Changeset fc19129


Ignore:
Timestamp:
Apr 3, 2017, 10:38:04 AM (7 years ago)
Author:
Aaron Moss <a3moss@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
1d29d46
Parents:
814525c (diff), 36e05a2 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge changes to generics paper

Files:
5 added
23 edited

Legend:

Unmodified
Added
Removed
  • doc/bibliography/cfa.bib

    r814525c rfc19129  
    3535@string{osr="Operating Systems Review"}
    3636@string{pldi="Programming Language Design and Implementation"}
     37@string{toplas="Transactions on Programming Languages and Systems"}
    3738@string{mathann="Mathematische Annalen"}
    3839% @string{mathann="Math. Ann."}
     
    27182719        implementations are the same.
    27192720    }
     2721}
     2722
     2723@online{GCCExtensions,
     2724    contributer = {a3moss@uwaterloo.ca},
     2725    key = {{GNU}},
     2726    title = {Extensions to the {C} Language Family},
     2727    year = 2014,
     2728    url = {https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html},
     2729    urldate = {2017-04-02}
    27202730}
    27212731
     
    55895599    keywords    = {Cyclone, existential types, polymorphism, type variables},
    55905600    contributer = {a3moss@plg},
    5591     author      = {Grossman, Dan},
     5601    author      = {Dan Grossman},
    55925602    title       = {Quantified Types in an Imperative Language},
    55935603    journal     = toplas,
     
    55965606    number      = {3},
    55975607    month       = may,
    5598     year        = {2006},
     5608    year        = 2006,
    55995609    issn        = {0164-0925},
    5600     pages       = {429--475},
    5601     numpages    = {47},
     5610    pages       = {429-475},
    56025611    url         = {http://doi.acm.org.proxy.lib.uwaterloo.ca/10.1145/1133651.1133653},
    56035612    doi         = {10.1145/1133651.1133653},
     
    57585767    month       = dec,
    57595768    year        = 1988,
     5769}
     5770
     5771@mastersthesis{Schluntz17,
     5772    author      = {Robert Schluntz},
     5773    title       = {Resource Management and Tuples in C$\mathbf{\forall}$},
     5774    school      = {School of Computer Science, University of Waterloo},
     5775    year        = 2017,
     5776    address     = {Waterloo, Ontario, Canada, N2L 3G1},
     5777    note        = {[[unpublished]]}
    57605778}
    57615779
  • doc/generic_types/acmart.cls

    r814525c rfc19129  
    370370\fi
    371371\if@ACM@screen
    372   \hypersetup{colorlinks,
    373     linkcolor=ACMRed,
    374     citecolor=ACMPurple,
    375     urlcolor=ACMDarkBlue,
    376     filecolor=ACMDarkBlue}
     372%  \hypersetup{colorlinks,
     373%    linkcolor=ACMRed,
     374%    citecolor=ACMPurple,
     375%    urlcolor=ACMDarkBlue,
     376%    filecolor=ACMDarkBlue}
    377377\else
    378378  \hypersetup{hidelinks}
     
    18301830      \newlength\ACM@linecount@bxht\setlength{\ACM@linecount@bxht}{-\baselineskip}
    18311831      \@tempcnta\@ne\relax
    1832       \loop{\color{ACMRed}\scriptsize\the\@tempcnta}\\
     1832%      \loop{\color{ACMRed}\scriptsize\the\@tempcnta}\\
     1833      \loop{\scriptsize\the\@tempcnta}\\
    18331834      \advance\@tempcnta by \@ne
    18341835      \addtolength{\ACM@linecount@bxht}{\baselineskip}
  • doc/generic_types/generic_types.tex

    r814525c rfc19129  
    11% take off review (for line numbers) and anonymous (for anonymization) on submission
    22% \documentclass[format=acmlarge, anonymous, review]{acmart}
    3 \documentclass[format=acmlarge, review]{acmart}
    4 
    5 \usepackage{listings}   % For code listings
     3\documentclass[format=acmlarge,review]{acmart}
     4
     5\usepackage{xspace,calc,comment}
     6\usepackage{upquote}                                                                    % switch curled `'" to straight
     7\usepackage{listings}                                                                   % format program code
     8
     9\makeatletter
     10% parindent is relative, i.e., toggled on/off in environments like itemize, so store the value for
     11% use rather than use \parident directly.
     12\newlength{\parindentlnth}
     13\setlength{\parindentlnth}{\parindent}
     14
     15\newlength{\gcolumnposn}                                % temporary hack because lstlisting does handle tabs correctly
     16\newlength{\columnposn}
     17\setlength{\gcolumnposn}{2.75in}
     18\setlength{\columnposn}{\gcolumnposn}
     19\newcommand{\C}[2][\@empty]{\ifx#1\@empty\else\global\setlength{\columnposn}{#1}\global\columnposn=\columnposn\fi\hfill\makebox[\textwidth-\columnposn][l]{\lst@commentstyle{#2}}}
     20\newcommand{\CRT}{\global\columnposn=\gcolumnposn}
     21\makeatother
    622
    723% Useful macros
    8 \newcommand{\CFA}{C$\mathbf\forall$} % Cforall symbolic name
    9 \newcommand{\CC}{\rm C\kern-.1em\hbox{+\kern-.25em+}} % C++ symbolic name
    10 \newcommand{\CCeleven}{\rm C\kern-.1em\hbox{+\kern-.25em+}11} % C++11 symbolic name
    11 \newcommand{\CCfourteen}{\rm C\kern-.1em\hbox{+\kern-.25em+}14} % C++14 symbolic name
    12 \newcommand{\CCseventeen}{\rm C\kern-.1em\hbox{+\kern-.25em+}17} % C++17 symbolic name
    13 \newcommand{\CCtwenty}{\rm C\kern-.1em\hbox{+\kern-.25em+}20} % C++20 symbolic name
     24\newcommand{\CFA}{C$\mathbf\forall$\xspace} % Cforall symbolic name
     25\newcommand{\CC}{\rm C\kern-.1em\hbox{+\kern-.25em+}\xspace} % C++ symbolic name
     26\newcommand{\CCeleven}{\rm C\kern-.1em\hbox{+\kern-.25em+}11\xspace} % C++11 symbolic name
     27\newcommand{\CCfourteen}{\rm C\kern-.1em\hbox{+\kern-.25em+}14\xspace} % C++14 symbolic name
     28\newcommand{\CCseventeen}{\rm C\kern-.1em\hbox{+\kern-.25em+}17\xspace} % C++17 symbolic name
     29\newcommand{\CCtwenty}{\rm C\kern-.1em\hbox{+\kern-.25em+}20\xspace} % C++20 symbolic name
    1430
    1531\newcommand{\TODO}{\textbf{TODO}}
    16 \newcommand{\eg}{\textit{e}.\textit{g}.}
    17 \newcommand{\ie}{\textit{i}.\textit{e}.}
    18 \newcommand{\etc}{\textit{etc}.}
     32\newcommand{\eg}{\textit{e}.\textit{g}.,\xspace}
     33\newcommand{\ie}{\textit{i}.\textit{e}.,\xspace}
     34\newcommand{\etc}{\textit{etc}.,\xspace}
    1935
    2036% CFA programming language, based on ANSI C (with some gcc additions)
    2137\lstdefinelanguage{CFA}[ANSI]{C}{
    2238        morekeywords={_Alignas,_Alignof,__alignof,__alignof__,asm,__asm,__asm__,_At,_Atomic,__attribute,__attribute__,auto,
    23                 _Bool,bool,catch,catchResume,choose,_Complex,__complex,__complex__,__const,__const__,disable,dtype,enable,__extension__,
    24                 fallthrough,fallthru,finally,forall,ftype,_Generic,_Imaginary,inline,__label__,lvalue,_Noreturn,one_t,otype,restrict,size_t,sized,_Static_assert,
     39                _Bool,catch,catchResume,choose,_Complex,__complex,__complex__,__const,__const__,disable,dtype,enable,__extension__,
     40                fallthrough,fallthru,finally,forall,ftype,_Generic,_Imaginary,inline,__label__,lvalue,_Noreturn,one_t,otype,restrict,_Static_assert,
    2541                _Thread_local,throw,throwResume,trait,try,ttype,typeof,__typeof,__typeof__,zero_t},
    2642}%
     
    3349tabsize=4,                                                                                              % 4 space tabbing
    3450xleftmargin=\parindent,                                                                 % indent code to paragraph indentation
    35 % extendedchars=true,                                                                   % allow ASCII characters in the range 128-255
    36 % escapechar=§,                                                                                 % LaTeX escape in CFA code §...§ (section symbol), emacs: C-q M-'
    37 mathescape=true,                                                                                % LaTeX math escape in CFA code $...$
     51%mathescape=true,                                                                               % LaTeX math escape in CFA code $...$
     52escapechar=\$,                                                                                  % LaTeX escape in CFA code
    3853keepspaces=true,                                                                                %
    3954showstringspaces=false,                                                                 % do not show spaces with cup
     
    4358% replace/adjust listing characters that look bad in sanserif
    4459literate={-}{\raisebox{-0.15ex}{\texttt{-}}}1 {^}{\raisebox{0.6ex}{$\scriptscriptstyle\land\,$}}1
    45         {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 {_}{\makebox[1.2ex][c]{\rule{1ex}{0.1ex}}}1 {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1
    46         {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{$\rightarrow$}2,
    47 % moredelim=**[is][\color{red}]{®}{®},                                  % red highlighting ®...® (registered trademark symbol) emacs: C-q M-.
    48 % moredelim=**[is][\color{blue}]{ß}{ß},                                 % blue highlighting ß...ß (sharp s symbol) emacs: C-q M-_
    49 % moredelim=**[is][\color{OliveGreen}]{¢}{¢},                   % green highlighting ¢...¢ (cent symbol) emacs: C-q M-"
    50 % moredelim=[is][\lstset{keywords={}}]{¶}{¶},                   % keyword escape ¶...¶ (pilcrow symbol) emacs: C-q M-^
     60        {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 {_}{\makebox[1.2ex][c]{\rule{1ex}{0.1ex}}}1 % {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1
     61        {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2,
     62moredelim=**[is][\color{red}]{`}{`},
    5163}% lstset
    5264
     
    5971\acmJournal{PACMPL}
    6072
    61 \title{Generic and Tuple Types with Efficient Dynamic Layout in \CFA{}}
     73\title{Generic and Tuple Types with Efficient Dynamic Layout in \CFA}
    6274
    6375\author{Aaron Moss}
     76\email{a3moss@uwaterloo.ca}
     77\author{Robert Schluntz}
     78\email{rschlunt@uwaterloo.ca}
     79\author{Peter Buhr}
     80\email{pabuhr@uwaterloo.ca}
    6481\affiliation{%
    6582        \institution{University of Waterloo}
     
    7188        \country{Canada}
    7289}
    73 \email{a3moss@uwaterloo.ca}
    74 
    75 \author{Robert Schluntz}
    76 \affiliation{%
    77         \institution{University of Waterloo}
    78         \department{David R. Cheriton School of Computer Science}
    79         \streetaddress{Davis Centre, University of Waterloo}
    80         \city{Waterloo}
    81         \state{ON}
    82         \postcode{N2L 3G1}
    83         \country{Canada}
    84 }
    85 \email{rschlunt@uwaterloo.ca}
    86 
    87 \author{Peter Buhr}
    88 \affiliation{%
    89         \institution{University of Waterloo}
    90         \department{David R. Cheriton School of Computer Science}
    91         \streetaddress{Davis Centre, University of Waterloo}
    92         \city{Waterloo}
    93         \state{ON}
    94         \postcode{N2L 3G1}
    95         \country{Canada}
    96 }
    97 \email{pabuhr@uwaterloo.ca}
    9890
    9991\terms{generic, tuple, types}
     
