Changeset ef42e764
- Timestamp:
- Aug 10, 2016, 2:36:17 PM (7 years ago)
- Branches:
- ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, ctor, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, memory, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
- Children:
- 5ae36ed
- Parents:
- e109716 (diff), 3078643 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Files:
-
- 8 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/aaron_comp_II/comp_II.tex
re109716 ref42e764 62 62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 63 63 64 \newcommand{\bigO}[1]{O\left( #1 \right)} 65 64 66 \begin{document} 65 67 \pagestyle{headings} … … 116 118 The ©identity© function above can be applied to any complete object type (or ``©otype©''). 117 119 The type variable ©T© is transformed into a set of additional implicit parameters to ©identity© which encode sufficient information about ©T© to create and return a variable of that type. 118 The current \CFA implementation passes the size and alignment of the type represented by an ©otype© parameter, as well as an assignment operator, constructor, copy constructor and destructor. 120 The current \CFA implementation passes the size and alignment of the type represented by an ©otype© parameter, as well as an assignment operator, constructor, copy constructor and destructor. 121 Here, the runtime cost of polymorphism is spread over each polymorphic call, due to passing more arguments to polymorphic functions; preliminary experiments have shown this overhead to be similar to \CC virtual function calls. 122 Determining if packaging all polymorphic arguments to a function into a virtual function table would reduce the runtime overhead of polymorphic calls is an open research question. 119 123 120 124 Since bare polymorphic types do not provide a great range of available operations, \CFA also provides a \emph{type assertion} mechanism to provide further information about a type: … … 129 133 double magic = four_times(10.5); // T is bound to double, uses (1) to satisfy type assertion 130 134 \end{lstlisting} 131 These type assertions may be either variable or function declarations whichdepend on a polymorphic type variable.132 ©four_times© can only be called with an argument for which there exists a function named ©twice© that can take that argument and return another value of the same type; a pointer to the appropriate ©twice© function will bepassed as an additional implicit parameter to the call to ©four_times©.135 These type assertions may be either variable or function declarations that depend on a polymorphic type variable. 136 ©four_times© can only be called with an argument for which there exists a function named ©twice© that can take that argument and return another value of the same type; a pointer to the appropriate ©twice© function is passed as an additional implicit parameter to the call to ©four_times©. 133 137 134 138 Monomorphic specializations of polymorphic functions can themselves be used to satisfy type assertions. 135 For instance, ©twice© could have been defined as below, using the \CFA syntax for operator overloading:136 \begin{lstlisting} 137 forall(otype S | { S ?+?(S, S);})139 For instance, ©twice© could have been defined using the \CFA syntax for operator overloading as: 140 \begin{lstlisting} 141 forall(otype S | { ®S ?+?(S, S);® }) 138 142 S twice(S x) { return x + x; } // (2) 139 143 \end{lstlisting} 140 This version of ©twice© w ill workfor any type ©S© that has an addition operator defined for it, and it could have been used to satisfy the type assertion on ©four_times©.144 This version of ©twice© works for any type ©S© that has an addition operator defined for it, and it could have been used to satisfy the type assertion on ©four_times©. 141 145 The compiler accomplishes this by creating a wrapper function calling ©twice // (2)© with ©S© bound to ©double©, then providing this wrapper function to ©four_times©\footnote{©twice // (2)© could also have had a type parameter named ©T©; \CFA specifies renaming of the type parameters, which would avoid the name conflict with the type variable ©T© of ©four_times©.}. 142 146 143 147 Finding appropriate functions to satisfy type assertions is essentially a recursive case of expression resolution, as it takes a name (that of the type assertion) and attempts to match it to a suitable declaration in the current scope. 144 If a polymorphic function can be used to satisfy one of its own type assertions, this recursion may not terminate, as it is possible that function will beexamined as a candidate for its own type assertion unboundedly repeatedly.145 To avoid infinite loops, the current CFA compiler imposes a fixed limit on the possible depth of recursion, similar to that employed by most \CC compilers for template expansion; this restriction means that there are some semantically well-typed expressions whichcannot be resolved by CFA.146 One area of potential improvement this project proposes to investigate is the possibility of using the compiler's knowledge of the current set of declarations to more precicely determine when further type assertion satisfaction recursion willnot produce a well-typed expression.148 If a polymorphic function can be used to satisfy one of its own type assertions, this recursion may not terminate, as it is possible that function is examined as a candidate for its own type assertion unboundedly repeatedly. 149 To avoid infinite loops, the current CFA compiler imposes a fixed limit on the possible depth of recursion, similar to that employed by most \CC compilers for template expansion; this restriction means that there are some semantically well-typed expressions that cannot be resolved by CFA. 150 One area of potential improvement this project proposes to investigate is the possibility of using the compiler's knowledge of the current set of declarations to more precicely determine when further type assertion satisfaction recursion does not produce a well-typed expression. 147 151 148 152 \subsubsection{Traits} 149 153 \CFA provides \emph{traits} as a means to name a group of type assertions, as in the example below: 150 154 \begin{lstlisting} 151 trait has_magnitude(otype T){155 ®trait has_magnitude(otype T)® { 152 156 bool ?<?(T, T); // comparison operator for T 153 157 T -?