Changeset eef8dfb for libcfa/src/concurrency
- Timestamp:
- Jan 7, 2021, 2:55:57 PM (5 years ago)
- Branches:
- ADT, arm-eh, ast-experimental, enum, forall-pointer-decay, jacob/cs343-translation, master, new-ast-unique-expr, pthread-emulation, qualifiedEnum
- Children:
- 58fe85a
- Parents:
- bdfc032 (diff), 44e37ef (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)links above to see all the changes relative to each parent. - Location:
- libcfa/src/concurrency
- Files:
-
- 21 added
- 1 deleted
- 19 edited
-
CtxSwitch-arm.S (deleted)
-
CtxSwitch-arm32.S (added)
-
CtxSwitch-arm64.S (added)
-
CtxSwitch-i386.S (modified) (3 diffs)
-
CtxSwitch-x86_64.S (modified) (3 diffs)
-
alarm.cfa (modified) (6 diffs)
-
alarm.hfa (modified) (2 diffs)
-
clib/cfathread.cfa (added)
-
clib/cfathread.h (added)
-
coroutine.cfa (modified) (13 diffs)
-
coroutine.hfa (modified) (10 diffs)
-
exception.cfa (added)
-
exception.hfa (added)
-
future.hfa (added)
-
invoke.c (modified) (10 diffs)
-
invoke.h (modified) (12 diffs)
-
io.cfa (added)
-
io/call.cfa.in (added)
-
io/setup.cfa (added)
-
io/types.hfa (added)
-
iofwd.hfa (added)
-
kernel.cfa (modified) (13 diffs)
-
kernel.hfa (modified) (11 diffs)
-
kernel/fwd.hfa (added)
-
kernel/startup.cfa (added)
-
kernel_private.hfa (modified) (4 diffs)
-
locks.cfa (added)
-
locks.hfa (added)
-
monitor.cfa (modified) (41 diffs)
-
monitor.hfa (modified) (7 diffs)
-
mutex.cfa (modified) (10 diffs)
-
mutex.hfa (modified) (3 diffs)
-
preemption.cfa (modified) (22 diffs)
-
preemption.hfa (modified) (1 diff)
-
ready_queue.cfa (added)
-
ready_subqueue.hfa (added)
-
snzi.hfa (added)
-
stats.cfa (added)
-
stats.hfa (added)
-
thread.cfa (modified) (4 diffs)
-
thread.hfa (modified) (3 diffs)
Legend:
- Unmodified
- Added
- Removed
-
libcfa/src/concurrency/CtxSwitch-i386.S
rbdfc032 reef8dfb 10 10 // Created On : Tue Dec 6 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jul 21 22:29:25 2017 13 // Update Count : 1 14 // 15 // This library is free software; you can redistribute it and/or modify it 16 // under the terms of the GNU Lesser General Public License as published by the 17 // Free Software Foundation; either version 2.1 of the License, or (at your 18 // option) any later version. 19 // 20 // This library is distributed in the hope that it will be useful, but WITHOUT 21 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 22 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License 23 // for more details. 24 // 25 // You should have received a copy of the GNU Lesser General Public License 26 // along with this library. 12 // Last Modified On : Sun Sep 6 18:23:37 2020 13 // Update Count : 5 27 14 // 28 15 29 // This context switch routine depends on the fact that the stack of a new 30 // thread has been set up to look like the thread has saved its context in 31 // the normal manner. 32 // 33 // void CtxSwitch( machine_context *from, machine_context *to ); 16 // The context switch routine requires the initial the stack of a thread to 17 // look like the thread has saved its context in the normal manner. 34 18 35 // Offsets in the context structure. This needs to be synchronized with the 36 // high level code a little better. 19 // Offsets must synchronized with the __stack_context_t in invoke.h. 37 20 38 21 #define PTR_BYTE 4 39 22 #define SP_OFFSET ( 0 * PTR_BYTE ) 40 23 #define FP_OFFSET ( 1 * PTR_BYTE ) 41 #define PC_OFFSET ( 2 * PTR_BYTE )42 24 25 // Context switch between coroutines/tasks. 26 // void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) ; 27 // Arguments "from" in register 4(%esp), "to" in register 20(%esp) 28 29 .file "CtxSwitch-i386.S" 43 30 .text 44 31 .align 2 45 .glob l CtxSwitch46 .type CtxSwitch, @function47 CtxSwitch:32 .global __cfactx_switch 33 .type __cfactx_switch, @function 34 __cfactx_switch: 48 35 49 36 // Copy the "from" context argument from the stack to register eax 50 // Return address is at 0(%esp), with parameters following 37 // Return address is at 0(%esp), with parameters following. 51 38 52 39 movl 4(%esp),%eax … … 63 50 movl %ebp,FP_OFFSET(%eax) 64 51 65 // Copy the "to" context argument from the stack to register eax 66 // Having pushed three words (= 12 bytes) on the stack, the67 // argument is now at 8 + 12 = 20(%esp)52 // Copy the "to" context argument from the stack to register eax. Having 53 // pushed 3 words (= 12 bytes) on the stack, the argument is now at 54 // 8 + 12 = 20(%esp). 68 55 69 56 movl 20(%esp),%eax … … 83 70 84 71 ret 85 .size CtxSwitch, .-CtxSwitch72 .size __cfactx_switch, .-__cfactx_switch 86 73 87 74 // Local Variables: // -
libcfa/src/concurrency/CtxSwitch-x86_64.S
rbdfc032 reef8dfb 7 7 // CtxSwitch-x86_64.S -- 8 8 // 9 // Author : Thierry Delisle10 // Created On : Mon Nov 28 12:27:26 20169 // Author : Peter A. Buhr 10 // Created On : Mon Aug 10 08:10:26 2020 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jul 21 22:28:11 2017 13 // Update Count : 1 14 // 15 // This library is free software; you can redistribute it and/or modify it 16 // under the terms of the GNU Lesser General Public License as published by the 17 // Free Software Foundation; either version 2.1 of the License, or (at your 18 // option) any later version. 19 // 20 // This library is distributed in the hope that it will be useful, but WITHOUT 21 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 22 // FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License 23 // for more details. 24 // 25 // You should have received a copy of the GNU Lesser General Public License 26 // along with this library. 12 // Last Modified On : Sat Oct 24 14:36:25 2020 13 // Update Count : 10 27 14 // 28 15 29 // This context switch routine depends on the fact that the stack of a new 30 // thread has been set up to look like the thread has saved its context in 31 // the normal manner. 32 // 33 // void CtxSwitch( machine_context *from, machine_context *to ); 16 // The context switch routine requires the initial the stack of a thread to 17 // look like the thread has saved its context in the normal manner. 34 18 35 // Offsets in the context structure. This needs to be synchronized with the 36 // high level code a little better. 19 // Offsets must synchronized with the __stack_context_t in invoke.h. 37 20 38 21 #define PTR_BYTE 8 … … 40 23 #define FP_OFFSET ( 1 * PTR_BYTE ) 41 24 42 //----------------------------------------------------------------------------- 43 // Regular context switch routine which enables switching from one context to anouther 25 // Context switch between coroutines/tasks. 26 // void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) ; 27 // Arguments "from" in register rdi, "to" in register rsi. 28 29 .file "CtxSwitch-x86_64.S" 44 30 .text 45 31 .align 2 46 .glob l CtxSwitch47 .type CtxSwitch, @function48 CtxSwitch:32 .global __cfactx_switch 33 .type __cfactx_switch, @function 34 __cfactx_switch: 49 35 50 36 // Save volatile registers on the stack. … … 77 63 78 64 ret 79 .size CtxSwitch, .-CtxSwitch65 .size __cfactx_switch, .-__cfactx_switch 80 66 81 //----------------------------------------------------------------------------- 82 // Stub used to create new stacks which are ready to be context switched to 67 // Stub to create new stacks which can be context switched to 68 // void __cfactx_invoke_stub( void ); 69 83 70 .text 84 71 .align 2 85 .glob l CtxInvokeStub86 .type CtxInvokeStub, @function87 CtxInvokeStub:88 movq %rbx, %rdi 72 .global __cfactx_invoke_stub 73 .type __cfactx_invoke_stub, @function 74 __cfactx_invoke_stub: 75 movq %rbx, %rdi // move main and this to first two arguments 89 76 movq %r12, %rsi 90 jmp *%r13 91 .size CtxInvokeStub, .-CtxInvokeStub77 jmp *%r13 // jmp to invoke 78 .size __cfactx_invoke_stub, .-__cfactx_invoke_stub 92 79 93 80 // Local Variables: // 94 // mode: c//81 // mode: asm // 95 82 // tab-width: 4 // 96 83 // End: // -
libcfa/src/concurrency/alarm.cfa
rbdfc032 reef8dfb 10 10 // Created On : Fri Jun 2 11:31:25 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Jan 5 08:41:36202013 // Update Count : 6912 // Last Modified On : Wed Jun 17 16:11:35 2020 13 // Update Count : 75 14 14 // 15 15 16 16 #define __cforall_thread__ 17 17 18 extern "C" {19 18 #include <errno.h> 20 19 #include <stdio.h> 20 #include <unistd.h> 21 21 #include <string.h> 22 #include <unistd.h>23 22 #include <sys/time.h> 24 }25 23 26 24 #include "alarm.hfa" 27 #include "kernel _private.hfa"25 #include "kernel/fwd.hfa" 28 26 #include "preemption.hfa" 29 27 … … 47 45 //============================================================================================= 48 46 49 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period) with( this ) {47 void ?{}( alarm_node_t & this, $thread * thrd, Time alarm, Duration period) with( this ) { 50 48 this.thrd = thrd; 51 49 this.alarm = alarm; 52 50 this.period = period; 53 next = 0;54 51 set = false; 55 kernel_alarm = false;52 type = User; 56 53 } 57 54 58 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ) with( this ) {55 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ) with( this ) { 59 56 this.proc = proc; 60 57 this.alarm = alarm; 61 58 this.period = period; 62 next = 0;63 59 set = false; 64 kernel_alarm = true; 60 type = Kernel; 61 } 62 void ?{}( alarm_node_t & this, Alarm_Callback callback, Time alarm, Duration period ) with( this ) { 63 this.alarm = alarm; 64 this.period = period; 65 this.callback = callback; 66 set = false; 67 type = Callback; 65 68 } 66 69 … … 71 74 } 72 75 73 #if !defined(NDEBUG) && (defined(__CFA_DEBUG__) || defined(__CFA_VERIFY__)) 74 bool validate( alarm_list_t * this ) { 75 alarm_node_t ** it = &this->head; 76 while( (*it) ) { 77 it = &(*it)->next; 76 void insert( alarm_list_t * this, alarm_node_t * n ) { 77 alarm_node_t * it = & (*this)`first; 78 while( it && (n->alarm > it->alarm) ) { 79 it = & (*it)`next; 80 } 81 if ( it ) { 82 insert_before( *it, *n ); 83 } else { 84 insert_last(*this, *n); 78 85 } 79 86 80 return it == this->tail; 81 } 82 #endif 83 84 static inline void insert_at( alarm_list_t * this, alarm_node_t * n, __alarm_it_t p ) { 85 verify( !n->next ); 86 if( p == this->tail ) { 87 this->tail = &n->next; 88 } 89 else { 90 n->next = *p; 91 } 92 *p = n; 93 94 verify( validate( this ) ); 95 } 96 97 void insert( alarm_list_t * this, alarm_node_t * n ) { 98 alarm_node_t ** it = &this->head; 99 while( (*it) && (n->alarm > (*it)->alarm) ) { 100 it = &(*it)->next; 101 } 102 103 insert_at( this, n, it ); 104 105 verify( validate( this ) ); 87 verify( validate( *this ) ); 106 88 } 107 89 108 90 alarm_node_t * pop( alarm_list_t * this ) { 109 alarm_node_t * head = this->head; 91 verify( validate( *this ) ); 92 alarm_node_t * head = & (*this)`first; 110 93 if( head ) { 111 this->head = head->next; 112 if( !head->next ) { 113 this->tail = &this->head; 114 } 115 head->next = 0p; 94 remove(*head); 116 95 } 117 verify( validate( this ) );96 verify( validate( *this ) ); 118 97 return head; 119 98 } 120 99 121 static inline void remove_at( alarm_list_t * this, alarm_node_t * n, __alarm_it_t it ) {122 verify( it );123 verify( (*it) == n );124 125 (*it) = n->next;126 if( !n-> next ) {127 this->tail = it;128 }129 n->next = 0p;130 131 verify( validate( this ) );132 }133 134 static inline void remove( alarm_list_t * this, alarm_node_t * n ) {135 alarm_node_t ** it = &this->head;136 while( (*it) && (*it) != n ) {137 it = &(*it)->next;138 }139 140 verify( validate( this ) );141 142 if( *it ) { remove_at( this, n, it ); }143 144 verify( validate( this ) );145 }146 147 100 void register_self( alarm_node_t * this ) { 148 alarm_list_t * alarms = &event_kernel->alarms;101 alarm_list_t & alarms = event_kernel->alarms; 149 102 150 103 disable_interrupts(); … … 152 105 { 153 106 verify( validate( alarms ) ); 154 bool first = ! alarms->head;107 bool first = ! & alarms`first; 155 108 156 insert( alarms, this );109 insert( &alarms, this ); 157 110 if( first ) { 158 __kernel_set_timer( alarms ->head->alarm - __kernel_get_time() );111 __kernel_set_timer( alarms`first.alarm - __kernel_get_time() ); 159 112 } 160 113 } … … 168 121 lock( event_kernel->lock __cfaabi_dbg_ctx2 ); 169 122 { 170 verify( validate( &event_kernel->alarms ) );171 remove( &event_kernel->alarms,this );123 verify( validate( event_kernel->alarms ) ); 124 remove( *this ); 172 125 } 173 126 unlock( event_kernel->lock ); … … 176 129 } 177 130 131 //============================================================================================= 132 // Utilities 133 //============================================================================================= 134 135 void sleep( Duration duration ) { 136 alarm_node_t node = { active_thread(), __kernel_get_time() + duration, 0`s }; 137 138 register_self( &node ); 139 park(); 140 141 /* paranoid */ verify( !node.set ); 142 /* paranoid */ verify( & node`next == 0p ); 143 /* paranoid */ verify( & node`prev == 0p ); 144 } 145 178 146 // Local Variables: // 179 147 // mode: c // -
libcfa/src/concurrency/alarm.hfa
rbdfc032 reef8dfb 23 23 #include "time.hfa" 24 24 25 struct thread_desc; 25 #include "containers/list.hfa" 26 27 struct $thread; 26 28 struct processor; 27 29 … … 37 39 //============================================================================================= 38 40 41 enum alarm_type{ Kernel = 0, User = 1, Callback = 2 }; 42 43 struct alarm_node_t; 44 45 typedef void (*Alarm_Callback)(alarm_node_t & ); 46 39 47 struct alarm_node_t { 40 48 Time alarm; // time when alarm goes off 41 49 Duration period; // if > 0 => period of alarm 42 alarm_node_t * next; // intrusive link list field 50 51 DLISTED_MGD_IMPL_IN(alarm_node_t) 43 52 44 53 union { 45 thread_desc * thrd; // thrd who created event 46 processor * proc; // proc who created event 54 $thread * thrd; // thrd who created event 55 processor * proc; // proc who created event 56 Alarm_Callback callback; // callback to handle event 47 57 }; 48 58 49 59 bool set :1; // whether or not the alarm has be registered 50 bool kernel_alarm :1; // true if this is not a user defined alarm60 enum alarm_type type; // true if this is not a user defined alarm 51 61 }; 62 DLISTED_MGD_IMPL_OUT(alarm_node_t) 52 63 53 typedef alarm_node_t ** __alarm_it_t; 54 55 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period ); 64 void ?{}( alarm_node_t & this, $thread * thrd, Time alarm, Duration period ); 56 65 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ); 66 void ?{}( alarm_node_t & this, Alarm_Callback callback, Time alarm, Duration period ); 57 67 void ^?{}( alarm_node_t & this ); 58 68 59 struct alarm_list_t { 60 alarm_node_t * head; 61 __alarm_it_t tail; 62 }; 63 64 static inline void ?{}( alarm_list_t & this ) with( this ) { 65 head = 0; 66 tail = &head; 67 } 69 typedef dlist(alarm_node_t, alarm_node_t) alarm_list_t; 68 70 69 71 void insert( alarm_list_t * this, alarm_node_t * n ); -
libcfa/src/concurrency/coroutine.cfa
