1 | #!/usr/bin/python3
|
---|
2 | """
|
---|
3 | Python Script to plot values obtained by the rmit.py script
|
---|
4 | Runs a R.I.P.L.
|
---|
5 |
|
---|
6 | ./plot.py
|
---|
7 | -t trials
|
---|
8 | -o option:values
|
---|
9 | """
|
---|
10 |
|
---|
11 | import argparse
|
---|
12 | import itertools
|
---|
13 | import json
|
---|
14 | import math
|
---|
15 | import numpy
|
---|
16 | import os
|
---|
17 | import re
|
---|
18 | import statistics
|
---|
19 | import sys
|
---|
20 | import time
|
---|
21 |
|
---|
22 | import matplotlib
|
---|
23 | import matplotlib.pyplot as plt
|
---|
24 | from matplotlib.ticker import EngFormatter, ScalarFormatter
|
---|
25 |
|
---|
26 | def fmtDur( duration ):
|
---|
27 | if duration :
|
---|
28 | hours, rem = divmod(duration, 3600)
|
---|
29 | minutes, rem = divmod(rem, 60)
|
---|
30 | seconds, millis = divmod(rem, 1)
|
---|
31 | return "%2d:%02d.%03d" % (minutes, seconds, millis * 1000)
|
---|
32 | return " n/a"
|
---|
33 |
|
---|
34 | class Field:
|
---|
35 | def __init__(self, unit, _min, _log, _name=None, _factor=1.0):
|
---|
36 | self.unit = unit
|
---|
37 | self.min = _min
|
---|
38 | self.log = _log
|
---|
39 | self.name = _name
|
---|
40 | self.factor = _factor
|
---|
41 |
|
---|
42 | field_names = {
|
---|
43 | "ns per ops" : Field('ns' , 0, False),
|
---|
44 | "Number of processors" : Field('' , 1, "exact"),
|
---|
45 | "Ops per procs" : Field('Ops' , 0, False),
|
---|
46 | "Ops per threads" : Field('Ops' , 0, False),
|
---|
47 | "ns per ops/procs" : Field('' , 0, False, _name = "ns $\\times$ (Processor $/$ Total Ops)" ),
|
---|
48 | "Number of threads" : Field('' , 1, False),
|
---|
49 | "Total Operations(ops)" : Field('Ops' , 0, False),
|
---|
50 | "Ops/sec/procs" : Field('Ops' , 0, False),
|
---|
51 | "Total blocks" : Field('Blocks', 0, False),
|
---|
52 | "Ops per second" : Field('' , 0, False),
|
---|
53 | "Cycle size (# thrds)" : Field('thrd' , 1, False),
|
---|
54 | "Duration (ms)" : Field('ms' , 0, False),
|
---|
55 | "Target QPS" : Field('' , 0, False),
|
---|
56 | "Actual QPS" : Field('' , 0, False),
|
---|
57 | "Average Read Latency" : Field('s' , 0, False, _factor = 0.000001),
|
---|
58 | "Median Read Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
59 | "Tail Read Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
60 | "Average Update Latency": Field('s' , 0, True, _factor = 0.000001),
|
---|
61 | "Median Update Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
62 | "Tail Update Latency" : Field('s' , 0, True, _factor = 0.000001),
|
---|
63 | "Update Ratio" : Field('%' , 0, False),
|
---|
64 | "Request Rate" : Field('req/s' , 0, False),
|
---|
65 | "Data Rate" : Field('b/s' , 0, False, _factor = 1000 * 1000, _name = "Response Throughput"),
|
---|
66 | "Errors" : Field('%' , 0, False),
|
---|
67 | }
|
---|
68 |
|
---|
69 | def plot(in_data, x, y, options, prefix):
|
---|
70 | fig, ax = plt.subplots()
|
---|
71 | colors = itertools.cycle(['#006cb4','#0aa000','#ff6600','#8510a1','#0095e3','#fd8f00','#e30002','#8f00d6','#4b009a','#ffff00','#69df00','#fb0300','#b13f00'])
|
---|
72 | markers = itertools.cycle(['x', '+', '1', '2', '3', '4'])
|
---|
73 | series = {} # scatter data for each individual data point
|
---|
74 | groups = {} # data points for x value
|
---|
75 |
|
---|
76 | print("Preparing Data")
|
---|
77 |
|
---|
78 | for entry in in_data:
|
---|
79 | name = entry[0]
|
---|
80 | if options.filter and not name.startswith(options.filter):
|
---|
81 | continue
|
---|
82 |
|
---|
83 | if not name in series:
|
---|
84 | series[name] = {'x':[], 'y':[]}
|
---|
85 |
|
---|
86 | if not name in groups:
|
---|
87 | groups[name] = {}
|
---|
88 |
|
---|
89 | if x in entry[2] and y in entry[2]:
|
---|
90 | xval = entry[2][x]
|
---|
91 | yval = entry[2][y] * field_names[y].factor
|
---|
92 | series[name]['x'].append(xval)
|
---|
93 | series[name]['y'].append(yval)
|
---|
94 |
|
---|
95 | if not xval in groups[name]:
|
---|
96 | groups[name][xval] = []
|
---|
97 |
|
---|
98 | groups[name][xval].append(yval)
|
---|
99 |
|
---|
100 | print("Preparing Lines")
|
---|
101 |
|
---|
102 | lines = {} # lines from groups with min, max, median, etc.