(T); // negation operator for T … … 168 172 \end{lstlisting} 169 173 170 Semantically, a trait is merely a named list of type assertions, but they can be used in many of the same situations where an interface in Java or an abstract base class in \CC would be used.174 Semantically, traits are simply a named lists of type assertions, but they may be used for many of the same purposes that interfaces in Java or abstract base classes in \CC are used for. 171 175 Unlike Java interfaces or \CC base classes, \CFA types do not explicitly state any inheritance relationship to traits they satisfy; this can be considered a form of structural inheritance, similar to interface implementation in Go, as opposed to the nominal inheritance model of Java and \CC. 172 % TODO talk about modelling of nominal inheritance with structural inheritance, possibility of investigating some resolver algorithms that require nominal 176 Nominal inheritance can be simulated with traits using marker variables or functions: 177 \begin{lstlisting} 178 trait nominal(otype T) { 179 ®T is_nominal;® 180 }; 181 182 int is_nominal; // int now satisfies the nominal trait 183 { 184 char is_nominal; // char satisfies the nominal trait 185 } 186 // char no longer satisfies the nominal trait here 187 \end{lstlisting} 188 189 Traits, however, are significantly more powerful than nominal-inheritance interfaces; firstly, due to the scoping rules of the declarations which satisfy a trait's type assertions, a type may not satisfy a trait everywhere that the type is declared, as with ©char© and the ©nominal© trait above. 190 Secondly, traits may be used to declare a relationship between multiple types, a property which may be difficult or impossible to represent in nominal-inheritance type systems: 191 \begin{lstlisting} 192 trait pointer_like(®otype Ptr, otype El®) { 193 lvalue El *?(Ptr); // Ptr can be dereferenced into a modifiable value of type El 194 } 195 196 struct list { 197 int value; 198 list *next; // may omit "struct" on type names 199 }; 200 201 typedef list* list_iterator; 202 203 lvalue int *?( list_iterator it ) { 204 return it->value; 205 } 206 \end{lstlisting} 207 208 In the example above, ©(list_iterator, int)© satisfies ©pointer_like© by the given function, and ©(list_iterator, list)© also satisfies ©pointer_like© by the built-in pointer dereference operator. 209 While a nominal-inheritance system with associated types could model one of those two relationships by making ©El© an associated type of ©Ptr© in the ©pointer_like© implementation, few such systems could model both relationships simultaneously. 210 211 The flexibility of \CFA's implicit trait satisfaction mechanism provides user programmers with a great deal of power, but also blocks some optimization approaches for expression resolution. 212 The ability of types to begin to or cease to satisfy traits when declarations go into or out of scope makes caching of trait satisfaction judgements difficult, and the ability of traits to take multiple type parameters could lead to a combinatorial explosion of work in any attempt to pre-compute trait satisfaction relationships. 213 On the other hand, the addition of a nominal inheritance mechanism to \CFA's type system or replacement of \CFA's trait satisfaction system with a more object-oriented inheritance model and investigation of possible expression resolution optimizations for such a system may be an interesting avenue of further research. 173 214 174 215 \subsection{Name Overloading} 175 In C, no more than one function or variable in the same scope may share the same name, and function or variable declarations in inner scopes with the same name as a declaration in an outer scope hide the outer declaration. 176 This makes finding the proper declaration to match to a function application or variable expression a simple matter of symbol table lookup, which can be easily and efficiently implemented. 177 \CFA, on the other hand, allows overloading of variable and function names, so long as the overloaded declarations do not have the same type, avoiding the multiplication of function names for different types common in the C standard library, as in the following example: 178 \begin{lstlisting} 179 int three = 3; 180 double three = 3.0; 181 182 int thrice(int i) { return i * three; } // uses int three 183 double thrice(double d) { return d * three; } // uses double three 184 185 // thrice(three); // ERROR: ambiguous 186 int nine = thrice(three); // uses int thrice and three, based on return type 187 double nine = thrice(three); // uses double thrice and three, based on return type 188 \end{lstlisting} 189 190 The presence of name overloading in \CFA means that simple table lookup is not sufficient to match identifiers to declarations, and a type matching algorithm must be part of expression resolution. 216 In C, no more than one variable or function in the same scope may share the same name\footnote{Technically, C has multiple separated namespaces, one holding ©struct©, ©union©, and ©enum© tags, one holding labels, one holding typedef names, variable, function, and enumerator identifiers, and one for each ©struct© or ©union© type holding the field names.}, and variable or function declarations in inner scopes with the same name as a declaration in an outer scope hide the outer declaration. 217 This makes finding the proper declaration to match to a variable expression or function application a simple matter of symbol table lookup, which can be easily and efficiently implemented. 218 \CFA, on the other hand, allows overloading of variable and function names, so long as the overloaded declarations do not have the same type, avoiding the multiplication of variable and function names for different types common in the C standard library, as in the following example: 219 \begin{lstlisting} 220 #include <limits.h> 221 222 int max(int a, int b) { return a < b ? b : a; } // (1) 223 double max(double a, double b) { return a < b ? b : a; } // (2) 224 225 int max = INT_MAX; // (3) 226 double max = DBL_MAX; // (4) 227 228 max(7, -max); // uses (1) and (3), by matching int type of 7 229 max(max, 3.14); // uses (2) and (4), by matching double type of 3.14 230 231 max(max, -max); // ERROR: ambiguous 232 int m = max(max, -max); // uses (1) and (3) twice, by return type 233 \end{lstlisting} 234 235 The presence of name overloading in \CFA means that simple table lookup is insufficient to match identifiers to declarations, and a type matching algorithm must be part of expression resolution. 191 236 192 237 \subsection{Implicit Conversions} … … 194 239 C does not have a traditionally-defined inheritance hierarchy of types, but the C standard's rules for the ``usual arithmetic conversions'' define which of the built-in types are implicitly convertable to which other types, and the relative cost of any pair of such conversions from a single source type. 195 240 \CFA adds to the usual arithmetic conversions rules for determining the cost of binding a polymorphic type variable in a function call; such bindings are cheaper than any \emph{unsafe} (narrowing) conversion, \eg ©int© to ©char©, but more expensive than any \emph{safe} (widening) conversion, \eg ©int© to ©double©. 241 196 242 The expression resolution problem, then, is to find the unique minimal-cost interpretation of each expression in the program, where all identifiers must be matched to a declaration and implicit conversions or polymorphic bindings of the result of an expression may increase the cost of the expression. 197 Note that which subexpression interpretation is minimal-cost may require contextual information to disambiguate. 243 Note that which subexpression interpretation is minimal-cost may require contextual information to disambiguate. 