rbdfc032 reef8dfb 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T hu Dec 5 14:37:29 201913 // Update Count : 1512 // Last Modified On : Tue Dec 15 12:06:04 2020 13 // Update Count : 23 14 14 // 15 15 … … 18 18 #include "coroutine.hfa" 19 19 20 extern "C" {21 20 #include <stddef.h> 22 21 #include <malloc.h> … … 24 23 #include <string.h> 25 24 #include <unistd.h> 26 // use this define to make unwind.h play nice, definetely a hack 27 #define HIDE_EXPORTS 25 #include <sys/mman.h> // mprotect 28 26 #include <unwind.h> 29 #undef HIDE_EXPORTS30 #include <sys/mman.h>31 }32 27 33 28 #include "kernel_private.hfa" 29 #include "exception.hfa" 30 #include "math.hfa" 31 32 #define CFA_COROUTINE_USE_MMAP 0 34 33 35 34 #define __CFA_INVOKE_PRIVATE__ … … 37 36 38 37 extern "C" { 39 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc*) __attribute__ ((__noreturn__));38 void _CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct $coroutine *) __attribute__ ((__noreturn__)); 40 39 static void _CtxCoroutine_UnwindCleanup(_Unwind_Reason_Code, struct _Unwind_Exception *) __attribute__ ((__noreturn__)); 41 40 static void _CtxCoroutine_UnwindCleanup(_Unwind_Reason_Code, struct _Unwind_Exception *) { … … 47 46 48 47 //----------------------------------------------------------------------------- 48 FORALL_DATA_INSTANCE(CoroutineCancelled, (dtype coroutine_t), (coroutine_t)) 49 50 forall(dtype T) 51 void mark_exception(CoroutineCancelled(T) *) {} 52 53 forall(dtype T) 54 void copy(CoroutineCancelled(T) * dst, CoroutineCancelled(T) * src) { 55 dst->virtual_table = src->virtual_table; 56 dst->the_coroutine = src->the_coroutine; 57 dst->the_exception = src->the_exception; 58 } 59 60 forall(dtype T) 61 const char * msg(CoroutineCancelled(T) *) { 62 return "CoroutineCancelled(...)"; 63 } 64 65 // This code should not be inlined. It is the error path on resume. 66 forall(dtype T | is_coroutine(T)) 67 void __cfaehm_cancelled_coroutine( T & cor, $coroutine * desc ) { 68 verify( desc->cancellation ); 69 desc->state = Cancelled; 70 exception_t * except = __cfaehm_cancellation_exception( desc->cancellation ); 71 72 // TODO: Remove explitate vtable set once trac#186 is fixed. 73 CoroutineCancelled(T) except; 74 except.virtual_table = &get_exception_vtable(&except); 75 except.the_coroutine = &cor; 76 except.the_exception = except; 77 throwResume except; 78 79 except->virtual_table->free( except ); 80 free( desc->cancellation ); 81 desc->cancellation = 0p; 82 } 83 84 //----------------------------------------------------------------------------- 49 85 // Global state variables 50 86 51 87 // minimum feasible stack size in bytes 52 #define MinStackSize 1000 88 static const size_t MinStackSize = 1000; 53 89 extern size_t __page_size; // architecture pagesize HACK, should go in proper runtime singleton 90 extern int __map_prot; 54 91 55 92 void __stack_prepare( __stack_info_t * this, size_t create_size ); 93 void __stack_clean ( __stack_info_t * this ); 56 94 57 95 //----------------------------------------------------------------------------- … … 74 112 bool userStack = ((intptr_t)this.storage & 0x1) != 0; 75 113 if ( ! userStack && this.storage ) { 76 __attribute__((may_alias)) intptr_t * istorage = (intptr_t *)&this.storage; 77 *istorage &= (intptr_t)-1; 78 79 void * storage = this.storage->limit; 80 __cfaabi_dbg_debug_do( 81 storage = (char*)(storage) - __page_size; 82 if ( mprotect( storage, __page_size, PROT_READ | PROT_WRITE ) == -1 ) { 83 abort( "(coStack_t *)%p.^?{}() : internal error, mprotect failure, error(%d) %s.", &this, errno, strerror( errno ) ); 84 } 85 ); 86 __cfaabi_dbg_print_safe("Kernel : Deleting stack %p\n", storage); 87 free( storage ); 88 } 89 } 90 91 void ?{}( coroutine_desc & this, const char * name, void * storage, size_t storageSize ) with( this ) { 114 __stack_clean( &this ); 115 } 116 } 117 118 void ?{}( $coroutine & this, const char name[], void * storage, size_t storageSize ) with( this ) { 92 119 (this.context){0p, 0p}; 93 120 (this.stack){storage, storageSize}; … … 99 126 } 100 127 101 void ^?{}( coroutine_desc& this) {128 void ^?{}($coroutine& this) { 102 129 if(this.state != Halted && this.state != Start && this.state != Primed) { 103 coroutine_desc * src = TL_GET( this_thread )->curr_cor;104 coroutine_desc* dst = &this;130 $coroutine * src = active_coroutine(); 131 $coroutine * dst = &this; 105 132 106 133 struct _Unwind_Exception storage; … … 115 142 } 116 143 117 CoroutineCtxSwitch( src, dst );144 $ctx_switch( src, dst ); 118 145 } 119 146 } … … 123 150 forall(dtype T | is_coroutine(T)) 124 151 void prime(T& cor) { 125 coroutine_desc* this = get_coroutine(cor);152 $coroutine* this = get_coroutine(cor); 126 153 assert(this->state == Start); 127 154 … … 134 161 assert(__page_size != 0l); 135 162 size_t size = libCeiling( storageSize, 16 ) + stack_data_size; 163 size = ceiling(size, __page_size); 136 164 137 165 // If we are running debug, we also need to allocate a guardpage to catch stack overflows. 138 166 void * storage; 139 __cfaabi_dbg_debug_do( 140 storage = memalign( __page_size, size + __page_size ); 141 ); 142 __cfaabi_dbg_no_debug_do( 143 storage = (void*)malloc(size); 144 ); 145 167 #if CFA_COROUTINE_USE_MMAP 168 storage = mmap(0p, size + __page_size, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0); 169 if(storage == ((void*)-1)) { 170 abort( "coroutine stack creation : internal error, mmap failure, error(%d) %s.", errno, strerror( errno ) ); 171 } 172 if ( mprotect( storage, __page_size, PROT_NONE ) == -1 ) { 173 abort( "coroutine stack creation : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) ); 174 } // if 175 storage = (void *)(((intptr_t)storage) + __page_size); 176 #else 177 __cfaabi_dbg_debug_do( 178 storage = memalign( __page_size, size + __page_size ); 179 ); 180 __cfaabi_dbg_no_debug_do( 181 storage = (void*)malloc(size); 182 ); 183 184 __cfaabi_dbg_debug_do( 185 if ( mprotect( storage, __page_size, PROT_NONE ) == -1 ) { 186 abort( "__stack_alloc : internal error, mprotect failure, error(%d) %s.", (int)errno, strerror( (int)errno ) ); 187 } 188 storage = (void *)(((intptr_t)storage) + __page_size); 189 ); 190 #endif 146 191 __cfaabi_dbg_print_safe("Kernel : Created stack %p of size %zu\n", storage, size); 147 __cfaabi_dbg_debug_do(148 if ( mprotect( storage, __page_size, PROT_NONE ) == -1 ) {149 abort( "__stack_alloc : internal error, mprotect failure, error(%d) %s.", (int)errno, strerror( (int)errno ) );150 }151 storage = (void *)(((intptr_t)storage) + __page_size);152 );153 192 154 193 verify( ((intptr_t)storage & (libAlign() - 1)) == 0ul ); 155 194 return [storage, size]; 195 } 196 197 void __stack_clean ( __stack_info_t * this ) { 198 size_t size = ((intptr_t)this->storage->base) - ((intptr_t)this->storage->limit) + sizeof(__stack_t); 199 void * storage = this->storage->limit; 200 201 #if CFA_COROUTINE_USE_MMAP 202 storage = (void *)(((intptr_t)storage) - __page_size); 203 if(munmap(storage, size + __page_size) == -1) { 204 abort( "coroutine stack destruction : internal error, munmap failure, error(%d) %s.", errno, strerror( errno ) ); 205 } 206 #else 207 __cfaabi_dbg_debug_do( 208 storage = (char*)(storage) - __page_size; 209 if ( mprotect( storage, __page_size, __map_prot ) == -1 ) { 210 abort( "(coStack_t *)%p.^?{}() : internal error, mprotect failure, error(%d) %s.", &this, errno, strerror( errno ) ); 211 } 212 ); 213 214 free( storage ); 215 #endif 216 __cfaabi_dbg_print_safe("Kernel : Deleting stack %p\n", storage); 156 217 } 157 218 … … 175 236 size = libFloor(create_size - stack_data_size - diff, libAlign()); 176 237 } // if 177 assertf( size >= MinStackSize, "Stack size %zd provides less than minimum of % d bytes for a stack.", size, MinStackSize );178 179 this->storage = (__stack_t *)((intptr_t)storage + size );238 assertf( size >= MinStackSize, "Stack size %zd provides less than minimum of %zd bytes for a stack.", size, MinStackSize ); 239 240 this->storage = (__stack_t *)((intptr_t)storage + size - sizeof(__stack_t)); 180 241 this->storage->limit = storage; 181 this->storage->base = (void*)((intptr_t)storage + size); 242 this->storage->base = (void*)((intptr_t)storage + size - sizeof(__stack_t)); 243 this->storage->exception_context.top_resume = 0p; 244 this->storage->exception_context.current_exception = 0p; 182 245 __attribute__((may_alias)) intptr_t * istorage = (intptr_t*)&this->storage; 183 246 *istorage |= userStack ? 0x1 : 0x0; … … 187 250 // is not inline (We can't inline Cforall in C) 188 251 extern "C" { 189 void __ leave_coroutine( struct coroutine_desc* src ) {190 coroutine_desc* starter = src->cancellation != 0 ? src->last : src->starter;252 void __cfactx_cor_leave( struct $coroutine * src ) { 253 $coroutine * starter = src->cancellation != 0 ? src->last : src->starter; 191 254 192 255 src->state = Halted; … … 201 264 src->name, src, starter->name, starter ); 202 265 203 CoroutineCtxSwitch( src, starter );204 } 205 206 struct coroutine_desc * __finish_coroutine(void) {207 struct coroutine_desc * cor = kernelTLS.this_thread->curr_cor;266 $ctx_switch( src, starter ); 267 } 268 269 struct $coroutine * __cfactx_cor_finish(void) { 270 struct $coroutine * cor = active_coroutine(); 208 271 209 272 if(cor->state == Primed) { 210 suspend();273 __cfactx_suspend(); 211 274 } 212 275 -
libcfa/src/concurrency/coroutine.hfa
rbdfc032 reef8dfb 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Dec 3 22:47:58 201913 // Update Count : 1 012 // Last Modified On : Tue Feb 4 12:29:26 2020 13 // Update Count : 11 14 14 // 15 15 … … 18 18 #include <assert.h> 19 19 #include "invoke.h" 20 #include "../exception.hfa" 21 22 //----------------------------------------------------------------------------- 23 // Exception thrown from resume when a coroutine stack is cancelled. 24 FORALL_DATA_EXCEPTION(CoroutineCancelled, (dtype coroutine_t), (coroutine_t)) ( 25 coroutine_t * the_coroutine; 26 exception_t * the_exception; 27 ); 28 29 forall(dtype T) 30 void copy(CoroutineCancelled(T) * dst, CoroutineCancelled(T) * src); 31 32 forall(dtype T) 33 const char * msg(CoroutineCancelled(T) *); 20 34 21 35 //----------------------------------------------------------------------------- … … 23 37 // Anything that implements this trait can be resumed. 24 38 // Anything that is resumed is a coroutine. 25 trait is_coroutine(dtype T ) {26 void main(T & this);27 coroutine_desc* get_coroutine(T & this);39 trait is_coroutine(dtype T | IS_RESUMPTION_EXCEPTION(CoroutineCancelled, (T))) { 40 void main(T & this); 41 $coroutine * get_coroutine(T & this); 28 42 }; 29 43 30 #define DECL_COROUTINE(X) static inline coroutine_desc* get_coroutine(X& this) { return &this.__cor; } void main(X& this)44 #define DECL_COROUTINE(X) static inline $coroutine* get_coroutine(X& this) { return &this.__cor; } void main(X& this) 31 45 32 46 //----------------------------------------------------------------------------- … … 35 49 // void ^?{}( coStack_t & this ); 36 50 37 void ?{}( coroutine_desc & this, const char * name, void * storage, size_t storageSize );38 void ^?{}( coroutine_desc& this );51 void ?{}( $coroutine & this, const char name[], void * storage, size_t storageSize ); 52 void ^?{}( $coroutine & this ); 39 53 40 static inline void ?{}( coroutine_desc& this) { this{ "Anonymous Coroutine", 0p, 0 }; }41 static inline void ?{}( coroutine_desc& this, size_t stackSize) { this{ "Anonymous Coroutine", 0p, stackSize }; }42 static inline void ?{}( coroutine_desc& this, void * storage, size_t storageSize ) { this{ "Anonymous Coroutine", storage, storageSize }; }43 static inline void ?{}( coroutine_desc & this, const char * name) { this{ name, 0p, 0 }; }44 static inline void ?{}( coroutine_desc & this, const char * name, size_t stackSize ) { this{ name, 0p, stackSize }; }54 static inline void ?{}( $coroutine & this) { this{ "Anonymous Coroutine", 0p, 0 }; } 55 static inline void ?{}( $coroutine & this, size_t stackSize) { this{ "Anonymous Coroutine", 0p, stackSize }; } 56 static inline void ?{}( $coroutine & this, void * storage, size_t storageSize ) { this{ "Anonymous Coroutine", storage, storageSize }; } 57 static inline void ?{}( $coroutine & this, const char name[]) { this{ name, 0p, 0 }; } 58 static inline void ?{}( $coroutine & this, const char name[], size_t stackSize ) { this{ name, 0p, stackSize }; } 45 59 46 60 //----------------------------------------------------------------------------- 47 61 // Public coroutine API 48 static inline void suspend(void);49 50 forall(dtype T | is_coroutine(T))51 static inline T & resume(T & cor);52 53 62 forall(dtype T | is_coroutine(T)) 54 63 void prime(T & cor); 55 64 56 static inline struct coroutine_desc * active_coroutine() { return TL_GET( this_thread)->curr_cor; }65 static inline struct $coroutine * active_coroutine() { return active_thread()->curr_cor; } 57 66 58 67 //----------------------------------------------------------------------------- … … 61 70 // Start coroutine routines 62 71 extern "C" { 63 void CtxInvokeCoroutine(void (*main)(void *), void * this);72 void __cfactx_invoke_coroutine(void (*main)(void *), void * this); 64 73 65 74 forall(dtype T) 66 void CtxStart(void (*main)(T &), struct coroutine_desc* cor, T & this, void (*invoke)(void (*main)(void *), void *));75 void __cfactx_start(void (*main)(T &), struct $coroutine * cor, T & this, void (*invoke)(void (*main)(void *), void *)); 67 76 68 extern void _ CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc*) __attribute__ ((__noreturn__));77 extern void __cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine *) __attribute__ ((__noreturn__)); 69 78 70 extern void CtxSwitch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("CtxSwitch");79 extern void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("__cfactx_switch"); 71 80 } 72 81 73 82 // Private wrappers for context switch and stack creation 74 83 // Wrapper for co 75 static inline void CoroutineCtxSwitch(coroutine_desc* src, coroutine_desc* dst) {84 static inline void $ctx_switch( $coroutine * src, $coroutine * dst ) __attribute__((nonnull (1, 2))) { 76 85 // set state of current coroutine to inactive 77 src->state = src->state == Halted ? Halted : Inactive;86 src->state = src->state == Halted ? Halted : Blocked; 78 87 79 88 // set new coroutine that task is executing 80 TL_GET( this_thread)->curr_cor = dst;89 active_thread()->curr_cor = dst; 81 90 82 91 // context switch to specified coroutine 83 92 verify( dst->context.SP ); 84 CtxSwitch( &src->context, &dst->context );85 // when CtxSwitch returns we are back in the src coroutine93 __cfactx_switch( &src->context, &dst->context ); 94 // when __cfactx_switch returns we are back in the src coroutine 86 95 87 96 // set state of new coroutine to active … … 89 98 90 99 if( unlikely(src->cancellation != 0p) ) { 91 _ CtxCoroutine_Unwind(src->cancellation, src);100 __cfactx_coroutine_unwind(src->cancellation, src); 92 101 } 93 102 } 94 103 95 extern void __stack_prepare ( __stack_info_t * this, size_t size /* ignored if storage already allocated */); 104 extern void __stack_prepare( __stack_info_t * this, size_t size /* ignored if storage already allocated */); 105 extern void __stack_clean ( __stack_info_t * this ); 106 96 107 97 108 // Suspend implementation inlined for performance 98 static inline void suspend(void) { 99 // optimization : read TLS once and reuse it 100 // Safety note: this is preemption safe since if 101 // preemption occurs after this line, the pointer 102 // will also migrate which means this value will 103 // stay in syn with the TLS 104 coroutine_desc * src = TL_GET( this_thread )->curr_cor; 109 extern "C" { 110 static inline void __cfactx_suspend(void) { 111 // optimization : read TLS once and reuse it 112 // Safety note: this is preemption safe since if 113 // preemption occurs after this line, the pointer 114 // will also migrate which means this value will 115 // stay in syn with the TLS 116 $coroutine * src = active_coroutine(); 105 117 106 assertf( src->last != 0,107 "Attempt to suspend coroutine \"%.256s\" (%p) that has never been resumed.\n"108 "Possible cause is a suspend executed in a member called by a coroutine user rather than by the coroutine main.",109 src->name, src );110 assertf( src->last->state != Halted,111 "Attempt by coroutine \"%.256s\" (%p) to suspend back to terminated coroutine \"%.256s\" (%p).\n"112 "Possible cause is terminated coroutine's main routine has already returned.",113 src->name, src, src->last->name, src->last );118 assertf( src->last != 0, 119 "Attempt to suspend coroutine \"%.256s\" (%p) that has never been resumed.\n" 120 "Possible cause is a suspend executed in a member called by a coroutine user rather than by the coroutine main.", 121 src->name, src ); 122 assertf( src->last->state != Halted, 123 "Attempt by coroutine \"%.256s\" (%p) to suspend back to terminated coroutine \"%.256s\" (%p).\n" 124 "Possible cause is terminated coroutine's main routine has already returned.", 125 src->name, src, src->last->name, src->last ); 114 126 115 CoroutineCtxSwitch( src, src->last ); 127 $ctx_switch( src, src->last ); 128 } 116 129 } 130 131 forall(dtype T | is_coroutine(T)) 132 void __cfaehm_cancelled_coroutine( T & cor, $coroutine * desc ); 117 133 118 134 // Resume implementation inlined for performance … … 124 140 // will also migrate which means this value will 125 141 // stay in syn with the TLS 126 coroutine_desc * src = TL_GET( this_thread )->curr_cor;127 coroutine_desc* dst = get_coroutine(cor);142 $coroutine * src = active_coroutine(); 143 $coroutine * dst = get_coroutine(cor); 128 144 129 145 if( unlikely(dst->context.SP == 0p) ) { 130 TL_GET( this_thread )->curr_cor = dst;131 146 __stack_prepare(&dst->stack, 65000); 132 CtxStart(main, dst, cor, CtxInvokeCoroutine); 133 TL_GET( this_thread )->curr_cor = src; 147 __cfactx_start(main, dst, cor, __cfactx_invoke_coroutine); 134 148 } 135 149 … … 147 161 148 162 // always done for performance testing 149 CoroutineCtxSwitch( src, dst ); 163 $ctx_switch( src, dst ); 164 if ( unlikely(dst->cancellation) ) { 165 __cfaehm_cancelled_coroutine( cor, dst ); 166 } 150 167 151 168 return cor; 152 169 } 153 170 154 static inline void resume( coroutine_desc * dst) {171 static inline void resume( $coroutine * dst ) __attribute__((nonnull (1))) { 155 172 // optimization : read TLS once and reuse it 156 173 // Safety note: this is preemption safe since if … … 158 175 // will also migrate which means this value will 159 176 // stay in syn with the TLS 160 coroutine_desc * src = TL_GET( this_thread )->curr_cor;177 $coroutine * src = active_coroutine(); 161 178 162 179 // not resuming self ? … … 172 189 173 190 // always done for performance testing 174 CoroutineCtxSwitch( src, dst );191 $ctx_switch( src, dst ); 175 192 } 176 193 -