    125117
    126118\begin{abstract}
    127 The C programming language is a foundational technology for modern computing, with millions of lines of code implementing everything from commercial operating systems to hobby projects. This installed base of code and the programmers who produced it represent a massive software engineering investment spanning decades. Nonetheless, C, first standardized over thirty years ago, lacks many features that make programming in more modern languages safer and more productive. The goal of the \CFA{} project is to create an extension of C that provides modern safety and productivity features while still ensuring strong backwards compatibility with C. Particularly, \CFA{} is designed to have an orthogonal feature set based closely on the C programming paradigm, so that \CFA{} features can be added incrementally to existing C code-bases, and C programmers can learn \CFA{} extensions on an as-needed basis, preserving investment in existing engineers and code. This paper describes how generic and tuple types are implemented in \CFA{} in accordance with these principles.
     119The C programming language is a foundational technology for modern computing with millions of lines of code implementing everything from commercial operating-systems to hobby projects. This installation base and the programmers producing it represent a massive software-engineering investment spanning decades and likely to continue for decades more. Nonetheless, C, first standardized over thirty years ago, lacks many features that make programming in more modern languages safer and more productive. The goal of the \CFA project is to create an extension of C that provides modern safety and productivity features while still ensuring strong backwards compatibility with C and its programmers. Prior projects have attempted similar goals but failed to honour C programming-style; for instance, adding object-oriented or functional programming with garbage collection is a non-starter for many C developers. Specifically, \CFA is designed to have an orthogonal feature-set based closely on the C programming paradigm, so that \CFA features can be added \emph{incrementally} to existing C code-bases, and C programmers can learn \CFA extensions on an as-needed basis, preserving investment in existing code and engineers. This paper describes only two \CFA extensions, generic and tuple types, and how they are implemented in accordance with these principles.
    128120\end{abstract}
    129121
    130122\begin{document}
    131 
    132123\maketitle
    133124
    134125\section{Introduction \& Background}
    135126
    136 \CFA{}\footnote{Pronounced ``C-for-all'', and written \CFA{} or Cforall.} is an evolutionary extension of the C programming language that aims to add modern language features to C while maintaining both source compatibility with C and a familiar mental model for programmers. Four key design goals were set out in the original design of \CFA{} \citep{Bilson03}:
     127\CFA\footnote{Pronounced ``C-for-all'', and written \CFA or Cforall.} is an evolutionary extension of the C programming language that aims to add modern language features to C while maintaining both source compatibility with C and a familiar programming model for programmers. Four key design goals were set out in the original design of \CFA~\citep{Bilson03}:
    137128\begin{enumerate}
    138 \item The behaviour of standard C code must remain the same when translated by a \CFA{} compiler as when translated by a C compiler.
    139 \item Standard C code must be as fast and as small when translated by a \CFA{} compiler as when translated by a C compiler.
    140 \item \CFA{} code must be at least as portable as standard C code.
    141 \item Extensions introduced by \CFA{} must be translated in the most efficient way possible.
     129\item The behaviour of standard C code must remain the same when translated by a \CFA compiler as when translated by a C compiler.
     130\item Standard C code must be as fast and as small when translated by a \CFA compiler as when translated by a C compiler.
     131\item \CFA code must be at least as portable as standard C code.
     132\item Extensions introduced by \CFA must be translated in the most efficient way possible.
    142133\end{enumerate}
    143 The purpose of these goals is to ensure that existing C code-bases can be converted to \CFA{} incrementally and with minimal effort, and that programmers who already know C can productively produce \CFA{} code without training in \CFA{} beyond the extension features they wish to employ. In its current implementation, \CFA{} is compiled by translating it to GCC-dialect C, allowing it to leverage the portability and code optimizations provided by GCC, meeting goals (1)-(3).
    144 
    145 \CFA{} has been previously extended with polymorphic functions and name overloading (including operator overloading) \citep{Bilson03}, and deterministically-executed constructors and destructors \citep{Schluntz17}. This paper describes how generic and tuple types are designed and implemented in \CFA{} in accordance with both the backward compatibility goals and existing features described above.
     134These goals ensure existing C code-bases can be converted to \CFA incrementally and with minimal effort, and C programmers can productively generate \CFA code without training beyond the features they wish to employ. In its current implementation, \CFA is compiled by translating it to the GCC-dialect of C~\citep{GCCExtensions}, allowing it to leverage the portability and code optimizations provided by GCC, meeting goals (1)-(3). Ultimately, a compiler is necessary for advanced features and optimal performance.
     135
     136\CFA has been previously extended with polymorphic functions and name overloading (including operator overloading) by \citet{Bilson03}, and deterministically-executed constructors and destructors by \citet{Schluntz17}. This paper describes how generic and tuple types are designed and implemented in \CFA in accordance with both the backward compatibility goals and existing features described above.
     137
    146138
    147139\subsection{Polymorphic Functions}
    148140\label{sec:poly-fns}
    149141
    150 \CFA{}'s polymorphism was originally formalized by \citet{Ditchfield92}, and first implemented by \citet{Bilson03}. The signature feature of \CFA{} is parametric-polymorphic functions; such functions are written using a @forall@ clause (which gives the language its name):
    151 \begin{lstlisting}
    152 forall(otype T)
    153 T identity(T x) { return x; }
    154 
    155 int forty_two = identity(42); // T is bound to int, forty_two == 42
    156 \end{lstlisting}
    157 The @identity@ function above can be applied to any complete object type (or ``@otype@''). The type variable @T@ is transformed into a set of additional implicit parameters to @identity@, that encode sufficient information about @T@ to create and return a variable of that type. The \CFA{} implementation passes the size and alignment of the type represented by an @otype@ parameter, as well as an assignment operator, constructor, copy constructor and destructor. If this extra information is not needed, the type parameter can be declared as @dtype T@, where @dtype@ is short for ``data type''.
    158 
    159 Here, the runtime cost of polymorphism is spread over each polymorphic call, due to passing more arguments to polymorphic functions; preliminary experiments have shown this overhead to be similar to \CC{} virtual function calls. An advantage of this design is that, unlike \CC{} template functions, \CFA{} @forall@ functions are compatible with separate compilation.
    160 
    161 Since bare polymorphic types do not provide a great range of available operations, \CFA{} provides a \emph{type assertion} mechanism to provide further information about a type:
    162 \begin{lstlisting}
    163 forall(otype T | { T twice(T); })
    164 T four_times(T x) { return twice( twice(x) ); }
    165 
    166 double twice(double d) { return d * 2.0; } // (1)
    167 
    168 double magic = four_times(10.5); // T is bound to double, uses (1) to satisfy type assertion
    169 \end{lstlisting}
    170 These type assertions may be either variable or function declarations that depend on a polymorphic type variable. @four_times@ can only be called with an argument for which there exists a function named @twice@ that can take that argument and return another value of the same type; a pointer to the appropriate @twice@ function is passed as an additional implicit parameter to the call of @four_times@.
    171 
    172 Monomorphic specializations of polymorphic functions can themselves be used to satisfy type assertions. For instance, @twice@ could have been defined using the \CFA{} syntax for operator overloading as:
    173 \begin{lstlisting}
    174 forall(otype S | { S ?+?(S, S); })
    175 S twice(S x) { return x + x; }  // (2)
    176 \end{lstlisting}
    177 This version of @twice@ works for any type @S@ that has an addition operator defined for it, and it could have been used to satisfy the type assertion on @four_times@.
    178 The translator accomplishes this polymorphism by creating a wrapper function calling @twice // (2)@ with @S@ bound to @double@, then providing this wrapper function to @four_times@\footnote{\lstinline@twice // (2)@ could also have had a type parameter named \lstinline@T@; \CFA{} specifies renaming of the type parameters, which would avoid the name conflict with the type variable \lstinline@T@ of \lstinline@four_times@.}.
     142\CFA's polymorphism was originally formalized by \citet{Ditchfield92}, and first implemented by \citet{Bilson03}. The signature feature of \CFA is parametric-polymorphic functions; such functions are written using a @forall@ clause (which gives the language its name):
     143\begin{lstlisting}
     144`forall( otype T )` T identity( T val ) { return val; }
     145int forty_two = identity( 42 );                         $\C{// T is bound to int, forty\_two == 42}$
     146\end{lstlisting}
     147The @identity@ function above can be applied to any complete object-type (or ``@otype@''). The type variable @T@ is transformed into a set of additional implicit parameters to @identity@ that encode sufficient information about @T@ to create and return a variable of that type. The \CFA implementation passes the size and alignment of the type represented by an @otype@ parameter, as well as an assignment operator, constructor, copy constructor and destructor. If this extra information is not needed, \eg for a pointer, the type parameter can be declared as @dtype T@, where @dtype@ is short for ``data type''.
     148
     149Here, the runtime cost of polymorphism is spread over each polymorphic call, due to passing more arguments to polymorphic functions; preliminary experiments have shown this overhead to be similar to \CC virtual function calls. An advantage of this design is that, unlike \CC template functions, \CFA @forall@ functions are compatible with C separate compilation.
     150
     151Since bare polymorphic-types provide only a narrow set of available operations, \CFA provides a \emph{type assertion} mechanism to provide further type information, where type assertions may be variable or function declarations that depend on a polymorphic type variable. For instance, @twice@ can be defined using the \CFA syntax for operator overloading:
     152\begin{lstlisting}
     153forall( otype T | { T `?`+`?`(T, T); } )        $\C{// ? denotes operands}$
     154  T twice( T x ) { return x + x; }                      $\C{// (2)}$
     155int val = twice( twice( 3.7 ) );
     156\end{lstlisting}
     157which works for any type @T@ with an addition operator defined. The translator accomplishes this polymorphism by creating a wrapper function for calling @+@ with @T@ bound to @double@, then providing this function to the first call of @twice@. It then has the option of using the same @twice@ again and converting the result to @int@ on assignment, or creating another @twice@ with type parameter @T@ bound to @int@ because \CFA uses the return type in its type analysis. The first approach has a late conversion from integer to floating-point on the final assignment, while the second has an eager conversion to integer. \CFA minimizes the number of conversions and their potential to lose information, so it selects the first approach.
     158
     159Monomorphic specializations of polymorphic functions can satisfy polymorphic type-assertions.
     160% \begin{lstlisting}
     161% forall(otype T `| { T twice(T); }`)           $\C{// type assertion}$
     162% T four_times(T x) { return twice( twice(x) ); }
     163% double twice(double d) { return d * 2.0; }    $\C{// (1)}$
     164% double magic = four_times(10.5);                      $\C{// T bound to double, uses (1) to satisfy type assertion}$
     165% \end{lstlisting}
     166\begin{lstlisting}
     167forall( otype T `| { int ?<?( T, T ); }` )      $\C{// type assertion}$
     168  void qsort( const T * arr, size_t size );
     169forall( otype T `| { int ?<?( T, T ); }` )      $\C{// type assertion}$
     170  T * bsearch( T key, const T * arr, size_t size );
     171double vals[10] = { /* 10 floating-point values */ };
     172qsort( vals, 10 );                                                      $\C{// sort array}$
     173double * val = bsearch( 5.0, vals, 10 );        $\C{// binary search sorted array for key}$
     174\end{lstlisting}
     175@qsort@ and @bsearch@ can only be called with arguments for which there exists a function named @<@ taking two arguments of the same type and returning an @int@ value.
     176Here, the built-in monomorphic specialization of @<@ for type @double@ is passed as an additional implicit parameter to the calls of @qsort@ and @bsearch@.
     177
     178Crucial to the design of a new programming language are the libraries to access thousands of external features.
     179\CFA inherits a massive compatible library-base, where other programming languages have to rewrite or provide fragile inter-language communication with C.
     180A simple example is leveraging the existing type-unsafe (@void *@) C @bsearch@, shown here searching a floating-point array:
     181\begin{lstlisting}
     182void * bsearch( const void * key, const void * base, size_t nmemb, size_t size,
     183                                int (* compar)(const void *, const void *));
     184int comp( const void * t1, const void * t2 ) { return *(double *)t1 < *(double *)t2 ? -1 :
     185                                *(double *)t2 < *(double *)t1 ? 1 : 0; }
     186double key = 5.0;
     187double * val = (double *)bsearch( &key, vals, size, sizeof(vals[0]), comp );
     188\end{lstlisting}
     189but providing a type-safe \CFA overloaded wrapper.
     190\begin{lstlisting}
     191forall( otype T | { int ?<?( T, T ); } ) T * bsearch( T key, const T * arr, size_t size ) {
     192        int comp( const void * t1, const void * t2 ) { /* as above with double changed to T */ }
     193        return (T *)bsearch( &key, arr, size, sizeof(T), comp );
     194}
     195forall( otype T | { int ?<?( T, T ); } ) unsigned int bsearch( T key, const T * arr, size_t size ) {
     196        T *result = bsearch( key, arr, size );  $\C{// call first version}$
     197        return result ? result - arr : size;            $\C{// pointer subtraction includes sizeof(T)}$
     198}
     199double * val = bsearch( 5.0, vals, 10 );        $\C{// selection based on return type}$
     200int posn = bsearch( 5.0, vals, 10 );
     201\end{lstlisting}
     202The nested routine @comp@ provides the hidden interface from typed \CFA to untyped (@void *@) C, plus the cast of the result.
     203As well, an alternate kind of return is made available, position versus pointer to found element.
     204\CC's type-system cannot disambiguate between the two versions of @bsearch@ because it does not use the return type in overload resolution, nor can \CC separately compile a templated @bsearch@.
     205
     206Call-site inferencing and nested functions provide a localized form of inheritance. For example, @qsort@ only sorts in ascending order using @<@. However, it is trivial to locally change this behaviour:
     207\begin{lstlisting}
     208{   int ?<?( double x, double y ) { return x `>` y; }   $\C{// override behaviour}$
     209        qsort( vals, size );                                    $\C{// descending sort}$
     210}
     211\end{lstlisting}
     212Within the block, the nested version of @<@ performs @>@ and this local version overrides the built-in @<@ so it is passed to @qsort@.
     213Hence, programmers can easily form new local environments to maximize reuse of existing functions and types.
     214
     215Finally, variables may be overloaded:
     216\lstDeleteShortInline@
     217\par\smallskip
     218\begin{tabular}{@{}l@{\hspace{\parindent}}|@{\hspace{\parindent}}l@{}}
     219\begin{lstlisting}
     220short int MAX = ...;
     221int MAX = ...;
     222double MAX = ...;
     223\end{lstlisting}
     224&
     225\begin{lstlisting}
     226short int s = MAX;  // select correct MAX
     227int i = MAX;
     228double d = MAX;
     229\end{lstlisting}
     230\end{tabular}
     231\lstMakeShortInline@
     232\smallskip\par\noindent
     233Hence, the single name @MAX@ replaces all the C type-specific names: @SHRT_MAX@, @INT_MAX@, @DBL_MAX@.
    179234
    180235\subsection{Traits}
    181236
    182 \CFA{} provides \emph{traits} as a means to name a group of type assertions, as in the example below:
    183 \begin{lstlisting}
    184 trait has_magnitude(otype T) {
    185     bool ?<?(T, T);  // comparison operator for T
    186     T -?(T);  // negation operator for T
    187     void ?{}(T*, zero_t);  // constructor from 0 literal
     237\CFA provides \emph{traits} to name a group of type assertions:
     238% \begin{lstlisting}
     239% trait has_magnitude(otype T) {
     240%     _Bool ?<?(T, T);                                          $\C{// comparison operator for T}$
     241%     T -?(T);                                                          $\C{// negation operator for T}$
     242%     void ?{}(T*, zero_t);                                     $\C{// constructor from 0 literal}$
     243% };
     244% forall(otype M | has_magnitude(M))
     245% M abs( M m ) {
     246%     M zero = { 0 };                                                   $\C{// uses zero\_t constructor from trait}$
     247%     return m < zero ? -m : m;
     248% }
     249% forall(otype M | has_magnitude(M))
     250% M max_magnitude( M a, M b ) {
     251%     return abs(a) < abs(b) ? b : a;
     252% }
     253% \end{lstlisting}
     254\begin{lstlisting}
     255trait summable( otype T ) {
     256        void ?{}(T*, zero_t);                                   $\C{// constructor from 0 literal}$
     257        T ?+?( T, T );                                                  $\C{// assortment of additions}$
     258        T ?+=?( T *, T );
     259        T ++?( T * );
     260        T ?++( T * );
    188261};
    189 
    190 forall(otype M | has_magnitude(M))
    191 M abs( M m ) {
    192     M zero = { 0 };  // uses zero_t constructor from trait
    193     return m < zero ? -m : m;
    194 }
    195 
    196 forall(otype M | has_magnitude(M))
    197 M max_magnitude( M a, M b ) {
    198     return abs(a) < abs(b) ? b : a;
    199 }
    200 \end{lstlisting}
    201 This capability allows specifying the same set of assertions in multiple locations, without the repetition and likelihood of mistakes that come with manually writing them out for each function declaration.
    202 
    203 @otype@ is essentially syntactic sugar for the following trait:
    204 \begin{lstlisting}
    205 trait otype(dtype T | sized(T)) {
    206         // sized is a compiler-provided pseudo-trait for types with known size & alignment
    207         void ?{}(T*);  // default constructor
    208         void ?{}(T*, T);  // copy constructor
    209         void ?=?(T*, T);  // assignment operator
    210         void ^?{}(T*);  // destructor
     262forall( otype T | summable( T ) )
     263  T sum( T a[$\,$], size_t size ) {
     264        T total = { 0 };                                                $\C{// instantiate T from 0}$
     265        for ( unsigned int i = 0; i < size; i += 1 )
     266                total += a[i];                                          $\C{// select appropriate +}$
     267        return total;
     268}
     269\end{lstlisting}
     270The trait name allows specifying the same set of assertions in multiple locations, preventing repetition mistakes at each function declaration.
     271
     272In fact, the set of operators is incomplete, \eg no assignment, but @otype@ is syntactic sugar for the following implicit trait:
     273\begin{lstlisting}
     274trait otype( dtype T | sized(T) ) {
     275        // sized is a compiler-provided pseudo-trait for types with known size and alignment}
     276        void ?{}( T * );                                                $\C{// default constructor}$
     277        void ?{}( T *, T );                                             $\C{// copy constructor}$
     278        void ?=?( T *, T );                                             $\C{// assignment operator}$
     279        void ^?{}( T * );                                               $\C{// destructor}$
    211280};
    212281\end{lstlisting}
    213 Given the information provided for an @otype@, variables of polymorphic type can be treated as if they were a complete struct type -- they can be stack-allocated using the @alloca@ compiler builtin, default or copy-initialized, assigned, and deleted. As an example, the @abs@ function above produces generated code something like the following (simplified for clarity and brevity):
     282Given the information provided for an @otype@, variables of polymorphic type can be treated as if they were a complete struct type -- they can be stack-allocated using the @alloca@ compiler builtin, default or copy-initialized, assigned, and deleted. As an example, the @sum@ function produces generated code something like the following (simplified for clarity and brevity) \TODO{} fix example, maybe elide, it's likely too long with the more complicated function:
    214283\begin{lstlisting}
    215284void abs( size_t _sizeof_M, size_t _alignof_M,
    216285                void (*_ctor_M)(void*), void (*_copy_M)(void*, void*),
    217286                void (*_assign_M)(void*, void*), void (*_dtor_M)(void*),
    218                 bool (*_lt_M)(void*, void*), void (*_neg_M)(void*, void*),
     287                _Bool (*_lt_M)(void*, void*), void (*_neg_M)(void*, void*),
    219288        void (*_ctor_M_zero)(void*, int),
    220                 void* m, void* _rtn ) {  // polymorphic parameter and return passed as void*
    221         // M zero = { 0 };
    222         void* zero = alloca(_sizeof_M);  // stack allocate zero temporary
    223         _ctor_M_zero(zero, 0);  // initialize using zero_t constructor
    224         // return m < zero ? -m : m;
     289                void* m, void* _rtn ) {                         $\C{// polymorphic parameter and return passed as void*}$
     290                                                                                        $\C{// M zero = { 0 };}$
     291        void* zero = alloca(_sizeof_M);                 $\C{// stack allocate zero temporary}$
     292        _ctor_M_zero(zero, 0);                                  $\C{// initialize using zero\_t constructor}$
     293                                                                                        $\C{// return m < zero ? -m : m;}$
    225294        void *_tmp = alloca(_sizeof_M);
    226         _copy_M( _rtn,  // copy-initialize return value
    227                 _lt_M( m, zero ) ?  // check condition
    228                  (_neg_M(m, _tmp), _tmp) :  // negate m
     295        _copy_M( _rtn,                                                  $\C{// copy-initialize return value}$
     296                _lt_M( m, zero ) ?                                      $\C{// check condition}$
     297                 (_neg_M(m, _tmp), _tmp) :                      $\C{// negate m}$
    229298                 m);
    230         _dtor_M(_tmp); _dtor_M(zero);  // destroy temporaries
    231 }
    232 \end{lstlisting}
    233 
    234 Semantically, traits are simply a named lists of type assertions, but they may be used for many of the same purposes that interfaces in Java or abstract base classes in \CC{} are used for. Unlike Java interfaces or \CC{} base classes, \CFA{} types do not explicitly state any inheritance relationship to traits they satisfy; this can be considered a form of structural inheritance, similar to implementation of an interface in Go, as opposed to the nominal inheritance model of Java and \CC{}. Nominal inheritance can be simulated with traits using marker variables or functions:
     299        _dtor_M(_tmp); _dtor_M(zero);                   $\C{// destroy temporaries}$
     300}
     301\end{lstlisting}
     302
     303Semantically, traits are simply a named lists of type assertions, but they may be used for many of the same purposes that interfaces in Java or abstract base classes in \CC are used for. Unlike Java interfaces or \CC base classes, \CFA types do not explicitly state any inheritance relationship to traits they satisfy; this can be considered a form of structural inheritance, similar to implementation of an interface in Go, as opposed to the nominal inheritance model of Java and \CC. Nominal inheritance can be simulated with traits using marker variables or functions:
    235304\begin{lstlisting}
    236305trait nominal(otype T) {
     