244 For instance, in the example in the previous subsection, ©max(max, -max)© cannot be unambiguously resolved, but ©int m = max(max, -max);© has a single minimal-cost resolution. 245 ©int m = (int)max((double)max, -(double)max)© is also be a valid interpretation, but is not minimal-cost due to the unsafe cast from the ©double© result of ©max© to ©int© (the two ©double© casts function as type ascriptions selecting ©double max© rather than casts from ©int max© to ©double©, and as such are zero-cost). 198 246 199 247 \subsubsection{User-generated Implicit Conversions} … … 201 249 Such a conversion system should be simple for user programmers to utilize, and fit naturally with the existing design of implicit conversions in C; ideally it would also be sufficiently powerful to encode C's usual arithmetic conversions itself, so that \CFA only has one set of rules for conversions. 202 250 203 Ditchfield \cite{Ditchfield:conversions} has laid out a framework for using polymorphic conversionconstructor functions to create a directed acyclic graph (DAG) of conversions.251 Ditchfield~\cite{Ditchfield:conversions} has laid out a framework for using polymorphic-conversion-constructor functions to create a directed acyclic graph (DAG) of conversions. 204 252 A monomorphic variant of these functions can be used to mark a conversion arc in the DAG as only usable as the final step in a conversion. 205 253 With these two types of conversion arcs, separate DAGs can be created for the safe and the unsafe conversions, and conversion cost can be represented as path length through the DAG. 206 Open research questions on this topic include whether a conversion graph can be generated that represents each allowable conversion in C with a unique minimal-length path, such that the path lengths accurately represent the relative costs of the conversions, whether such a graph representation can be usefully augmented to include user-defined types as well as built-in types, and whether the graph can be efficiently represented and included in the expression resolver. 254 \begin{figure}[h] 255 \centering 256 \includegraphics{conversion_dag} 257 \caption{A portion of the implicit conversion DAG for built-in types.} 258 \end{figure} 259 As can be seen in the example DAG above, there are either safe or unsafe paths between each of the arithmetic types listed; the ``final'' arcs are important both to avoid creating cycles in the signed-unsigned conversions, and to disambiguate potential diamond conversions (\eg, if the ©int© to ©unsigned int© conversion was not marked final there would be two length-two paths from ©int© to ©unsigned long©, and it would be impossible to choose which one; however, since the ©unsigned int© to ©unsigned long© arc can not be traversed after the final ©int© to ©unsigned int© arc, there is a single unambiguous conversion path from ©int© to ©unsigned long©). 260 261 Open research questions on this topic include: 262 \begin{itemize} 263 \item Can a conversion graph be generated that represents each allowable conversion in C with a unique minimal-length path such that the path lengths accurately represent the relative costs of the conversions? 264 \item Can such a graph representation can be usefully augmented to include user-defined types as well as built-in types? 265 \item Can the graph can be efficiently represented and used in the expression resolver? 266 \end{itemize} 207 267 208 268 \subsection{Constructors and Destructors} 209 269 Rob Shluntz, a current member of the \CFA research team, has added constructors and destructors to \CFA. 210 Each type has an overridable default-generated zero-argument constructor, copy constructor, assignment operator, and destructor; for struct types these functions each call their equivalents on each field of the struct.270 Each type has an overridable default-generated zero-argument constructor, copy constructor, assignment operator, and destructor; for ©struct© types these functions each call their equivalents on each field of the ©struct©. 211 271 This affects expression resolution because an ©otype© type variable ©T© implicitly adds four type assertions, one for each of these four functions, so assertion resolution is pervasive in \CFA polymorphic functions, even those without any explicit type assertions. 272 The following example shows the implicitly-generated code in green: 273 \begin{lstlisting} 274 struct kv { 275 int key; 276 char *value; 277 }; 278 279 ¢void ?{}(kv *this) { 280 ?{}(&this->key); 281 ?{}(&this->value); 282 } 283 void ?{}(kv *this, kv that) { 284 ?{}(&this->key, that.key); 285 ?{}(&this->value, that.value); 286 } 287 kv ?=?(kv *this, kv that) { 288 ?=?(&this->key, that.key); 289 ?=?(&this->value, that.value); 290 return *this; 291 } 292 void ^?{}(kv *this) { 293 ^?{}(&this->key); 294 ^?{}(&this->value); 295 }¢ 296 297 forall(otype T ¢| { void ?{}(T*); void ?{}(T*, T); T ?=?(T*, T); void ^?{}(T*); }¢) 298 void foo(T); 299 \end{lstlisting} 212 300 213 301 \subsection{Generic Types} 214 302 I have already added a generic type capability to \CFA, designed to efficiently and naturally integrate with \CFA's existing polymorphic functions. 215 A generic type can be declared by placing a ©forall© specifier on a struct or uniondeclaration, and instantiated using a parenthesized list of types after the type name:303 A generic type can be declared by placing a ©forall© specifier on a ©struct© or ©union© declaration, and instantiated using a parenthesized list of types after the type name: 216 304 \begin{lstlisting} 217 305 forall(otype R, otype S) struct pair { … … 229 317 The default-generated constructors, destructor and assignment operator for a generic type are polymorphic functions with the same list of type parameters as the generic type definition. 230 318 231 Aside from giving users the ability to create more parameterized types than just the built-in pointer, array and function types, the combination of generic types with polymorphic functions and implicit conversions makes the edge case where a polymorphic function can match its own assertions much more common, as follows: 319 Aside from giving users the ability to create more parameterized types than just the built-in pointer, array and function types, the combination of generic types with polymorphic functions and implicit conversions makes the edge case where the resolver may enter an infinite loop much more common, as in the following code example: 320 \begin{lstlisting} 321 forall(otype T) struct box { T x; }; 322 323 void f(void*); // (1) 324 325 forall(otype S) 326 void f(box(S)* b) { // (2) 327 f(®(void*)0®); 328 } 329 \end{lstlisting} 330 331 The loop in the resolver happens as follows: 232 332 \begin{itemize} 233 \item Given an expression in an untyped context, such as a top-level function call with no assignment of return values, apply a polymorphic implicit conversion to the expression that can produce multiple types (the built-in conversion from ©void*© to any other pointer type is one, but not the only). 