- Timestamp:
- Jan 16, 2017, 3:29:18 PM (8 years ago)
- Branches:
- ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
- Children:
- 5ebb2fbc
- Parents:
- 981bdc6
- Location:
- src
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
src/GenPoly/Specialize.cc
r981bdc6 rf3b0a07 35 35 36 36 namespace GenPoly { 37 class Specializer;38 37 class Specialize final : public PolyMutator { 39 friend class Specializer;40 38 public: 41 39 using PolyMutator::mutate; … … 47 45 // virtual Expression * mutate( CommaExpr *commaExpr ); 48 46 49 Specializer * specializer = nullptr;50 47 void handleExplicitParams( ApplicationExpr *appExpr ); 48 Expression * createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ); 49 Expression * doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams = nullptr ); 50 51 std::string paramPrefix = "_p"; 51 52 }; 52 53 53 class Specializer {54 public:55 Specializer( Specialize & spec ) : spec( spec ), env( spec.env ), stmtsToAdd( spec.stmtsToAdd ) {}56 virtual bool needsSpecialization( Type * formalType, Type * actualType, TypeSubstitution * env ) = 0;57 virtual Expression *createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) = 0;58 virtual Expression *doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams = 0 );59 60 protected:61 Specialize & spec;62 std::string paramPrefix = "_p";63 TypeSubstitution *& env;64 std::list< Statement * > & stmtsToAdd;65 };66 67 // for normal polymorphic -> monomorphic function conversion68 class PolySpecializer : public Specializer {69 public:70 PolySpecializer( Specialize & spec ) : Specializer( spec ) {}71 virtual bool needsSpecialization( Type * formalType, Type * actualType, TypeSubstitution * env ) override;72 virtual Expression *createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) override;73 };74 75 // // for tuple -> non-tuple function conversion76 class TupleSpecializer : public Specializer {77 public:78 TupleSpecializer( Specialize & spec ) : Specializer( spec ) {}79 virtual bool needsSpecialization( Type * formalType, Type * actualType, TypeSubstitution * env ) override;80 virtual Expression *createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) override;81 };82 83 54 /// Looks up open variables in actual type, returning true if any of them are bound in the environment or formal type. 84 bool PolySpecializer::needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {55 bool needsPolySpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { 85 56 if ( env ) { 86 57 using namespace ResolvExpr; … … 106 77 } 107 78 108 /// Generates a thunk that calls `actual` with type `funType` and returns its address 109 Expression * PolySpecializer::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) { 110 static UniqueName thunkNamer( "_thunk" ); 111 112 FunctionType *newType = funType->clone(); 113 if ( env ) { 114 // it is important to replace only occurrences of type variables that occur free in the 115 // thunk's type 116 env->applyFree( newType ); 117 } // if 118 // create new thunk with same signature as formal type (C linkage, empty body) 119 FunctionDecl *thunkFunc = new FunctionDecl( thunkNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, newType, new CompoundStmt( noLabels ), false, false ); 120 thunkFunc->fixUniqueId(); 121 122 // thunks may be generated and not used - silence warning with attribute 123 thunkFunc->get_attributes().push_back( new Attribute( "unused" ) ); 124 125 // thread thunk parameters into call to actual function, naming thunk parameters as we go 126 UniqueName paramNamer( paramPrefix ); 127 ApplicationExpr *appExpr = new ApplicationExpr( actual ); 128 for ( std::list< DeclarationWithType* >::iterator param = thunkFunc->get_functionType()->get_parameters().begin(); param != thunkFunc->get_functionType()->get_parameters().end(); ++param ) { 129 (*param )->set_name( paramNamer.newName() ); 130 