    238307};
    239308
    240 int is_nominal;  // int now satisfies the nominal trait
     309int is_nominal;                                                         $\C{// int now satisfies the nominal trait}$
    241310\end{lstlisting}
    242311
     
    244313\begin{lstlisting}
    245314trait pointer_like(otype Ptr, otype El) {
    246     lvalue El *?(Ptr); // Ptr can be dereferenced into a modifiable value of type El
     315    lvalue El *?(Ptr);                                          $\C{// Ptr can be dereferenced into a modifiable value of type El}$
    247316}
    248317
    249318struct list {
    250319    int value;
    251     list *next;  // may omit "struct" on type names
     320    list *next;                                                         $\C{// may omit "struct" on type names}$
    252321};
    253322
     
    257326\end{lstlisting}
    258327
    259 In the example above, @(list_iterator, int)@ satisfies @pointer_like@ by the user-defined dereference function, and @(list_iterator, list)@ also satisfies @pointer_like@ by the built-in dereference operator for pointers. Given a declaration @list_iterator it@, @*it@ can be either an @int@ or a @list@, with the meaning disambiguated by context (\eg{} @int x = *it;@ interprets @*it@ as an @int@, while @(*it).value = 42;@ interprets @*it@ as a @list@).
     328In the example above, @(list_iterator, int)@ satisfies @pointer_like@ by the user-defined dereference function, and @(list_iterator, list)@ also satisfies @pointer_like@ by the built-in dereference operator for pointers. Given a declaration @list_iterator it@, @*it@ can be either an @int@ or a @list@, with the meaning disambiguated by context (\eg @int x = *it;@ interprets @*it@ as an @int@, while @(*it).value = 42;@ interprets @*it@ as a @list@).
    260329While a nominal-inheritance system with associated types could model one of those two relationships by making @El@ an associated type of @Ptr@ in the @pointer_like@ implementation, few such systems could model both relationships simultaneously.
    261330
     
    264333One of the known shortcomings of standard C is that it does not provide reusable type-safe abstractions for generic data structures and algorithms. Broadly speaking, there are three approaches to create data structures in C. One approach is to write bespoke data structures for each context in which they are needed. While this approach is flexible and supports integration with the C type-checker and tooling, it is also tedious and error-prone, especially for more complex data structures. A second approach is to use @void*@-based polymorphism. This approach is taken by the C standard library functions @qsort@ and @bsearch@, and does allow the use of common code for common functionality. However, basing all polymorphism on @void*@ eliminates the type-checker's ability to ensure that argument types are properly matched, often requires a number of extra function parameters, and also adds pointer indirection and dynamic allocation to algorithms and data structures that would not otherwise require them. A third approach to generic code is to use pre-processor macros to generate it -- this approach does allow the generated code to be both generic and type-checked, though any errors produced may be difficult to interpret. Furthermore, writing and invoking C code as preprocessor macros is unnatural and somewhat inflexible.
    265334
    266 Other C-like languages such as \CC{} and Java use \emph{generic types} to produce type-safe abstract data types. The authors have chosen to implement generic types as well, with some care taken that the generic types design for \CFA{} integrates efficiently and naturally with the existing polymorphic functions in \CFA{} while retaining backwards compatibility with C; maintaining separate compilation is a particularly important constraint on the design. However, where the concrete parameters of the generic type are known, there is not extra overhead for the use of a generic type.
     335Other C-like languages such as \CC and Java use \emph{generic types} to produce type-safe abstract data types. The authors have chosen to implement generic types as well, with some care taken that the generic types design for \CFA integrates efficiently and naturally with the existing polymorphic functions in \CFA while retaining backwards compatibility with C; maintaining separate compilation is a particularly important constraint on the design. However, where the concrete parameters of the generic type are known, there is not extra overhead for the use of a generic type.
    267336
    268337A generic type can be declared by placing a @forall@ specifier on a @struct@ or @union@ declaration, and instantiated using a parenthesized list of types after the type name:
     
    289358\end{lstlisting}
    290359
    291 \CFA{} classifies generic types as either \emph{concrete} or \emph{dynamic}. Dynamic generic types vary in their in-memory layout depending on their type parameters, while concrete generic types have a fixed memory layout regardless of type parameters. A type may have polymorphic parameters but still be concrete; in \CFA{} such types are called \emph{dtype-static}. Polymorphic pointers are an example of dtype-static types -- @forall(dtype T) T*@ is a polymorphic type, but for any @T@ chosen, @T*@ has exactly the same in-memory representation as a @void*@, and can therefore be represented by a @void*@ in code generation.
    292 
    293 \CFA{} generic types may also specify constraints on their argument type to be checked by the compiler. For example, consider the following declaration of a sorted set type, which ensures that the set key supports comparison and tests for equality:
    294 \begin{lstlisting}
    295 forall(otype Key | { bool ?==?(Key, Key); bool ?<?(Key, Key); })
     360\CFA classifies generic types as either \emph{concrete} or \emph{dynamic}. Dynamic generic types vary in their in-memory layout depending on their type parameters, while concrete generic types have a fixed memory layout regardless of type parameters. A type may have polymorphic parameters but still be concrete; in \CFA such types are called \emph{dtype-static}. Polymorphic pointers are an example of dtype-static types -- @forall(dtype T) T*@ is a polymorphic type, but for any @T@ chosen, @T*@ has exactly the same in-memory representation as a @void*@, and can therefore be represented by a @void*@ in code generation.
     361
     362\CFA generic types may also specify constraints on their argument type to be checked by the compiler. For example, consider the following declaration of a sorted set type, which ensures that the set key supports comparison and tests for equality:
     363\begin{lstlisting}
     364forall(otype Key | { _Bool ?==?(Key, Key); _Bool ?<?(Key, Key); })
    296365struct sorted_set;
    297366\end{lstlisting}
     
    299368\subsection{Concrete Generic Types}
    300369
    301 The \CFA{} translator instantiates concrete generic types by template-expanding them to fresh struct types; concrete generic types can therefore be used with zero runtime overhead. To enable inter-operation among equivalent instantiations of a generic type, the translator saves the set of instantiations currently in scope and reuses the generated struct declarations where appropriate. For example, a function declaration that accepts or returns a concrete generic type produces a declaration for the instantiated struct in the same scope, which all callers that can see that declaration may reuse. As an example of the expansion, the concrete instantiation for @pair(const char*, int)@ looks like this:
     370The \CFA translator instantiates concrete generic types by template-expanding them to fresh struct types; concrete generic types can therefore be used with zero runtime overhead. To enable inter-operation among equivalent instantiations of a generic type, the translator saves the set of instantiations currently in scope and reuses the generated struct declarations where appropriate. For example, a function declaration that accepts or returns a concrete generic type produces a declaration for the instantiated struct in the same scope, which all callers that can see that declaration may reuse. As an example of the expansion, the concrete instantiation for @pair(const char*, int)@ looks like this:
    302371\begin{lstlisting}
    303372struct _pair_conc1 {
     
    317386\subsection{Dynamic Generic Types}
    318387
    319 Though \CFA{} implements concrete generic types efficiently, it also has a fully general system for computing with dynamic generic types. As mentioned in Section~\ref{sec:poly-fns}, @otype@ function parameters (in fact all @sized@ polymorphic parameters) come with implicit size and alignment parameters provided by the caller. Dynamic generic structs also have implicit size and alignment parameters, and also an \emph{offset array} which contains the offsets of each member of the struct\footnote{Dynamic generic unions need no such offset array, as all members are at offset 0; the size and alignment parameters are still provided for dynamic unions, however.}. Access to members\footnote{The \lstinline@offsetof@ macro is implemented similarly.} of a dynamic generic struct is provided by adding the corresponding member of the offset array to the struct pointer at runtime, essentially moving a compile-time offset calculation to runtime where necessary.
     388Though \CFA implements concrete generic types efficiently, it also has a fully general system for computing with dynamic generic types. As mentioned in Section~\ref{sec:poly-fns}, @otype@ function parameters (in fact all @sized@ polymorphic parameters) come with implicit size and alignment parameters provided by the caller. Dynamic generic structs also have implicit size and alignment parameters, and also an \emph{offset array} which contains the offsets of each member of the struct\footnote{Dynamic generic unions need no such offset array, as all members are at offset 0; the size and alignment parameters are still provided for dynamic unions, however.}. Access to members\footnote{The \lstinline@offsetof@ macro is implemented similarly.} of a dynamic generic struct is provided by adding the corresponding member of the offset array to the struct pointer at runtime, essentially moving a compile-time offset calculation to runtime where necessary.
    320389
    321390These offset arrays are statically generated where possible. If a dynamic generic type is declared to be passed or returned by value from a polymorphic function, the translator can safely assume that the generic type is complete (that is, has a known layout) at any call-site, and the offset array is passed from the caller; if the generic type is concrete at the call site the elements of this offset array can even be statically generated using the C @offsetof@ macro. As an example, @p.second@ in the @value@ function above is implemented as @*(p + _offsetof_pair[1])@, where @p@ is a @void*@, and @_offsetof_pair@ is the offset array passed in to @value@ for @pair(const char*, T)@. The offset array @_offsetof_pair@ is generated at the call site as @size_t _offsetof_pair[] = { offsetof(_pair_conc1, first), offsetof(_pair_conc1, second) };@.
    322391
    323 In some cases the offset arrays cannot be statically generated. For instance, modularity is generally provided in C by including an opaque forward-declaration of a struct and associated accessor and mutator routines in a header file, with the actual implementations in a separately-compiled \texttt{.c} file. \CFA{} supports this pattern for generic types, and in this instance the caller does not know the actual layout or size of the dynamic generic type, and only holds it by pointer. The \CFA{} translator automatically generates \emph{layout functions} for cases where the size, alignment, and offset array of a generic struct cannot be passed in to a function from that function's caller. These layout functions take as arguments pointers to size and alignment variables and a caller-allocated array of member offsets, as well as the size and alignment of all @sized@ parameters to the generic struct (un-@sized@ parameters are forbidden from the language from being used in a context that affects layout). Results of these layout functions are cached so that they are only computed once per type per function.%, as in the example below for @pair@.
     392In some cases the offset arrays cannot be statically generated. For instance, modularity is generally provided in C by including an opaque forward-declaration of a struct and associated accessor and mutator routines in a header file, with the actual implementations in a separately-compiled \texttt{.c} file. \CFA supports this pattern for generic types, and in this instance the caller does not know the actual layout or size of the dynamic generic type, and only holds it by pointer. The \CFA translator automatically generates \emph{layout functions} for cases where the size, alignment, and offset array of a generic struct cannot be passed in to a function from that function's caller. These layout functions take as arguments pointers to size and alignment variables and a caller-allocated array of member offsets, as well as the size and alignment of all @sized@ parameters to the generic struct (un-@sized@ parameters are forbidden from the language from being used in a context that affects layout). Results of these layout functions are cached so that they are only computed once per type per function.%, as in the example below for @pair@.
    324393% \begin{lstlisting}
    325394% static inline void _layoutof_pair(size_t* _szeof_pair, size_t* _alignof_pair, size_t* _offsetof_pair,
     
    348417Layout functions also allow generic types to be used in a function definition without reflecting them in the function signature. For instance, a function that strips duplicate values from an unsorted @vector(T)@ would likely have a pointer to the vector as its only explicit parameter, but use some sort of @set(T)@ internally to test for duplicate values. This function could acquire the layout for @set(T)@ by calling its layout function with the layout of @T@ implicitly passed into the function.
    349418
    350 Whether a type is concrete, dtype-static, or dynamic is decided based solely on the type parameters and @forall@ clause on the struct declaration. This design allows opaque forward declarations of generic types like @forall(otype T) struct Box;@ -- like in C, all uses of @Box(T)@ can be in a separately compiled translation unit, and callers from other translation units know the proper calling conventions to use. If the definition of a struct type was included in the decision of whether a generic type is dynamic or concrete, some further types may be recognized as dtype-static (\eg{} @forall(otype T) struct unique_ptr { T* p };@ does not depend on @T@ for its layout, but the existence of an @otype@ parameter means that it \emph{could}.), but preserving separate compilation (and the associated C compatibility) in the existing design is judged to be an appropriate trade-off.
     419Whether a type is concrete, dtype-static, or dynamic is decided based solely on the type parameters and @forall@ clause on the struct declaration. This design allows opaque forward declarations of generic types like @forall(otype T) struct Box;@ -- like in C, all uses of @Box(T)@ can be in a separately compiled translation unit, and callers from other translation units know the proper calling conventions to use. If the definition of a struct type was included in the decision of whether a generic type is dynamic or concrete, some further types may be recognized as dtype-static (\eg @forall(otype T) struct unique_ptr { T* p };@ does not depend on @T@ for its layout, but the existence of an @otype@ parameter means that it \emph{could}.), but preserving separate compilation (and the associated C compatibility) in the existing design is judged to be an appropriate trade-off.
    351420
    352421\subsection{Applications}
     