234 \item When attempting to use a generic type with ©otype© parameters (such as ©box© above) for the result type of the expression, the resolver will also need to decide what type to use for the ©otype© parameters on the constructors and related functions, and will have no constraints on what they may be. 235 \item Attempting to match some yet-to-be-determined specialization of the generic type to this ©otype© parameter will create a recursive case of the default constructor, \etc matching their own type assertions, creating an unboundedly deep nesting of the generic type inside itself. 333 \item Since there is an implicit conversion from ©void*© to any pointer type, the highlighted expression can be interpreted as either a ©void*©, matching ©f // (1)©, or a ©box(S)*© for some type ©S©, matching ©f // (2)©. 334 \item To determine the cost of the ©box(S)© interpretation, a type must be found for ©S© which satisfies the ©otype© implicit type assertions (assignment operator, default and copy constructors, and destructor); one option is ©box(S2)© for some type ©S2©. 335 \item The assignment operator, default and copy constructors, and destructor of ©box(T)© are also polymorphic functions, each of which require the type parameter ©T© to have an assignment operator, default and copy constructors, and destructor. When choosing an interpretation for ©S2©, one option is ©box(S3)©, for some type ©S3©. 336 \item The previous step repeats until stopped, with four times as much work performed at each step. 236 337 \end{itemize} 237 As discussed above, any \CFA expression resolver must handle this possible infinite recursion somehow, but the combination of generic types with other language features makes this particular edge case occur somewhat frequently in user code. 338 This problem can occur in any resolution context where a polymorphic function that can satisfy its own type assertions is required for a possible interpretation of an expression with no constraints on its type, and is thus not limited to combinations of generic types with ©void*© conversions, though constructors for generic types often satisfy their own assertions and a polymorphic conversion such as the ©void*© conversion to a polymorphic variable can create an expression with no constraints on its type. 339 As discussed above, the \CFA expression resolver must handle this possible infinite recursion somehow, and it occurs fairly naturally in code like the above that uses generic types. 238 340 239 341 \subsection{Tuple Types} 240 \CFA adds \emph{tuple types} to C, a facility for referring to multiple valueswith a single identifier.241 A variablemay name a tuple, and a function may return one.342 \CFA adds \emph{tuple types} to C, a syntactic facility for referring to lists of values anonymously or with a single identifier. 343 An identifier may name a tuple, and a function may return one. 242 344 Particularly relevantly for resolution, a tuple may be implicitly \emph{destructured} into a list of values, as in the call to ©swap© below: 243 345 \begin{lstlisting} … … 248 350 249 351 x = swap( x ); // destructure [char, char] x into two elements of parameter list 250 // can 't use int x for parameter, not enough arguments to swap352 // cannot use int x for parameter, not enough arguments to swap 251 353 \end{lstlisting} 252 354 Tuple destructuring means that the mapping from the position of a subexpression in the argument list to the position of a paramter in the function declaration is not straightforward, as some arguments may be expandable to different numbers of parameters, like ©x© above. … … 256 358 Given some type ©T©, a ©T&© (``reference to ©T©'') is essentially an automatically dereferenced pointer; with these semantics most of the C standard's discussions of lvalues can be expressed in terms of references instead, with the benefit of being able to express the difference between the reference and non-reference version of a type in user code. 257 359 References preserve C's existing qualifier-dropping lvalue-to-rvalue conversion (\eg a ©const volatile int&© can be implicitly converted to a bare ©int©); the reference proposal also adds a rvalue-to-lvalue conversion to \CFA, implemented by storing the value in a new compiler-generated temporary and passing a reference to the temporary. 258 These two conversions can chain, producing a qualifier-dropping conversion for references, for instance converting a reference to a ©const int© into a reference to a non-©const int© by copying the originally refered to value into a fresh temporary and taking a reference to this temporary. 360 These two conversions can chain, producing a qualifier-dropping conversion for references, for instance converting a reference to a ©const int© into a reference to a non-©const int© by copying the originally refered to value into a fresh temporary and taking a reference to this temporary, as below: 361 \begin{lstlisting} 362 const int magic = 42; 363 364 void inc_print( int& x ) { printf("%d\n", ++x); } 365 366 print_inc( magic ); // legal; implicitly generated code in green below: 367 368 ¢int tmp = magic;¢ // copies to safely strip const-qualifier 369 ¢print_inc( tmp );¢ // tmp is incremented, magic is unchanged 370 \end{lstlisting} 259 371 These reference conversions may also chain with the other implicit type conversions. 260 372 The main implication of this for expression resolution is the multiplication of available implicit conversions, though in a restricted context that may be able to be treated efficiently as a special case. 261 373 262 \subsection{ Literal Types}263 Another proposal currently under consideration for the \CFA type-system is assigning special types to the literal values ©0© and ©1©. %, say ©zero_t© and ©one_t©.264 Implicit conversions from these types wouldallow ©0© and ©1© to be considered as values of many different types, depending on context, allowing expression desugarings like ©if ( x ) {}© $\Rightarrow$ ©if ( x != 0 ) {}© to be implemented efficiently and precicely.265 This is a generalization of C's existing behaviour of treating ©0© as either an integer zero or a null pointer constant, and treating either of those values as boolean false.266 The main implication for expression resolution is that the frequently encountered expressions ©0© and ©1© may have a significantnumber of valid interpretations.374 \subsection{Special Literal Types} 375 Another proposal currently under consideration for the \CFA type-system is assigning special types to the literal values ©0© and ©1©. 376 Implicit conversions from these types allow ©0© and ©1© to be considered as values of many different types, depending on context, allowing expression desugarings like ©if ( x ) {}© $\Rightarrow$ ©if ( x != 0 ) {}© to be implemented efficiently and precicely. 377 This approach is a generalization of C's existing behaviour of treating ©0© as either an integer zero or a null pointer constant, and treating either of those values as boolean false. 378 The main implication for expression resolution is that the frequently encountered expressions ©0© and ©1© may have a large number of valid interpretations. 