appExpr->get_args().push_back( new VariableExpr( *param ) ); 131 } // for 132 appExpr->set_env( maybeClone( env ) ); 133 if ( inferParams ) { 134 appExpr->get_inferParams() = *inferParams; 135 } // if 136 137 // handle any specializations that may still be present 138 std::string oldParamPrefix = paramPrefix; 139 paramPrefix += "p"; 140 // save stmtsToAdd in oldStmts 141 std::list< Statement* > oldStmts; 142 oldStmts.splice( oldStmts.end(), stmtsToAdd ); 143 spec.handleExplicitParams( appExpr ); 144 paramPrefix = oldParamPrefix; 145 // write any statements added for recursive specializations into the thunk body 146 thunkFunc->get_statements()->get_kids().splice( thunkFunc->get_statements()->get_kids().end(), stmtsToAdd ); 147 // restore oldStmts into stmtsToAdd 148 stmtsToAdd.splice( stmtsToAdd.end(), oldStmts ); 149 150 // add return (or valueless expression) to the thunk 151 Statement *appStmt; 152 if ( funType->get_returnVals().empty() ) { 153 appStmt = new ExprStmt( noLabels, appExpr ); 154 } else { 155 appStmt = new ReturnStmt( noLabels, appExpr ); 156 } // if 157 thunkFunc->get_statements()->get_kids().push_back( appStmt ); 158 159 // add thunk definition to queue of statements to add 160 stmtsToAdd.push_back( new DeclStmt( noLabels, thunkFunc ) ); 161 // return address of thunk function as replacement expression 162 return new AddressExpr( new VariableExpr( thunkFunc ) ); 163 } 164 165 Expression * Specializer::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) { 79 bool needsTupleSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { 80 if ( FunctionType * ftype = getFunctionType( formalType ) ) { 81 return ftype->isTtype(); 82 } 83 return false; 84 } 85 86 bool needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) { 87 return needsPolySpecialization( formalType, actualType, env ) || needsTupleSpecialization( formalType, actualType, env ); 88 } 89 90 Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) { 166 91 assertf( actual->has_result(), "attempting to specialize an untyped expression" ); 167 92 if ( needsSpecialization( formalType, actual->get_result(), env ) ) { … … 185 110 } 186 111 187 bool TupleSpecializer::needsSpecialization( Type *formalType, Type *actualType, TypeSubstitution *env ) {188 if ( FunctionType * ftype = getFunctionType( formalType ) ) {189 return ftype->isTtype();190 }191 return false;192 }193 194 112 /// restructures arg to match the structure of a single formal parameter. Assumes that atomic types are compatible (as the Resolver should have ensured this) 195 113 template< typename OutIterator > … … 207 125 208 126 /// restructures the ttype argument to match the structure of the formal parameters of the actual function. 209 // [begin, end) are the formal parameters.210 // args is the list of arguments currently given to the actual function, the last of which needs to be restructured.127 /// [begin, end) are the formal parameters. 128 /// args is the list of arguments currently given to the actual function, the last of which needs to be restructured. 211 129 template< typename Iterator, typename OutIterator > 212 130 void fixLastArg( Expression * last, Iterator begin, Iterator end, OutIterator out ) { 213 // safe_dynamic_cast for the assertion 214 safe_dynamic_cast< TupleType * >( last->get_result() ); 215 unsigned idx = 0; 216 for ( ; begin != end; ++begin ) { 217 DeclarationWithType * formal = *begin; 218 Type * formalType = formal->get_type(); 219 matchOneFormal( last, idx, formalType, out ); 220 } 221 delete last; 222 } 223 224 Expression * TupleSpecializer::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) { 225 static UniqueName thunkNamer( "_tupleThunk" ); 131 if ( Tuples::isTtype( last->get_result() ) ) { 132 *out++ = last; 133 } else { 134 // safe_dynamic_cast for the assertion 135 safe_dynamic_cast< TupleType * >( last->get_result() ); 136 unsigned idx = 0; 137 