    362431}
    363432\end{lstlisting}
    364 Since @pair(T*, T*)@ is a concrete type, there are no added implicit parameters to @lexcmp@, so the code generated by \CFA{} is effectively identical to a version of this function written in standard C using @void*@, yet the \CFA{} version is type-checked to ensure that the fields of both pairs and the arguments to the comparison function match in type.
     433Since @pair(T*, T*)@ is a concrete type, there are no added implicit parameters to @lexcmp@, so the code generated by \CFA is effectively identical to a version of this function written in standard C using @void*@, yet the \CFA version is type-checked to ensure that the fields of both pairs and the arguments to the comparison function match in type.
    365434
    366435Another useful pattern enabled by reused dtype-static type instantiations is zero-cost ``tag'' structs. Sometimes a particular bit of information is only useful for type-checking, and can be omitted at runtime. Tag structs can be used to provide this information to the compiler without further runtime overhead, as in the following example:
     
    383452marathon + swimming_pool; // ERROR -- caught by compiler
    384453\end{lstlisting}
    385 @scalar@ is a dtype-static type, so all uses of it use a single struct definition, containing only a single @unsigned long@, and can share the same implementations of common routines like @?+?@ -- these implementations may even be separately compiled, unlike \CC{} template functions. However, the \CFA{} type-checker ensures that matching types are used by all calls to @?+?@, preventing nonsensical computations like adding the length of a marathon to the volume of an olympic pool.
     454@scalar@ is a dtype-static type, so all uses of it use a single struct definition, containing only a single @unsigned long@, and can share the same implementations of common routines like @?+?@ -- these implementations may even be separately compiled, unlike \CC template functions. However, the \CFA type-checker ensures that matching types are used by all calls to @?+?@, preventing nonsensical computations like adding the length of a marathon to the volume of an olympic pool.
    386455
    387456\section{Tuples}
    388457\label{sec:tuples}
    389458
    390 The @pair(R, S)@ generic type used as an example in the previous section can be considered a special case of a more general \emph{tuple} data structure. The authors have implemented tuples in \CFA{}, with a design particularly motivated by two use cases: \emph{multiple-return-value functions} and \emph{variadic functions}.
     459The @pair(R, S)@ generic type used as an example in the previous section can be considered a special case of a more general \emph{tuple} data structure. The authors have implemented tuples in \CFA, with a design particularly motivated by two use cases: \emph{multiple-return-value functions} and \emph{variadic functions}.
    391460
    392461In standard C, functions can return at most one value. This restriction results in code that emulates functions with multiple return values by \emph{aggregation} or by \emph{aliasing}. In the former situation, the function designer creates a record type that combines all of the return values into a single type. Unfortunately, the designer must come up with a name for the return type and for each of its fields. Unnecessary naming is a common programming language issue, introducing verbosity and a complication of the user's mental model. As such, this technique is effective when used sparingly, but can quickly get out of hand if many functions need to return different combinations of types. In the latter approach, the designer simulates multiple return values by passing the additional return values as pointer parameters. The pointer parameters are assigned inside of the routine body to emulate a return. Using this approach, the caller is directly responsible for allocating storage for the additional temporary return values. This responsibility complicates the call site with a sequence of variable declarations leading up to the call. Also, while a disciplined use of @const@ can give clues about whether a pointer parameter is going to be used as an out parameter, it is not immediately obvious from only the routine signature whether the callee expects such a parameter to be initialized before the call. Furthermore, while many C routines that accept pointers are designed so that it is safe to pass @NULL@ as a parameter, there are many C routines that are not null-safe. On a related note, C does not provide a standard mechanism to state that a parameter is going to be used as an additional return value, which makes the job of ensuring that a value is returned more difficult for the compiler.
     
    409478\end{lstlisting}
    410479
    411 The @va_list@ type is a special C data type that abstracts variadic argument manipulation. The @va_start@ macro initializes a @va_list@, given the last named parameter. Each use of the @va_arg@ macro allows access to the next variadic argument, given a type. Since the function signature does not provide any information on what types can be passed to a variadic function, the compiler does not perform any error checks on a variadic call. As such, it is possible to pass any value to the @sum@ function, including pointers, floating-point numbers, and structures. In the case where the provided type is not compatible with the argument's actual type after default argument promotions, or if too many arguments are accessed, the behaviour is undefined \citep{C11}. Furthermore, there is no way to perform the necessary error checks in the @sum@ function at run-time, since type information is not carried into the function body. Since they rely on programmer convention rather than compile-time checks, variadic functions are inherently unsafe.
     480The @va_list@ type is a special C data type that abstracts variadic argument manipulation. The @va_start@ macro initializes a @va_list@, given the last named parameter. Each use of the @va_arg@ macro allows access to the next variadic argument, given a type. Since the function signature does not provide any information on what types can be passed to a variadic function, the compiler does not perform any error checks on a variadic call. As such, it is possible to pass any value to the @sum@ function, including pointers, floating-point numbers, and structures. In the case where the provided type is not compatible with the argument's actual type after default argument promotions, or if too many arguments are accessed, the behaviour is undefined~\citep{C11}. Furthermore, there is no way to perform the necessary error checks in the @sum@ function at run-time, since type information is not carried into the function body. Since they rely on programmer convention rather than compile-time checks, variadic functions are inherently unsafe.
    412481
    413482In practice, compilers can provide warnings to help mitigate some of the problems. For example, GCC provides the @format@ attribute to specify that a function uses a format string, which allows the compiler to perform some checks related to the standard format specifiers. Unfortunately, this attribute does not permit extensions to the format string syntax, so a programmer cannot extend it to warn for mismatches with custom types.
     
    415484\subsection{Tuple Expressions}
    416485
    417 The tuple extensions in \CFA{} can express multiple return values and variadic function parameters in an efficient and type-safe manner. \CFA{} introduces \emph{tuple expressions} and \emph{tuple types}. A tuple expression is an expression producing a fixed-size, ordered list of values of heterogeneous types. The type of a tuple expression is the tuple of the subexpression types, or a \emph{tuple type}. In \CFA{}, a tuple expression is denoted by a comma-separated list of expressions enclosed in square brackets. For example, the expression @[5, 'x', 10.5]@ has type @[int, char, double]@. The previous expression has three \emph{components}. Each component in a tuple expression can be any \CFA{} expression, including another tuple expression. The order of evaluation of the components in a tuple expression is unspecified, to allow a compiler the greatest flexibility for program optimization. It is, however, guaranteed that each component of a tuple expression is evaluated for side-effects, even if the result is not used. Multiple-return-value functions can equivalently be called \emph{tuple-returning functions}.
    418 
    419 \CFA{} allows declaration of \emph{tuple variables}, variables of tuple type. For example:
     486The tuple extensions in \CFA can express multiple return values and variadic function parameters in an efficient and type-safe manner. \CFA introduces \emph{tuple expressions} and \emph{tuple types}. A tuple expression is an expression producing a fixed-size, ordered list of values of heterogeneous types. The type of a tuple expression is the tuple of the subexpression types, or a \emph{tuple type}. In \CFA, a tuple expression is denoted by a comma-separated list of expressions enclosed in square brackets. For example, the expression @[5, 'x', 10.5]@ has type @[int, char, double]@. The previous expression has three \emph{components}. Each component in a tuple expression can be any \CFA expression, including another tuple expression. The order of evaluation of the components in a tuple expression is unspecified, to allow a compiler the greatest flexibility for program optimization. It is, however, guaranteed that each component of a tuple expression is evaluated for side-effects, even if the result is not used. Multiple-return-value functions can equivalently be called \emph{tuple-returning functions}.
     487
     488\CFA allows declaration of \emph{tuple variables}, variables of tuple type. For example:
    420489\begin{lstlisting}
    421490[int, char] most_frequent(const char*);
     
    449518h(x, y);   // flatten & structure
    450519\end{lstlisting}
    451 In \CFA{}, each of these calls is valid. In the call to @f@, @x@ is implicitly flattened so that the components of @x@ are passed as the two arguments to @f@. For the call to @g@, the values @y@ and @10@ are structured into a single argument of type @[int, int]@ to match the type of the parameter of @g@. Finally, in the call to @h@, @y@ is flattened to yield an argument list of length 3, of which the first component of @x@ is passed as the first parameter of @h@, and the second component of @x@ and @y@ are structured into the second argument of type @[int, int]@. The flexible structure of tuples permits a simple and expressive function call syntax to work seamlessly with both single- and multiple-return-value functions, and with any number of arguments of arbitrarily complex structure.
    452 
    453 % In {K-W C} \citep{Buhr94a,Till89}, a precursor to \CFA{}, there were 4 tuple coercions: opening, closing, flattening, and structuring. Opening coerces a tuple value into a tuple of values, while closing converts a tuple of values into a single tuple value. Flattening coerces a nested tuple into a flat tuple, \ie{} it takes a tuple with tuple components and expands it into a tuple with only non-tuple components. Structuring moves in the opposite direction, \ie{} it takes a flat tuple value and provides structure by introducing nested tuple components.
    454 
    455 In \CFA{}, the design has been simplified to require only the two conversions previously described, which trigger only in function call and return situations. Specifically, the expression resolution algorithm examines all of the possible alternatives for an expression to determine the best match. In resolving a function call expression, each combination of function value and list of argument alternatives is examined. Given a particular argument list and function value, the list of argument alternatives is flattened to produce a list of non-tuple valued expressions. Then the flattened list of expressions is compared with each value in the function's parameter list. If the parameter's type is not a tuple type, then the current argument value is unified with the parameter type, and on success the next argument and parameter are examined. If the parameter's type is a tuple type, then the structuring conversion takes effect, recursively applying the parameter matching algorithm using the tuple's component types as the parameter list types. Assuming a successful unification, eventually the algorithm gets to the end of the tuple type, which causes all of the matching expressions to be consumed and structured into a tuple expression. For example, in
     520In \CFA, each of these calls is valid. In the call to @f@, @x@ is implicitly flattened so that the components of @x@ are passed as the two arguments to @f@. For the call to @g@, the values @y@ and @10@ are structured into a single argument of type @[int, int]@ to match the type of the parameter of @g@. Finally, in the call to @h@, @y@ is flattened to yield an argument list of length 3, of which the first component of @x@ is passed as the first parameter of @h@, and the second component of @x@ and @y@ are structured into the second argument of type @[int, int]@. The flexible structure of tuples permits a simple and expressive function call syntax to work seamlessly with both single- and multiple-return-value functions, and with any number of arguments of arbitrarily complex structure.
     521
     522% In {K-W C} \citep{Buhr94a,Till89}, a precursor to \CFA, there were 4 tuple coercions: opening, closing, flattening, and structuring. Opening coerces a tuple value into a tuple of values, while closing converts a tuple of values into a single tuple value. Flattening coerces a nested tuple into a flat tuple, \ie it takes a tuple with tuple components and expands it into a tuple with only non-tuple components. Structuring moves in the opposite direction, \ie it takes a flat tuple value and provides structure by introducing nested tuple components.
     523
     524In \CFA, the design has been simplified to require only the two conversions previously described, which trigger only in function call and return situations. Specifically, the expression resolution algorithm examines all of the possible alternatives for an expression to determine the best match. In resolving a function call expression, each combination of function value and list of argument alternatives is examined. Given a particular argument list and function value, the list of argument alternatives is flattened to produce a list of non-tuple valued expressions. Then the flattened list of expressions is compared with each value in the function's parameter list. If the parameter's type is not a tuple type, then the current argument value is unified with the parameter type, and on success the next argument and parameter are examined. If the parameter's type is a tuple type, then the structuring conversion takes effect, recursively applying the parameter matching algorithm using the tuple's component types as the parameter list types. Assuming a successful unification, eventually the algorithm gets to the end of the tuple type, which causes all of the matching expressions to be consumed and structured into a tuple expression. For example, in
    456525\begin{lstlisting}
    457526int f(int, [double, int]);
     
    475544double z = [x, f()].0.1;  // access second component of first component of tuple expression
    476545\end{lstlisting}
    477 As seen above, tuple-index expressions can occur on any tuple-typed expression, including tuple-returning functions, square-bracketed tuple expressions, and other tuple-index expressions, provided the retrieved component is also a tuple. This feature was proposed for {K-W C}, but never implemented \citep[p.~45]{Till89}.
     546As seen above, tuple-index expressions can occur on any tuple-typed expression, including tuple-returning functions, square-bracketed tuple expressions, and other tuple-index expressions, provided the retrieved component is also a tuple. This feature was proposed for {K-W C}, but never implemented~\citep[p.~45]{Till89}.
    478547
    479548It is possible to access multiple fields from a single expression using a \emph{member-access tuple expression}. The result is a single tuple expression whose type is the tuple of the types of the members. For example,
     
    484553Here, the type of @s.[x, y, z]@ is @[int, double, char *]@. A member tuple expression has the form @a.[x, y, z];@ where @a@ is an expression with type @T@, where @T@ supports member access expressions, and @x, y, z@ are all members of @T@ with types @T$_x$@, @T$_y$@, and @T$_z$@ respectively. Then the type of @a.[x, y, z]@ is @[T$_x$, T$_y$, T$_z$]@.
    485554
    486 Since tuple index expressions are a form of member-access expression, it is possible to use tuple-index expressions in conjunction with member tuple expressions to manually restructure a tuple (\eg{} rearrange components, drop components, duplicate components, etc.):
     555Since tuple index expressions are a form of member-access expression, it is possible to use tuple-index expressions in conjunction with member tuple expressions to manually restructure a tuple (\eg rearrange components, drop components, duplicate components, etc.):
    487556\begin{lstlisting}
    488557[int, int, long, double] x;
     
    520589That is, @?=?(&$L_i$, $R_i$)@ must be a well-typed expression. In the previous example, @[x, y] = z@, @z@ is flattened into @z.0, z.1@, and the assignments @x = z.0@ and @y = z.1@ are executed.
    521590
    522 A mass assignment assigns the value $R$ to each $L_i$. For a mass assignment to be valid, @?=?(&$L_i$, $R$)@ must be a well-typed expression. This rule differs from C cascading assignment (\eg{} @a=b=c@) in that conversions are applied to $R$ in each individual assignment, which prevents data loss from the chain of conversions that can happen during a cascading assignment. For example, @[y, x] = 3.14@ performs the assignments @y = 3.14@ and @x = 3.14@, which results in the value @3.14@ in @y@ and the value @3@ in @x@. On the other hand, the C cascading assignment @y = x = 3.14@ performs the assignments @x = 3.14@ and @y = x@, which results in the value @3@ in @x@, and as a result the value @3@ in @y@ as well.
     591A mass assignment assigns the value $R$ to each $L_i$. For a mass assignment to be valid, @?=?(&$L_i$, $R$)@ must be a well-typed expression. This rule differs from C cascading assignment (\eg @a=b=c@) in that conversions are applied to $R$ in each individual assignment, which prevents data loss from the chain of conversions that can happen during a cascading assignment. For example, @[y, x] = 3.14@ performs the assignments @y = 3.14@ and @x = 3.14@, which results in the value @3.14@ in @y@ and the value @3@ in @x@. On the other hand, the C cascading assignment @y = x = 3.14@ performs the assignments @x = 3.14@ and @y = x@, which results in the value @3@ in @x@, and as a result the value @3@ in @y@ as well.
    523592
    524593Both kinds of tuple assignment have parallel semantics, such that each value on the left side and right side is evaluated \emph{before} any assignments occur. As a result, it is possible to swap the values in two variables without explicitly creating any temporary variables or calling a function:
     