267 379 268 380 \subsection{Deleted Function Declarations} … … 271 383 int somefn(char) = delete; 272 384 \end{lstlisting} 385 This feature is typically used in \CCeleven to make a type non-copyable by deleting its copy constructor and assignment operator, or forbidding some interpretations of a polymorphic function by specifically deleting the forbidden overloads. 273 386 To add a similar feature to \CFA would involve including the deleted function declarations in expression resolution along with the normal declarations, but producing a compiler error if the deleted function was the best resolution. 274 387 How conflicts should be handled between resolution of an expression to both a deleted and a non-deleted function is a small but open research question. 275 388 276 389 \section{Expression Resolution} 277 The expression resolution problem is essentially to determine an optimal matching between some combination of argument interpretations and the parameter list of some overloaded instance of a function; the argument interpretations are produced by recursive invocations of expression resolution, where the base case is zero-argument functions (which are, for purposes of this discussion, semantically equivalent to named variables or constant literal expressions). 278 Assuming that the matching between a function's parameter list and a combination of argument interpretations can be done in $O(p^k)$ time, where $p$ is the number of parameters and $k$ is some positive number, if there are $O(i)$ valid interpretations for each subexpression, there will be $O(i)$ candidate functions and $O(i^p)$ possible argument combinations for each expression, so a single recursive call to expression resolution will take $O(i^{p+1} \cdot p^k)$ time if it compares all combinations. 279 Given this bound, resolution of a single top-level expression tree of depth $d$ takes $O(i^{p+1} \cdot p^{k \cdot d})$ time\footnote{The call tree will have leaves at depth $O(d)$, and each internal node will have $O(p)$ fan-out, producing $O(p^d)$ total recursive calls.}. 280 Expression resolution is somewhat unavoidably exponential in $p$, the number of function parameters, and $d$, the depth of the expression tree, but these values are fixed by the user programmer, and generally bounded by reasonably small constants. 281 $k$, on the other hand, is mostly dependent on the representation of types in the system and the efficiency of type assertion checking; if a candidate argument combination can be compared to a function parameter list in linear time in the length of the list (\ie $k = 1$), then the $p^{k \cdot d}$ term is linear in the input size of the source code for the expression, otherwise the resolution algorithm will exibit sub-linear performance scaling on code containing more-deeply nested expressions. 390 The expression resolution problem is determining an optimal match between some combination of argument interpretations and the parameter list of some overloaded instance of a function; the argument interpretations are produced by recursive invocations of expression resolution, where the base case is zero-argument functions (which are, for purposes of this discussion, semantically equivalent to named variables or constant literal expressions). 391 Assuming that the matching between a function's parameter list and a combination of argument interpretations can be done in $\bigO{p^k}$ time, where $p$ is the number of parameters and $k$ is some positive number, if there are $\bigO{i}$ valid interpretations for each subexpression, there will be $\bigO{i}$ candidate functions and $\bigO{i^p}$ possible argument combinations for each expression, so for a single recursive call expression resolution takes $\bigO{i^{p+1} \cdot p^k}$ time if it must compare all combinations, or $\bigO{i(p+1) \cdot p^k}$ time if argument-parameter matches can be chosen independently of each other. 392 Given these bounds, resolution of a single top-level expression tree of depth $d$ takes $\bigO{i^{p+1} \cdot p^{k \cdot d}}$ time under full-combination matching, or $\bigO{i(p+1) \cdot p^{k \cdot d}}$ time for independent-parameter matching\footnote{A call tree has leaves at depth $\bigO{d}$, and each internal node has $\bigO{p}$ fan-out, producing $\bigO{p^d}$ total recursive calls.}. 393 394 Expression resolution is somewhat unavoidably exponential in $d$, the depth of the expression tree, and if arguments cannot be matched to parameters independently of each other, expression resolution is also exponential in $p$. 395 However, both $d$ and $p$ are fixed by the user programmer, and generally bounded by reasonably small constants. 396 $k$, on the other hand, is mostly dependent on the representation of types in the system and the efficiency of type assertion checking; if a candidate argument combination can be compared to a function parameter list in linear time in the length of the list (\ie $k = 1$), then the $p^{k \cdot d}$ factor is linear in the input size of the source code for the expression, otherwise the resolution algorithm exibits sub-linear performance scaling on code containing more-deeply nested expressions. 282 397 The number of valid interpretations of any subexpression, $i$, is bounded by the number of types in the system, which is possibly infinite, though practical resolution algorithms for \CFA must be able to place some finite bound on $i$, possibly at the expense of type-system completeness. 283 398 284 The research goal of this project is to develop a performant expression resolver for \CFA; this analysis suggests t woprimary areas of investigation to accomplish that end.285 The first is efficient argument-parameter matching; Bilson\cite{Bilson03} mentions significant optimization opportunities available in the current literature to improve on the existing CFA compiler.399 The research goal of this project is to develop a performant expression resolver for \CFA; this analysis suggests three primary areas of investigation to accomplish that end. 400 The first area of investigation is efficient argument-parameter matching; Bilson~\cite{Bilson03} mentions significant optimization opportunities available in the current literature to improve on the existing CFA compiler. 286 401 %TODO: look up and lit review 287 The second, and likely more fruitful, area of investigation is heuristics and algorithmic approaches to reduce the number of argument interpretations considered in the common case; given the large ($p+1$) exponent on number of interpretations considered in the runtime analysis, even small reductions here could have a significant effect on overall resolver runtime. 402 The second area of investigation is minimizing dependencies between argument-parameter matches; the current CFA compiler attempts to match entire argument combinations against functions at once, potentially attempting to match the same argument against the same parameter multiple times. 403 Whether the feature set of \CFA admits an expression resolution algorithm where arguments can be matched to parameters independently of other arguments in the same function application is an area of open research; polymorphic type paramters produce enough of a cross-argument dependency that the problem is not trivial. 404 If cross-argument resolution dependencies cannot be completely eliminated, effective caching strategies to reduce duplicated work between equivalent argument-parameter matches in different combinations may mitigate the asymptotic defecits of the whole-combination matching approach. 405 The final area of investigation is heuristics and algorithmic approaches to reduce the number of argument interpretations considered in the common case; if argument-parameter matches cannot be made independent, even small reductions in $i$ should yield significant reductions in the $i^{p+1}$ resolver runtime factor. 288 406 The discussion below presents a number of largely orthagonal axes for expression resolution algorithm design to be investigated, noting prior work where applicable. 289 407 -
