[0bb691b1] | 1 | #!/usr/bin/python3
|
---|
| 2 | """
|
---|
| 3 | Python Script to plot values obtained by the rmit.py script
|
---|
| 4 | Runs a R.I.P.L.
|
---|
| 5 |
|
---|
| 6 | ./plot.py
|
---|
| 7 | -t trials
|
---|
| 8 | -o option:values
|
---|
| 9 | """
|
---|
| 10 |
|
---|
| 11 | import argparse
|
---|
| 12 | import itertools
|
---|
| 13 | import json
|
---|
| 14 | import math
|
---|
| 15 | import numpy
|
---|
[c0458be3] | 16 | import os
|
---|
[0bb691b1] | 17 | import re
|
---|
[57af3f3] | 18 | import statistics
|
---|
[0bb691b1] | 19 | import sys
|
---|
[41a6a78] | 20 | import time
|
---|
[0bb691b1] | 21 |
|
---|
[41a6a78] | 22 | import matplotlib
|
---|
[0bb691b1] | 23 | import matplotlib.pyplot as plt
|
---|
[41a6a78] | 24 | from matplotlib.ticker import EngFormatter, ScalarFormatter
|
---|
| 25 |
|
---|
| 26 | def fmtDur( duration ):
|
---|
| 27 | if duration :
|
---|
| 28 | hours, rem = divmod(duration, 3600)
|
---|
| 29 | minutes, rem = divmod(rem, 60)
|
---|
| 30 | seconds, millis = divmod(rem, 1)
|
---|
| 31 | return "%2d:%02d.%03d" % (minutes, seconds, millis * 1000)
|
---|
| 32 | return " n/a"
|
---|
[0bb691b1] | 33 |
|
---|
[44706d1] | 34 | class Field:
|
---|
[c0458be3] | 35 | def __init__(self, unit, _min, _log, _name=None, _factor=1.0):
|
---|
[44706d1] | 36 | self.unit = unit
|
---|
| 37 | self.min = _min
|
---|
[e9c5db2] | 38 | self.log = _log
|
---|
[76f5e9f] | 39 | self.name = _name
|
---|
[c0458be3] | 40 | self.factor = _factor
|
---|
[44706d1] | 41 |
|
---|
| 42 | field_names = {
|
---|
[e9c5db2] | 43 | "ns per ops" : Field('ns' , 0, False),
|
---|
[41a6a78] | 44 | "Number of processors" : Field('' , 1, "exact"),
|
---|
[e9c5db2] | 45 | "Ops per procs" : Field('Ops' , 0, False),
|
---|
| 46 | "Ops per threads" : Field('Ops' , 0, False),
|
---|
[41a6a78] | 47 | "ns per ops/procs" : Field('' , 0, False, _name = "ns $\\times$ (Processor $/$ Total Ops)" ),
|
---|
[3b5dcfa] | 48 | "Number of threads" : Field('' , 1, False),
|
---|
[e9c5db2] | 49 | "Total Operations(ops)" : Field('Ops' , 0, False),
|
---|
| 50 | "Ops/sec/procs" : Field('Ops' , 0, False),
|
---|
| 51 | "Total blocks" : Field('Blocks', 0, False),
|
---|
[c0458be3] | 52 | "Ops per second" : Field('' , 0, False),
|
---|
[e9c5db2] | 53 | "Cycle size (# thrds)" : Field('thrd' , 1, False),
|
---|
| 54 | "Duration (ms)" : Field('ms' , 0, False),
|
---|
[3b5dcfa] | 55 | "Target QPS" : Field('' , 0, False),
|
---|
| 56 | "Actual QPS" : Field('' , 0, False),
|
---|
[e5e2334] | 57 | "Average Read Latency" : Field('s' , 0, False, _factor = 0.000001),
|
---|
[c0458be3] | 58 | "Median Read Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
| 59 | "Tail Read Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
| 60 | "Average Update Latency": Field('s' , 0, True, _factor = 0.000001),
|
---|
| 61 | "Median Update Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
| 62 | "Tail Update Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
[e5e2334] | 63 | "Update Ratio" : Field('%' , 0, False),
|
---|
[c0458be3] | 64 | "Request Rate" : Field('req/s' , 0, False),
|
---|
| 65 | "Data Rate" : Field('b/s' , 0, False, _factor = 1000 * 1000, _name = "Response Throughput"),
|
---|
[e5e2334] | 66 | "Errors" : Field('%' , 0, False),
|
---|
[44706d1] | 67 | }
|
---|
[0bb691b1] | 68 |
|
---|
[c0458be3] | 69 | def plot(in_data, x, y, options, prefix):
|
---|
[0bb691b1] | 70 | fig, ax = plt.subplots()
|
---|
[8fca132] | 71 | colors = itertools.cycle(['#006cb4','#0aa000','#ff6600','#8510a1','#0095e3','#fd8f00','#e30002','#8f00d6','#4b009a','#ffff00','#69df00','#fb0300','#b13f00'])
|
---|
| 72 | markers = itertools.cycle(['x', '+', '1', '2', '3', '4'])
|
---|
| 73 | series = {} # scatter data for each individual data point
|
---|
| 74 | groups = {} # data points for x value
|
---|
[e9c5db2] | 75 |
|
---|