for ( ; begin != end; ++begin ) { 138 DeclarationWithType * formal = *begin; 139 Type * formalType = formal->get_type(); 140 matchOneFormal( last, idx, formalType, out ); 141 } 142 delete last; 143 } 144 } 145 146 /// Generates a thunk that calls `actual` with type `funType` and returns its address 147 Expression * Specialize::createThunkFunction( FunctionType *funType, Expression *actual, InferredParams *inferParams ) { 148 static UniqueName thunkNamer( "_thunk" ); 226 149 227 150 FunctionType *newType = funType->clone(); … … 253 176 std::list< DeclarationWithType * >::iterator formalEnd = funType->get_parameters().end(); 254 177 255 Expression * last = nullptr;256 178 for ( DeclarationWithType* param : thunkFunc->get_functionType()->get_parameters() ) { 257 179 // walk the parameters to the actual function alongside the parameters to the thunk to find the location where the ttype parameter begins to satisfy parameters in the actual function. … … 259 181 assertf( formalBegin != formalEnd, "Reached end of formal parameters before finding ttype parameter" ); 260 182 if ( Tuples::isTtype((*formalBegin)->get_type()) ) { 261 last = new VariableExpr( param);183 fixLastArg( new VariableExpr( param ), actualBegin, actualEnd, back_inserter( appExpr->get_args() ) ); 262 184 break; 263 185 } … … 268 190 appExpr->get_args().push_back( new VariableExpr( param ) ); 269 191 } // for 270 assert( last );271 fixLastArg( last, actualBegin, actualEnd, back_inserter( appExpr->get_args() ) );272 192 appExpr->set_env( maybeClone( env ) ); 273 193 if ( inferParams ) { … … 281 201 std::list< Statement* > oldStmts; 282 202 oldStmts.splice( oldStmts.end(), stmtsToAdd ); 283 spec.mutate( appExpr );203 mutate( appExpr ); 284 204 paramPrefix = oldParamPrefix; 285 205 // write any statements added for recursive specializations into the thunk body … … 311 231 std::list< Expression* >::iterator actual; 312 232 for ( formal = function->get_parameters().begin(), actual = appExpr->get_args().begin(); formal != function->get_parameters().end() && actual != appExpr->get_args().end(); ++formal, ++actual ) { 313 *actual = specializer->doSpecialization( (*formal )->get_type(), *actual, &appExpr->get_inferParams() );233 *actual = doSpecialization( (*formal )->get_type(), *actual, &appExpr->get_inferParams() ); 314 234 } 315 235 } … … 322 242 // create thunks for the inferred parameters 323 243 // don't need to do this for intrinsic calls, because they aren't actually passed 244 // need to handle explicit params before inferred params so that explicit params do not recieve a changed set of inferParams (and change them again) 245 // alternatively, if order starts to matter then copy appExpr's inferParams and pass them to handleExplicitParams. 246 handleExplicitParams( appExpr ); 324 247 for ( InferredParams::iterator inferParam = appExpr->get_inferParams().begin(); inferParam != appExpr->get_inferParams().end(); ++inferParam ) { 325 inferParam->second.expr = specializer->doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() );248 inferParam->second.expr = doSpecialization( inferParam->second.formalType, inferParam->second.expr, inferParam->second.inferParams.get() ); 326 249 } 327 handleExplicitParams( appExpr );328 250 } 329 251 return appExpr; … … 333 255 addrExpr->get_arg()->acceptMutator( *this ); 334 256 assert( addrExpr->has_result() ); 335 addrExpr->set_arg( specializer->doSpecialization( addrExpr->get_result(), addrExpr->get_arg() ) );257 addrExpr->set_arg( doSpecialization( addrExpr->get_result(), addrExpr->get_arg() ) ); 336 258 return addrExpr; 337 259 } … … 343 265 return castExpr; 344 266 } 345 Expression *specialized = specializer->doSpecialization( castExpr->get_result(), castExpr->get_arg() );267 Expression *specialized = doSpecialization( castExpr->get_result(), castExpr->get_arg() ); 346 268 if ( specialized != castExpr->get_arg() ) { 347 269 // assume here that the specialization incorporates the cast … … 370 292 void convertSpecializations( std::list< Declaration* >& translationUnit ) { 371 293 Specialize spec; 372 373 TupleSpecializer tupleSpec( spec );374 spec.specializer = &tupleSpec;375 mutateAll( translationUnit, spec );376 377 PolySpecializer polySpec( spec );378 spec.specializer = &polySpec;379 294 mutateAll( translationUnit, spec ); 380 295 } -