libcfa/src/concurrency/invoke.c
rbdfc032 reef8dfb 10 10 // Created On : Tue Jan 17 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 9 16:37:42 201813 // Update Count : 512 // Last Modified On : Sat Oct 24 14:35:28 2020 13 // Update Count : 32 14 14 // 15 15 … … 29 29 // Called from the kernel when starting a coroutine or task so must switch back to user mode. 30 30 31 extern void __leave_coroutine ( struct coroutine_desc * ); 32 extern struct coroutine_desc * __finish_coroutine(void); 33 extern void __leave_thread_monitor(); 31 extern struct $coroutine * __cfactx_cor_finish(void); 32 extern void __cfactx_cor_leave ( struct $coroutine * ); 33 extern void __cfactx_thrd_leave(); 34 34 35 extern void disable_interrupts() OPTIONAL_THREAD; 35 36 extern void enable_interrupts( __cfaabi_dbg_ctx_param ); 36 37 37 void CtxInvokeCoroutine(38 void __cfactx_invoke_coroutine( 38 39 void (*main)(void *), 39 40 void *this 40 41 ) { 41 42 // Finish setting up the coroutine by setting its state 42 struct coroutine_desc * cor = __finish_coroutine();43 struct $coroutine * cor = __cfactx_cor_finish(); 43 44 44 45 // Call the main of the coroutine … … 46 47 47 48 //Final suspend, should never return 48 __ leave_coroutine( cor );49 __cfactx_cor_leave( cor ); 49 50 __cabi_abort( "Resumed dead coroutine" ); 50 51 } 51 52 52 static _Unwind_Reason_Code _ CtxCoroutine_UnwindStop(53 static _Unwind_Reason_Code __cfactx_coroutine_unwindstop( 53 54 __attribute((__unused__)) int version, 54 55 _Unwind_Action actions, … … 61 62 // We finished unwinding the coroutine, 62 63 // leave it 63 __ leave_coroutine( param );64 __cfactx_cor_leave( param ); 64 65 __cabi_abort( "Resumed dead coroutine" ); 65 66 } … … 69 70 } 70 71 71 void _ CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc* cor) __attribute__ ((__noreturn__));72 void _ CtxCoroutine_Unwind(struct _Unwind_Exception * storage, struct coroutine_desc* cor) {73 _Unwind_Reason_Code ret = _Unwind_ForcedUnwind( storage, _ CtxCoroutine_UnwindStop, cor );72 void __cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine * cor) __attribute__ ((__noreturn__)); 73 void __cfactx_coroutine_unwind(struct _Unwind_Exception * storage, struct $coroutine * cor) { 74 _Unwind_Reason_Code ret = _Unwind_ForcedUnwind( storage, __cfactx_coroutine_unwindstop, cor ); 74 75 printf("UNWIND ERROR %d after force unwind\n", ret); 75 76 abort(); 76 77 } 77 78 78 void CtxInvokeThread(79 void __cfactx_invoke_thread( 79 80 void (*main)(void *), 80 81 void *this … … 93 94 // The order of these 4 operations is very important 94 95 //Final suspend, should never return 95 __ leave_thread_monitor();96 __cfactx_thrd_leave(); 96 97 __cabi_abort( "Resumed dead thread" ); 97 98 } 98 99 99 void CtxStart(100 void __cfactx_start( 100 101 void (*main)(void *), 101 struct coroutine_desc* cor,102 struct $coroutine * cor, 102 103 void *this, 103 104 void (*invoke)(void *) … … 108 109 109 110 struct FakeStack { 110 void *fixedRegisters[3]; // fixed registers ebx, edi, esi (popped on 1st uSwitch, values unimportant)111 void *rturn; // where to go on return from uSwitch112 void *dummyReturn; // fake return compiler would have pushed on call to uInvoke113 void *argument[3]; // for 16-byte ABI, 16-byte alignment starts here114 void *padding; // padding to force 16-byte alignment, as "base" is 16-byte aligned111 void *fixedRegisters[3]; // fixed registers ebx, edi, esi (popped on 1st uSwitch, values unimportant) 112 void *rturn; // where to go on return from uSwitch 113 void *dummyReturn; // fake return compiler would have pushed on call to uInvoke 114 void *argument[3]; // for 16-byte ABI, 16-byte alignment starts here 115 void *padding; // padding to force 16-byte alignment, as "base" is 16-byte aligned 115 116 }; 116 117 … … 121 122 122 123 fs->dummyReturn = NULL; 123 fs->argument[0] = main; // argument to invoke124 fs->argument[1] = this; // argument to invoke124 fs->argument[0] = main; // argument to invoke 125 fs->argument[1] = this; // argument to invoke 125 126 fs->rturn = invoke; 126 127 … … 128 129 129 130 struct FakeStack { 130 void *fixedRegisters[5]; // fixed registers rbx, r12, r13, r14, r15131 void *rturn; // where to go on return from uSwitch132 void *dummyReturn; // NULL return address to provide proper alignment131 void *fixedRegisters[5]; // fixed registers rbx, r12, r13, r14, r15 132 void *rturn; // where to go on return from uSwitch 133 void *dummyReturn; // NULL return address to provide proper alignment 133 134 }; 134 135 135 136 cor->context.SP = (char *)stack->base - sizeof( struct FakeStack ); 136 cor->context.FP = NULL; // terminate stack with NULL fp137 cor->context.FP = NULL; // terminate stack with NULL fp 137 138 138 139 struct FakeStack *fs = (struct FakeStack *)cor->context.SP; 139 140 140 141 fs->dummyReturn = NULL; 141 fs->rturn = CtxInvokeStub;142 fs->fixedRegisters[0] = main; 143 fs->fixedRegisters[1] = this; 142 fs->rturn = __cfactx_invoke_stub; 143 fs->fixedRegisters[0] = main; // argument to invoke 144 fs->fixedRegisters[1] = this; // argument to invoke 144 145 fs->fixedRegisters[2] = invoke; 145 146 146 #elif defined( __ARM_ARCH ) 147 #error ARM needs to be upgrade to use to parameters like X86/X64 (A.K.A. : I broke this and do not know how to fix it) 147 #elif defined( __ARM_ARCH_32 ) 148 #error ARM needs to be upgrade to use two parameters like X86/X64 (A.K.A. : I broke this and do not know how to fix it) 149 // More details about the error: 150 // To avoid the thunk problem, I changed the invoke routine to pass the main explicitly 151 // instead of relying on an assertion. This effectively hoists any required thunk one level 152 // which was enough to get to global scope in most cases. 153 // This means that __cfactx_invoke_... now takes two parameters and the FakeStack needs 154 // to be adjusted as a consequence of that. 155 // I don't know how to do that for ARM, hence the #error 156 148 157 struct FakeStack { 149 float fpRegs[16]; // floating point registers150 void * intRegs[9];// integer/pointer registers151 void * arg[2];// placeholder for this pointer158 float fpRegs[16]; // floating point registers 159 void * intRegs[9]; // integer/pointer registers 160 void * arg[2]; // placeholder for this pointer 152 161 }; 153 162 … … 157 166 struct FakeStack *fs = (struct FakeStack *)cor->context.SP; 158 167 159 fs->intRegs[8] = CtxInvokeStub;168 fs->intRegs[8] = __cfactx_invoke_stub; 160 169 fs->arg[0] = this; 161 170 fs->arg[1] = invoke; 162 171 172 #elif defined( __ARM_ARCH ) 173 struct FakeStack { 174 void * intRegs[12]; // x19-x30 integer registers 175 double fpRegs[8]; // v8-v15 floating point 176 }; 177 178 cor->context.SP = (char *)stack->base - sizeof( struct FakeStack ); 179 cor->context.FP = NULL; 180 181 struct FakeStack *fs = (struct FakeStack *)cor->context.SP; 182 183 fs->intRegs[0] = main; // argument to invoke x19 => x0 184 fs->intRegs[1] = this; // argument to invoke x20 => x1 185 fs->intRegs[2] = invoke; 186 fs->intRegs[11] = __cfactx_invoke_stub; // link register x30 => ret moves to pc 163 187 #else 164 188 #error uknown hardware architecture -
libcfa/src/concurrency/invoke.h
rbdfc032 reef8dfb 17 17 #include "bits/defs.hfa" 18 18 #include "bits/locks.hfa" 19 #include "kernel/fwd.hfa" 19 20 20 21 #ifdef __cforall … … 26 27 #define _INVOKE_H_ 27 28 28 #ifdef __ARM_ARCH 29 // function prototypes are only really used by these macros on ARM 30 void disable_global_interrupts(); 31 void enable_global_interrupts(); 32 33 #define TL_GET( member ) ( { __typeof__( kernelTLS.member ) target; \ 34 disable_global_interrupts(); \ 35 target = kernelTLS.member; \ 36 enable_global_interrupts(); \ 37 target; } ) 38 #define TL_SET( member, value ) disable_global_interrupts(); \ 39 kernelTLS.member = value; \ 40 enable_global_interrupts(); 41 #else 42 #define TL_GET( member ) kernelTLS.member 43 #define TL_SET( member, value ) kernelTLS.member = value; 44 #endif 45 46 #ifdef __cforall 47 extern "Cforall" { 48 extern __attribute__((aligned(128))) thread_local struct KernelThreadData { 49 struct thread_desc * volatile this_thread; 50 struct processor * volatile this_processor; 51 52 struct { 53 volatile unsigned short disable_count; 54 volatile bool enabled; 55 volatile bool in_progress; 56 } preemption_state; 57 58 uint32_t rand_seed; 59 } kernelTLS __attribute__ ((tls_model ( "initial-exec" ))); 60 } 61 #endif 29 struct __cfaehm_try_resume_node; 30 struct __cfaehm_base_exception_t; 31 struct exception_context_t { 32 struct __cfaehm_try_resume_node * top_resume; 33 struct __cfaehm_base_exception_t * current_exception; 34 }; 62 35 63 36 struct __stack_context_t { … … 85 58 // base of stack 86 59 void * base; 60 61 // Information for exception handling. 62 struct exception_context_t exception_context; 87 63 }; 88 64 … … 92 68 }; 93 69 94 enum coroutine_state { Halted, Start, Inactive, Active, Primed};95 96 struct coroutine_desc{97 // context that is switch during a CtxSwitch70 enum __Coroutine_State { Halted, Start, Primed, Blocked, Ready, Active, Cancelled, Halting }; 71 72 struct $coroutine { 73 // context that is switch during a __cfactx_switch 98 74 struct __stack_context_t context; 99 75 … … 105 81 106 82 // current execution status for coroutine 107 enum coroutine_state state;83 enum __Coroutine_State state; 108 84 109 85 // first coroutine to resume this one 110 struct coroutine_desc* starter;86 struct $coroutine * starter; 111 87 112 88 // last coroutine to resume this one 113 struct coroutine_desc* last;89 struct $coroutine * last; 114 90 115 91 // If non-null stack must be unwound with this exception … … 117 93 118 94 }; 95 // Wrapper for gdb 96 struct cfathread_coroutine_t { struct $coroutine debug; }; 97 98 static inline struct __stack_t * __get_stack( struct $coroutine * cor ) { 99 return (struct __stack_t*)(((uintptr_t)cor->stack.storage) & ((uintptr_t)-2)); 100 } 119 101 120 102 // struct which calls the monitor is accepting … … 127 109 }; 128 110 129 struct monitor_desc{111 struct $monitor { 130 112 // spinlock to protect internal data 131 113 struct __spinlock_t lock; 132 114 133 115 // current owner of the monitor 134 struct thread_desc* owner;116 struct $thread * owner; 135 117 136 118 // queue of threads that are blocked waiting for the monitor 137 __queue_t(struct thread_desc) entry_queue;119 __queue_t(struct $thread) entry_queue; 138 120 139 121 // stack of conditions to run next once we exit the monitor … … 149 131 struct __condition_node_t * dtor_node; 150 132 }; 133 // Wrapper for gdb 134 struct cfathread_monitor_t { struct $monitor debug; }; 151 135 152 136 struct __monitor_group_t { 153 137 // currently held monitors 154 __cfa_anonymous_object( __small_array_t( monitor_desc*) );138 __cfa_anonymous_object( __small_array_t($monitor*) ); 155 139 156 140 // last function that acquired monitors … … 158 142 }; 159 143 160 struct thread_desc { 144 // Link lists fields 145 // instrusive link field for threads 146 struct __thread_desc_link { 147 struct $thread * next; 148 struct $thread * prev; 149 volatile unsigned long long ts; 150 int preferred; 151 }; 152 153 struct $thread { 161 154 // Core threading fields 162 // context that is switch during a CtxSwitch155 // context that is switch during a __cfactx_switch 163 156 struct __stack_context_t context; 164 157 165 158 // current execution status for coroutine 166 enum coroutine_state state; 159 // Possible values are: 160 // - TICKET_BLOCKED (-1) thread is blocked 161 // - TICKET_RUNNING ( 0) thread is running 162 // - TICKET_UNBLOCK ( 1) thread should ignore next block 163 volatile int ticket; 164 enum __Coroutine_State state:8; 165 enum __Preemption_Reason preempted:8; 167 166 168 167 //SKULLDUGGERY errno is not save in the thread data structure because returnToKernel appears to be the only function to require saving and restoring it 169 170 // coroutine body used to store context171 struct coroutine_desc self_cor;172 173 // current active context174 struct coroutine_desc * curr_cor;175 176 // monitor body used for mutual exclusion177 struct monitor_desc self_mon;178 179 // pointer to monitor with sufficient lifetime for current monitors180 struct monitor_desc * self_mon_p;181 168 182 169 // pointer to the cluster on which the thread is running 183 170 struct cluster * curr_cluster; 184 171 172 // Link lists fields 173 // instrusive link field for threads 174 struct __thread_desc_link link; 175 176 // coroutine body used to store context 177 struct $coroutine self_cor; 178 179 // current active context 180 struct $coroutine * curr_cor; 181 182 // monitor body used for mutual exclusion 183 struct $monitor self_mon; 184 185 // pointer to monitor with sufficient lifetime for current monitors 186 struct $monitor * self_mon_p; 187 185 188 // monitors currently held by this thread 186 189 struct __monitor_group_t monitors; 187 190 188 // Link lists fields 189 // instrusive link field for threads 190 struct thread_desc * next; 191 191 // used to put threads on user data structures 192 192 struct { 193 struct thread_desc * next; 194 struct thread_desc * prev; 193 struct $thread * next; 194 struct $thread * back; 195 } seqable; 196 197 struct { 198 struct $thread * next; 199 struct $thread * prev; 195 200 } node; 196 }; 201 202 #if defined( __CFA_WITH_VERIFY__ ) 203 void * canary; 204 #endif 205 }; 206 // Wrapper for gdb 207 struct cfathread_thread_t { struct $thread debug; }; 208 209 #ifdef __CFA_DEBUG__ 210 void __cfaabi_dbg_record_thrd($thread & this, bool park, const char prev_name[]); 211 #else 212 #define __cfaabi_dbg_record_thrd(x, y, z) 213 #endif 197 214 198 215 #ifdef __cforall 199 216 extern "Cforall" { 200 static inline thread_desc *& get_next( thread_desc & this ) { 201 return this.next; 202 } 203 204 static inline [thread_desc *&, thread_desc *& ] __get( thread_desc & this ) { 217 218 static inline $thread *& get_next( $thread & this ) __attribute__((const)) { 219 return this.link.next; 220 } 221 222 static inline [$thread *&, $thread *& ] __get( $thread & this ) __attribute__((const)) { 205 223 return this.node.[next, prev]; 224 } 225 226 static inline $thread *& Back( $thread * this ) __attribute__((const)) { 227 return this->seqable.back; 228 } 229 230 static inline $thread *& Next( $thread * this ) __attribute__((const)) { 231 return this->seqable.next; 232 } 233 234 static inline bool listed( $thread * this ) { 235 return this->seqable.next != 0p; 206 236 } 207 237 … … 212 242 } 213 243 214 static inline void ?{}(__monitor_group_t & this, struct monitor_desc** data, __lock_size_t size, fptr_t func) {244 static inline void ?{}(__monitor_group_t & this, struct $monitor ** data, __lock_size_t size, fptr_t func) { 215 245 (this.data){data}; 216 246 (this.size){size}; … … 218 248 } 219 249 220 static inline bool ?==?( const __monitor_group_t & lhs, const __monitor_group_t & rhs ) {250 static inline bool ?==?( const __monitor_group_t & lhs, const __monitor_group_t & rhs ) __attribute__((const)) { 221 251 if( (lhs.data != 0) != (rhs.data != 0) ) return false; 222 252 if( lhs.size != rhs.size ) return false; … … 252 282 253 283 // assembler routines that performs the context switch 254 extern void CtxInvokeStub( void );255 extern void CtxSwitch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("CtxSwitch");284 extern void __cfactx_invoke_stub( void ); 285 extern void __cfactx_switch( struct __stack_context_t * from, struct __stack_context_t * to ) asm ("__cfactx_switch"); 256 286 // void CtxStore ( void * this ) asm ("CtxStore"); 257 287 // void CtxRet ( void * dst ) asm ("CtxRet"); -