    530599
    531600Tuple assignment is an expression where the result type is the type of the left-hand side of the assignment, just like all other assignment expressions in C. This definition allows cascading tuple assignment and use of tuple assignment in other expression contexts, an occasionally useful idiom to keep code succinct and reduce repetition.
    532 % In \CFA{}, tuple assignment is an expression where the result type is the type of the left-hand side of the assignment, as in normal assignment. That is, a tuple assignment produces the value of the left-hand side after assignment. These semantics allow cascading tuple assignment to work out naturally in any context where a tuple is permitted. These semantics are a change from the original tuple design in {K-W C} \citep{Till89}, wherein tuple assignment was a statement that allows cascading assignments as a special case. This decision was made in an attempt to fix what was seen as a problem with assignment, wherein it can be used in many different locations, such as in function-call argument position. While permitting assignment as an expression does introduce the potential for subtle complexities, it is impossible to remove assignment expressions from \CFA{} without affecting backwards compatibility with C. Furthermore, there are situations where permitting assignment as an expression improves readability by keeping code succinct and reducing repetition, and complicating the definition of tuple assignment puts a greater cognitive burden on the user. In another language, tuple assignment as a statement could be reasonable, but it would be inconsistent for tuple assignment to be the only kind of assignment in \CFA{} that is not an expression.
     601% In \CFA, tuple assignment is an expression where the result type is the type of the left-hand side of the assignment, as in normal assignment. That is, a tuple assignment produces the value of the left-hand side after assignment. These semantics allow cascading tuple assignment to work out naturally in any context where a tuple is permitted. These semantics are a change from the original tuple design in {K-W C}~\citep{Till89}, wherein tuple assignment was a statement that allows cascading assignments as a special case. This decision was made in an attempt to fix what was seen as a problem with assignment, wherein it can be used in many different locations, such as in function-call argument position. While permitting assignment as an expression does introduce the potential for subtle complexities, it is impossible to remove assignment expressions from \CFA without affecting backwards compatibility with C. Furthermore, there are situations where permitting assignment as an expression improves readability by keeping code succinct and reducing repetition, and complicating the definition of tuple assignment puts a greater cognitive burden on the user. In another language, tuple assignment as a statement could be reasonable, but it would be inconsistent for tuple assignment to be the only kind of assignment in \CFA that is not an expression.
    533602
    534603\subsection{Casting}
    535604
    536 In C, the cast operator is used to explicitly convert between types. In \CFA{}, the cast operator has a secondary use as type ascription. That is, a cast can be used to select the type of an expression when it is ambiguous, as in the call to an overloaded function:
     605In C, the cast operator is used to explicitly convert between types. In \CFA, the cast operator has a secondary use as type ascription. That is, a cast can be used to select the type of an expression when it is ambiguous, as in the call to an overloaded function:
    537606\begin{lstlisting}
    538607int f();     // (1)
     
    543612\end{lstlisting}
    544613
    545 Since casting is a fundamental operation in \CFA{}, casts should be given a meaningful interpretation in the context of tuples. Taking a look at standard C provides some guidance with respect to the way casts should work with tuples:
     614Since casting is a fundamental operation in \CFA, casts should be given a meaningful interpretation in the context of tuples. Taking a look at standard C provides some guidance with respect to the way casts should work with tuples:
    546615\begin{lstlisting}
    547616int f();
     
    570639Since @void@ is effectively a 0-element tuple, (3) discards the first and third return values, which is effectively equivalent to @[(int)(g().1.0), (int)(g().1.1)]@).
    571640
    572 Note that a cast is not a function call in \CFA{}, so flattening and structuring conversions do not occur for cast expressions\footnote{User-defined conversions have been considered, but for compatibility with C and the existing use of casts as type ascription, any future design for such conversions would require more precise matching of types than allowed for function arguments and parameters.}. As such, (4) is invalid because the cast target type contains 4 components, while the source type contains only 3. Similarly, (5) is invalid because the cast @([int, int, int])(g().1)@ is invalid. That is, it is invalid to cast @[int, int]@ to @[int, int, int]@.
     641Note that a cast is not a function call in \CFA, so flattening and structuring conversions do not occur for cast expressions\footnote{User-defined conversions have been considered, but for compatibility with C and the existing use of casts as type ascription, any future design for such conversions would require more precise matching of types than allowed for function arguments and parameters.}. As such, (4) is invalid because the cast target type contains 4 components, while the source type contains only 3. Similarly, (5) is invalid because the cast @([int, int, int])(g().1)@ is invalid. That is, it is invalid to cast @[int, int]@ to @[int, int, int]@.
    573642
    574643\subsection{Polymorphism}
    575644
    576 Tuples also integrate with \CFA{} polymorphism as a special sort of generic type. Due to the implicit flattening and structuring conversions involved in argument passing, @otype@ and @dtype@ parameters are restricted to matching only with non-tuple types.
     645Tuples also integrate with \CFA polymorphism as a special sort of generic type. Due to the implicit flattening and structuring conversions involved in argument passing, @otype@ and @dtype@ parameters are restricted to matching only with non-tuple types.
    577646\begin{lstlisting}
    578647forall(otype T, dtype U)
     
    594663\end{lstlisting}
    595664
    596 Flattening and restructuring conversions are also applied to tuple types in polymorphic type assertions. Previously in \CFA{}, it has been assumed that assertion arguments must match the parameter type exactly, modulo polymorphic specialization (\ie{} no implicit conversions are applied to assertion arguments). In the example below:
     665Flattening and restructuring conversions are also applied to tuple types in polymorphic type assertions. Previously in \CFA, it has been assumed that assertion arguments must match the parameter type exactly, modulo polymorphic specialization (\ie no implicit conversions are applied to assertion arguments). In the example below:
    597666\begin{lstlisting}
    598667int f([int, double], double);
     
    613682\subsection{Variadic Tuples}
    614683
    615 To define variadic functions, \CFA{} adds a new kind of type parameter, @ttype@. Matching against a @ttype@ (``tuple type'') parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types. In a given parameter list, there should be at most one @ttype@ parameter that must occur last, otherwise the call can never resolve, given the previous rule. This idea essentially matches normal variadic semantics, with a strong feeling of similarity to \CCeleven{} variadic templates. As such, @ttype@ variables are also referred to as \emph{argument} or \emph{parameter packs} in this paper.
     684To define variadic functions, \CFA adds a new kind of type parameter, @ttype@. Matching against a @ttype@ (``tuple type'') parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types. In a given parameter list, there should be at most one @ttype@ parameter that must occur last, otherwise the call can never resolve, given the previous rule. This idea essentially matches normal variadic semantics, with a strong feeling of similarity to \CCeleven variadic templates. As such, @ttype@ variables are also referred to as \emph{argument} or \emph{parameter packs} in this paper.
    616685
    617686Like variadic templates, the main way to manipulate @ttype@ polymorphic functions is through recursion. Since nothing is known about a parameter pack by default, assertion parameters are key to doing anything meaningful. Unlike variadic templates, @ttype@ polymorphic functions can be separately compiled.
     
    634703Effectively, this algorithm traces as @sum(10, 20, 30)@ $\rightarrow$ @10+sum(20, 30)@ $\rightarrow$ @10+(20+sum(30))@ $\rightarrow$ @10+(20+(30+sum()))@ $\rightarrow$ @10+(20+(30+0))@.
    635704
    636 As a point of note, this version does not require any form of argument descriptor, since the \CFA{} type system keeps track of all of these details. It might be reasonable to take the @sum@ function a step further to enforce a minimum number of arguments:
     705As a point of note, this version does not require any form of argument descriptor, since the \CFA type system keeps track of all of these details. It might be reasonable to take the @sum@ function a step further to enforce a minimum number of arguments:
    637706\begin{lstlisting}
    638707int sum(int x, int y){
     
    693762Pair(int, char) * x = new(42, '!');
    694763\end{lstlisting}
    695 The @new@ function provides the combination of type-safe @malloc@ with a constructor call, so that it becomes impossible to forget to construct dynamically allocated objects. This function provides the type-safety of @new@ in \CC{}, without the need to specify the allocated type again, thanks to return-type inference.
     764The @new@ function provides the combination of type-safe @malloc@ with a constructor call, so that it becomes impossible to forget to construct dynamically allocated objects. This function provides the type-safety of @new@ in \CC, without the need to specify the allocated type again, thanks to return-type inference.
    696765
    697766In the call to @new@, @Pair(double, char)@ is selected to match @T@, and @Params@ is expanded to match @[double, char]@. The constructor (1) may be specialized to  satisfy the assertion for a constructor with an interface compatible with @void ?{}(Pair(int, char) *, int, char)@.
     
    701770\subsection{Implementation}
    702771
    703 Tuples are implemented in the \CFA{} translator via a transformation into generic types. For each $N$, the first time an $N$-tuple is seen in a scope a generic type with $N$ type parameters is generated. For example:
     772Tuples are implemented in the \CFA translator via a transformation into generic types. For each $N$, the first time an $N$-tuple is seen in a scope a generic type with $N$ type parameters is generated. For example:
    704773\begin{lstlisting}
    705774[int, int] f() {
     
    776845Since argument evaluation order is not specified by the C programming language, this scheme is built to work regardless of evaluation order. The first time a unique expression is executed, the actual expression is evaluated and the accompanying boolean is set to true. Every subsequent evaluation of the unique expression then results in an access to the stored result of the actual expression. Tuple member expressions also take advantage of unique expressions in the case of possible impurity.
    777846
    778 Currently, the \CFA{} translator has a very broad, imprecise definition of impurity, where any function call is assumed to be impure. This notion could be made more precise for certain intrinsic, auto-generated, and builtin functions, and could analyze function bodies when they are available to recursively detect impurity, to eliminate some unique expressions.
    779 
    780 The various kinds of tuple assignment, constructors, and destructors generate GNU C statement expressions. A variable is generated to store the value produced by a statement expression, since its fields may need to be constructed with a non-trivial constructor and it may need to be referred to multiple time, \eg{} in a unique expression. The use of statement expressions allows the translator to arbitrarily generate additional temporary variables as needed, but binds the implementation to a non-standard extension of the C language. However, there are other places where the \CFA{} translator makes use of GNU C extensions, such as its use of nested functions, so this restriction is not new.
     847Currently, the \CFA translator has a very broad, imprecise definition of impurity, where any function call is assumed to be impure. This notion could be made more precise for certain intrinsic, auto-generated, and builtin functions, and could analyze function bodies when they are available to recursively detect impurity, to eliminate some unique expressions.
     848
     849The various kinds of tuple assignment, constructors, and destructors generate GNU C statement expressions. A variable is generated to store the value produced by a statement expression, since its fields may need to be constructed with a non-trivial constructor and it may need to be referred to multiple time, \eg in a unique expression. The use of statement expressions allows the translator to arbitrarily generate additional temporary variables as needed, but binds the implementation to a non-standard extension of the C language. However, there are other places where the \CFA translator makes use of GNU C extensions, such as its use of nested functions, so this restriction is not new.
    781850
    782851\section{Related Work}
    783852
    784 \CC{} is the existing language it is most natural to compare \CFA{} to, as they are both more modern extensions to C with backwards source compatibility. The most fundamental difference in approach between \CC{} and \CFA{} is their approach to this C compatibility. \CC{} does provide fairly strong source backwards compatibility with C, but is a dramatically more complex language than C, and imposes a steep learning curve to use many of its extension features. For instance, in a break from general C practice, template code is typically written in header files, with a variety of subtle restrictions implied on its use by this choice, while the other polymorphism mechanism made available by \CC{}, class inheritance, requires programmers to learn an entirely new object-oriented programming paradigm; the interaction between templates and inheritance is also quite complex. \CFA{}, by contrast, has a single facility for polymorphic code, one which supports separate compilation and the existing procedural paradigm of C code. A major difference between the approaches of \CC{} and \CFA{} to polymorphism is that the set of assumed properties for a type is \emph{explicit} in \CFA{}. One of the major limiting factors of \CC{}'s approach is that templates cannot be separately compiled, and, until concepts \citep{C++Concepts} are standardized (currently anticipated for \CCtwenty{}), \CC{} provides no way to specify the requirements of a generic function in code beyond compilation errors for template expansion failures. By contrast, the explicit nature of assertions in \CFA{} allows polymorphic functions to be separately compiled, and for their requirements to be checked by the compiler; similarly, \CFA{} generic types may be opaque, unlike \CC{} template classes.
    785 
    786 Cyclone also provides capabilities for polymorphic functions and existential types \citep{Gro06}, similar in concept to \CFA{}'s @forall@ functions and generic types. Cyclone existential types can include function pointers in a construct similar to a virtual function table, but these pointers must be explicitly initialized at some point in the code, a tedious and potentially error-prone process. Furthermore, Cyclone's polymorphic functions and types are restricted in that they may only abstract over types with the same layout and calling convention as @void*@, in practice only pointer types and @int@ - in \CFA{} terms, all Cyclone polymorphism must be dtype-static. This design provides the efficiency benefits discussed in Section~\ref{sec:generic-apps} for dtype-static polymorphism, but is more restrictive than \CFA{}'s more general model.
    787 
    788 Go and Rust are both modern, compiled languages with abstraction features similar to \CFA{} traits, \emph{interfaces} in Go and \emph{traits} in Rust. However, both languages represent dramatic departures from C in terms of language model, and neither has the same level of compatibility with C as \CFA{}. Go is a garbage-collected language, imposing the associated runtime overhead, and complicating foreign-function calls with the necessity of accounting for data transfer between the managed Go runtime and the unmanaged C runtime. Furthermore, while generic types and functions are available in Go, they are limited to a small fixed set provided by the compiler, with no language facility to define more. Rust is not garbage-collected, and thus has a lighter-weight runtime that is more easily interoperable with C. It also possesses much more powerful abstraction capabilities for writing generic code than Go. On the other hand, Rust's borrow-checker, while it does provide strong safety guarantees, is complex and difficult to learn, and imposes a distinctly idiomatic programming style on Rust. \CFA{}, with its more modest safety features, is significantly easier to port C code to, while maintaining the idiomatic style of the original source.
     853\CC is the existing language it is most natural to compare \CFA to, as they are both more modern extensions to C with backwards source compatibility. The most fundamental difference in approach between \CC and \CFA is their approach to this C compatibility. \CC does provide fairly strong source backwards compatibility with C, but is a dramatically more complex language than C, and imposes a steep learning curve to use many of its extension features. For instance, in a break from general C practice, template code is typically written in header files, with a variety of subtle restrictions implied on its use by this choice, while the other polymorphism mechanism made available by \CC, class inheritance, requires programmers to learn an entirely new object-oriented programming paradigm; the interaction between templates and inheritance is also quite complex. \CFA, by contrast, has a single facility for polymorphic code, one which supports separate compilation and the existing procedural paradigm of C code. A major difference between the approaches of \CC and \CFA to polymorphism is that the set of assumed properties for a type is \emph{explicit} in \CFA. One of the major limiting factors of \CC's approach is that templates cannot be separately compiled, and, until concepts~\citep{C++Concepts} are standardized (currently anticipated for \CCtwenty), \CC provides no way to specify the requirements of a generic function in code beyond compilation errors for template expansion failures. By contrast, the explicit nature of assertions in \CFA allows polymorphic functions to be separately compiled, and for their requirements to be checked by the compiler; similarly, \CFA generic types may be opaque, unlike \CC template classes.
     854
     855Cyclone also provides capabilities for polymorphic functions and existential types~\citep{Grossman06}, similar in concept to \CFA's @forall@ functions and generic types. Cyclone existential types can include function pointers in a construct similar to a virtual function table, but these pointers must be explicitly initialized at some point in the code, a tedious and potentially error-prone process. Furthermore, Cyclone's polymorphic functions and types are restricted in that they may only abstract over types with the same layout and calling convention as @void*@, in practice only pointer types and @int@ - in \CFA terms, all Cyclone polymorphism must be dtype-static. This design provides the efficiency benefits discussed in Section~\ref{sec:generic-apps} for dtype-static polymorphism, but is more restrictive than \CFA's more general model.
     856
     857Go and Rust are both modern, compiled languages with abstraction features similar to \CFA traits, \emph{interfaces} in Go and \emph{traits} in Rust. However, both languages represent dramatic departures from C in terms of language model, and neither has the same level of compatibility with C as \CFA. Go is a garbage-collected language, imposing the associated runtime overhead, and complicating foreign-function calls with the necessity of accounting for data transfer between the managed Go runtime and the unmanaged C runtime. Furthermore, while generic types and functions are available in Go, they are limited to a small fixed set provided by the compiler, with no language facility to define more. Rust is not garbage-collected, and thus has a lighter-weight runtime that is more easily interoperable with C. It also possesses much more powerful abstraction capabilities for writing generic code than Go. On the other hand, Rust's borrow-checker, while it does provide strong safety guarantees, is complex and difficult to learn, and imposes a distinctly idiomatic programming style on Rust. \CFA, with its more modest safety features, is significantly easier to port C code to, while maintaining the idiomatic style of the original source.
    789858
    790859\section{Conclusion \& Future Work}
    791860
    792 In conclusion, the authors' design for generic types and tuples imposes minimal runtime overhead while still supporting a full range of C features, including separately-compiled modules. There is ongoing work on a wide range of \CFA{} feature extensions, including reference types, exceptions, and concurrent programming primitives. In addition to this work, there are some interesting future directions the polymorphism design could take. Notably, \CC{} template functions trade compile time and code bloat for optimal runtime of individual instantiations of polymorphic functions. \CFA{} polymorphic functions, by contrast, use an approach that is essentially dynamic virtual dispatch. The runtime overhead of this approach is low, but not as low as \CC{} template functions, and it may be beneficial to provide a mechanism for particularly performance-sensitive code to close this gap. Further research is needed, but two promising approaches are to allow an annotation on polymorphic function call sites that tells the translator to create a template-specialization of the function (provided the code is visible in the current translation unit) or placing an annotation on polymorphic function definitions that instantiates a version of the polymorphic function specialized to some set of types. These approaches are not mutually exclusive, and would allow these performance optimizations to be applied only where most useful to increase performance, without suffering the code bloat or loss of generality of a template expansion approach where it is unnecessary.
     861In conclusion, the authors' design for generic types and tuples imposes minimal runtime overhead while still supporting a full range of C features, including separately-compiled modules. There is ongoing work on a wide range of \CFA feature extensions, including reference types, exceptions, and concurrent programming primitives. In addition to this work, there are some interesting future directions the polymorphism design could take. Notably, \CC template functions trade compile time and code bloat for optimal runtime of individual instantiations of polymorphic functions. \CFA polymorphic functions, by contrast, use an approach that is essentially dynamic virtual dispatch. The runtime overhead of this approach is low, but not as low as \CC template functions, and it may be beneficial to provide a mechanism for particularly performance-sensitive code to close this gap. Further research is needed, but two promising approaches are to allow an annotation on polymorphic function call sites that tells the translator to create a template-specialization of the function (provided the code is visible in the current translation unit) or placing an annotation on polymorphic function definitions that instantiates a version of the polymorphic function specialized to some set of types. These approaches are not mutually exclusive, and would allow these performance optimizations to be applied only where most useful to increase performance, without suffering the code bloat or loss of generality of a template expansion approach where it is unnecessary.
    793862
    794863\begin{acks}
     