src/InitTweak/InitTweak.cc
r981bdc6 rf3b0a07 327 327 } else if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * > ( expr ) ) { 328 328 return handleDerefCalledFunction( appExpr ); 329 } else if ( AddressExpr * addrExpr = dynamic_cast< AddressExpr * >( expr ) ) { 330 return getCalledFunction( addrExpr->get_arg() ); 329 331 } 330 332 return nullptr; … … 336 338 if ( ! appExpr ) return NULL; 337 339 DeclarationWithType * function = getCalledFunction( appExpr->get_function() ); 338 assert ( function);340 assertf( function, "getCalledFunction returned nullptr: %s", toString( appExpr->get_function() ).c_str() ); 339 341 // check for Intrinsic only - don't want to remove all overridable ctor/dtors because autogenerated ctor/dtor 340 342 // will call all member dtors, and some members may have a user defined dtor. … … 386 388 } else if ( UntypedExpr * untypedExpr = dynamic_cast< UntypedExpr * >( callExpr ) ) { 387 389 return callArg( untypedExpr, pos ); 390 } else if ( TupleAssignExpr * tupleExpr = dynamic_cast< TupleAssignExpr * > ( callExpr ) ) { 391 std::list< Statement * > & stmts = tupleExpr->get_stmtExpr()->get_statements()->get_kids(); 392 assertf( ! stmts.empty(), "TupleAssignExpr somehow has no statements." ); 393 ExprStmt * stmt = safe_dynamic_cast< ExprStmt * >( stmts.back() ); 394 TupleExpr * tuple = safe_dynamic_cast< TupleExpr * >( stmt->get_expr() ); 395 assertf( ! tuple->get_exprs().empty(), "TupleAssignExpr somehow has empty tuple expr." ); 396 return getCallArg( tuple->get_exprs().front(), pos ); 388 397 } else { 389 assertf( false, "Unexpected expression type passed to getCallArg ");398 assertf( false, "Unexpected expression type passed to getCallArg: %s", toString( callExpr ).c_str() ); 390 399 } 391 400 } -
src/ResolvExpr/Unify.cc
r981bdc6 rf3b0a07 163 163 case TypeDecl::Ttype: 164 164 // ttype unifies with any tuple type 165 return dynamic_cast< TupleType * >( type ) ;165 return dynamic_cast< TupleType * >( type ) || Tuples::isTtype( type ); 166 166 } // switch 167 167 return false; … … 488 488 } 489 489 490 template< typename Iterator >491 std::unique_ptr<Type> combineTypes( Iterator begin, Iterator end ) {490 template< typename Iterator, typename Func > 491 std::unique_ptr<Type> combineTypes( Iterator begin, Iterator end, Func & toType ) { 492 492 std::list< Type * > types; 493 493 for ( ; begin != end; ++begin ) { 494 494 // it's guaranteed that a ttype variable will be bound to a flat tuple, so ensure that this results in a flat tuple 495 flatten( (*begin)->get_type(), back_inserter( types ) );495 flatten( toType( *begin ), back_inserter( types ) ); 496 496 } 497 497 return std::unique_ptr<Type>( new TupleType( Type::Qualifiers(), types ) ); … … 500 500 template< typename Iterator1, typename Iterator2 > 501 501 bool unifyDeclList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, const SymTab::Indexer &indexer ) { 502 auto get_type = [](DeclarationWithType * dwt){ return dwt->get_type(); }; 502 503 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) { 503 504 Type * t1 = (*list1Begin)->get_type(); … … 509 510 if ( isTtype1 && ! isTtype2 ) { 510 511 // combine all of the things in list2, then unify 511 return unifyExact( t1, combineTypes( list2Begin, list2End ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );512 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 512 513 } else if ( isTtype2 && ! isTtype1 ) { 513 514 // combine all of the things in list1, then