libcfa/src/concurrency/kernel.cfa
rbdfc032 reef8dfb 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Jan 30 22:55:50 202013 // Update Count : 5612 // Last Modified On : Mon Aug 31 07:08:20 2020 13 // Update Count : 71 14 14 // 15 15 16 16 #define __cforall_thread__ 17 // #define __CFA_DEBUG_PRINT_RUNTIME_CORE__ 17 18 18 19 //C Includes 19 #include <stddef.h>20 20 #include <errno.h> 21 #include <string.h>22 extern "C" {23 21 #include <stdio.h> 24 #include <fenv.h>25 #include <sys/resource.h>26 22 #include <signal.h> 27 23 #include <unistd.h> 28 #include <limits.h> // PTHREAD_STACK_MIN29 #include <sys/mman.h> // mprotect30 }31 24 32 25 //CFA Includes 33 #include "time.hfa"34 26 #include "kernel_private.hfa" 35 27 #include "preemption.hfa" 36 #include "startup.hfa"37 28 38 29 //Private includes … … 40 31 #include "invoke.h" 41 32 33 42 34 //----------------------------------------------------------------------------- 43 35 // Some assembly required 44 36 #if defined( __i386 ) 45 #define CtxGet( ctx ) \46 __asm__ volatile ( \47 "movl %%esp,%0\n"\48 "movl %%ebp,%1\n"\49 : "=rm" (ctx.SP),\50 "=rm" (ctx.FP) \51 )52 53 37 // mxcr : SSE Status and Control bits (control bits are preserved across function calls) 54 38 // fcw : X87 FPU control word (preserved across function calls) … … 72 56 73 57 #elif defined( __x86_64 ) 74 #define CtxGet( ctx ) \75 __asm__ volatile ( \76 "movq %%rsp,%0\n"\77 "movq %%rbp,%1\n"\78 : "=rm" (ctx.SP),\79 "=rm" (ctx.FP) \80 )81 82 58 #define __x87_store \ 83 59 uint32_t __mxcr; \ … … 98 74 ) 99 75 100 101 #elif defined( __ARM_ARCH ) 102 #define CtxGet( ctx ) __asm__ ( \ 103 "mov %0,%%sp\n" \ 104 "mov %1,%%r11\n" \ 105 : "=rm" (ctx.SP), "=rm" (ctx.FP) ) 76 #elif defined( __arm__ ) 77 #define __x87_store 78 #define __x87_load 79 80 #elif defined( __aarch64__ ) 81 #define __x87_store \ 82 uint32_t __fpcntl[2]; \ 83 __asm__ volatile ( \ 84 "mrs x9, FPCR\n" \ 85 "mrs x10, FPSR\n" \ 86 "stp x9, x10, %0\n" \ 87 : "=m" (__fpcntl) : : "x9", "x10" \ 88 ) 89 90 #define __x87_load \ 91 __asm__ volatile ( \ 92 "ldp x9, x10, %0\n" \ 93 "msr FPSR, x10\n" \ 94 "msr FPCR, x9\n" \ 95 : "=m" (__fpcntl) : : "x9", "x10" \ 96 ) 97 106 98 #else 107 #error un knownhardware architecture99 #error unsupported hardware architecture 108 100 #endif 109 101 102 extern $thread * mainThread; 103 extern processor * mainProcessor; 104 110 105 //----------------------------------------------------------------------------- 111 //Start and stop routine for the kernel, declared first to make sure they run first 112 static void kernel_startup(void) __attribute__(( constructor( STARTUP_PRIORITY_KERNEL ) )); 113 static void kernel_shutdown(void) __attribute__(( destructor ( STARTUP_PRIORITY_KERNEL ) )); 114 115 //----------------------------------------------------------------------------- 116 // Kernel storage 117 KERNEL_STORAGE(cluster, mainCluster); 118 KERNEL_STORAGE(processor, mainProcessor); 119 KERNEL_STORAGE(thread_desc, mainThread); 120 KERNEL_STORAGE(__stack_t, mainThreadCtx); 121 122 cluster * mainCluster; 123 processor * mainProcessor; 124 thread_desc * mainThread; 125 126 extern "C" { 127 struct { __dllist_t(cluster) list; __spinlock_t lock; } __cfa_dbg_global_clusters; 128 } 129 130 size_t __page_size = 0; 131 132 //----------------------------------------------------------------------------- 133 // Global state 134 thread_local struct KernelThreadData kernelTLS __attribute__ ((tls_model ( "initial-exec" ))) = { 135 NULL, // cannot use 0p 136 NULL, 137 { 1, false, false }, 138 6u //this should be seeded better but due to a bug calling rdtsc doesn't work 139 }; 140 141 //----------------------------------------------------------------------------- 142 // Struct to steal stack 143 struct current_stack_info_t { 144 __stack_t * storage; // pointer to stack object 145 void * base; // base of stack 146 void * limit; // stack grows towards stack limit 147 void * context; // address of cfa_context_t 148 }; 149 150 void ?{}( current_stack_info_t & this ) { 151 __stack_context_t ctx; 152 CtxGet( ctx ); 153 this.base = ctx.FP; 154 155 rlimit r; 156 getrlimit( RLIMIT_STACK, &r); 157 size_t size = r.rlim_cur; 158 159 this.limit = (void *)(((intptr_t)this.base) - size); 160 this.context = &storage_mainThreadCtx; 161 } 162 163 //----------------------------------------------------------------------------- 164 // Main thread construction 165 166 void ?{}( coroutine_desc & this, current_stack_info_t * info) with( this ) { 167 stack.storage = info->storage; 168 with(*stack.storage) { 169 limit = info->limit; 170 base = info->base; 171 } 172 __attribute__((may_alias)) intptr_t * istorage = (intptr_t*) &stack.storage; 173 *istorage |= 0x1; 174 name = "Main Thread"; 175 state = Start; 176 starter = 0p; 177 last = 0p; 178 cancellation = 0p; 179 } 180 181 void ?{}( thread_desc & this, current_stack_info_t * info) with( this ) { 182 state = Start; 183 self_cor{ info }; 184 curr_cor = &self_cor; 185 curr_cluster = mainCluster; 186 self_mon.owner = &this; 187 self_mon.recursion = 1; 188 self_mon_p = &self_mon; 189 next = 0p; 190 191 node.next = 0p; 192 node.prev = 0p; 193 doregister(curr_cluster, this); 194 195 monitors{ &self_mon_p, 1, (fptr_t)0 }; 196 } 197 198 //----------------------------------------------------------------------------- 199 // Processor coroutine 200 void ?{}(processorCtx_t & this) { 201 202 } 203 204 // Construct the processor context of non-main processors 205 static void ?{}(processorCtx_t & this, processor * proc, current_stack_info_t * info) { 206 (this.__cor){ info }; 207 this.proc = proc; 208 } 209 210 static void start(processor * this); 211 void ?{}(processor & this, const char * name, cluster & cltr) with( this ) { 212 this.name = name; 213 this.cltr = &cltr; 214 terminated{ 0 }; 215 do_terminate = false; 216 preemption_alarm = 0p; 217 pending_preemption = false; 218 runner.proc = &this; 219 220 idleLock{}; 221 222 start( &this ); 223 } 224 225 void ^?{}(processor & this) with( this ){ 226 if( ! __atomic_load_n(&do_terminate, __ATOMIC_ACQUIRE) ) { 227 __cfaabi_dbg_print_safe("Kernel : core %p signaling termination\n", &this); 228 229 __atomic_store_n(&do_terminate, true, __ATOMIC_RELAXED); 230 wake( &this ); 231 232 P( terminated ); 233 verify( kernelTLS.this_processor != &this); 234 } 235 236 pthread_join( kernel_thread, 0p ); 237 free( this.stack ); 238 } 239 240 void ?{}(cluster & this, const char * name, Duration preemption_rate) with( this ) { 241 this.name = name; 242 this.preemption_rate = preemption_rate; 243 ready_queue{}; 244 ready_queue_lock{}; 245 246 procs{ __get }; 247 idles{ __get }; 248 threads{ __get }; 249 250 doregister(this); 251 } 252 253 void ^?{}(cluster & this) { 254 unregister(this); 255 } 106 // Kernel Scheduling logic 107 static $thread * __next_thread(cluster * this); 108 static $thread * __next_thread_slow(cluster * this); 109 static void __run_thread(processor * this, $thread * dst); 110 static void __wake_one(cluster * cltr); 111 112 static void push (__cluster_idles & idles, processor & proc); 113 static void remove(__cluster_idles & idles, processor & proc); 114 static [unsigned idle, unsigned total, * processor] query( & __cluster_idles idles ); 115 256 116 257 117 //============================================================================================= 258 118 // Kernel Scheduling logic 259 119 //============================================================================================= 260 static void runThread(processor * this, thread_desc * dst);261 static void finishRunning(processor * this);262 static void halt(processor * this);263 264 120 //Main of the processor contexts 265 121 void main(processorCtx_t & runner) { 266 122 // Because of a bug, we couldn't initialized the seed on construction 267 123 // Do it here 268 kernelTLS.rand_seed ^= rdtscl(); 124 __cfaabi_tls.rand_seed ^= rdtscl(); 125 __cfaabi_tls.ready_rng.fwd_seed = 25214903917_l64u * (rdtscl() ^ (uintptr_t)&runner); 126 __tls_rand_advance_bck(); 269 127 270 128 processor * this = runner.proc; 271 129 verify(this); 272 130 273 __cfaabi_dbg_print_safe("Kernel : core %p starting\n", this); 274 275 doregister(this->cltr, this); 131 __cfadbg_print_safe(runtime_core, "Kernel : core %p starting\n", this); 132 #if !defined(__CFA_NO_STATISTICS__) 133 if( this->print_halts ) { 134 __cfaabi_bits_print_safe( STDOUT_FILENO, "Processor : %d - %s (%p)\n", this->id, this->name, (void*)this); 135 } 136 #endif 276 137 277 138 { … … 279 140 preemption_scope scope = { this }; 280 141 281 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this); 282 283 thread_desc * readyThread = 0p; 284 for( unsigned int spin_count = 0; ! __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST); spin_count++ ) { 285 readyThread = nextThread( this->cltr ); 286 287 if(readyThread) { 288 verify( ! kernelTLS.preemption_state.enabled ); 289 290 runThread(this, readyThread); 291 292 verify( ! kernelTLS.preemption_state.enabled ); 293 294 //Some actions need to be taken from the kernel 295 finishRunning(this); 296 297 spin_count = 0; 298 } else { 299 // spin(this, &spin_count); 300 halt(this); 142 __cfadbg_print_safe(runtime_core, "Kernel : core %p started\n", this); 143 144 $thread * readyThread = 0p; 145 MAIN_LOOP: 146 for() { 147 // Try to get the next thread 148 readyThread = __next_thread( this->cltr ); 149 150 if( !readyThread ) { 151 readyThread = __next_thread_slow( this->cltr ); 301 152 } 302 } 303 304 __cfaabi_dbg_print_safe("Kernel : core %p stopping\n", this); 305 } 306 307 unregister(this->cltr, this); 153 154 HALT: 155 if( !readyThread ) { 156 // Don't block if we are done 157 if( __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST) ) break MAIN_LOOP; 158 159 #if !defined(__CFA_NO_STATISTICS__) 160 __tls_stats()->ready.sleep.halts++; 161 #endif 162 163 // Push self to idle stack 164 push(this->cltr->idles, * this); 165 166 // Confirm the ready-queue is empty 167 readyThread = __next_thread_slow( this->cltr ); 168 if( readyThread ) { 169 // A thread was found, cancel the halt 170 remove(this->cltr->idles, * this); 171 172 #if !defined(__CFA_NO_STATISTICS__) 173 __tls_stats()->ready.sleep.cancels++; 174 #endif 175 176 // continue the mai loop 177 break HALT; 178 } 179 180 #if !defined(__CFA_NO_STATISTICS__) 181 if(this->print_halts) { 182 __cfaabi_bits_print_safe( STDOUT_FILENO, "PH:%d - %lld 0\n", this->id, rdtscl()); 183 } 184 #endif 185 186 wait( this->idle ); 187 188 #if !defined(__CFA_NO_STATISTICS__) 189 if(this->print_halts) { 190 __cfaabi_bits_print_safe( STDOUT_FILENO, "PH:%d - %lld 1\n", this->id, rdtscl()); 191 } 192 #endif 193 194 // We were woken up, remove self from idle 195 remove(this->cltr->idles, * this); 196 197 // DON'T just proceed, start looking again 198 continue MAIN_LOOP; 199 } 200 201 /* paranoid */ verify( readyThread ); 202 203 // We found a thread run it 204 __run_thread(this, readyThread); 205 206 // Are we done? 207 if( __atomic_load_n(&this->do_terminate, __ATOMIC_SEQ_CST) ) break MAIN_LOOP; 208 } 209 210 __cfadbg_print_safe(runtime_core, "Kernel : core %p stopping\n", this); 211 } 308 212 309 213 V( this->terminated ); 310 214 311 __cfaabi_dbg_print_safe("Kernel : core %p terminated\n", this); 215 if(this == mainProcessor) { 216 // HACK : the coroutine context switch expects this_thread to be set 217 // and it make sense for it to be set in all other cases except here 218 // fake it 219 __cfaabi_tls.this_thread = mainThread; 220 } 221 222 __cfadbg_print_safe(runtime_core, "Kernel : core %p terminated\n", this); 312 223 } 313 224 … … 318 229 // runThread runs a thread by context switching 319 230 // from the processor coroutine to the target thread 320 static void runThread(processor * this, thread_desc * thrd_dst) { 321 coroutine_desc * proc_cor = get_coroutine(this->runner); 322 323 // Reset the terminating actions here 324 this->finish.action_code = No_Action; 325 326 // Update global state 327 kernelTLS.this_thread = thrd_dst; 328 329 // set state of processor coroutine to inactive and the thread to active 330 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive; 331 thrd_dst->state = Active; 332 333 // set context switch to the thread that the processor is executing 334 verify( thrd_dst->context.SP ); 335 CtxSwitch( &proc_cor->context, &thrd_dst->context ); 336 // when CtxSwitch returns we are back in the processor coroutine 337 338 // set state of processor coroutine to active and the thread to inactive 339 thrd_dst->state = thrd_dst->state == Halted ? Halted : Inactive; 231 static void __run_thread(processor * this, $thread * thrd_dst) { 232 /* paranoid */ verify( ! __preemption_enabled() ); 233 /* paranoid */ verifyf( thrd_dst->state == Ready || thrd_dst->preempted != __NO_PREEMPTION, "state : %d, preempted %d\n", thrd_dst->state, thrd_dst->preempted); 234 /* paranoid */ verifyf( thrd_dst->link.next == 0p, "Expected null got %p", thrd_dst->link.next ); 235 __builtin_prefetch( thrd_dst->context.SP ); 236 237 $coroutine * proc_cor = get_coroutine(this->runner); 238 239 // set state of processor coroutine to inactive 240 verify(proc_cor->state == Active); 241 proc_cor->state = Blocked; 242 243 // Actually run the thread 244 RUNNING: while(true) { 245 thrd_dst->preempted = __NO_PREEMPTION; 246 thrd_dst->state = Active; 247 248 // Update global state 249 kernelTLS().this_thread = thrd_dst; 250 251 /* paranoid */ verify( ! __preemption_enabled() ); 252 /* paranoid */ verify( kernelTLS().this_thread == thrd_dst ); 253 /* paranoid */ verify( thrd_dst->curr_cluster == this->cltr ); 254 /* paranoid */ verify( thrd_dst->context.SP ); 255 /* paranoid */ verify( thrd_dst->state != Halted ); 256 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) < ((uintptr_t)__get_stack(thrd_dst->curr_cor)->base ) || thrd_dst->curr_cor == proc_cor, "ERROR : Destination $thread %p has been corrupted.\n StackPointer too small.\n", thrd_dst ); // add escape condition if we are setting up the processor 257 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) > ((uintptr_t)__get_stack(thrd_dst->curr_cor)->limit) || thrd_dst->curr_cor == proc_cor, "ERROR : Destination $thread %p has been corrupted.\n StackPointer too large.