src/GenPoly/Box.cc
re109716 ref42e764 104 104 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true ); 105 105 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value 106 Expression *add PolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg );106 Expression *addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ); 107 107 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); 108 108 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars ); … … 661 661 // process polymorphic return value 662 662 retval = 0; 663 if ( is PolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) {663 if ( isDynRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) { 664 664 retval = functionDecl->get_functionType()->get_returnVals().front(); 665 665 … … 868 868 } 869 869 870 Expression *Pass1::add PolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) {870 Expression *Pass1::addDynRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *dynType, std::list< Expression *>::iterator &arg ) { 871 871 assert( env ); 872 Type *concrete = replaceWithConcrete( appExpr, polyType );872 Type *concrete = replaceWithConcrete( appExpr, dynType ); 873 873 // add out-parameter for return value 874 874 return addRetParam( appExpr, function, concrete, arg ); … … 877 877 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) { 878 878 Expression *ret = appExpr; 879 if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) { 879 // if ( ! function->get_returnVals().empty() && isPolyType( function->get_returnVals().front()->get_type(), tyVars ) ) { 880 if ( isDynRet( function, tyVars ) ) { 880 881 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg ); 881 882 } // if … … 968 969 // actually make the adapter type 969 970 FunctionType *adapter = adaptee->clone(); 970 if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) { 971 // if ( ! adapter->get_returnVals().empty() && isPolyType( adapter->get_returnVals().front()->get_type(), tyVars ) ) { 972 if ( isDynRet( adapter, tyVars ) ) { 971 973 makeRetParm( adapter ); 972 974 } // if … … 1030 1032 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); 1031 1033 bodyStmt = new ExprStmt( noLabels, adapteeApp ); 1032 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 1034 // } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 1035 } else if ( isDynType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 1033 1036 // return type T 1034 1037 if ( (*param)->get_name() == "" ) { … … 1277 1280 TyVarMap exprTyVars( (TypeDecl::Kind)-1 ); 1278 1281 makeTyVarMap( function, exprTyVars ); 1279 ReferenceToType * polyRetType = isPolyRet( function);1280 1281 if ( polyRetType ) {1282 ret = add PolyRetParam( appExpr, function, polyRetType, arg );1282 ReferenceToType *dynRetType = isDynRet( function, exprTyVars ); 1283 1284 if ( dynRetType ) { 1285 ret = addDynRetParam( appExpr, function, dynRetType, arg ); 1283 1286 } else if ( needsAdapter( function, scopeTyVars ) ) { 1284 1287 // std::cerr << "needs adapter: "; … … 1290 1293 arg = appExpr->get_args().begin(); 1291 1294 1292 passTypeVars( appExpr, polyRetType, arg, exprTyVars );1295 passTypeVars( appExpr, dynRetType, arg, exprTyVars ); 1293 1296 addInferredParams( appExpr, function, arg, exprTyVars ); 1294 1297 … … 1577 1580 1578 1581 // move polymorphic return type to parameter list 1579 if ( is PolyRet( funcType ) ) {1582 if ( isDynRet( funcType ) ) { 1580 1583 DeclarationWithType *ret = funcType->get_returnVals().front(); 1581 1584 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) ); -
src/GenPoly/GenPoly.cc
re109716 ref42e764 23 23 24 24 namespace GenPoly { 25 bool needsAdapter( FunctionType *adaptee, const TyVarMap &tyVars ) {26 if ( ! adaptee->get_returnVals().empty() && isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) {27 return true;28 } // if29 for ( std::list< DeclarationWithType* >::const_iterator innerArg = adaptee->get_parameters().begin(); innerArg != adaptee->get_parameters().end(); ++innerArg ) {30 if ( isPolyType( (*innerArg)->get_type(), tyVars ) ) {31 return true;32 } // if33 } // for34 return false;35 }36 37 ReferenceToType *isPolyRet( FunctionType *function ) {38 if ( ! function->get_returnVals().empty() ) {39 TyVarMap forallTypes( (TypeDecl::Kind)-1 );40 makeTyVarMap( function, forallTypes );41 return (ReferenceToType*)isPolyType( function->get_returnVals().front()->get_type(), forallTypes );42 } // if43 return 0;44 }45 46 25 namespace { 47 26 /// Checks a parameter list for polymorphic parameters; will substitute according to env if present … … 64 43 return false; 65 44 } 45 46 /// Checks a parameter list for dynamic-layout parameters from tyVars; will substitute according to env if present 47 bool hasDynParams( std::list< Expression* >& params, const TyVarMap &tyVars, const TypeSubstitution *env ) { 48 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { 49 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 50 assert(paramType && "Aggregate parameters should be type expressions"); 51 if ( isDynType( paramType->get_type(), tyVars, env ) ) return true; 52 } 53 return false; 54 } 66 55 } 67 56 … … 101 90 } 102 91 return 0; 92 } 93 94 Type *isDynType( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env ) { 95 type = replaceTypeInst( type, env ); 96 97 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { 98 auto var = tyVars.find( typeInst->get_name() ); 99 if ( var != tyVars.end() && var->second == TypeDecl::Any ) { 100 return type; 101 } 102 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { 103 if ( hasDynParams( structType->get_parameters(), tyVars, env ) ) return type; 104 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { 105 if ( hasDynParams( unionType->get_parameters(), tyVars, env ) ) return type; 106 } 107 return 0; 108 } 109 110 ReferenceToType *isDynRet( FunctionType *function, const TyVarMap &forallTypes ) { 111 if ( function->get_returnVals().empty() ) return 0; 112 113 return (ReferenceToType*)isDynType( function->get_returnVals().front()->get_type(), forallTypes ); 114 } 115 116 ReferenceToType *isDynRet( FunctionType *function ) { 117 if ( function->get_returnVals().empty() ) return 0; 118 119 TyVarMap forallTypes( (TypeDecl::Kind)-1 ); 120 makeTyVarMap( function, forallTypes ); 121 return (ReferenceToType*)isDynType( function->get_returnVals().front()->get_type(), forallTypes ); 122 } 123 124 bool needsAdapter( FunctionType *adaptee, const TyVarMap &tyVars ) { 125 // if ( ! adaptee->get_returnVals().empty() && isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 126 // return true; 127 // } // if 128 if ( isDynRet( adaptee, tyVars ) ) return true; 129 130 for ( std::list< DeclarationWithType* >::const_iterator innerArg = adaptee->get_parameters().begin(); innerArg != adaptee->get_parameters().end(); ++innerArg ) { 131 // if ( isPolyType( (*innerArg)->get_type(), tyVars ) ) { 132 if ( isDynType( (*innerArg)->get_type(), tyVars ) ) { 133 return true; 134 } // if 135 } // for 136 return false; 103 137 } 104 138 -