|
---|
103 | for name, data in groups.items():
|
---|
104 | if not name in lines:
|
---|
105 | lines[name] = { 'x': [], 'min':[], 'max':[], 'med':[], 'avg':[] }
|
---|
106 |
|
---|
107 | for xkey in sorted(data):
|
---|
108 | ys = data[xkey]
|
---|
109 | lines[name]['x'] .append(xkey)
|
---|
110 | lines[name]['min'].append(min(ys))
|
---|
111 | lines[name]['max'].append(max(ys))
|
---|
112 | lines[name]['med'].append(statistics.median(ys))
|
---|
113 | lines[name]['avg'].append(statistics.mean(ys))
|
---|
114 |
|
---|
115 | print("Making Plots")
|
---|
116 |
|
---|
117 | for name, data in sorted(series.items()):
|
---|
118 | _col = next(colors)
|
---|
119 | _mrk = next(markers)
|
---|
120 | plt.scatter(data['x'], data['y'], color=_col, label=name[len(prefix):], marker=_mrk)
|
---|
121 | plt.plot(lines[name]['x'], lines[name]['min'], ':', color=_col)
|
---|
122 | plt.plot(lines[name]['x'], lines[name]['max'], '--', color=_col)
|
---|
123 | plt.plot(lines[name]['x'], lines[name]['med'], '-', color=_col)
|
---|
124 |
|
---|
125 | print("Calculating Extremums")
|
---|
126 |
|
---|
127 | mx = max([max(s['x']) for s in series.values()])
|
---|
128 | my = max([max(s['y']) for s in series.values()])
|
---|
129 |
|
---|
130 | print("Finishing Plots")
|
---|
131 |
|
---|
132 | plt.ylabel(field_names[y].name if field_names[y].name else y)
|
---|
133 | # plt.xticks(range(1, math.ceil(mx) + 1))
|
---|
134 | plt.xlabel(field_names[x].name if field_names[x].name else x)
|
---|
135 | plt.grid(b = True)
|
---|
136 | ax.xaxis.set_major_formatter( EngFormatter(unit=field_names[x].unit) )
|
---|
137 | if options.logx:
|
---|
138 | ax.set_xscale('log')
|
---|
139 | elif field_names[x].log:
|
---|
140 | ax.set_xscale('log')
|
---|
141 | if field_names[x].log == "exact":
|
---|
142 | xvals = set()
|
---|
143 | for s in series.values():
|
---|
144 | xvals |= set(s['x'])
|
---|
145 | ax.set_xticks(sorted(xvals))
|
---|
146 | ax.get_xaxis().set_major_formatter(ScalarFormatter())
|
---|
147 | plt.xticks(rotation = 45)
|
---|
148 | else:
|
---|
149 | plt.xlim(field_names[x].min, mx + 0.25)
|
---|
150 |
|
---|
151 | if options.logy:
|
---|
152 | ax.set_yscale('log')
|
---|
153 | elif field_names[y].log:
|
---|
154 | ax.set_yscale('log')
|
---|
155 | else:
|
---|
156 | plt.ylim(field_names[y].min, options.MaxY if options.MaxY else my*1.2)
|
---|
157 |
|
---|
158 | ax.yaxis.set_major_formatter( EngFormatter(unit=field_names[y].unit) )
|
---|
159 |
|
---|
160 | plt.legend(loc='upper left')
|
---|
161 |
|
---|
162 | print("Results Ready")
|
---|
163 | start = time.time()
|
---|
164 | if options.out:
|
---|
165 | plt.savefig(options.out, bbox_inches='tight')
|
---|
166 | else:
|
---|
167 | plt.show()
|
---|
168 | end = time.time()
|
---|
169 | print("Took {}".format(fmtDur(end - start)))
|
---|
170 |
|
---|
171 |
|
---|
172 | if __name__ == "__main__":
|
---|
173 | # ================================================================================
|
---|