\n", thrd_dst ); // add escape condition if we are setting up the processor 258 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd_dst->canary ); 259 260 261 262 // set context switch to the thread that the processor is executing 263 __cfactx_switch( &proc_cor->context, &thrd_dst->context ); 264 // when __cfactx_switch returns we are back in the processor coroutine 265 266 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd_dst->canary ); 267 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) > ((uintptr_t)__get_stack(thrd_dst->curr_cor)->limit), "ERROR : Destination $thread %p has been corrupted.\n StackPointer too large.\n", thrd_dst ); 268 /* paranoid */ verifyf( ((uintptr_t)thrd_dst->context.SP) < ((uintptr_t)__get_stack(thrd_dst->curr_cor)->base ), "ERROR : Destination $thread %p has been corrupted.\n StackPointer too small.\n", thrd_dst ); 269 /* paranoid */ verify( thrd_dst->context.SP ); 270 /* paranoid */ verify( thrd_dst->curr_cluster == this->cltr ); 271 /* paranoid */ verify( kernelTLS().this_thread == thrd_dst ); 272 /* paranoid */ verify( ! __preemption_enabled() ); 273 274 // Reset global state 275 kernelTLS().this_thread = 0p; 276 277 // We just finished running a thread, there are a few things that could have happened. 278 // 1 - Regular case : the thread has blocked and now one has scheduled it yet. 279 // 2 - Racy case : the thread has blocked but someone has already tried to schedule it. 280 // 4 - Preempted 281 // In case 1, we may have won a race so we can't write to the state again. 282 // In case 2, we lost the race so we now own the thread. 283 284 if(unlikely(thrd_dst->preempted != __NO_PREEMPTION)) { 285 // The thread was preempted, reschedule it and reset the flag 286 __schedule_thread( thrd_dst ); 287 break RUNNING; 288 } 289 290 if(unlikely(thrd_dst->state == Halting)) { 291 // The thread has halted, it should never be scheduled/run again 292 // finish the thread 293 __thread_finish( thrd_dst ); 294 break RUNNING; 295 } 296 297 /* paranoid */ verify( thrd_dst->state == Active ); 298 thrd_dst->state = Blocked; 299 300 // set state of processor coroutine to active and the thread to inactive 301 int old_ticket = __atomic_fetch_sub(&thrd_dst->ticket, 1, __ATOMIC_SEQ_CST); 302 switch(old_ticket) { 303 case TICKET_RUNNING: 304 // This is case 1, the regular case, nothing more is needed 305 break RUNNING; 306 case TICKET_UNBLOCK: 307 // This is case 2, the racy case, someone tried to run this thread before it finished blocking 308 // In this case, just run it again. 309 continue RUNNING; 310 default: 311 // This makes no sense, something is wrong abort 312 abort(); 313 } 314 } 315 316 // Just before returning to the processor, set the processor coroutine to active 340 317 proc_cor->state = Active; 318 319 /* paranoid */ verify( ! __preemption_enabled() ); 341 320 } 342 321 343 322 // KERNEL_ONLY 344 static void returnToKernel() { 345 coroutine_desc * proc_cor = get_coroutine(kernelTLS.this_processor->runner); 346 thread_desc * thrd_src = kernelTLS.this_thread; 347 348 // set state of current coroutine to inactive 349 thrd_src->state = thrd_src->state == Halted ? Halted : Inactive; 350 proc_cor->state = Active; 351 int local_errno = *__volatile_errno(); 352 #if defined( __i386 ) || defined( __x86_64 ) 353 __x87_store; 323 void returnToKernel() { 324 /* paranoid */ verify( ! __preemption_enabled() ); 325 $coroutine * proc_cor = get_coroutine(kernelTLS().this_processor->runner); 326 $thread * thrd_src = kernelTLS().this_thread; 327 328 #if !defined(__CFA_NO_STATISTICS__) 329 struct processor * last_proc = kernelTLS().this_processor; 354 330 #endif 355 331 356 // set new coroutine that the processor is executing 357 // and context switch to it 358 verify( proc_cor->context.SP ); 359 CtxSwitch( &thrd_src->context, &proc_cor->context ); 360 361 // set state of new coroutine to active 362 proc_cor->state = proc_cor->state == Halted ? Halted : Inactive; 363 thrd_src->state = Active; 364 365 #if defined( __i386 ) || defined( __x86_64 ) 366 __x87_load; 332 // Run the thread on this processor 333 { 334 int local_errno = *__volatile_errno(); 335 #if defined( __i386 ) || defined( __x86_64 ) 336 __x87_store; 337 #endif 338 /* paranoid */ verify( proc_cor->context.SP ); 339 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd_src->canary ); 340 __cfactx_switch( &thrd_src->context, &proc_cor->context ); 341 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd_src->canary ); 342 #if defined( __i386 ) || defined( __x86_64 ) 343 __x87_load; 344 #endif 345 *__volatile_errno() = local_errno; 346 } 347 348 #if !defined(__CFA_NO_STATISTICS__) 349 if(last_proc != kernelTLS().this_processor) { 350 __tls_stats()->ready.threads.migration++; 351 } 367 352 #endif 368 *__volatile_errno() = local_errno; 369 } 370 371 // KERNEL_ONLY 372 // Once a thread has finished running, some of 373 // its final actions must be executed from the kernel 374 static void finishRunning(processor * this) with( this->finish ) { 375 verify( ! kernelTLS.preemption_state.enabled ); 376 choose( action_code ) { 377 case No_Action: 378 break; 379 case Release: 380 unlock( *lock ); 381 case Schedule: 382 ScheduleThread( thrd ); 383 case Release_Schedule: 384 unlock( *lock ); 385 ScheduleThread( thrd ); 386 case Release_Multi: 387 for(int i = 0; i < lock_count; i++) { 388 unlock( *locks[i] ); 389 } 390 case Release_Multi_Schedule: 391 for(int i = 0; i < lock_count; i++) { 392 unlock( *locks[i] ); 393 } 394 for(int i = 0; i < thrd_count; i++) { 395 ScheduleThread( thrds[i] ); 396 } 397 case Callback: 398 callback(); 399 default: 400 abort("KERNEL ERROR: Unexpected action to run after thread"); 401 } 402 } 403 404 // KERNEL_ONLY 405 // Context invoker for processors 406 // This is the entry point for processors (kernel threads) 407 // It effectively constructs a coroutine by stealing the pthread stack 408 static void * CtxInvokeProcessor(void * arg) { 409 processor * proc = (processor *) arg; 410 kernelTLS.this_processor = proc; 411 kernelTLS.this_thread = 0p; 412 kernelTLS.preemption_state.[enabled, disable_count] = [false, 1]; 413 // SKULLDUGGERY: We want to create a context for the processor coroutine 414 // which is needed for the 2-step context switch. However, there is no reason 415 // to waste the perfectly valid stack create by pthread. 416 current_stack_info_t info; 417 __stack_t ctx; 418 info.storage = &ctx; 419 (proc->runner){ proc, &info }; 420 421 __cfaabi_dbg_print_safe("Coroutine : created stack %p\n", get_coroutine(proc->runner)->stack.storage); 422 423 //Set global state 424 kernelTLS.this_thread = 0p; 425 426 //We now have a proper context from which to schedule threads 427 __cfaabi_dbg_print_safe("Kernel : core %p created (%p, %p)\n", proc, &proc->runner, &ctx); 428 429 // SKULLDUGGERY: Since the coroutine doesn't have its own stack, we can't 430 // resume it to start it like it normally would, it will just context switch 431 // back to here. Instead directly call the main since we already are on the 432 // appropriate stack. 433 get_coroutine(proc->runner)->state = Active; 434 main( proc->runner ); 435 get_coroutine(proc->runner)->state = Halted; 436 437 // Main routine of the core returned, the core is now fully terminated 438 __cfaabi_dbg_print_safe("Kernel : core %p main ended (%p)\n", proc, &proc->runner); 439 440 return 0p; 441 } 442 443 static void Abort( int ret, const char * func ) { 444 if ( ret ) { // pthread routines return errno values 445 abort( "%s : internal error, error(%d) %s.", func, ret, strerror( ret ) ); 446 } // if 447 } // Abort 448 449 void * create_pthread( pthread_t * pthread, void * (*start)(void *), void * arg ) { 450 pthread_attr_t attr; 451 452 Abort( pthread_attr_init( &attr ), "pthread_attr_init" ); // initialize attribute 453 454 size_t stacksize; 455 // default stack size, normally defined by shell limit 456 Abort( pthread_attr_getstacksize( &attr, &stacksize ), "pthread_attr_getstacksize" ); 457 assert( stacksize >= PTHREAD_STACK_MIN ); 458 459 void * stack; 460 __cfaabi_dbg_debug_do( 461 stack = memalign( __page_size, stacksize + __page_size ); 462 // pthread has no mechanism to create the guard page in user supplied stack. 463 if ( mprotect( stack, __page_size, PROT_NONE ) == -1 ) { 464 abort( "mprotect : internal error, mprotect failure, error(%d) %s.", errno, strerror( errno ) ); 465 } // if 466 ); 467 __cfaabi_dbg_no_debug_do( 468 stack = malloc( stacksize ); 469 ); 470 471 Abort( pthread_attr_setstack( &attr, stack, stacksize ), "pthread_attr_setstack" ); 472 473 Abort( pthread_create( pthread, &attr, start, arg ), "pthread_create" ); 474 return stack; 475 } 476 477 static void start(processor * this) { 478 __cfaabi_dbg_print_safe("Kernel : Starting core %p\n", this); 479 480 this->stack = create_pthread( &this->kernel_thread, CtxInvokeProcessor, (void *)this ); 481 482 __cfaabi_dbg_print_safe("Kernel : core %p started\n", this); 483 } 484 485 // KERNEL_ONLY 486 void kernel_first_resume( processor * this ) { 487 thread_desc * src = mainThread; 488 coroutine_desc * dst = get_coroutine(this->runner); 489 490 verify( ! kernelTLS.preemption_state.enabled ); 491 492 kernelTLS.this_thread->curr_cor = dst; 493 __stack_prepare( &dst->stack, 65000 ); 494 CtxStart(main, dst, this->runner, CtxInvokeCoroutine); 495 496 verify( ! kernelTLS.preemption_state.enabled ); 497 498 dst->last = &src->self_cor; 499 dst->starter = dst->starter ? dst->starter : &src->self_cor; 500 501 // set state of current coroutine to inactive 502 src->state = src->state == Halted ? Halted : Inactive; 503 504 // context switch to specified coroutine 505 verify( dst->context.SP ); 506 CtxSwitch( &src->context, &dst->context ); 507 // when CtxSwitch returns we are back in the src coroutine 508 509 mainThread->curr_cor = &mainThread->self_cor; 510 511 // set state of new coroutine to active 512 src->state = Active; 513 514 verify( ! kernelTLS.preemption_state.enabled ); 515 } 516 517 // KERNEL_ONLY 518 void kernel_last_resume( processor * this ) { 519 coroutine_desc * src = &mainThread->self_cor; 520 coroutine_desc * dst = get_coroutine(this->runner); 521 522 verify( ! kernelTLS.preemption_state.enabled ); 523 verify( dst->starter == src ); 524 verify( dst->context.SP ); 525 526 // context switch to the processor 527 CtxSwitch( &src->context, &dst->context ); 353 354 /* paranoid */ verify( ! __preemption_enabled() ); 355 /* paranoid */ verifyf( ((uintptr_t)thrd_src->context.SP) < ((uintptr_t)__get_stack(thrd_src->curr_cor)->base ), "ERROR : Returning $thread %p has been corrupted.\n StackPointer too small.\n", thrd_src ); 356 /* paranoid */ verifyf( ((uintptr_t)thrd_src->context.SP) > ((uintptr_t)__get_stack(thrd_src->curr_cor)->limit), "ERROR : Returning $thread %p has been corrupted.\n StackPointer too large.\n", thrd_src ); 528 357 } 529 358 530 359 //----------------------------------------------------------------------------- 531 360 // Scheduler routines 532 533 361 // KERNEL ONLY 534 void ScheduleThread( thread_desc * thrd ) { 535 verify( thrd ); 536 verify( thrd->state != Halted ); 537 538 verify( ! kernelTLS.preemption_state.enabled ); 539 540 verifyf( thrd->next == 0p, "Expected null got %p", thrd->next ); 541 542 with( *thrd->curr_cluster ) { 543 lock ( ready_queue_lock __cfaabi_dbg_ctx2 ); 544 bool was_empty = !(ready_queue != 0); 545 append( ready_queue, thrd ); 546 unlock( ready_queue_lock ); 547 548 if(was_empty) { 549 lock (proc_list_lock __cfaabi_dbg_ctx2); 550 if(idles) { 551 wake_fast(idles.head); 362 void __schedule_thread( $thread * thrd ) { 363 /* paranoid */ verify( ! __preemption_enabled() ); 364 /* paranoid */ verify( kernelTLS().this_proc_id ); 365 /* paranoid */ verify( thrd ); 366 /* paranoid */ verify( thrd->state != Halted ); 367 /* paranoid */ verify( thrd->curr_cluster ); 368 /* paranoid */ #if defined( __CFA_WITH_VERIFY__ ) 369 /* paranoid */ if( thrd->state == Blocked || thrd->state == Start ) assertf( thrd->preempted == __NO_PREEMPTION, 370 "Error inactive thread marked as preempted, state %d, preemption %d\n", thrd->state, thrd->preempted ); 371 /* paranoid */ if( thrd->preempted != __NO_PREEMPTION ) assertf(thrd->state == Active, 372 "Error preempted thread marked as not currently running, state %d, preemption %d\n", thrd->state, thrd->preempted ); 373 /* paranoid */ #endif 374 /* paranoid */ verifyf( thrd->link.next == 0p, "Expected null got %p", thrd->link.next ); 375 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd->canary ); 376 377 378 if (thrd->preempted == __NO_PREEMPTION) thrd->state = Ready; 379 380 ready_schedule_lock(); 381 // Dereference the thread now because once we push it, there is not guaranteed it's still valid. 382 struct cluster * cl = thrd->curr_cluster; 383 384 // push the thread to the cluster ready-queue 385 push( cl, thrd ); 386 387 // variable thrd is no longer safe to use 388 389 // wake the cluster using the save variable. 390 __wake_one( cl ); 391 ready_schedule_unlock(); 392 393 /* paranoid */ verify( ! __preemption_enabled() ); 394 } 395 396 // KERNEL ONLY 397 static inline $thread * __next_thread(cluster * this) with( *this ) { 398 /* paranoid */ verify( ! __preemption_enabled() ); 399 /* paranoid */ verify( kernelTLS().this_proc_id ); 400 401 ready_schedule_lock(); 402 $thread * thrd = pop( this ); 403 ready_schedule_unlock(); 404 405 /* paranoid */ verify( kernelTLS().this_proc_id ); 406 /* paranoid */ verify( ! __preemption_enabled() ); 407 return thrd; 408 } 409 410 // KERNEL ONLY 411 static inline $thread * __next_thread_slow(cluster * this) with( *this ) { 412 /* paranoid */ verify( ! __preemption_enabled() ); 413 /* paranoid */ verify( kernelTLS().this_proc_id ); 414 415 ready_schedule_lock(); 416 $thread * thrd = pop_slow( this ); 417 ready_schedule_unlock(); 418 419 /* paranoid */ verify( kernelTLS().this_proc_id ); 420 /* paranoid */ verify( ! __preemption_enabled() ); 421 return thrd; 422 } 423 424 void unpark( $thread * thrd ) { 425 if( !thrd ) return; 426 427 int old_ticket = __atomic_fetch_add(&thrd->ticket, 1, __ATOMIC_SEQ_CST); 428 switch(old_ticket) { 429 case TICKET_RUNNING: 430 // Wake won the race, the thread will reschedule/rerun itself 431 break; 432 case TICKET_BLOCKED: 433 /* paranoid */ verify( ! thrd->preempted != __NO_PREEMPTION ); 434 /* paranoid */ verify( thrd->state == Blocked ); 435 436 { 437 /* paranoid */ verify( publicTLS_get(this_proc_id) ); 438 bool full = publicTLS_get(this_proc_id)->full_proc; 439 if(full) disable_interrupts(); 440 441 /* paranoid */ verify( ! __preemption_enabled() ); 442 443 // Wake lost the race, 444 __schedule_thread( thrd ); 445 446 /* paranoid */ verify( ! __preemption_enabled() ); 447 448 if(full) enable_interrupts( __cfaabi_dbg_ctx ); 449 /* paranoid */ verify( publicTLS_get(this_proc_id) ); 552 450 } 553 unlock (proc_list_lock); 554 } 555 else if( struct processor * idle = idles.head ) { 556 wake_fast(idle); 557 } 558 559 } 560 561 verify( ! kernelTLS.preemption_state.enabled ); 451 452 break; 453 default: 454 // This makes no sense, something is wrong abort 455 abort("Thread %p (%s) has mismatch park/unpark\n", thrd, thrd->self_cor.name); 456 } 457 } 458 459 void park( void ) { 460 /* paranoid */ verify( __preemption_enabled() ); 461 disable_interrupts(); 462 /* paranoid */ verify( ! __preemption_enabled() ); 463 /* paranoid */ verify( kernelTLS().this_thread->preempted == __NO_PREEMPTION ); 464 465 returnToKernel(); 466 467 /* paranoid */ verify( ! __preemption_enabled() ); 468 enable_interrupts( __cfaabi_dbg_ctx ); 469 /* paranoid */ verify( __preemption_enabled() ); 470 471 } 472 473 extern "C" { 474 // Leave the thread monitor 475 // last routine called by a thread. 