| 76 | print("Preparing Data")
|
---|
| 77 |
|
---|
[57af3f3] | 78 | for entry in in_data:
|
---|
| 79 | name = entry[0]
|
---|
[41a6a78] | 80 | if options.filter and not name.startswith(options.filter):
|
---|
| 81 | continue
|
---|
| 82 |
|
---|
[57af3f3] | 83 | if not name in series:
|
---|
| 84 | series[name] = {'x':[], 'y':[]}
|
---|
| 85 |
|
---|
| 86 | if not name in groups:
|
---|
| 87 | groups[name] = {}
|
---|
[0bb691b1] | 88 |
|
---|
| 89 | if x in entry[2] and y in entry[2]:
|
---|
[57af3f3] | 90 | xval = entry[2][x]
|
---|
[c0458be3] | 91 | yval = entry[2][y] * field_names[y].factor
|
---|
[57af3f3] | 92 | series[name]['x'].append(xval)
|
---|
| 93 | series[name]['y'].append(yval)
|
---|
| 94 |
|
---|
| 95 | if not xval in groups[name]:
|
---|
| 96 | groups[name][xval] = []
|
---|
| 97 |
|
---|
| 98 | groups[name][xval].append(yval)
|
---|
| 99 |
|
---|
[e9c5db2] | 100 | print("Preparing Lines")
|
---|
| 101 |
|
---|
[57af3f3] | 102 | lines = {} # lines from groups with min, max, median, etc.
|
---|
| 103 | for name, data in groups.items():
|
---|
| 104 | if not name in lines:
|
---|
| 105 | lines[name] = { 'x': [], 'min':[], 'max':[], 'med':[], 'avg':[] }
|
---|
| 106 |
|
---|
| 107 | for xkey in sorted(data):
|
---|
| 108 | ys = data[xkey]
|
---|
| 109 | lines[name]['x'] .append(xkey)
|
---|
| 110 | lines[name]['min'].append(min(ys))
|
---|
| 111 | lines[name]['max'].append(max(ys))
|
---|
| 112 | lines[name]['med'].append(statistics.median(ys))
|
---|
| 113 | lines[name]['avg'].append(statistics.mean(ys))
|
---|
| 114 |
|
---|
[e9c5db2] | 115 | print("Making Plots")
|
---|
| 116 |
|
---|
[1f4fde5] | 117 | for name, data in sorted(series.items()):
|
---|
[57af3f3] | 118 | _col = next(colors)
|
---|
[8fca132] | 119 | _mrk = next(markers)
|
---|
| 120 | plt.scatter(data['x'], data['y'], color=_col, label=name[len(prefix):], marker=_mrk)
|
---|
| 121 | plt.plot(lines[name]['x'], lines[name]['min'], ':', color=_col)
|
---|
[57af3f3] | 122 | plt.plot(lines[name]['x'], lines[name]['max'], '--', color=_col)
|
---|
| 123 | plt.plot(lines[name]['x'], lines[name]['med'], '-', color=_col)
|
---|
[0bb691b1] | 124 |
|
---|
[e9c5db2] | 125 | print("Calculating Extremums")
|
---|
| 126 |
|
---|
[0bb691b1] | 127 | mx = max([max(s['x']) for s in series.values()])
|
---|
| 128 | my = max([max(s['y']) for s in series.values()])
|
---|
| 129 |
|
---|
[e9c5db2] | 130 | print("Finishing Plots")
|
---|
| 131 |
|
---|
[76f5e9f] | 132 | plt.ylabel(field_names[y].name if field_names[y].name else y)
|
---|
[e9c5db2] | 133 | # plt.xticks(range(1, math.ceil(mx) + 1))
|
---|
[76f5e9f] | 134 | plt.xlabel(field_names[x].name if field_names[x].name else x)
|
---|
[0bb691b1] | 135 | plt.grid(b = True)
|
---|
[44706d1] | 136 | ax.xaxis.set_major_formatter( EngFormatter(unit=field_names[x].unit) )
|
---|
[76f5e9f] | 137 | if options.logx:
|
---|
| 138 | ax.set_xscale('log')
|
---|
| 139 | elif field_names[x].log:
|
---|
[e9c5db2] | 140 | ax.set_xscale('log')
|
---|
[41a6a78] | 141 | if field_names[x].log == "exact":
|
---|
| 142 | xvals = set()
|
---|
| 143 | for s in series.values():
|
---|
| 144 | xvals |= set(s['x'])
|
---|
| 145 | ax.set_xticks(sorted(xvals))
|
---|
| 146 | ax.get_xaxis().set_major_formatter(ScalarFormatter())
|
---|
| 147 | plt.xticks(rotation = 45)
|
---|
[e9c5db2] | 148 | else:
|
---|
| 149 | plt.xlim(field_names[x].min, mx + 0.25)
|
---|
| 150 |
|
---|
[76f5e9f] | 151 | if options.logy:
|
---|
| 152 | ax.set_yscale('log')
|
---|
| 153 | elif field_names[y].log:
|
---|
[e9c5db2] | 154 | ax.set_yscale('log')
|
---|
| 155 | else:
|
---|
[76f5e9f] | 156 | plt.ylim(field_names[y].min, options.MaxY if options.MaxY else my*1.2)
|
---|
[e9c5db2] | 157 |
|
---|
[c0458be3] | 158 | ax.yaxis.set_major_formatter( EngFormatter(unit=field_names[y].unit) )
|
---|
| 159 |
|
---|
[44706d1] | 160 | plt.legend(loc='upper left')