174 | # parse command line arguments
|
---|
175 | parser = argparse.ArgumentParser(description='Python Script to draw R.M.I.T. results')
|
---|
176 | parser.add_argument('-f', '--file', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="Input file")
|
---|
177 | parser.add_argument('-o', '--out', nargs='?', type=str, default=None, help="Output file")
|
---|
178 | parser.add_argument('-y', nargs='?', type=str, default="", help="Which field to use as the Y axis")
|
---|
179 | parser.add_argument('-x', nargs='?', type=str, default="", help="Which field to use as the X axis")
|
---|
180 | parser.add_argument('--logx', action='store_true', help="if set, makes the x-axis logscale")
|
---|
181 | parser.add_argument('--logy', action='store_true', help="if set, makes the y-axis logscale")
|
---|
182 | parser.add_argument('--MaxY', nargs='?', type=int, help="maximum value of the y-axis")
|
---|
183 | parser.add_argument('--filter', nargs='?', type=str, default="", help="if not empty, only print series that start with specified filter")
|
---|
184 |
|
---|
185 | options = parser.parse_args()
|
---|
186 |
|
---|
187 | # if not options.out:
|
---|
188 | # matplotlib.use('SVG')
|
---|
189 |
|
---|
190 | # ================================================================================
|
---|
191 | # load data
|
---|
192 | try :
|
---|
193 | data = json.load(options.file)
|
---|
194 | except :
|
---|
195 | print('ERROR: could not read input', file=sys.stderr)
|
---|
196 | parser.print_help(sys.stderr)
|
---|
197 | sys.exit(1)
|
---|
198 |
|
---|
199 | # ================================================================================
|
---|
200 | # identify the keys
|
---|
201 |
|
---|
202 | series = set()
|
---|
203 | fields = set()
|
---|
204 |
|
---|
205 | for entry in data:
|
---|
206 | series.add(entry[0])
|
---|
207 | for label in entry[2].keys():
|
---|
208 | fields.add(label)
|
---|
209 |
|
---|
210 | # filter out the series if needed
|
---|
211 | if options.filter:
|
---|
212 | series = set(filter(lambda elem: elem.startswith(options.filter), series))
|
---|
213 |
|
---|
214 | # find the common prefix on series for removal (only if no filter)
|
---|
215 | prefix = os.path.commonprefix(list(series))
|
---|
216 |
|
---|
217 | if not options.out :
|
---|
218 | print(series)
|
---|
219 | print("fields: ", ' '.join(fields))
|
---|
220 |
|
---|
221 | wantx = "Number of processors"
|
---|
222 | wanty = "ns per ops"
|
---|
223 |
|
---|
224 | if options.x:
|
---|
225 | if options.x in field_names.keys():
|
---|
226 | wantx = options.x
|
---|
227 | else:
|
---|
228 | print("Could not find X key '{}', defaulting to '{}'".format(options.x, wantx))
|
---|
229 |
|
---|
230 | if options.y:
|
---|
231 | if options.y in field_names.keys():
|
---|
232 | wanty = options.y
|
---|
233 | else:
|
---|
234 | print("Could not find Y key '{}', defaulting to '{}'".format(options.y, wanty))
|
---|
235 |
|
---|
236 |
|
---|
237 | plot(data, wantx, wanty, options, prefix)
|
---|