476 // Should never return 477 void __cfactx_thrd_leave() { 478 $thread * thrd = active_thread(); 479 $monitor * this = &thrd->self_mon; 480 481 // Lock the monitor now 482 lock( this->lock __cfaabi_dbg_ctx2 ); 483 484 disable_interrupts(); 485 486 /* paranoid */ verify( ! __preemption_enabled() ); 487 /* paranoid */ verify( thrd->state == Active ); 488 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd->canary ); 489 /* paranoid */ verify( kernelTLS().this_thread == thrd ); 490 /* paranoid */ verify( thrd->context.SP ); 491 /* paranoid */ verifyf( ((uintptr_t)thrd->context.SP) > ((uintptr_t)__get_stack(thrd->curr_cor)->limit), "ERROR : $thread %p has been corrupted.\n StackPointer too large.\n", thrd ); 492 /* paranoid */ verifyf( ((uintptr_t)thrd->context.SP) < ((uintptr_t)__get_stack(thrd->curr_cor)->base ), "ERROR : $thread %p has been corrupted.\n StackPointer too small.\n", thrd ); 493 494 thrd->state = Halting; 495 if( TICKET_RUNNING != thrd->ticket ) { abort( "Thread terminated with pending unpark" ); } 496 if( thrd != this->owner ) { abort( "Thread internal monitor has incorrect owner" ); } 497 if( this->recursion != 1) { abort( "Thread internal monitor has unbalanced recursion" ); } 498 499 // Leave the thread 500 returnToKernel(); 501 502 // Control flow should never reach here! 503 abort(); 504 } 562 505 } 563 506 564 507 // KERNEL ONLY 565 thread_desc * nextThread(cluster * this) with( *this ) { 566 verify( ! kernelTLS.preemption_state.enabled ); 567 lock( ready_queue_lock __cfaabi_dbg_ctx2 ); 568 thread_desc * head = pop_head( ready_queue ); 569 unlock( ready_queue_lock ); 570 verify( ! kernelTLS.preemption_state.enabled ); 571 return head; 572 } 573 574 void BlockInternal() { 508 bool force_yield( __Preemption_Reason reason ) { 509 /* paranoid */ verify( __preemption_enabled() ); 575 510 disable_interrupts(); 576 verify( ! kernelTLS.preemption_state.enabled ); 577 returnToKernel(); 578 verify( ! kernelTLS.preemption_state.enabled ); 511 /* paranoid */ verify( ! __preemption_enabled() ); 512 513 $thread * thrd = kernelTLS().this_thread; 514 /* paranoid */ verify(thrd->state == Active); 515 516 // SKULLDUGGERY: It is possible that we are preempting this thread just before 517 // it was going to park itself. If that is the case and it is already using the 518 // intrusive fields then we can't use them to preempt the thread 519 // If that is the case, abandon the preemption. 520 bool preempted = false; 521 if(thrd->link.next == 0p) { 522 preempted = true; 523 thrd->preempted = reason; 524 returnToKernel(); 525 } 526 527 /* paranoid */ verify( ! __preemption_enabled() ); 528 enable_interrupts_noPoll(); 529 /* paranoid */ verify( __preemption_enabled() ); 530 531 return preempted; 532 } 533 534 //============================================================================================= 535 // Kernel Idle Sleep 536 //============================================================================================= 537 // Wake a thread from the front if there are any 538 static void __wake_one(cluster * this) { 539 /* paranoid */ verify( ! __preemption_enabled() ); 540 /* paranoid */ verify( ready_schedule_islocked() ); 541 542 // Check if there is a sleeping processor 543 processor * p; 544 unsigned idle; 545 unsigned total; 546 [idle, total, p] = query(this->idles); 547 548 // If no one is sleeping, we are done 549 if( idle == 0 ) return; 550 551 // We found a processor, wake it up 552 post( p->idle ); 553 554 #if !defined(__CFA_NO_STATISTICS__) 555 __tls_stats()->ready.sleep.wakes++; 556 #endif 557 558 /* paranoid */ verify( ready_schedule_islocked() ); 559 /* paranoid */ verify( ! __preemption_enabled() ); 560 561 return; 562 } 563 564 // Unconditionnaly wake a thread 565 void __wake_proc(processor * this) { 566 __cfadbg_print_safe(runtime_core, "Kernel : waking Processor %p\n", this); 567 568 disable_interrupts(); 569 /* paranoid */ verify( ! __preemption_enabled() ); 570 post( this->idle ); 579 571 enable_interrupts( __cfaabi_dbg_ctx ); 580 572 } 581 573 582 void BlockInternal( __spinlock_t * lock ) { 583 disable_interrupts(); 584 with( *kernelTLS.this_processor ) { 585 finish.action_code = Release; 586 finish.lock = lock; 587 } 588 589 verify( ! kernelTLS.preemption_state.enabled ); 590 returnToKernel(); 591 verify( ! kernelTLS.preemption_state.enabled ); 592 593 enable_interrupts( __cfaabi_dbg_ctx ); 594 } 595 596 void BlockInternal( thread_desc * thrd ) { 597 disable_interrupts(); 598 with( * kernelTLS.this_processor ) { 599 finish.action_code = Schedule; 600 finish.thrd = thrd; 601 } 602 603 verify( ! kernelTLS.preemption_state.enabled ); 604 returnToKernel(); 605 verify( ! kernelTLS.preemption_state.enabled ); 606 607 enable_interrupts( __cfaabi_dbg_ctx ); 608 } 609 610 void BlockInternal( __spinlock_t * lock, thread_desc * thrd ) { 611 assert(thrd); 612 disable_interrupts(); 613 with( * kernelTLS.this_processor ) { 614 finish.action_code = Release_Schedule; 615 finish.lock = lock; 616 finish.thrd = thrd; 617 } 618 619 verify( ! kernelTLS.preemption_state.enabled ); 620 returnToKernel(); 621 verify( ! kernelTLS.preemption_state.enabled ); 622 623 enable_interrupts( __cfaabi_dbg_ctx ); 624 } 625 626 void BlockInternal(__spinlock_t * locks [], unsigned short count) { 627 disable_interrupts(); 628 with( * kernelTLS.this_processor ) { 629 finish.action_code = Release_Multi; 630 finish.locks = locks; 631 finish.lock_count = count; 632 } 633 634 verify( ! kernelTLS.preemption_state.enabled ); 635 returnToKernel(); 636 verify( ! kernelTLS.preemption_state.enabled ); 637 638 enable_interrupts( __cfaabi_dbg_ctx ); 639 } 640 641 void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) { 642 disable_interrupts(); 643 with( *kernelTLS.this_processor ) { 644 finish.action_code = Release_Multi_Schedule; 645 finish.locks = locks; 646 finish.lock_count = lock_count; 647 finish.thrds = thrds; 648 finish.thrd_count = thrd_count; 649 } 650 651 verify( ! kernelTLS.preemption_state.enabled ); 652 returnToKernel(); 653 verify( ! kernelTLS.preemption_state.enabled ); 654 655 enable_interrupts( __cfaabi_dbg_ctx ); 656 } 657 658 void BlockInternal(__finish_callback_fptr_t callback) { 659 disable_interrupts(); 660 with( *kernelTLS.this_processor ) { 661 finish.action_code = Callback; 662 finish.callback = callback; 663 } 664 665 verify( ! kernelTLS.preemption_state.enabled ); 666 returnToKernel(); 667 verify( ! kernelTLS.preemption_state.enabled ); 668 669 enable_interrupts( __cfaabi_dbg_ctx ); 670 } 671 672 // KERNEL ONLY 673 void LeaveThread(__spinlock_t * lock, thread_desc * thrd) { 674 verify( ! kernelTLS.preemption_state.enabled ); 675 with( * kernelTLS.this_processor ) { 676 finish.action_code = thrd ? Release_Schedule : Release; 677 finish.lock = lock; 678 finish.thrd = thrd; 679 } 680 681 returnToKernel(); 682 } 683 684 //============================================================================================= 685 // Kernel Setup logic 686 //============================================================================================= 687 //----------------------------------------------------------------------------- 688 // Kernel boot procedures 689 static void kernel_startup(void) { 690 verify( ! kernelTLS.preemption_state.enabled ); 691 __cfaabi_dbg_print_safe("Kernel : Starting\n"); 692 693 __page_size = sysconf( _SC_PAGESIZE ); 694 695 __cfa_dbg_global_clusters.list{ __get }; 696 __cfa_dbg_global_clusters.lock{}; 697 698 // Initialize the main cluster 699 mainCluster = (cluster *)&storage_mainCluster; 700 (*mainCluster){"Main Cluster"}; 701 702 __cfaabi_dbg_print_safe("Kernel : Main cluster ready\n"); 703 704 // Start by initializing the main thread 705 // SKULLDUGGERY: the mainThread steals the process main thread 706 // which will then be scheduled by the mainProcessor normally 707 mainThread = (thread_desc *)&storage_mainThread; 708 current_stack_info_t info; 709 info.storage = (__stack_t*)&storage_mainThreadCtx; 710 (*mainThread){ &info }; 711 712 __cfaabi_dbg_print_safe("Kernel : Main thread ready\n"); 713 714 715 716 // Construct the processor context of the main processor 717 void ?{}(processorCtx_t & this, processor * proc) { 718 (this.__cor){ "Processor" }; 719 this.__cor.starter = 0p; 720 this.proc = proc; 721 } 722 723 void ?{}(processor & this) with( this ) { 724 name = "Main Processor"; 725 cltr = mainCluster; 726 terminated{ 0 }; 727 do_terminate = false; 728 preemption_alarm = 0p; 729 pending_preemption = false; 730 kernel_thread = pthread_self(); 731 732 runner{ &this }; 733 __cfaabi_dbg_print_safe("Kernel : constructed main processor context %p\n", &runner); 734 } 735 736 // Initialize the main processor and the main processor ctx 737 // (the coroutine that contains the processing control flow) 738 mainProcessor = (processor *)&storage_mainProcessor; 739 (*mainProcessor){}; 740 741 //initialize the global state variables 742 kernelTLS.this_processor = mainProcessor; 743 kernelTLS.this_thread = mainThread; 744 745 // Enable preemption 746 kernel_start_preemption(); 747 748 // Add the main thread to the ready queue 749 // once resume is called on mainProcessor->runner the mainThread needs to be scheduled like any normal thread 750 ScheduleThread(mainThread); 751 752 // SKULLDUGGERY: Force a context switch to the main processor to set the main thread's context to the current UNIX 753 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that 754 // mainThread is on the ready queue when this call is made. 755 kernel_first_resume( kernelTLS.this_processor ); 756 757 758 759 // THE SYSTEM IS NOW COMPLETELY RUNNING 760 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n"); 761 762 verify( ! kernelTLS.preemption_state.enabled ); 763 enable_interrupts( __cfaabi_dbg_ctx ); 764 verify( TL_GET( preemption_state.enabled ) ); 765 } 766 767 static void kernel_shutdown(void) { 768 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n"); 769 770 verify( TL_GET( preemption_state.enabled ) ); 771 disable_interrupts(); 772 verify( ! kernelTLS.preemption_state.enabled ); 773 774 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates. 775 // When its coroutine terminates, it return control to the mainThread 776 // which is currently here 777 __atomic_store_n(&mainProcessor->do_terminate, true, __ATOMIC_RELEASE); 778 kernel_last_resume( kernelTLS.this_processor ); 779 mainThread->self_cor.state = Halted; 780 781 // THE SYSTEM IS NOW COMPLETELY STOPPED 782 783 // Disable preemption 784 kernel_stop_preemption(); 785 786 // Destroy the main processor and its context in reverse order of construction 787 // These were manually constructed so we need manually destroy them 788 ^(mainProcessor->runner){}; 789 ^(mainProcessor){}; 790 791 // Final step, destroy the main thread since it is no longer needed 792 // Since we provided a stack to this taxk it will not destroy anything 793 ^(mainThread){}; 794 795 ^(__cfa_dbg_global_clusters.list){}; 796 ^(__cfa_dbg_global_clusters.lock){}; 797 798 __cfaabi_dbg_print_safe("Kernel : Shutdown complete\n"); 799 } 800 801 //============================================================================================= 802 // Kernel Quiescing 803 //============================================================================================= 804 static void halt(processor * this) with( *this ) { 805 // verify( ! __atomic_load_n(&do_terminate, __ATOMIC_SEQ_CST) ); 806 807 with( *cltr ) { 808 lock (proc_list_lock __cfaabi_dbg_ctx2); 809 remove (procs, *this); 810 push_front(idles, *this); 811 unlock (proc_list_lock); 812 } 813 814 __cfaabi_dbg_print_safe("Kernel : Processor %p ready to sleep\n", this); 815 816 wait( idleLock ); 817 818 __cfaabi_dbg_print_safe("Kernel : Processor %p woke up and ready to run\n", this); 819 820 with( *cltr ) { 821 lock (proc_list_lock __cfaabi_dbg_ctx2); 822 remove (idles, *this); 823 push_front(procs, *this); 824 unlock (proc_list_lock); 574 static void push (__cluster_idles & this, processor & proc) { 575 /* paranoid */ verify( ! __preemption_enabled() ); 576 lock( this ); 577 this.idle++; 578 /* paranoid */ verify( this.idle <= this.total ); 579 580 insert_first(this.list, proc); 581 unlock( this ); 582 /* paranoid */ verify( ! __preemption_enabled() ); 583 } 584 585 static void remove(__cluster_idles & this, processor & proc) { 586 /* paranoid */ verify( ! __preemption_enabled() ); 587 lock( this ); 588 this.idle--; 589 /* paranoid */ verify( this.idle >= 0 ); 590 591 remove(proc); 592 unlock( this ); 593 /* paranoid */ verify( ! __preemption_enabled() ); 594 } 595 596 static [unsigned idle, unsigned total, * processor] query( & __cluster_idles this ) { 597 for() { 598 uint64_t l = __atomic_load_n(&this.lock, __ATOMIC_SEQ_CST); 599 if( 1 == (l % 2) ) { Pause(); continue; } 600 unsigned idle = this.idle; 601 unsigned total = this.total; 602 processor * proc = &this.list`first; 603 // Compiler fence is unnecessary, but gcc-8 and older incorrectly reorder code without it 604 asm volatile("": : :"memory"); 605 if(l != __atomic_load_n(&this.lock, __ATOMIC_SEQ_CST)) { Pause(); continue; } 606 return [idle, total, proc]; 825 607 } 826 608 } … … 836 618 // the globalAbort flag is true. 837 619 lock( kernel_abort_lock __cfaabi_dbg_ctx2 ); 620 621 // disable interrupts, it no longer makes sense to try to interrupt this processor 622 disable_interrupts(); 838 623 839 624 // first task to abort ? … … 853 638 } 854 639 855 return kernelTLS.this_thread;640 return __cfaabi_tls.this_thread; 856 641 } 857 642 858 643 void kernel_abort_msg( void * kernel_data, char * abort_text, int abort_text_size ) { 859 thread_desc * thrd =kernel_data;644 $thread * thrd = ( $thread * ) kernel_data; 860 645 861 646 if(thrd) { … … 878 663 879 664 int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) { 880 return get_coroutine(kernelTLS .this_thread) == get_coroutine(mainThread) ? 4 : 2;665 return get_coroutine(kernelTLS().this_thread) == get_coroutine(mainThread) ? 4 : 2; 881 666 } 882 667 … … 905 690 void ^?{}(semaphore & this) {} 906 691 907 voidP(semaphore & this) with( this ){692 bool P(semaphore & this) with( this ){ 908 693 lock( lock __cfaabi_dbg_ctx2 ); 909 694 count -= 1; 910 695 if ( count < 0 ) { 911 696 // queue current task 912 append( waiting, kernelTLS.this_thread);697 append( waiting, active_thread() ); 913 698 914 699 // atomically release spin lock and block 915 BlockInternal( &lock ); 700 unlock( lock ); 701 park(); 702 return true; 916 703 } 917 704 else { 918 705 unlock( lock ); 919 } 920 } 921 922 void V(semaphore & this) with( this ) { 923 thread_desc * thrd = 0p; 706 return false; 707 } 708 } 709 710 bool V(semaphore & this) with( this ) { 711 $thread * thrd = 0p; 924 712 lock( lock __cfaabi_dbg_ctx2 ); 925 713 count += 1; … … 932 720 933 721 // make new owner 934 WakeThread( thrd ); 935 } 936 937 //----------------------------------------------------------------------------- 938 // Global Queues 939 void doregister( cluster & cltr ) { 940 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2); 941 push_front( __cfa_dbg_global_clusters.list, cltr ); 942 unlock ( __cfa_dbg_global_clusters.lock ); 943 } 944 945 void unregister( cluster & cltr ) { 946 lock ( __cfa_dbg_global_clusters.lock __cfaabi_dbg_ctx2); 947 remove( __cfa_dbg_global_clusters.list, cltr ); 948 unlock( __cfa_dbg_global_clusters.lock ); 949 } 950 951 void doregister( cluster * cltr, thread_desc & thrd ) { 952 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2); 953 cltr->nthreads += 1; 954 push_front(cltr->threads, thrd); 955 unlock (cltr->thread_list_lock); 956 } 957 958 void unregister( cluster * cltr, thread_desc & thrd ) { 959 lock (cltr->thread_list_lock __cfaabi_dbg_ctx2); 960 remove(cltr->threads, thrd ); 961 cltr->nthreads -= 1; 962 unlock(cltr->thread_list_lock); 963 } 964 965 void doregister( cluster * cltr, processor * proc ) { 966 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2); 967 cltr->nprocessors += 1; 968 push_front(cltr->procs, *proc); 969 unlock (cltr->proc_list_lock); 970 } 971 972 void unregister( cluster * cltr, processor * proc ) { 973 lock (cltr->proc_list_lock __cfaabi_dbg_ctx2); 974 remove(cltr->procs, *proc ); 975 cltr->nprocessors -= 1; 976 unlock(cltr->proc_list_lock); 722 unpark( thrd ); 723 724 return thrd != 0p; 725 } 726 727 bool V(semaphore & this, unsigned diff) with( this ) { 728 $thread * thrd = 0p; 729 lock( lock __cfaabi_dbg_ctx2 ); 730 int release = max(-count, (int)diff); 731 count += diff; 732 for(release) { 733 unpark( pop_head( waiting ) ); 734 } 735 736 unlock( lock ); 737 738 return thrd != 0p; 977 739 } 978 740 … … 981 743 __cfaabi_dbg_debug_do( 982 744 extern "C" { 983 void __cfaabi_dbg_record (__spinlock_t & this, const char * prev_name) {745 void __cfaabi_dbg_record_lock(__spinlock_t & this, const char prev_name[]) { 984 746 this.prev_name = prev_name; 985 this.prev_thrd = kernelTLS .this_thread;747 this.prev_thrd = kernelTLS().this_thread; 986 748 } 987 749 } … … 990 752 //----------------------------------------------------------------------------- 991 753 // Debug 992 bool threading_enabled(void) {754 bool threading_enabled(void) __attribute__((const)) { 993 755 return true; 994 756 } 757 758 //----------------------------------------------------------------------------- 759 // Statistics 760 #if !defined(__CFA_NO_STATISTICS__) 761 void print_halts( processor & this ) { 762 this.print_halts = true; 763 } 764 765 void print_stats_now( cluster & this, int flags ) { 766 __print_stats( this.stats, this.print_stats, "Cluster", this.name, (void*)&this ); 767 } 768 769 extern int __print_alarm_stats; 770 void print_alarm_stats() { 771 __print_alarm_stats = -1; 772 } 773 #endif 995 774 // Local Variables: // 996 775 // mode: c // -