|
---|
[e9c5db2] | 161 |
|
---|
| 162 | print("Results Ready")
|
---|
[41a6a78] | 163 | start = time.time()
|
---|
[76f5e9f] | 164 | if options.out:
|
---|
| 165 | plt.savefig(options.out, bbox_inches='tight')
|
---|
[f34f95c] | 166 | else:
|
---|
| 167 | plt.show()
|
---|
[41a6a78] | 168 | end = time.time()
|
---|
| 169 | print("Took {}".format(fmtDur(end - start)))
|
---|
[0bb691b1] | 170 |
|
---|
| 171 |
|
---|
| 172 | if __name__ == "__main__":
|
---|
| 173 | # ================================================================================
|
---|
| 174 | # parse command line arguments
|
---|
[e9c5db2] | 175 | parser = argparse.ArgumentParser(description='Python Script to draw R.M.I.T. results')
|
---|
| 176 | parser.add_argument('-f', '--file', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Input file")
|
---|
| 177 | parser.add_argument('-o', '--out', nargs='?', type=str, default=None, help="Output file")
|
---|
| 178 | parser.add_argument('-y', nargs='?', type=str, default="", help="Which field to use as the Y axis")
|
---|
| 179 | parser.add_argument('-x', nargs='?', type=str, default="", help="Which field to use as the X axis")
|
---|
[76f5e9f] | 180 | parser.add_argument('--logx', action='store_true', help="if set, makes the x-axis logscale")
|
---|
| 181 | parser.add_argument('--logy', action='store_true', help="if set, makes the y-axis logscale")
|
---|
| 182 | parser.add_argument('--MaxY', nargs='?', type=int, help="maximum value of the y-axis")
|
---|
[41a6a78] | 183 | parser.add_argument('--filter', nargs='?', type=str, default="", help="if not empty, only print series that start with specified filter")
|
---|
[e9c5db2] | 184 |
|
---|
| 185 | options = parser.parse_args()
|
---|
[0bb691b1] | 186 |
|
---|
[41a6a78] | 187 | # if not options.out:
|
---|
| 188 | # matplotlib.use('SVG')
|
---|
| 189 |
|
---|
[0bb691b1] | 190 | # ================================================================================
|
---|
| 191 | # load data
|
---|
| 192 | try :
|
---|
| 193 | data = json.load(options.file)
|
---|
| 194 | except :
|
---|
| 195 | print('ERROR: could not read input', file=sys.stderr)
|
---|
| 196 | parser.print_help(sys.stderr)
|
---|
| 197 | sys.exit(1)
|
---|
| 198 |
|
---|
| 199 | # ================================================================================
|
---|
| 200 | # identify the keys
|
---|
| 201 |
|
---|
| 202 | series = set()
|
---|
| 203 | fields = set()
|
---|
| 204 |
|
---|
| 205 | for entry in data:
|
---|
| 206 | series.add(entry[0])
|
---|
| 207 | for label in entry[2].keys():
|
---|
| 208 | fields.add(label)
|
---|
| 209 |
|
---|
[41a6a78] | 210 | # filter out the series if needed
|
---|
| 211 | if options.filter:
|
---|
| 212 | series = set(filter(lambda elem: elem.startswith(options.filter), series))
|
---|
| 213 |
|
---|
| 214 | # find the common prefix on series for removal (only if no filter)
|
---|
[c0458be3] | 215 | prefix = os.path.commonprefix(list(series))
|
---|
| 216 |
|
---|
[f34f95c] | 217 | if not options.out :
|
---|
| 218 | print(series)
|
---|
[e9c5db2] | 219 | print("fields: ", ' '.join(fields))
|
---|
[f34f95c] | 220 |
|
---|
[e9c5db2] | 221 | wantx = "Number of processors"
|
---|
| 222 | wanty = "ns per ops"
|
---|
| 223 |
|
---|
| 224 | if options.x:
|
---|
| 225 | if options.x in field_names.keys():
|
---|
| 226 | wantx = options.x
|
---|
| 227 | else:
|
---|
| 228 | print("Could not find X key '{}', defaulting to '{}'".format(options.x, wantx))
|
---|
| 229 |
|
---|
| 230 | if options.y:
|
---|
| 231 | if options.y in field_names.keys():
|
---|
| 232 | wanty = options.y
|
---|
| 233 | else:
|
---|
| 234 | print("Could not find Y key '{}', defaulting to '{}'".format(options.y, wanty))
|
---|
| 235 |
|
---|
| 236 |
|
---|
[c0458be3] | 237 | plot(data, wantx, wanty, options, prefix)
|
---|