    797866
    798867\bibliographystyle{ACM-Reference-Format}
    799 \bibliography{generic_types}
     868\bibliography{cfa}
    800869
    801870\end{document}
     871
     872% Local Variables: %
     873% tab-width: 4 %
     874% compile-command: "make" %
     875% End: %
  • src/CodeGen/CodeGenerator.cc

    r814525c rfc19129  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Fri Mar 17 09:06:01 2017
    13 // Update Count     : 481
     12// Last Modified On : Thu Mar 30 16:38:01 2017
     13// Update Count     : 482
    1414//
    1515
     
    674674
    675675        void CodeGenerator::visit( CompoundLiteralExpr *compLitExpr ) {
    676                 assert( compLitExpr->get_type() && dynamic_cast< ListInit * > ( compLitExpr->get_initializer() ) );
    677                 output << "(" << genType( compLitExpr->get_type(), "", pretty ) << ")";
     676                assert( compLitExpr->get_result() && dynamic_cast< ListInit * > ( compLitExpr->get_initializer() ) );
     677                output << "(" << genType( compLitExpr->get_result(), "", pretty ) << ")";
    678678                compLitExpr->get_initializer()->accept( *this );
    679679        }
  • src/Parser/ExpressionNode.cc

    r814525c rfc19129  
    1010// Created On       : Sat May 16 13:17:07 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Mar  4 06:58:47 2017
    13 // Update Count     : 509
     12// Last Modified On : Thu Mar 30 17:02:46 2017
     13// Update Count     : 515
    1414//
    1515
     
    356356        // these types do not have associated type information
    357357        } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl )  ) {
    358                 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
     358                if ( newDeclStructDecl->has_body() ) {
     359                        return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl ), maybeMoveBuild< Initializer >(kids) );
     360                } else {
     361                        return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
     362                } // if
    359363        } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl )  ) {
    360                 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
     364                if ( newDeclUnionDecl->has_body() ) {
     365                        return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl ), maybeMoveBuild< Initializer >(kids) );
     366                } else {
     367                        return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
     368                } // if
    361369        } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl )  ) {
    362                 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
     370                if ( newDeclEnumDecl->has_body() ) {
     371                        return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl ), maybeMoveBuild< Initializer >(kids) );
     372                } else {
     373                        return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) );
     374                } // if
    363375        } else {
    364376                assert( false );
  • src/Parser/parser.yy

    r814525c rfc19129  
    1010// Created On       : Sat Sep  1 20:22:55 2001
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Fri Mar 17 15:42:22 2017
    13 // Update Count     : 2317
     12// Last Modified On : Thu Mar 30 15:42:32 2017
     13// Update Count     : 2318
    1414//
    1515
     
    423423        | postfix_expression DECR
    424424                { $$ = new ExpressionNode( build_unary_ptr( OperKinds::DecrPost, $1 ) ); }
    425         | '(' type_name_no_function ')' '{' initializer_list comma_opt '}' // C99
     425        | '(' type_name_no_function ')' '{' initializer_list comma_opt '}' // C99, compound-literal
    426426                { $$ = new ExpressionNode( build_compoundLiteral( $2, new InitializerNode( $5, true ) ) ); }
    427427        | postfix_expression '{' argument_expression_list '}' // CFA
  • src/SymTab/Indexer.cc

    r814525c rfc19129  
    1010// Created On       : Sun May 17 21:37:33 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Mar 14 08:07:34 2017
    13 // Update Count     : 17
     12// Last Modified On : Thu Mar 30 16:38:47 2017
     13// Update Count     : 19
    1414//
    1515
     
    483483        void Indexer::visit( CompoundLiteralExpr *compLitExpr ) {
    484484                acceptNewScope( compLitExpr->get_result(), *this );
    485                 maybeAccept( compLitExpr->get_type(), *this );
    486485                maybeAccept( compLitExpr->get_initializer(), *this );
    487486        }
  • src/SymTab/Validate.cc

    r814525c rfc19129  
    1010// Created On       : Sun May 17 21:50:04 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Mar 16 16:39:15 2017
    13 // Update Count     : 353
     12// Last Modified On : Thu Mar 30 16:50:13 2017
     13// Update Count     : 357
    1414//
    1515
     
    222222                CompoundLiteral compoundliteral;
    223223
     224                HoistStruct::hoistStruct( translationUnit );
    224225                EliminateTypedef::eliminateTypedef( translationUnit );
    225                 HoistStruct::hoistStruct( translationUnit );
    226226                ReturnTypeFixer::fix( translationUnit ); // must happen before autogen
    227227                acceptAll( translationUnit, lrt ); // must happen before autogen, because sized flag needs to propagate to generated functions
     
    824824                static UniqueName indexName( "_compLit" );
    825825
    826                 ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, 0, compLitExpr->get_type(), compLitExpr->get_initializer() );
    827                 compLitExpr->set_type( 0 );
     826                ObjectDecl *tempvar = new ObjectDecl( indexName.newName(), storageClasses, LinkageSpec::C, 0, compLitExpr->get_result(), compLitExpr->get_initializer() );
     827                compLitExpr->set_result( 0 );
    828828                compLitExpr->set_initializer( 0 );
    829829                delete compLitExpr;
  • src/SynTree/Expression.cc

    r814525c rfc19129  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Fri Mar 17 09:42:04 2017
    13 // Update Count     : 51
     12// Last Modified On : Thu Mar 30 16:41:13 2017
     13// Update Count     : 52
    1414//
    1515
     
    571571
    572572
    573 CompoundLiteralExpr::CompoundLiteralExpr( Type * type, Initializer * initializer ) : type( type ), initializer( initializer ) {
     573CompoundLiteralExpr::CompoundLiteralExpr( Type * type, Initializer * initializer ) : initializer( initializer ) {
    574574        assert( type && initializer );
    575         set_result( type->clone() );
    576 }
    577 
    578 CompoundLiteralExpr::CompoundLiteralExpr( const CompoundLiteralExpr &other ) : Expression( other ), type( other.type->clone() ), initializer( other.initializer->clone() ) {}
     575        set_result( type );
     576}
     577
     578CompoundLiteralExpr::CompoundLiteralExpr( const CompoundLiteralExpr &other ) : Expression( other ), initializer( other.initializer->clone() ) {}
    579579
    580580CompoundLiteralExpr::~CompoundLiteralExpr() {
    581581        delete initializer;
    582         delete type;
    583582}
    584583
     
    586585        os << "Compound Literal Expression: " << std::endl;
    587586        os << std::string( indent+2, ' ' );
    588         type->print( os, indent + 2 );
     587        get_result()->print( os, indent + 2 );
    589588        os << std::string( indent+2, ' ' );
    590589        initializer->print( os, indent + 2 );
  • src/SynTree/Expression.h

    r814525c rfc19129  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Jan 14 14:37:54 2017
    13 // Update Count     : 37
     12// Last Modified On : Thu Mar 30 16:44:00 2017
     13// Update Count     : 41
    1414//
    1515
     
    3535
    3636        Type *& get_result() { return result; }
     37        const Type * get_result() const { return result; }
    3738        void set_result( Type * newValue ) { result = newValue; }
    3839        bool has_result() const { return result != nullptr; }
     
    586587        virtual ~CompoundLiteralExpr();
    587588
    588         Type * get_type() const { return type; }
    589         void set_type( Type * t ) { type = t; }
    590 
    591589        Initializer * get_initializer() const { return initializer; }
    592590        void set_initializer( Initializer * i ) { initializer = i; }
     
    597595        virtual void print( std::ostream & os, int indent = 0 ) const;
    598596  private:
    599         Type * type;
    600597        Initializer * initializer;
    601598};
  • src/SynTree/Mutator.cc

    r814525c rfc19129  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Feb 16 15:02:23 2017
    13 // Update Count     : 21
     12// Last Modified On : Thu Mar 30 16:45:19 2017
     13// Update Count     : 22
    1414//
    1515
     
    369369        compLitExpr->set_env( maybeMutate( compLitExpr->get_env(), *this ) );
    370370        compLitExpr->set_result( maybeMutate( compLitExpr->get_result(), *this ) );
    371         compLitExpr->set_type( maybeMutate( compLitExpr->get_type(), *this ) );
    372371        compLitExpr->set_initializer( maybeMutate( compLitExpr->get_initializer(), *this ) );
    373372        return compLitExpr;
  • src/SynTree/Visitor.cc

    r814525c rfc19129  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Thu Feb 16 15:01:25 2017
    13 // Update Count     : 23
     12// Last Modified On : Thu Mar 30 16:45:25 2017
     13// Update Count     : 24
    1414//
    1515
     
    292292void Visitor::visit( CompoundLiteralExpr *compLitExpr ) {
    293293        maybeAccept( compLitExpr->get_result(), *this );
    294         maybeAccept( compLitExpr->get_type(), *this );
    295294        maybeAccept( compLitExpr->get_initializer(), *this );
    296295}
  • src/driver/cfa.cc

    r814525c rfc19129  
    269269                args[nargs] = "-lpthread";
    270270                nargs += 1;
     271                args[nargs] = "-ldl";
     272                nargs += 1;
     273                args[nargs] = "-Xlinker";
     274                nargs += 1;
     275                args[nargs] = "--undefined=__lib_debug_write";
     276                nargs += 1;
     277
    271278        } // if
    272279#endif //HAVE_LIBCFA
  • src/libcfa/Makefile.am

    r814525c rfc19129  
    4949
    5050libobjs = ${headers:=.o}
    51 libsrc = libcfa-prelude.c ${headers:=.c}
     51libsrc = libcfa-prelude.c interpose.c libhdr/libdebug.c ${headers:=.c}
    5252
    5353# not all platforms support concurrency, add option do disable it
  • src/libcfa/Makefile.in

    r814525c rfc19129  
    4343
    4444# not all platforms support concurrency, add option do disable it
    45 @BUILD_CONCURRENCY_TRUE@am__append_3 = containers/vector concurrency/coroutine concurrency/thread concurrency/kernel concurrency/monitor
     45@BUILD_CONCURRENCY_TRUE@am__append_3 = concurrency/coroutine concurrency/thread concurrency/kernel concurrency/monitor
    4646
    4747# not all platforms support concurrency, add option do disable it
     
    9797libcfa_d_a_AR = $(AR) $(ARFLAGS)
    9898libcfa_d_a_LIBADD =
    99 am__libcfa_d_a_SOURCES_DIST = libcfa-prelude.c limits.c stdlib.c \
    100         math.c iostream.c fstream.c iterator.c rational.c assert.c \
    101         containers/vector.c concurrency/coroutine.c \
    102         concurrency/thread.c concurrency/kernel.c \
    103         concurrency/monitor.c concurrency/CtxSwitch-@MACHINE_TYPE@.S \
    104         concurrency/invoke.c
     99am__libcfa_d_a_SOURCES_DIST = libcfa-prelude.c interpose.c \
     100        libhdr/libdebug.c limits.c stdlib.c math.c iostream.c \
     101        fstream.c iterator.c rational.c assert.c containers/vector.c \
     102        concurrency/coroutine.c concurrency/thread.c \
     103        concurrency/kernel.c concurrency/monitor.c \
     104        concurrency/CtxSwitch-@MACHINE_TYPE@.S concurrency/invoke.c
    105105am__dirstamp = $(am__leading_dot)dirstamp
    106 @BUILD_CONCURRENCY_TRUE@am__objects_1 = containers/libcfa_d_a-vector.$(OBJEXT) \
    107 @BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_d_a-coroutine.$(OBJEXT) \
     106@BUILD_CONCURRENCY_TRUE@am__objects_1 = concurrency/libcfa_d_a-coroutine.$(OBJEXT) \
    108107@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_d_a-thread.$(OBJEXT) \
    109108@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_d_a-kernel.$(OBJEXT) \
     