libcfa/src/concurrency/kernel.hfa
rbdfc032 reef8dfb 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Dec 4 07:54:51 201913 // Update Count : 1812 // Last Modified On : Tue Feb 4 12:29:26 2020 13 // Update Count : 22 14 14 // 15 15 16 16 #pragma once 17 18 #include <stdbool.h>19 17 20 18 #include "invoke.h" … … 22 20 #include "coroutine.hfa" 23 21 22 #include "containers/list.hfa" 23 24 24 extern "C" { 25 #include <pthread.h>26 #include <semaphore.h>25 #include <bits/pthreadtypes.h> 26 #include <linux/types.h> 27 27 } 28 28 … … 32 32 __spinlock_t lock; 33 33 int count; 34 __queue_t( thread_desc) waiting;34 __queue_t($thread) waiting; 35 35 }; 36 36 37 37 void ?{}(semaphore & this, int count = 1); 38 38 void ^?{}(semaphore & this); 39 void P (semaphore & this); 40 void V (semaphore & this); 39 bool P (semaphore & this); 40 bool V (semaphore & this); 41 bool V (semaphore & this, unsigned count); 41 42 42 43 … … 45 46 extern struct cluster * mainCluster; 46 47 47 enum FinishOpCode { No_Action, Release, Schedule, Release_Schedule, Release_Multi, Release_Multi_Schedule, Callback }; 48 49 typedef void (*__finish_callback_fptr_t)(void); 50 51 //TODO use union, many of these fields are mutually exclusive (i.e. MULTI vs NOMULTI) 52 struct FinishAction { 53 FinishOpCode action_code; 54 /* 55 // Union of possible actions 56 union { 57 // Option 1 : locks and threads 58 struct { 59 // 1 thread or N thread 60 union { 61 thread_desc * thrd; 62 struct { 63 thread_desc ** thrds; 64 unsigned short thrd_count; 65 }; 66 }; 67 // 1 lock or N lock 68 union { 69 __spinlock_t * lock; 70 struct { 71 __spinlock_t ** locks; 72 unsigned short lock_count; 73 }; 74 }; 75 }; 76 // Option 2 : action pointer 77 __finish_callback_fptr_t callback; 78 }; 79 /*/ 80 thread_desc * thrd; 81 thread_desc ** thrds; 82 unsigned short thrd_count; 83 __spinlock_t * lock; 84 __spinlock_t ** locks; 85 unsigned short lock_count; 86 __finish_callback_fptr_t callback; 87 //*/ 88 }; 89 static inline void ?{}(FinishAction & this) { 90 this.action_code = No_Action; 91 this.thrd = 0p; 92 this.lock = 0p; 93 } 94 static inline void ^?{}(FinishAction &) {} 95 96 // Processor 48 // Processor id, required for scheduling threads 49 struct __processor_id_t { 50 unsigned id:24; 51 bool full_proc:1; 52 53 #if !defined(__CFA_NO_STATISTICS__) 54 struct __stats_t * stats; 55 #endif 56 }; 57 97 58 coroutine processorCtx_t { 98 59 struct processor * proc; … … 100 61 101 62 // Wrapper around kernel threads 102 struct processor {63 struct __attribute__((aligned(128))) processor { 103 64 // Main state 65 inline __processor_id_t; 66 67 // Cluster from which to get threads 68 struct cluster * cltr; 69 70 // Set to true to notify the processor should terminate 71 volatile bool do_terminate; 72 104 73 // Coroutine ctx who does keeps the state of the processor 105 74 struct processorCtx_t runner; 106 75 107 // Cluster from which to get threads108 struct cluster * cltr;109 110 76 // Name of the processor 111 77 const char * name; … … 113 79 // Handle to pthreads 114 80 pthread_t kernel_thread; 115 116 // RunThread data117 // Action to do after a thread is ran118 struct FinishAction finish;119 81 120 82 // Preemption data … … 125 87 bool pending_preemption; 126 88 127 // Idle lock 128 __bin_sem_t idleLock; 129 130 // Termination 131 // Set to true to notify the processor should terminate 132 volatile bool do_terminate; 133 134 // Termination synchronisation 89 // Idle lock (kernel semaphore) 90 __bin_sem_t idle; 91 92 // Termination synchronisation (user semaphore) 135 93 semaphore terminated; 136 94 … … 139 97 140 98 // Link lists fields 141 struct __dbg_node_proc { 142 struct processor * next; 143 struct processor * prev; 144 } node; 99 DLISTED_MGD_IMPL_IN(processor) 100 101 #if !defined(__CFA_NO_STATISTICS__) 102 int print_stats; 103 bool print_halts; 104 #endif 145 105 146 106 #ifdef __CFA_DEBUG__ … … 150 110 }; 151 111 152 void ?{}(processor & this, const char * name, struct cluster & cltr);112 void ?{}(processor & this, const char name[], struct cluster & cltr); 153 113 void ^?{}(processor & this); 154 114 155 115 static inline void ?{}(processor & this) { this{ "Anonymous Processor", *mainCluster}; } 156 116 static inline void ?{}(processor & this, struct cluster & cltr) { this{ "Anonymous Processor", cltr}; } 157 static inline void ?{}(processor & this, const char * name) { this{name, *mainCluster }; } 158 159 static inline [processor *&, processor *& ] __get( processor & this ) { 160 return this.node.[next, prev]; 161 } 117 static inline void ?{}(processor & this, const char name[]) { this{name, *mainCluster }; } 118 119 DLISTED_MGD_IMPL_OUT(processor) 120 121 //----------------------------------------------------------------------------- 122 // I/O 123 struct __io_data; 124 125 // IO poller user-thread 126 // Not using the "thread" keyword because we want to control 127 // more carefully when to start/stop it 128 struct $io_ctx_thread { 129 struct __io_data * ring; 130 single_sem sem; 131 volatile bool done; 132 $thread self; 133 }; 134 135 136 struct io_context { 137 $io_ctx_thread thrd; 138 }; 139 140 struct io_context_params { 141 int num_entries; 142 int num_ready; 143 int submit_aff; 144 bool eager_submits:1; 145 bool poller_submits:1; 146 bool poll_submit:1; 147 bool poll_complete:1; 148 }; 149 150 void ?{}(io_context_params & this); 151 152 void ?{}(io_context & this, struct cluster & cl); 153 void ?{}(io_context & this, struct cluster & cl, const io_context_params & params); 154 void ^?{}(io_context & this); 155 156 struct io_cancellation { 157 __u64 target; 158 }; 159 160 static inline void ?{}(io_cancellation & this) { this.target = -1u; } 161 static inline void ^?{}(io_cancellation &) {} 162 bool cancel(io_cancellation & this); 163 164 //----------------------------------------------------------------------------- 165 // Cluster Tools 166 167 // Intrusives lanes which are used by the relaxed ready queue 168 struct __attribute__((aligned(128))) __intrusive_lane_t; 169 void ?{}(__intrusive_lane_t & this); 170 void ^?{}(__intrusive_lane_t & this); 171 172 // Counter used for wether or not the lanes are all empty 173 struct __attribute__((aligned(128))) __snzi_node_t; 174 struct __snzi_t { 175 unsigned mask; 176 int root; 177 __snzi_node_t * nodes; 178 }; 179 180 void ?{}( __snzi_t & this, unsigned depth ); 181 void ^?{}( __snzi_t & this ); 182 183 //TODO adjust cache size to ARCHITECTURE 184 // Structure holding the relaxed ready queue 185 struct __ready_queue_t { 186 // Data tracking how many/which lanes are used 187 // Aligned to 128 for cache locality 188 __snzi_t snzi; 189 190 // Data tracking the actual lanes 191 // On a seperate cacheline from the used struct since 192 // used can change on each push/pop but this data 193 // only changes on shrink/grow 194 struct { 195 // Arary of lanes 196 __intrusive_lane_t * volatile data; 197 198 // Number of lanes (empty or not) 199 volatile size_t count; 200 } lanes; 201 }; 202 203 void ?{}(__ready_queue_t & this); 204 void ^?{}(__ready_queue_t & this); 205 206 // Idle Sleep 207 struct __cluster_idles { 208 // Spin lock protecting the queue 209 volatile uint64_t lock; 210 211 // Total number of processors 212 unsigned total; 213 214 // Total number of idle processors 215 unsigned idle; 216 217 // List of idle processors 218 dlist(processor, processor) list; 219 }; 162 220 163 221 //----------------------------------------------------------------------------- 164 222 // Cluster 165 struct cluster { 166 // Ready queue locks 167 __spinlock_t ready_queue_lock; 168 223 struct __attribute__((aligned(128))) cluster { 169 224 // Ready queue for threads 170 __ queue_t(thread_desc)ready_queue;225 __ready_queue_t ready_queue; 171 226 172 227 // Name of the cluster … … 176 231 Duration preemption_rate; 177 232 178 // List of processors 179 __spinlock_t proc_list_lock; 180 __dllist_t(struct processor) procs; 181 __dllist_t(struct processor) idles; 182 unsigned int nprocessors; 233 // List of idle processors 234 __cluster_idles idles; 183 235 184 236 // List of threads 185 237 __spinlock_t thread_list_lock; 186 __dllist_t(struct thread_desc) threads;238 __dllist_t(struct $thread) threads; 187 239 unsigned int nthreads; 188 240 … … 192 244 cluster * prev; 193 245 } node; 246 247 struct { 248 io_context * ctxs; 249 unsigned cnt; 250 } io; 251 252 #if !defined(__CFA_NO_STATISTICS__) 253 struct __stats_t * stats; 254 int print_stats; 255 #endif 194 256 }; 195 257 extern Duration default_preemption(); 196 258 197 void ?{} (cluster & this, const char * name, Duration preemption_rate);259 void ?{} (cluster & this, const char name[], Duration preemption_rate, unsigned num_io, const io_context_params & io_params); 198 260 void ^?{}(cluster & this); 199 261 200 static inline void ?{} (cluster & this) { this{"Anonymous Cluster", default_preemption()}; } 201 static inline void ?{} (cluster & this, Duration preemption_rate) { this{"Anonymous Cluster", preemption_rate}; } 202 static inline void ?{} (cluster & this, const char * name) { this{name, default_preemption()}; } 203 204 static inline [cluster *&, cluster *& ] __get( cluster & this ) { 205 return this.node.[next, prev]; 206 } 207 208 static inline struct processor * active_processor() { return TL_GET( this_processor ); } // UNSAFE 209 static inline struct cluster * active_cluster () { return TL_GET( this_processor )->cltr; } 262 static inline void ?{} (cluster & this) { io_context_params default_params; this{"Anonymous Cluster", default_preemption(), 1, default_params}; } 263 static inline void ?{} (cluster & this, Duration preemption_rate) { io_context_params default_params; this{"Anonymous Cluster", preemption_rate, 1, default_params}; } 264 static inline void ?{} (cluster & this, const char name[]) { io_context_params default_params; this{name, default_preemption(), 1, default_params}; } 265 static inline void ?{} (cluster & this, unsigned num_io) { io_context_params default_params; this{"Anonymous Cluster", default_preemption(), num_io, default_params}; } 266 static inline void ?{} (cluster & this, Duration preemption_rate, unsigned num_io) { io_context_params default_params; this{"Anonymous Cluster", preemption_rate, num_io, default_params}; } 267 static inline void ?{} (cluster & this, const char name[], unsigned num_io) { io_context_params default_params; this{name, default_preemption(), num_io, default_params}; } 268 static inline void ?{} (cluster & this, const io_context_params & io_params) { this{"Anonymous Cluster", default_preemption(), 1, io_params}; } 269 static inline void ?{} (cluster & this, Duration preemption_rate, const io_context_params & io_params) { this{"Anonymous Cluster", preemption_rate, 1, io_params}; } 270 static inline void ?{} (cluster & this, const char name[], const io_context_params & io_params) { this{name, default_preemption(), 1, io_params}; } 271 static inline void ?{} (cluster & this, unsigned num_io, const io_context_params & io_params) { this{"Anonymous Cluster", default_preemption(), num_io, io_params}; } 272 static inline void ?{} (cluster & this, Duration preemption_rate, unsigned num_io, const io_context_params & io_params) { this{"Anonymous Cluster", preemption_rate, num_io, io_params}; } 273 static inline void ?{} (cluster & this, const char name[], unsigned num_io, const io_context_params & io_params) { this{name, default_preemption(), num_io, io_params}; } 274 275 static inline [cluster *&, cluster *& ] __get( cluster & this ) __attribute__((const)) { return this.node.[next, prev]; } 276 277 static inline struct processor * active_processor() { return publicTLS_get( this_processor ); } // UNSAFE 278 static inline struct cluster * active_cluster () { return publicTLS_get( this_processor )->cltr; } 279 280 #if !defined(__CFA_NO_STATISTICS__) 281 void print_stats_now( cluster & this, int flags ); 282 283 static inline void print_stats_at_exit( cluster & this, int flags ) { 284 this.print_stats |= flags; 285 } 286 287 static inline void print_stats_at_exit( processor & this, int flags ) { 288 this.print_stats |= flags; 289 } 290 291 void print_halts( processor & this ); 292 #endif 210 293 211 294 // Local Variables: // -
libcfa/src/concurrency/kernel_private.hfa