unify 514 return unifyExact( combineTypes( list1Begin, list1End ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );515 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 515 516 } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) { 516 517 return false; … … 522 523 Type * t1 = (*list1Begin)->get_type(); 523 524 if ( Tuples::isTtype( t1 ) ) { 524 return unifyExact( t1, combineTypes( list2Begin, list2End ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );525 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 525 526 } else return false; 526 527 } else if ( list2Begin != list2End ) { … … 528 529 Type * t2 = (*list2Begin)->get_type(); 529 530 if ( Tuples::isTtype( t2 ) ) { 530 return unifyExact( combineTypes( list1Begin, list1End ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer );531 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 531 532 } else return false; 532 533 } else { … … 665 666 template< typename Iterator1, typename Iterator2 > 666 667 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ) { 668 auto get_type = [](Type * t) { return t; }; 667 669 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) { 668 Type *commonType = 0; 669 if ( ! unifyInexact( *list1Begin, *list2Begin, env, needAssertions, haveAssertions, openVars, widenMode, indexer, commonType ) ) { 670 Type * t1 = *list1Begin; 671 Type * t2 = *list2Begin; 672 bool isTtype1 = Tuples::isTtype( t1 ); 673 bool isTtype2 = Tuples::isTtype( t2 ); 674 // xxx - assumes ttype must be last parameter 675 // xxx - there may be a nice way to refactor this, but be careful because the argument positioning might matter in some cases. 676 if ( isTtype1 && ! isTtype2 ) { 677 // combine all of the things in list2, then unify 678 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 679 } else if ( isTtype2 && ! isTtype1 ) { 680 // combine all of the things in list1, then unify 681 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 682 } else if ( ! unifyExact( t1, t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ) ) { 670 683 return false; 671 } 672 delete commonType; 684 } // if 685 673 686 } // for 674 if ( list1Begin != list1End || list2Begin != list2End ) { 675 return false; 687 if ( list1Begin != list1End ) { 688 // try unifying empty tuple type with ttype 689 Type * t1 = *list1Begin; 690 if ( Tuples::isTtype( t1 ) ) { 691 return unifyExact( t1, combineTypes( list2Begin, list2End, get_type ).get(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 692 } else return false; 693 } else if ( list2Begin != list2End ) { 694 // try unifying empty tuple type with ttype 695 Type * t2 = *list2Begin; 696 if ( Tuples::isTtype( t2 ) ) { 697 return unifyExact( combineTypes( list1Begin, list1End, get_type ).get(), t2, env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); 698 } else return false; 676 699 } else { 677 700 return true; 678 } // if701 } // if 679 702 } 680 703 681 704 void Unify::visit(TupleType *tupleType) { 682 705 if ( TupleType *otherTuple = dynamic_cast< TupleType* >( type2 ) ) { 683 result = unifyList( tupleType->get_types().begin(), tupleType->get_types().end(), otherTuple->get_types().begin(), otherTuple->get_types().end(), env, needAssertions, haveAssertions, openVars, widenMode, indexer ); 706 std::unique_ptr<TupleType> flat1( tupleType->clone() ); 707 std::unique_ptr<TupleType> flat2( otherTuple->clone() ); 708 std::list<Type *> types1, types2; 709 710 TtypeExpander expander( env ); 711 flat1->acceptMutator( expander ); 712 flat2->acceptMutator( expander ); 713 714 flatten( flat1.get(), back_inserter( types1 ) ); 715 flatten( flat2.get(), back_inserter( types2 ) ); 716 717 result = unifyList( types1.begin(), types1.end(), types2.begin(), types2.end(), env, needAssertions, haveAssertions, openVars, widenMode, indexer ); 684 718 } // if 685 719 }
Note: See TracChangeset
for help on using the changeset viewer.