    113112        libcfa_d_a-iostream.$(OBJEXT) libcfa_d_a-fstream.$(OBJEXT) \
    114113        libcfa_d_a-iterator.$(OBJEXT) libcfa_d_a-rational.$(OBJEXT) \
    115         libcfa_d_a-assert.$(OBJEXT) $(am__objects_1)
     114        libcfa_d_a-assert.$(OBJEXT) \
     115        containers/libcfa_d_a-vector.$(OBJEXT) $(am__objects_1)
    116116@BUILD_CONCURRENCY_TRUE@am__objects_3 = concurrency/CtxSwitch-@MACHINE_TYPE@.$(OBJEXT) \
    117117@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_d_a-invoke.$(OBJEXT)
    118 am__objects_4 = libcfa_d_a-libcfa-prelude.$(OBJEXT) $(am__objects_2) \
     118am__objects_4 = libcfa_d_a-libcfa-prelude.$(OBJEXT) \
     119        libcfa_d_a-interpose.$(OBJEXT) \
     120        libhdr/libcfa_d_a-libdebug.$(OBJEXT) $(am__objects_2) \
    119121        $(am__objects_3)
    120122am_libcfa_d_a_OBJECTS = $(am__objects_4)
     
    122124libcfa_a_AR = $(AR) $(ARFLAGS)
    123125libcfa_a_LIBADD =
    124 am__libcfa_a_SOURCES_DIST = libcfa-prelude.c limits.c stdlib.c math.c \
    125         iostream.c fstream.c iterator.c rational.c assert.c \
    126         containers/vector.c concurrency/coroutine.c \
    127         concurrency/thread.c concurrency/kernel.c \
    128         concurrency/monitor.c concurrency/CtxSwitch-@MACHINE_TYPE@.S \
    129         concurrency/invoke.c
    130 @BUILD_CONCURRENCY_TRUE@am__objects_5 =  \
    131 @BUILD_CONCURRENCY_TRUE@        containers/libcfa_a-vector.$(OBJEXT) \
    132 @BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_a-coroutine.$(OBJEXT) \
     126am__libcfa_a_SOURCES_DIST = libcfa-prelude.c interpose.c \
     127        libhdr/libdebug.c limits.c stdlib.c math.c iostream.c \
     128        fstream.c iterator.c rational.c assert.c containers/vector.c \
     129        concurrency/coroutine.c concurrency/thread.c \
     130        concurrency/kernel.c concurrency/monitor.c \
     131        concurrency/CtxSwitch-@MACHINE_TYPE@.S concurrency/invoke.c
     132@BUILD_CONCURRENCY_TRUE@am__objects_5 = concurrency/libcfa_a-coroutine.$(OBJEXT) \
    133133@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_a-thread.$(OBJEXT) \
    134134@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_a-kernel.$(OBJEXT) \
     
    138138        libcfa_a-fstream.$(OBJEXT) libcfa_a-iterator.$(OBJEXT) \
    139139        libcfa_a-rational.$(OBJEXT) libcfa_a-assert.$(OBJEXT) \
    140         $(am__objects_5)
     140        containers/libcfa_a-vector.$(OBJEXT) $(am__objects_5)
    141141@BUILD_CONCURRENCY_TRUE@am__objects_7 = concurrency/CtxSwitch-@MACHINE_TYPE@.$(OBJEXT) \
    142142@BUILD_CONCURRENCY_TRUE@        concurrency/libcfa_a-invoke.$(OBJEXT)
    143 am__objects_8 = libcfa_a-libcfa-prelude.$(OBJEXT) $(am__objects_6) \
     143am__objects_8 = libcfa_a-libcfa-prelude.$(OBJEXT) \
     144        libcfa_a-interpose.$(OBJEXT) \
     145        libhdr/libcfa_a-libdebug.$(OBJEXT) $(am__objects_6) \
    144146        $(am__objects_7)
    145147am_libcfa_a_OBJECTS = $(am__objects_8)
     
    308310AM_CCASFLAGS = @CFA_FLAGS@
    309311headers = limits stdlib math iostream fstream iterator rational assert \
    310         $(am__append_3)
     312        containers/vector $(am__append_3)
    311313libobjs = ${headers:=.o}
    312 libsrc = libcfa-prelude.c ${headers:=.c} $(am__append_4)
     314libsrc = libcfa-prelude.c interpose.c libhdr/libdebug.c ${headers:=.c} \
     315        $(am__append_4)
    313316libcfa_a_SOURCES = ${libsrc}
    314317libcfa_a_CFLAGS = -nodebug -O2
     
    383386clean-libLIBRARIES:
    384387        -test -z "$(lib_LIBRARIES)" || rm -f $(lib_LIBRARIES)
     388libhdr/$(am__dirstamp):
     389        @$(MKDIR_P) libhdr
     390        @: > libhdr/$(am__dirstamp)
     391libhdr/$(DEPDIR)/$(am__dirstamp):
     392        @$(MKDIR_P) libhdr/$(DEPDIR)
     393        @: > libhdr/$(DEPDIR)/$(am__dirstamp)
     394libhdr/libcfa_d_a-libdebug.$(OBJEXT): libhdr/$(am__dirstamp) \
     395        libhdr/$(DEPDIR)/$(am__dirstamp)
    385396containers/$(am__dirstamp):
    386397        @$(MKDIR_P) containers
     
    415426        $(AM_V_AR)$(libcfa_d_a_AR) libcfa-d.a $(libcfa_d_a_OBJECTS) $(libcfa_d_a_LIBADD)
    416427        $(AM_V_at)$(RANLIB) libcfa-d.a
     428libhdr/libcfa_a-libdebug.$(OBJEXT): libhdr/$(am__dirstamp) \
     429        libhdr/$(DEPDIR)/$(am__dirstamp)
    417430containers/libcfa_a-vector.$(OBJEXT): containers/$(am__dirstamp) \
    418431        containers/$(DEPDIR)/$(am__dirstamp)
     
    447460        -rm -f containers/libcfa_a-vector.$(OBJEXT)
    448461        -rm -f containers/libcfa_d_a-vector.$(OBJEXT)
     462        -rm -f libhdr/libcfa_a-libdebug.$(OBJEXT)
     463        -rm -f libhdr/libcfa_d_a-libdebug.$(OBJEXT)
    449464
    450465distclean-compile:
     
    453468@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-assert.Po@am__quote@
    454469@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-fstream.Po@am__quote@
     470@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-interpose.Po@am__quote@
    455471@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-iostream.Po@am__quote@
    456472@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-iterator.Po@am__quote@
     
    462478@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-assert.Po@am__quote@
    463479@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-fstream.Po@am__quote@
     480@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-interpose.Po@am__quote@
    464481@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-iostream.Po@am__quote@
    465482@AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-iterator.Po@am__quote@
     
    482499@AMDEP_TRUE@@am__include@ @am__quote@containers/$(DEPDIR)/libcfa_a-vector.Po@am__quote@
    483500@AMDEP_TRUE@@am__include@ @am__quote@containers/$(DEPDIR)/libcfa_d_a-vector.Po@am__quote@
     501@AMDEP_TRUE@@am__include@ @am__quote@libhdr/$(DEPDIR)/libcfa_a-libdebug.Po@am__quote@
     502@AMDEP_TRUE@@am__include@ @am__quote@libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po@am__quote@
    484503
    485504.S.o:
     
    522541@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-libcfa-prelude.obj `if test -f 'libcfa-prelude.c'; then $(CYGPATH_W) 'libcfa-prelude.c'; else $(CYGPATH_W) '$(srcdir)/libcfa-prelude.c'; fi`
    523542
     543libcfa_d_a-interpose.o: interpose.c
     544@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libcfa_d_a-interpose.o -MD -MP -MF $(DEPDIR)/libcfa_d_a-interpose.Tpo -c -o libcfa_d_a-interpose.o `test -f 'interpose.c' || echo '$(srcdir)/'`interpose.c
     545@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_d_a-interpose.Tpo $(DEPDIR)/libcfa_d_a-interpose.Po
     546@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='interpose.c' object='libcfa_d_a-interpose.o' libtool=no @AMDEPBACKSLASH@
     547@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     548@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-interpose.o `test -f 'interpose.c' || echo '$(srcdir)/'`interpose.c
     549
     550libcfa_d_a-interpose.obj: interpose.c
     551@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libcfa_d_a-interpose.obj -MD -MP -MF $(DEPDIR)/libcfa_d_a-interpose.Tpo -c -o libcfa_d_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi`
     552@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_d_a-interpose.Tpo $(DEPDIR)/libcfa_d_a-interpose.Po
     553@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='interpose.c' object='libcfa_d_a-interpose.obj' libtool=no @AMDEPBACKSLASH@
     554@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     555@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi`
     556
     557libhdr/libcfa_d_a-libdebug.o: libhdr/libdebug.c
     558@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_d_a-libdebug.o -MD -MP -MF libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo -c -o libhdr/libcfa_d_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
     559@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po
     560@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_d_a-libdebug.o' libtool=no @AMDEPBACKSLASH@
     561@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     562@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_d_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
     563
     564libhdr/libcfa_d_a-libdebug.obj: libhdr/libdebug.c
     565@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_d_a-libdebug.obj -MD -MP -MF libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo -c -o libhdr/libcfa_d_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
     566@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_d_a-libdebug.Po
     567@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_d_a-libdebug.obj' libtool=no @AMDEPBACKSLASH@
     568@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     569@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_d_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
     570
    524571libcfa_d_a-limits.o: limits.c
    525572@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libcfa_d_a-limits.o -MD -MP -MF $(DEPDIR)/libcfa_d_a-limits.Tpo -c -o libcfa_d_a-limits.o `test -f 'limits.c' || echo '$(srcdir)/'`limits.c
     
    717764@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    718765@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-libcfa-prelude.obj `if test -f 'libcfa-prelude.c'; then $(CYGPATH_W) 'libcfa-prelude.c'; else $(CYGPATH_W) '$(srcdir)/libcfa-prelude.c'; fi`
     766
     767libcfa_a-interpose.o: interpose.c
     768@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libcfa_a-interpose.o -MD -MP -MF $(DEPDIR)/libcfa_a-interpose.Tpo -c -o libcfa_a-interpose.o `test -f 'interpose.c' || echo '$(srcdir)/'`interpose.c
     769@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_a-interpose.Tpo $(DEPDIR)/libcfa_a-interpose.Po
     770@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='interpose.c' object='libcfa_a-interpose.o' libtool=no @AMDEPBACKSLASH@
     771@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     772@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-interpose.o `test -f 'interpose.c' || echo '$(srcdir)/'`interpose.c
     773
     774libcfa_a-interpose.obj: interpose.c
     775@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libcfa_a-interpose.obj -MD -MP -MF $(DEPDIR)/libcfa_a-interpose.Tpo -c -o libcfa_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi`
     776@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_a-interpose.Tpo $(DEPDIR)/libcfa_a-interpose.Po
     777@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='interpose.c' object='libcfa_a-interpose.obj' libtool=no @AMDEPBACKSLASH@
     778@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     779@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-interpose.obj `if test -f 'interpose.c'; then $(CYGPATH_W) 'interpose.c'; else $(CYGPATH_W) '$(srcdir)/interpose.c'; fi`
     780
     781libhdr/libcfa_a-libdebug.o: libhdr/libdebug.c
     782@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_a-libdebug.o -MD -MP -MF libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo -c -o libhdr/libcfa_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
     783@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_a-libdebug.Po
     784@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_a-libdebug.o' libtool=no @AMDEPBACKSLASH@
     785@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     786@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_a-libdebug.o `test -f 'libhdr/libdebug.c' || echo '$(srcdir)/'`libhdr/libdebug.c
     787
     788libhdr/libcfa_a-libdebug.obj: libhdr/libdebug.c
     789@am__fastdepCC_TRUE@    $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libhdr/libcfa_a-libdebug.obj -MD -MP -MF libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo -c -o libhdr/libcfa_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
     790@am__fastdepCC_TRUE@    $(AM_V_at)$(am__mv) libhdr/$(DEPDIR)/libcfa_a-libdebug.Tpo libhdr/$(DEPDIR)/libcfa_a-libdebug.Po
     791@AMDEP_TRUE@@am__fastdepCC_FALSE@       $(AM_V_CC)source='libhdr/libdebug.c' object='libhdr/libcfa_a-libdebug.obj' libtool=no @AMDEPBACKSLASH@
     792@AMDEP_TRUE@@am__fastdepCC_FALSE@       DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     793@am__fastdepCC_FALSE@   $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libhdr/libcfa_a-libdebug.obj `if test -f 'libhdr/libdebug.c'; then $(CYGPATH_W) 'libhdr/libdebug.c'; else $(CYGPATH_W) '$(srcdir)/libhdr/libdebug.c'; fi`
    719794
    720795libcfa_a-limits.o: limits.c
     
    10481123        -rm -f containers/$(DEPDIR)/$(am__dirstamp)
    10491124        -rm -f containers/$(am__dirstamp)
     1125        -rm -f libhdr/$(DEPDIR)/$(am__dirstamp)
     1126        -rm -f libhdr/$(am__dirstamp)
    10501127
    10511128maintainer-clean-generic:
     
    10571134
    10581135distclean: distclean-am
    1059         -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR)
     1136        -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) libhdr/$(DEPDIR)
    10601137        -rm -f Makefile
    10611138distclean-am: clean-am distclean-compile distclean-generic \
     
    11031180
    11041181maintainer-clean: maintainer-clean-am
    1105         -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR)
     1182        -rm -rf ./$(DEPDIR) concurrency/$(DEPDIR) containers/$(DEPDIR) libhdr/$(DEPDIR)
    11061183        -rm -f Makefile
    11071184maintainer-clean-am: distclean-am maintainer-clean-generic \
  • src/libcfa/assert.c

    r814525c rfc19129  
    1717#include "stdlib"                                                                               // abort
    1818
     19#include "libhdr/libdebug.h"
     20
    1921extern "C" {
    2022        #include <stdarg.h>                                                             // varargs
     
    2325        extern const char * __progname;                                         // global name of running executable (argv[0])
    2426
    25         #define CFA_ASSERT_FMT "*CFA assertion error* from program \"%s\" in \"%s\" at line %d in file \"%s\""
     27        #define CFA_ASSERT_FMT "Cforall Assertion error from program \"%s\" in \"%s\" at line %d in file \"%s\""
    2628
    2729        // called by macro assert in assert.h
    2830        void __assert_fail( const char *assertion, const char *file, unsigned int line, const char *function ) {
    29                 fprintf( stderr, CFA_ASSERT_FMT ".\n", __progname, function, line, file );
     31                __lib_debug_print_safe( CFA_ASSERT_FMT ".\n", __progname, function, line, file );
    3032                abort();
    3133        }
     
    3335        // called by macro assertf
    3436        void __assert_fail_f( const char *assertion, const char *file, unsigned int line, const char *function, const char *fmt, ... ) {
    35                 fprintf( stderr, CFA_ASSERT_FMT ": ", __progname, function, line, file );
     37                __lib_debug_acquire();
     38                __lib_debug_print_nolock( CFA_ASSERT_FMT ": ", __progname, function, line, file );
     39
    3640                va_list args;
    3741                va_start( args, fmt );
    38                 vfprintf( stderr, fmt, args );
     42                __lib_debug_print_vararg( fmt, args );
    3943                va_end( args );
    40                 fprintf( stderr, "\n" );
     44
     45                __lib_debug_print_nolock( "\n" );
     46                __lib_debug_release();
    4147                abort();
    4248        }
  • src/libcfa/concurrency/kernel.c

    r814525c rfc19129  
    1515//
    1616
     17#include "startup.h"
     18
    1719//Start and stop routine for the kernel, declared first to make sure they run first
    18 void kernel_startup(void)  __attribute__((constructor(101)));
    19 void kernel_shutdown(void) __attribute__((destructor(101)));
     20void kernel_startup(void)  __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) ));
     21void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) ));
    2022
    2123//Header
     