src/GenPoly/GenPoly.h
re109716 ref42e764 31 31 namespace GenPoly { 32 32 typedef ErasableScopedMap< std::string, TypeDecl::Kind > TyVarMap; 33 34 /// A function needs an adapter if it returns a polymorphic value or if any of its35 /// parameters have polymorphic type36 bool needsAdapter( FunctionType *adaptee, const TyVarMap &tyVarr );37 38 /// true iff function has polymorphic return type39 ReferenceToType *isPolyRet( FunctionType *function );40 33 41 34 /// Replaces a TypeInstType by its referrent in the environment, if applicable … … 47 40 /// returns polymorphic type if is polymorphic type in tyVars, NULL otherwise; will look up substitution in env if provided 48 41 Type *isPolyType( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env = 0 ); 42 43 /// returns dynamic-layout type if is dynamic-layout type in tyVars, NULL otherwise; will look up substitution in env if provided 44 Type *isDynType( Type *type, const TyVarMap &tyVars, const TypeSubstitution *env = 0 ); 45 46 /// true iff function has dynamic-layout return type under the given type variable map 47 ReferenceToType *isDynRet( FunctionType *function, const TyVarMap &tyVars ); 48 49 /// true iff function has dynamic-layout return type under the type variable map generated from its forall-parameters 50 ReferenceToType *isDynRet( FunctionType *function ); 51 52 /// A function needs an adapter if it returns a dynamic-layout value or if any of its parameters have dynamic-layout type 53 bool needsAdapter( FunctionType *adaptee, const TyVarMap &tyVarr ); 49 54 50 55 /// returns polymorphic type if is pointer to polymorphic type, NULL otherwise; will look up substitution in env if provided -
src/GenPoly/InstantiateGeneric.cc
re109716 ref42e764 24 24 #include "GenPoly.h" 25 25 #include "ScopedMap.h" 26 #include "ScopedSet.h" 26 27 27 28 #include "ResolvExpr/typeops.h" … … 122 123 } 123 124 }; 125 126 /// Possible options for a given specialization of a generic type 127 enum class genericType { 128 dtypeStatic, ///< Concrete instantiation based solely on {d,f}type-to-void conversions 129 concrete, ///< Concrete instantiation requiring at least one parameter type 130 dynamic ///< No concrete instantiation 131 }; 132 133 genericType& operator |= ( genericType& gt, const genericType& ht ) { 134 switch ( gt ) { 135 case genericType::dtypeStatic: 136 gt = ht; 137 break; 138 case genericType::concrete: 139 if ( ht == genericType::dynamic ) { gt = genericType::dynamic; } 140 break; 141 case genericType::dynamic: 142 // nothing possible 143 break; 144 } 145 return gt; 146 } 124 147 125 148 /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately … … 127 150 /// Map of (generic type, parameter list) pairs to concrete type instantiations 128 151 InstantiationMap< AggregateDecl, AggregateDecl > instantiations; 152 /// Set of types which are dtype-only generic (and therefore have static layout) 153 ScopedSet< AggregateDecl* > dtypeStatics; 129 154 /// Namer for concrete types 130 155 UniqueName typeNamer; 131 156 132 157 public: 133 GenericInstantiator() : DeclMutator(), instantiations(), typeNamer("_conc_") {}158 GenericInstantiator() : DeclMutator(), instantiations(), dtypeStatics(), typeNamer("_conc_") {} 134 159 135 160 virtual Type* mutate( StructInstType *inst ); … … 147 172 /// Wrap instantiation insertion for unions 148 173 void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); } 174 175 /// Strips a dtype-static aggregate decl of its type parameters, marks it as stripped 176 void stripDtypeParams( AggregateDecl *base, std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs ); 149 177 }; 150 178 … … 154 182 } 155 183 156 //////////////////////////////////////// GenericInstantiator ////////////////////////////////////////////////// 157 158 /// Possible options for a given specialization of a generic type 159 enum class genericType { 160 dtypeStatic, ///< Concrete instantiation based solely on {d,f}type-to-void conversions 161 concrete, ///< Concrete instantiation requiring at least one parameter type 162 dynamic ///< No concrete instantiation 163 }; 164 165 genericType& operator |= ( genericType& gt, const genericType& ht ) { 166 switch ( gt ) { 167 case genericType::dtypeStatic: 168 gt = ht; 169 break; 170 case genericType::concrete: 171 if ( ht == genericType::dynamic ) { gt = genericType::dynamic; } 172 break; 173 case genericType::dynamic: 174 // nothing possible 175 break; 176 } 177 return gt; 178 } 179 180 /// Makes substitutions of params into baseParams; returns true if all parameters substituted for a concrete type 184 /// Makes substitutions of params into baseParams; returns dtypeStatic if there is a concrete instantiation based only on {d,f}type-to-void conversions, 185 /// concrete if there is a concrete instantiation requiring at least one parameter type, and dynamic if there is no concrete instantiation 181 186 genericType makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) { 182 187 genericType gt = genericType::dtypeStatic; … … 223 228 } 224 229 230 /// Substitutes types of members according to baseParams => typeSubs, working in-place 231 void substituteMembers( std::list< Declaration* >& members, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs ) { 232 // substitute types into new members 233 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() ); 234 for ( std::list< Declaration* >::iterator member = members.begin(); member != members.end(); ++member ) { 235 subs.apply(*member); 236 } 237 } 238 239 /// Strips the instances's type parameters 240 void stripInstParams( ReferenceToType *inst ) { 241 deleteAll( inst->get_parameters() ); 242 inst->get_parameters().clear(); 243 } 244 245 void GenericInstantiator::stripDtypeParams( AggregateDecl *base, std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs ) { 246 substituteMembers( base->get_members(), baseParams, typeSubs ); 247 248 deleteAll( baseParams ); 249 baseParams.clear(); 250 251 dtypeStatics.insert( base ); 252 } 253 225 254 Type* GenericInstantiator::mutate( StructInstType *inst ) { 226 255 // mutate subtypes … … 231 260 // exit early if no need for further mutation 232 261 if ( inst->get_parameters().empty() ) return inst; 262 263 // check for an already-instantiatiated dtype-static type 264 if ( dtypeStatics.find( inst->get_baseStruct() ) != dtypeStatics.end() ) { 265 stripInstParams( inst ); 266 return inst; 267 } 268 269 // check if type can be concretely instantiated; put substitutions into typeSubs 233 270 assert( inst->get_baseParameters() && "Base struct has parameters" ); 234 235 // check if type can be concretely instantiated; put substitutions into typeSubs236 271 std::list< TypeExpr* > typeSubs; 237 272 genericType gt = makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ); 238 273 switch ( gt ) { 239 case genericType::dtypeStatic: // TODO strip params off original decl and reuse here 240 case genericType::concrete: 241 { 274 case genericType::dtypeStatic: 275 stripDtypeParams( inst->get_baseStruct(), *inst->get_baseParameters(), typeSubs ); 276 stripInstParams( inst ); 277 break; 278 279 case genericType::concrete: { 242 280 // make concrete instantiation of generic type 243 281 StructDecl *concDecl = lookup( inst, typeSubs ); … … 274 312 // exit early if no need for further mutation 275 313 if ( inst->get_parameters().empty() ) return inst; 314 315 // check for an already-instantiatiated dtype-static type 316 if ( dtypeStatics.find( inst->get_baseUnion() ) != dtypeStatics.end() ) { 317 stripInstParams( inst ); 318 return inst; 319 } 320 321 // check if type can be concretely instantiated; put substitutions into typeSubs 276 322 assert( inst->get_baseParameters() && "Base union has parameters" ); 277 278 // check if type can be concretely instantiated; put substitutions into typeSubs279 323 std::list< TypeExpr* > typeSubs; 280 324 genericType gt = makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ); 281 325 switch ( gt ) { 282 case genericType::dtypeStatic: // TODO strip params off original decls and reuse here 326 case genericType::dtypeStatic: 327 stripDtypeParams( inst->get_baseUnion(), *inst->get_baseParameters(), typeSubs ); 328 stripInstParams( inst ); 329 break; 330 283 331 case genericType::concrete: 284 332 { … … 311 359 DeclMutator::doBeginScope(); 312 360 instantiations.beginScope(); 361 dtypeStatics.beginScope(); 313 362 } 314 363 … … 316 365 DeclMutator::doEndScope(); 317 366 instantiations.endScope(); 367 dtypeStatics.endScope(); 318 368 } 319 369 -
src/GenPoly/ScrubTyVars.cc
re109716 ref42e764 45 45 46 46 Type * ScrubTyVars::mutateAggregateType( Type *ty ) { 47 if ( isPolyType( ty, tyVars) ) {47 if ( shouldScrub( ty ) ) { 48 48 PointerType *ret = new PointerType( Type::Qualifiers(), new VoidType( ty->get_qualifiers() ) ); 49 49 delete ty; … … 63 63 Expression * ScrubTyVars::mutate( SizeofExpr *szeof ) { 64 64 // sizeof( T ) => _sizeof_T parameter, which is the size of T 65 if ( Type * polyType = isPolyType( szeof->get_type() ) ) {66 Expression *expr = new NameExpr( sizeofName( mangleType( polyType ) ) );65 if ( Type *dynType = shouldScrub( szeof->get_type() ) ) { 66 Expression *expr = new NameExpr( sizeofName( mangleType( dynType ) ) ); 67 67 return expr; 68 68 } else { … … 73 73 Expression * ScrubTyVars::mutate( AlignofExpr *algnof ) { 74 74 // alignof( T ) => _alignof_T parameter, which is the alignment of T 75 if ( Type * polyType = isPolyType( algnof->get_type() ) ) {76 Expression *expr = new NameExpr( alignofName( mangleType( polyType ) ) );75 if ( Type *dynType = shouldScrub( algnof->get_type() ) ) { 76 Expression *expr = new NameExpr( alignofName( mangleType( dynType ) ) ); 77 77 return expr; 78 78 } else { … … 82 82 83 83 Type * ScrubTyVars::mutate( PointerType *pointer ) { 84 if ( Type *polyType = isPolyType( pointer->get_base(), tyVars ) ) { 85 Type *ret = polyType->acceptMutator( *this ); 84 // // special case of shouldScrub that takes all TypeInstType pointer bases, even if they're not dynamic 85 // Type *base = pointer->get_base(); 86 // Type *dynType = 0; 87 // if ( dynamicOnly ) { 88 // if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( base ) ) { 89 // if ( tyVars.find( typeInst->get_name() ) != tyVars.end() ) { dynType = typeInst; } 90 // } else { 91 // dynType = isDynType( base, tyVars ); 92 // } 93 // } else { 94 // dynType = isPolyType( base, tyVars ); 95 // } 96 // if ( dynType ) { 97 if ( Type *dynType = shouldScrub( pointer->get_base() ) ) { 98 Type *ret = dynType->acceptMutator( *this ); 86 99 ret->get_qualifiers() += pointer->get_qualifiers(); 87 100 pointer->set_base( 0 ); -
src/GenPoly/ScrubTyVars.h
re109716 ref42e764 27 27 class ScrubTyVars : public Mutator { 28 28 public: 29 ScrubTyVars( const TyVarMap &tyVars ): tyVars( tyVars) {}29 ScrubTyVars( const TyVarMap &tyVars, bool dynamicOnly = false ): tyVars( tyVars ), dynamicOnly( dynamicOnly ) {} 30 30 31 31 /// For all polymorphic types with type variables in `tyVars`, replaces generic types, dtypes, and ftypes with the appropriate void type, … … 33 33 template< typename SynTreeClass > 34 34 static SynTreeClass *scrub( SynTreeClass *target, const TyVarMap &tyVars ); 35 36 /// For all dynamic-layout types with type variables in `tyVars`, replaces generic types, dtypes, and ftypes with the appropriate void type, 37 /// and sizeof/alignof expressions with the proper variable 38 template< typename SynTreeClass > 39 static SynTreeClass *scrubDynamic( SynTreeClass *target, const TyVarMap &tyVars ); 35 40 36 41 virtual Type* mutate( TypeInstType *typeInst ); … … 42 47 43 48 private: 49 /// Returns the type if it should be scrubbed, NULL otherwise. 50 Type* shouldScrub( Type *ty ) { 51 return dynamicOnly ? isDynType( ty, tyVars ) : isPolyType( ty, tyVars ); 52 // if ( ! dynamicOnly ) return isPolyType( ty, tyVars ); 53 // 54 // if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) { 55 // return tyVars.find( typeInst->get_name() ) != tyVars.end() ? ty : 0; 56 // } 57 // 58 // return isDynType( ty, tyVars ); 59 } 60 44 61 /// Mutates (possibly generic) aggregate types appropriately 45 62 Type* mutateAggregateType( Type *ty ); 46 63 47 const TyVarMap &tyVars; 64 const TyVarMap &tyVars; ///< Type variables to scrub 65 bool dynamicOnly; ///< only scrub the types with dynamic layout? [false] 48 66 }; 49 67 50 /* static class method */51 68 template< typename SynTreeClass > 52 69 SynTreeClass * ScrubTyVars::scrub( SynTreeClass *target, const TyVarMap &tyVars ) { 53 70 ScrubTyVars scrubber( tyVars ); 71 return static_cast< SynTreeClass * >( target->acceptMutator( scrubber ) ); 72 } 73 74 template< typename SynTreeClass > 75 SynTreeClass * ScrubTyVars::scrubDynamic( SynTreeClass *target, const TyVarMap &tyVars ) { 76 ScrubTyVars scrubber( tyVars, true ); 54 77 return static_cast< SynTreeClass * >( target->acceptMutator( scrubber ) ); 55 78 } -
src/SymTab/Autogen.cc
re109716 ref42e764 174 174 175 175 void makeStructMemberOp( ObjectDecl * dstParam, Expression * src, DeclarationWithType * field, FunctionDecl * func, TypeSubstitution & genericSubs, bool isDynamicLayout, bool forward = true ) { 176 if ( isDynamicLayout && src ) {177 genericSubs.apply( src );178 }176 // if ( isDynamicLayout && src ) { 177 // genericSubs.apply( src ); 178 // } 179 179 180 180 ObjectDecl * returnVal = NULL;
Note: See TracChangeset
for help on using the changeset viewer.