.ylabel(field_names[y].name if field_names[y].name else y)
|
---|
113 | # plt.xticks(range(1, math.ceil(mx) + 1))
|
---|
114 | plt.xlabel(field_names[x].name if field_names[x].name else x)
|
---|
115 | plt.grid(b = True)
|
---|
116 | ax.xaxis.set_major_formatter( EngFormatter(unit=field_names[x].unit) )
|
---|
117 | if options.logx:
|
---|
118 | ax.set_xscale('log')
|
---|
119 | elif field_names[x].log:
|
---|
120 | ax.set_xscale('log')
|
---|
121 | else:
|
---|
122 | plt.xlim(field_names[x].min, mx + 0.25)
|
---|
123 |
|
---|
124 | ax.yaxis.set_major_formatter( EngFormatter(unit=field_names[y].unit) )
|
---|
125 | if options.logy:
|
---|
126 | ax.set_yscale('log')
|
---|
127 | elif field_names[y].log:
|
---|
128 | ax.set_yscale('log')
|
---|
129 | else:
|
---|
130 | plt.ylim(field_names[y].min, options.MaxY if options.MaxY else my*1.2)
|
---|
131 |
|
---|
132 | plt.legend(loc='upper left')
|
---|
133 |
|
---|
134 | print("Results Ready")
|
---|
135 | if options.out:
|
---|
136 | plt.savefig(options.out, bbox_inches='tight')
|
---|
137 | else:
|
---|
138 | plt.show()
|
---|
139 |
|
---|
140 |
|
---|
141 | if __name__ == "__main__":
|
---|
142 | # ================================================================================
|
---|
143 | # parse command line arguments
|
---|
144 | parser = argparse.ArgumentParser(description='Python Script to draw R.M.I.T. results')
|
---|
145 | parser.add_argument('-f', '--file', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Input file")
|
---|
146 | parser.add_argument('-o', '--out', nargs='?', type=str, default=None, help="Output file")
|
---|
147 | parser.add_argument('-y', nargs='?', type=str, default="", help="Which field to use as the Y axis")
|
---|
148 | parser.add_argument('-x', nargs='?', type=str, default="", help="Which field to use as the X axis")
|
---|
149 | parser.add_argument('--logx', action='store_true', help="if set, makes the x-axis logscale")
|
---|
150 | parser.add_argument('--logy', action='store_true', help="if set, makes the y-axis logscale")
|
---|
151 | parser.add_argument('--MaxY', nargs='?', type=int, help="maximum value of the y-axis")
|
---|
152 |
|
---|
153 | options = parser.parse_args()
|
---|
154 |
|
---|
155 | # ================================================================================
|
---|
156 | # load data
|
---|
157 | try :
|
---|
158 | data = json.load(options.file)
|
---|
159 | except :
|
---|
160 | print('ERROR: could not read input', file=sys.stderr)
|
---|
161 | parser.print_help(sys.stderr)
|
---|
162 | sys.exit(1)
|
---|
163 |
|
---|
164 | # ================================================================================
|
---|
165 | # identify the keys
|
---|
166 |
|
---|
167 | series = set()
|
---|
168 | fields = set()
|
---|
169 |
|
---|
170 | for entry in data:
|
---|
171 | series.add(entry[0])
|
---|
172 | for label in entry[2].keys():
|
---|
173 | fields.add(label)
|
---|
174 |
|
---|
175 | if not options.out :
|
---|
176 | print(series)
|
---|
177 | print("fields: ", ' '.join(fields))
|
---|
178 |
|
---|
179 | wantx = "Number of processors"
|
---|
180 | wanty = "ns per ops"
|
---|
181 |
|
---|
182 | if options.x:
|
---|
183 | if options.x in field_names.keys():
|
---|
184 | wantx = options.x
|
---|
185 | else:
|
---|
186 | print("Could not find X key '{}', defaulting to '{}'".format(options.x, wantx))
|
---|
187 |
|
---|
188 | if options.y:
|
---|
189 | if options.y in field_names.keys():
|
---|
190 | wanty = options.y
|
---|
191 | else:
|
---|
192 | print("Could not find Y key '{}', defaulting to '{}'".format(options.y, wanty))
|
---|
193 |
|
---|
194 |
|
---|
195 | plot(data, wantx, wanty, options)
|
---|