    2527#include <stddef.h>
    2628extern "C" {
     29#include <stdio.h>
    2730#include <fenv.h>
    2831#include <sys/resource.h>
     32#include <signal.h>
     33#include <unistd.h>
    2934}
    3035
     
    146151
    147152        this->runner = runner;
    148         LIB_DEBUG_PRINTF("Kernel : constructing processor context %p\n", runner);
     153        LIB_DEBUG_PRINT_SAFE("Kernel : constructing processor context %p\n", runner);
    149154        runner{ this };
    150155}
     
    152157void ^?{}(processor * this) {
    153158        if( ! this->is_terminated ) {
    154                 LIB_DEBUG_PRINTF("Kernel : core %p signaling termination\n", this);
     159                LIB_DEBUG_PRINT_SAFE("Kernel : core %p signaling termination\n", this);
    155160                this->is_terminated = true;
    156161                wait( &this->terminated );
     
    173178void main(processorCtx_t * runner) {
    174179        processor * this = runner->proc;
    175         LIB_DEBUG_PRINTF("Kernel : core %p starting\n", this);
     180        LIB_DEBUG_PRINT_SAFE("Kernel : core %p starting\n", this);
    176181
    177182        thread_desc * readyThread = NULL;
     
    195200        }
    196201
    197         LIB_DEBUG_PRINTF("Kernel : core %p unlocking thread\n", this);
     202        LIB_DEBUG_PRINT_SAFE("Kernel : core %p unlocking thread\n", this);
    198203        signal( &this->terminated );
    199         LIB_DEBUG_PRINTF("Kernel : core %p terminated\n", this);
     204        LIB_DEBUG_PRINT_SAFE("Kernel : core %p terminated\n", this);
    200205}
    201206
     
    255260        processorCtx_t proc_cor_storage = { proc, &info };
    256261
    257         LIB_DEBUG_PRINTF("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
     262        LIB_DEBUG_PRINT_SAFE("Coroutine : created stack %p\n", proc_cor_storage.__cor.stack.base);
    258263
    259264        //Set global state
     
    262267
    263268        //We now have a proper context from which to schedule threads
    264         LIB_DEBUG_PRINTF("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
     269        LIB_DEBUG_PRINT_SAFE("Kernel : core %p created (%p, %p)\n", proc, proc->runner, &ctx);
    265270
    266271        // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't
     
    273278
    274279        // Main routine of the core returned, the core is now fully terminated
    275         LIB_DEBUG_PRINTF("Kernel : core %p main ended (%p)\n", proc, proc->runner);     
     280        LIB_DEBUG_PRINT_SAFE("Kernel : core %p main ended (%p)\n", proc, proc->runner);
    276281
    277282        return NULL;
     
    279284
    280285void start(processor * this) {
    281         LIB_DEBUG_PRINTF("Kernel : Starting core %p\n", this);
     286        LIB_DEBUG_PRINT_SAFE("Kernel : Starting core %p\n", this);
    282287       
    283288        // pthread_attr_t attributes;
     
    288293        // pthread_attr_destroy( &attributes );
    289294
    290         LIB_DEBUG_PRINTF("Kernel : core %p started\n", this);   
     295        LIB_DEBUG_PRINT_SAFE("Kernel : core %p started\n", this);       
    291296}
    292297
     
    334339// Kernel boot procedures
    335340void kernel_startup(void) {
    336         LIB_DEBUG_PRINTF("Kernel : Starting\n");       
     341        LIB_DEBUG_PRINT_SAFE("Kernel : Starting\n");   
    337342
    338343        // Start by initializing the main thread
     
    369374
    370375        // THE SYSTEM IS NOW COMPLETELY RUNNING
    371         LIB_DEBUG_PRINTF("Kernel : Started\n--------------------------------------------------\n\n");
     376        LIB_DEBUG_PRINT_SAFE("Kernel : Started\n--------------------------------------------------\n\n");
    372377}
    373378
    374379void kernel_shutdown(void) {
    375         LIB_DEBUG_PRINTF("\n--------------------------------------------------\nKernel : Shutting down\n");
     380        LIB_DEBUG_PRINT_SAFE("\n--------------------------------------------------\nKernel : Shutting down\n");
    376381
    377382        // SKULLDUGGERY: Notify the systemProcessor it needs to terminates.
     
    392397        ^(mainThread){};
    393398
    394         LIB_DEBUG_PRINTF("Kernel : Shutdown complete\n");       
     399        LIB_DEBUG_PRINT_SAFE("Kernel : Shutdown complete\n");   
     400}
     401
     402static spinlock kernel_abort_lock;
     403static spinlock kernel_debug_lock;
     404static bool kernel_abort_called = false;
     405
     406void * kernel_abort    (void) __attribute__ ((__nothrow__)) {
     407        // abort cannot be recursively entered by the same or different processors because all signal handlers return when
     408        // the globalAbort flag is true.
     409        lock( &kernel_abort_lock );
     410
     411        // first task to abort ?
     412        if ( !kernel_abort_called ) {                   // not first task to abort ?
     413                kernel_abort_called = true;
     414                unlock( &kernel_abort_lock );
     415        }
     416        else {
     417                unlock( &kernel_abort_lock );
     418               
     419                sigset_t mask;
     420                sigemptyset( &mask );
     421                sigaddset( &mask, SIGALRM );                    // block SIGALRM signals
     422                sigaddset( &mask, SIGUSR1 );                    // block SIGUSR1 signals
     423                sigsuspend( &mask );                            // block the processor to prevent further damage during abort
     424                _exit( EXIT_FAILURE );                          // if processor unblocks before it is killed, terminate it             
     425        }
     426
     427        return this_thread();
     428}
     429
     430void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) {
     431        thread_desc * thrd = kernel_data;
     432
     433        int len = snprintf( abort_text, abort_text_size, "Error occurred while executing task %.256s (%p)", thrd->cor.name, thrd );
     434        __lib_debug_write( STDERR_FILENO, abort_text, len );
     435
     436        if ( thrd != this_coroutine() ) {
     437                len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine()->name, this_coroutine() );
     438                __lib_debug_write( STDERR_FILENO, abort_text, len );
     439        }
     440        else {
     441                __lib_debug_write( STDERR_FILENO, ".\n", 2 );
     442        }
     443}
     444
     445extern "C" {
     446        void __lib_debug_acquire() {
     447                lock(&kernel_debug_lock);
     448        }
     449
     450        void __lib_debug_release() {
     451                unlock(&kernel_debug_lock);
     452        }
    395453}
    396454
  • src/libcfa/concurrency/thread.c

    r814525c rfc19129  
    7171        this_processor->current_coroutine = thrd_c;
    7272
    73         LIB_DEBUG_PRINTF("Thread start : %p (t %p, c %p)\n", this, thrd_c, thrd_h);
     73        LIB_DEBUG_PRINT_SAFE("Thread start : %p (t %p, c %p)\n", this, thrd_c, thrd_h);
    7474
    7575        create_stack(&thrd_c->stack, thrd_c->stack.size);
  • src/libcfa/libhdr/libdebug.h

    r814525c rfc19129  
    2525#endif
    2626
     27#ifdef __cforall
     28extern "C" {
     29#endif
     30      #include <stdarg.h>
     31
     32      extern void __lib_debug_write( int fd, const char *buffer, int len );
     33      extern void __lib_debug_acquire();
     34      extern void __lib_debug_release();
     35      extern void __lib_debug_print_safe  ( const char fmt[], ... ) __attribute__(( format (printf, 1, 2) ));
     36      extern void __lib_debug_print_nolock( const char fmt[], ... ) __attribute__(( format (printf, 1, 2) ));
     37      extern void __lib_debug_print_vararg( const char fmt[], va_list arg );
     38      extern void __lib_debug_print_buffer( char buffer[], int buffer_size, const char fmt[], ... ) __attribute__(( format (printf, 3, 4) ));
     39#ifdef __cforall
     40}
     41#endif
     42
    2743#ifdef __CFA_DEBUG_PRINT__
    28       #define LIB_DEBUG_PRINTF(...)   printf (__VA_ARGS__)
    29       #define LIB_DEBUG_FPRINTF(...) fprintf (stderr, __VA_ARGS__)
     44      #define LIB_DEBUG_WRITE( fd, buffer, len )  __lib_debug_write( fd, buffer, len )
     45      #define LIB_DEBUG_ACQUIRE()                 __lib_debug_acquire()
     46      #define LIB_DEBUG_RELEASE()                 __lib_debug_release()
     47      #define LIB_DEBUG_PRINT_SAFE(...)           __lib_debug_print_safe   (__VA_ARGS__)
     48      #define LIB_DEBUG_PRINT_NOLOCK(...)         __lib_debug_print_nolock (__VA_ARGS__)
     49      #define LIB_DEBUG_PRINT_BUFFER(...)         __lib_debug_print_buffer (__VA_ARGS__)
    3050#else
    31       #define LIB_DEBUG_PRINTF(...)  ((void)0)
    32       #define LIB_DEBUG_FPRINTF(...) ((void)0)
     51      #define LIB_DEBUG_WRITE(...)          ((void)0)
     52      #define LIB_DEBUG_ACQUIRE()           ((void)0)
     53      #define LIB_DEBUG_RELEASE()           ((void)0)
     54      #define LIB_DEBUG_PRINT_SAFE(...)     ((void)0)
     55      #define LIB_DEBUG_PRINT_NOLOCK(...)   ((void)0)
     56      #define LIB_DEBUG_PRINT_BUFFER(...)   ((void)0)
    3357#endif
    3458
  • src/libcfa/stdlib

    r814525c rfc19129  
    1010// Created On       : Thu Jan 28 17:12:35 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Mar  4 22:03:54 2017
    13 // Update Count     : 102
     12// Last Modified On : Sat Apr  1 17:35:24 2017
     13// Update Count     : 104
    1414//
    1515
     
    8484forall( otype T | { int ?<?( T, T ); } )
    8585T * bsearch( T key, const T * arr, size_t dimension );
     86forall( otype T | { int ?<?( T, T ); } )
     87unsigned int bsearch( T key, const T * arr, size_t dimension );
    8688
    8789forall( otype T | { int ?<?( T, T ); } )
  • src/libcfa/stdlib.c

    r814525c rfc19129  
    1010// Created On       : Thu Jan 28 17:10:29 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Mar  4 22:02:22 2017
    13 // Update Count     : 172
     12// Last Modified On : Sat Apr  1 18:31:26 2017
     13// Update Count     : 181
    1414//
    1515
     
    228228
    229229forall( otype T | { int ?<?( T, T ); } )
     230unsigned int bsearch( T key, const T * arr, size_t dimension ) {
     231        int comp( const void * t1, const void * t2 ) { return *(T *)t1 < *(T *)t2 ? -1 : *(T *)t2 < *(T *)t1 ? 1 : 0; }
     232        T *result = (T *)bsearch( &key, arr, dimension, sizeof(T), comp );
     233        return result ? result - arr : dimension;                       // pointer subtraction includes sizeof(T)
     234} // bsearch
     235
     236forall( otype T | { int ?<?( T, T ); } )
    230237void qsort( const T * arr, size_t dimension ) {
    231238        int comp( const void * t1, const void * t2 ) { return *(T *)t1 < *(T *)t2 ? -1 : *(T *)t2 < *(T *)t1 ? 1 : 0; }
  • src/tests/.expect/searchsort.txt

    r814525c rfc19129  
    1 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,
    2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
    3110, 9, 8, 7, 6, 5, 4, 3, 2, 1,
    42
    531, 2, 3, 4, 5, 6, 7, 8, 9, 10,
     410, 9, 8, 7, 6, 5, 4, 3, 2, 1,
     510, 9, 8, 7, 6, 5, 4, 3, 2, 1,
     610, 9, 8, 7, 6, 5, 4, 3, 2, 1,
     7
     81, 2, 3, 4, 5, 6, 7, 8, 9, 10,
     910, 9, 8, 7, 6, 5, 4, 3, 2, 1,
    61010, 9, 8, 7, 6, 5, 4, 3, 2, 1,
    71110, 9, 8, 7, 6, 5, 4, 3, 2, 1,
     
    10141.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5,
    111510.5, 9.5, 8.5, 7.5, 6.5, 5.5, 4.5, 3.5, 2.5, 1.5,
     1610.5, 9.5, 8.5, 7.5, 6.5, 5.5, 4.5, 3.5, 2.5, 1.5,
    1217
    131810 11, 9 10, 8 9, 7 8, 6 7, 5 6, 4 5, 3 4, 2 3, 1 2,
    14191 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8 9, 9 10, 10 11,
    152010 11, 9 10, 8 9, 7 8, 6 7, 5 6, 4 5, 3 4, 2 3, 1 2,
     2110 11, 9 10, 8 9, 7 8, 6 7, 5 6, 4 5, 3 4, 2 3, 1 2,
    1622
  • src/tests/searchsort.c

    r814525c rfc19129  
    1010// Created On       : Thu Feb  4 18:17:50 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Jul  5 18:06:07 2016
    13 // Update Count     : 56
     12// Last Modified On : Sun Apr  2 11:29:30 2017
     13// Update Count     : 76
    1414//
    1515
    1616#include <fstream>
    1717#include <stdlib>                                                                               // bsearch, qsort
     18#include <stdlib.h>                                                                             // C version of bsearch
     19
     20int comp( const void * t1, const void * t2 ) { return *(int *)t1 < *(int *)t2 ? -1 : *(int *)t2 < *(int *)t1 ? 1 : 0; }
    1821
    1922int main( void ) {
     
    2528                sout | iarr[i] | ", ";
    2629        } // for
    27         sout | endl;
     30        sout | endl | endl;
     31
     32        // ascending sort/search by changing < to >
    2833        qsort( iarr, size );
    2934        for ( unsigned int i = 0; i < size; i += 1 ) {
     
    3136        } // for
    3237        sout | endl;
     38        for ( unsigned int i = 0; i < size; i += 1 ) {          // C version
     39                int key = size - i;
     40                int *v = bsearch( &key, iarr, size, sizeof( iarr[0] ), comp );
     41                sout | *v | ", ";
     42        } // for
     43        sout | endl;
    3344        for ( unsigned int i = 0; i < size; i += 1 ) {
    3445                int *v = bsearch( size - i, iarr, size );
    3546                sout | *v | ", ";
     47        } // for
     48        sout | endl;
     49        for ( unsigned int i = 0; i < size; i += 1 ) {
     50                unsigned int posn = bsearch( size - i, iarr, size );
     51                sout | iarr[posn] | ", ";
    3652        } // for
    3753        sout | endl | endl;
     
    5470                        sout | *v | ", ";
    5571                } // for
     72                sout | endl;
     73                for ( unsigned int i = 0; i < size; i += 1 ) {
     74                        unsigned int posn = bsearch( size - i, iarr, size );
     75                        sout | iarr[posn] | ", ";
     76                } // for
    5677        }
    5778        sout | endl | endl;
     
    7192                double *v = bsearch( size - i + 0.5, darr, size );
    7293                sout | *v | ", ";
     94        } // for
     95        sout | endl;
     96        for ( unsigned int i = 0; i < size; i += 1 ) {
     97                unsigned int posn = bsearch( size - i + 0.5, darr, size );
     98                sout | darr[posn] | ", ";
    7399        } // for
    74100        sout | endl | endl;
     
    93119                sout | *v | ", ";
    94120        } // for
     121        sout | endl;
     122        for ( unsigned int i = 0; i < size; i += 1 ) {
     123                S temp = { size - i, size - i + 1 };
     124                unsigned int posn = bsearch( temp, sarr, size );
     125                sout | sarr[posn] | ", ";
     126        } // for
    95127        sout | endl | endl;
    96128} // main
Note: See TracChangeset for help on using the changeset viewer.