rbdfc032 reef8dfb 10 10 // Created On : Mon Feb 13 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Nov 30 19:25:02 201913 // Update Count : 812 // Last Modified On : Wed Aug 12 08:21:33 2020 13 // Update Count : 9 14 14 // 15 15 … … 20 20 21 21 #include "alarm.hfa" 22 22 #include "stats.hfa" 23 23 24 24 //----------------------------------------------------------------------------- 25 25 // Scheduler 26 27 struct __attribute__((aligned(128))) __scheduler_lock_id_t; 26 28 27 29 extern "C" { … … 31 33 } 32 34 33 void ScheduleThread( thread_desc * ); 34 static inline void WakeThread( thread_desc * thrd ) { 35 if( !thrd ) return; 36 37 verify(thrd->state == Inactive); 38 39 disable_interrupts(); 40 ScheduleThread( thrd ); 41 enable_interrupts( __cfaabi_dbg_ctx ); 42 } 43 thread_desc * nextThread(cluster * this); 44 45 //Block current thread and release/wake-up the following resources 46 void BlockInternal(void); 47 void BlockInternal(__spinlock_t * lock); 48 void BlockInternal(thread_desc * thrd); 49 void BlockInternal(__spinlock_t * lock, thread_desc * thrd); 50 void BlockInternal(__spinlock_t * locks [], unsigned short count); 51 void BlockInternal(__spinlock_t * locks [], unsigned short count, thread_desc * thrds [], unsigned short thrd_count); 52 void BlockInternal(__finish_callback_fptr_t callback); 53 void LeaveThread(__spinlock_t * lock, thread_desc * thrd); 35 void __schedule_thread( $thread * ) 36 #if defined(NDEBUG) || (!defined(__CFA_DEBUG__) && !defined(__CFA_VERIFY__)) 37 __attribute__((nonnull (1))) 38 #endif 39 ; 40 41 extern bool __preemption_enabled(); 42 43 //release/wake-up the following resources 44 void __thread_finish( $thread * thrd ); 54 45 55 46 //----------------------------------------------------------------------------- … … 57 48 void main(processorCtx_t *); 58 49 59 void * create_pthread( pthread_t *, void * (*)(void *), void * ); 60 61 static inline void wake_fast(processor * this) { 62 __cfaabi_dbg_print_safe("Kernel : Waking up processor %p\n", this); 63 post( this->idleLock ); 64 } 65 66 static inline void wake(processor * this) { 67 disable_interrupts(); 68 wake_fast(this); 69 enable_interrupts( __cfaabi_dbg_ctx ); 70 } 71 72 struct event_kernel_t { 73 alarm_list_t alarms; 74 __spinlock_t lock; 75 }; 76 77 extern event_kernel_t * event_kernel; 78 79 struct __cfa_kernel_preemption_state_t { 80 bool enabled; 81 bool in_progress; 82 unsigned short disable_count; 83 }; 84 85 extern volatile thread_local __cfa_kernel_preemption_state_t preemption_state __attribute__ ((tls_model ( "initial-exec" ))); 50 void * __create_pthread( pthread_t *, void * (*)(void *), void * ); 51 void __destroy_pthread( pthread_t pthread, void * stack, void ** retval ); 52 53 54 55 extern cluster * mainCluster; 86 56 87 57 //----------------------------------------------------------------------------- 88 58 // Threads 89 59 extern "C" { 90 void CtxInvokeThread(void (*main)(void *), void * this); 91 } 92 93 extern void ThreadCtxSwitch(coroutine_desc * src, coroutine_desc * dst); 60 void __cfactx_invoke_thread(void (*main)(void *), void * this); 61 } 94 62 95 63 __cfaabi_dbg_debug_do( 96 extern void __cfaabi_dbg_thread_register ( thread_desc* thrd );97 extern void __cfaabi_dbg_thread_unregister( thread_desc* thrd );64 extern void __cfaabi_dbg_thread_register ( $thread * thrd ); 65 extern void __cfaabi_dbg_thread_unregister( $thread * thrd ); 98 66 ) 99 67 68 #define TICKET_BLOCKED (-1) // thread is blocked 69 #define TICKET_RUNNING ( 0) // thread is running 70 #define TICKET_UNBLOCK ( 1) // thread should ignore next block 71 100 72 //----------------------------------------------------------------------------- 101 73 // Utils 102 #define KERNEL_STORAGE(T,X) static char storage_##X[sizeof(T)] 103 104 static inline uint32_t tls_rand() { 105 kernelTLS.rand_seed ^= kernelTLS.rand_seed << 6; 106 kernelTLS.rand_seed ^= kernelTLS.rand_seed >> 21; 107 kernelTLS.rand_seed ^= kernelTLS.rand_seed << 7; 108 return kernelTLS.rand_seed; 109 } 110 111 112 void doregister( struct cluster & cltr ); 113 void unregister( struct cluster & cltr ); 114 115 void doregister( struct cluster * cltr, struct thread_desc & thrd ); 116 void unregister( struct cluster * cltr, struct thread_desc & thrd ); 117 118 void doregister( struct cluster * cltr, struct processor * proc ); 119 void unregister( struct cluster * cltr, struct processor * proc ); 74 void doregister( struct cluster * cltr, struct $thread & thrd ); 75 void unregister( struct cluster * cltr, struct $thread & thrd ); 76 77 //----------------------------------------------------------------------------- 78 // I/O 79 void ^?{}(io_context & this, bool ); 80 81 //======================================================================= 82 // Cluster lock API 83 //======================================================================= 84 // Cells use by the reader writer lock 85 // while not generic it only relies on a opaque pointer 86 struct __attribute__((aligned(128))) __scheduler_lock_id_t { 87 // Spin lock used as the underlying lock 88 volatile bool lock; 89 90 // Handle pointing to the proc owning this cell 91 // Used for allocating cells and debugging 92 __processor_id_t * volatile handle; 93 94 #ifdef __CFA_WITH_VERIFY__ 95 // Debug, check if this is owned for reading 96 bool owned; 97 #endif 98 }; 99 100 static_assert( sizeof(struct __scheduler_lock_id_t) <= __alignof(struct __scheduler_lock_id_t)); 101 102 // Lock-Free registering/unregistering of threads 103 // Register a processor to a given cluster and get its unique id in return 104 unsigned doregister( struct __processor_id_t * proc ); 105 106 // Unregister a processor from a given cluster using its id, getting back the original pointer 107 void unregister( struct __processor_id_t * proc ); 108 109 //----------------------------------------------------------------------- 110 // Cluster idle lock/unlock 111 static inline void lock(__cluster_idles & this) { 112 for() { 113 uint64_t l = this.lock; 114 if( 115 (0 == (l % 2)) 116 && __atomic_compare_exchange_n(&this.lock, &l, l + 1, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST) 117 ) return; 118 Pause(); 119 } 120 } 121 122 static inline void unlock(__cluster_idles & this) { 123 /* paranoid */ verify( 1 == (this.lock % 2) ); 124 __atomic_fetch_add( &this.lock, 1, __ATOMIC_SEQ_CST ); 125 } 126 127 //======================================================================= 128 // Reader-writer lock implementation 129 // Concurrent with doregister/unregister, 130 // i.e., threads can be added at any point during or between the entry/exit 131 132 //----------------------------------------------------------------------- 133 // simple spinlock underlying the RWLock 134 // Blocking acquire 135 static inline void __atomic_acquire(volatile bool * ll) { 136 while( __builtin_expect(__atomic_exchange_n(ll, (bool)true, __ATOMIC_SEQ_CST), false) ) { 137 while(__atomic_load_n(ll, (int)__ATOMIC_RELAXED)) 138 Pause(); 139 } 140 /* paranoid */ verify(*ll); 141 } 142 143 // Non-Blocking acquire 144 static inline bool __atomic_try_acquire(volatile bool * ll) { 145 return !__atomic_exchange_n(ll, (bool)true, __ATOMIC_SEQ_CST); 146 } 147 148 // Release 149 static inline void __atomic_unlock(volatile bool * ll) { 150 /* paranoid */ verify(*ll); 151 __atomic_store_n(ll, (bool)false, __ATOMIC_RELEASE); 152 } 153 154 //----------------------------------------------------------------------- 155 // Reader-Writer lock protecting the ready-queues 156 // while this lock is mostly generic some aspects 157 // have been hard-coded to for the ready-queue for 158 // simplicity and performance 159 struct __scheduler_RWLock_t { 160 // total cachelines allocated 161 unsigned int max; 162 163 // cachelines currently in use 164 volatile unsigned int alloc; 165 166 // cachelines ready to itereate over 167 // (!= to alloc when thread is in second half of doregister) 168 volatile unsigned int ready; 169 170 // writer lock 171 volatile bool lock; 172 173 // data pointer 174 __scheduler_lock_id_t * data; 175 }; 176 177 void ?{}(__scheduler_RWLock_t & this); 178 void ^?{}(__scheduler_RWLock_t & this); 179 180 extern __scheduler_RWLock_t * __scheduler_lock; 181 182 //----------------------------------------------------------------------- 183 // Reader side : acquire when using the ready queue to schedule but not 184 // creating/destroying queues 185 static inline void ready_schedule_lock(void) with(*__scheduler_lock) { 186 /* paranoid */ verify( ! __preemption_enabled() ); 187 /* paranoid */ verify( kernelTLS().this_proc_id ); 188 189 unsigned iproc = kernelTLS().this_proc_id->id; 190 /*paranoid*/ verify(data[iproc].handle == kernelTLS().this_proc_id); 191 /*paranoid*/ verify(iproc < ready); 192 193 // Step 1 : make sure no writer are in the middle of the critical section 194 while(__atomic_load_n(&lock, (int)__ATOMIC_RELAXED)) 195 Pause(); 196 197 // Fence needed because we don't want to start trying to acquire the lock 198 // before we read a false. 199 // Not needed on x86 200 // std::atomic_thread_fence(std::memory_order_seq_cst); 201 202 // Step 2 : acquire our local lock 203 __atomic_acquire( &data[iproc].lock ); 204 /*paranoid*/ verify(data[iproc].lock); 205 206 #ifdef __CFA_WITH_VERIFY__ 207 // Debug, check if this is owned for reading 208 data[iproc].owned = true; 209 #endif 210 } 211 212 static inline void ready_schedule_unlock(void) with(*__scheduler_lock) { 213 /* paranoid */ verify( ! __preemption_enabled() ); 214 /* paranoid */ verify( kernelTLS().this_proc_id ); 215 216 unsigned iproc = kernelTLS().this_proc_id->id; 217 /*paranoid*/ verify(data[iproc].handle == kernelTLS().this_proc_id); 218 /*paranoid*/ verify(iproc < ready); 219 /*paranoid*/ verify(data[iproc].lock); 220 /*paranoid*/ verify(data[iproc].owned); 221 #ifdef __CFA_WITH_VERIFY__ 222 // Debug, check if this is owned for reading 223 data[iproc].owned = false; 224 #endif 225 __atomic_unlock(&data[iproc].lock); 226 } 227 228 #ifdef __CFA_WITH_VERIFY__ 229 static inline bool ready_schedule_islocked(void) { 230 /* paranoid */ verify( ! __preemption_enabled() ); 231 /*paranoid*/ verify( kernelTLS().this_proc_id ); 232 __processor_id_t * proc = kernelTLS().this_proc_id; 233 return __scheduler_lock->data[proc->id].owned; 234 } 235 236 static inline bool ready_mutate_islocked() { 237 return __scheduler_lock->lock; 238 } 239 #endif 240 241 //----------------------------------------------------------------------- 242 // Writer side : acquire when changing the ready queue, e.g. adding more 243 // queues or removing them. 244 uint_fast32_t ready_mutate_lock( void ); 245 246 void ready_mutate_unlock( uint_fast32_t /* value returned by lock */ ); 247 248 //======================================================================= 249 // Ready-Queue API 250 //----------------------------------------------------------------------- 251 // pop thread from the ready queue of a cluster 252 // returns 0p if empty 253 __attribute__((hot)) bool query(struct cluster * cltr); 254 255 //----------------------------------------------------------------------- 256 // push thread onto a ready queue for a cluster 257 // returns true if the list was previously empty, false otherwise 258 __attribute__((hot)) bool push(struct cluster * cltr, struct $thread * thrd); 259 260 //----------------------------------------------------------------------- 261 // pop thread from the ready queue of a cluster 262 // returns 0p if empty 263 // May return 0p spuriously 264 __attribute__((hot)) struct $thread * pop(struct cluster * cltr); 265 266 //----------------------------------------------------------------------- 267 // pop thread from the ready queue of a cluster 268 // returns 0p if empty 269 // guaranteed to find any threads added before this call 270 __attribute__((hot)) struct $thread * pop_slow(struct cluster * cltr); 271 272 //----------------------------------------------------------------------- 273 // remove thread from the ready queue of a cluster 274 // returns bool if it wasn't found 275 bool remove_head(struct cluster * cltr, struct $thread * thrd); 276 277 //----------------------------------------------------------------------- 278 // Increase the width of the ready queue (number of lanes) by 4 279 void ready_queue_grow (struct cluster * cltr, int target); 280 281 //----------------------------------------------------------------------- 282 // Decrease the width of the ready queue (number of lanes) by 4 283 void ready_queue_shrink(struct cluster * cltr, int target); 284 120 285 121 286 // Local Variables: // -
libcfa/src/concurrency/monitor.cfa
rbdfc032 reef8dfb 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // monitor_desc.c --7 // $monitor.c -- 8 8 // 9 9 // Author : Thierry Delisle … … 27 27 //----------------------------------------------------------------------------- 28 28 // Forward declarations 29 static inline void set_owner ( monitor_desc * this, thread_desc* owner );30 static inline void set_owner ( monitor_desc * storage [], __lock_size_t count, thread_desc* owner );31 static inline void set_mask ( monitor_desc* storage [], __lock_size_t count, const __waitfor_mask_t & mask );32 static inline void reset_mask( monitor_desc* this );33 34 static inline thread_desc * next_thread( monitor_desc* this );35 static inline bool is_accepted( monitor_desc* this, const __monitor_group_t & monitors );29 static inline void __set_owner ( $monitor * this, $thread * owner ); 30 static inline void __set_owner ( $monitor * storage [], __lock_size_t count, $thread * owner ); 31 static inline void set_mask ( $monitor * storage [], __lock_size_t count, const __waitfor_mask_t & mask ); 32 static inline void reset_mask( $monitor * this ); 33 34 static inline $thread * next_thread( $monitor * this ); 35 static inline bool is_accepted( $monitor * this, const __monitor_group_t & monitors ); 36 36 37 37 static inline void lock_all ( __spinlock_t * locks [], __lock_size_t count ); 38 static inline void lock_all ( monitor_desc* source [], __spinlock_t * /*out*/ locks [], __lock_size_t count );38 static inline void lock_all ( $monitor * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ); 39 39 static inline void unlock_all( __spinlock_t * locks [], __lock_size_t count ); 40 static inline void unlock_all( monitor_desc* locks [], __lock_size_t count );41 42 static inline void save ( monitor_desc* ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] );43 static inline void restore( monitor_desc* ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] );44 45 static inline void init ( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );46 static inline void init_push( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] );47 48 static inline thread_desc* check_condition ( __condition_criterion_t * );40 static inline void unlock_all( $monitor * locks [], __lock_size_t count ); 41 42 static inline void save ( $monitor * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*out*/ recursions [], __waitfor_mask_t /*out*/ masks [] ); 43 static inline void restore( $monitor * ctx [], __lock_size_t count, __spinlock_t * locks [], unsigned int /*in */ recursions [], __waitfor_mask_t /*in */ masks [] ); 44 45 static inline void init ( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); 46 static inline void init_push( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ); 47 48 static inline $thread * check_condition ( __condition_criterion_t * ); 49 49 static inline void brand_condition ( condition & ); 50 static inline [ thread_desc *, int] search_entry_queue( const __waitfor_mask_t &, monitor_desc* monitors [], __lock_size_t count );50 static inline [$thread *, int] search_entry_queue( const __waitfor_mask_t &, $monitor * monitors [], __lock_size_t count ); 51 51 52 52 forall(dtype T | sized( T )) 53 53 static inline __lock_size_t insert_unique( T * array [], __lock_size_t & size, T * val ); 54 54 static inline __lock_size_t count_max ( const __waitfor_mask_t & mask ); 55 static inline __lock_size_t aggregate ( monitor_desc* storage [], const __waitfor_mask_t & mask );55 static inline __lock_size_t aggregate ( $monitor * storage [], const __waitfor_mask_t & mask ); 56 56 57 57 //----------------------------------------------------------------------------- … … 68 68 69 69 #define monitor_ctx( mons, cnt ) /* Define that create the necessary struct for internal/external scheduling operations */ \ 70 monitor_desc** monitors = mons; /* Save the targeted monitors */ \70 $monitor ** monitors = mons; /* Save the targeted monitors */ \ 71 71 __lock_size_t count = cnt; /* Save the count to a local variable */ \ 72 72 unsigned int recursions[ count ]; /* Save the current recursion levels to restore them later */ \ … … 80 80 //----------------------------------------------------------------------------- 81 81 // Enter/Leave routines 82 83 84 extern "C" { 85 // Enter single monitor 86 static void __enter_monitor_desc( monitor_desc * this, const __monitor_group_t & group ) { 87 // Lock the monitor spinlock 88 lock( this->lock __cfaabi_dbg_ctx2 ); 89 // Interrupts disable inside critical section 90 thread_desc * thrd = kernelTLS.this_thread; 91 92 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); 93 94 if( !this->owner ) { 95 // No one has the monitor, just take it 96 set_owner( this, thrd ); 97 98 __cfaabi_dbg_print_safe( "Kernel : mon is free \n" ); 99 } 100 else if( this->owner == thrd) { 101 // We already have the monitor, just note how many times we took it 102 this->recursion += 1; 103 104 __cfaabi_dbg_print_safe( "Kernel : mon already owned \n" ); 105 } 106 else if( is_accepted( this, group) ) { 107 // Some one was waiting for us, enter 108 set_owner( this, thrd ); 109 110 // Reset mask 111 reset_mask( this ); 112 113 __cfaabi_dbg_print_safe( "Kernel : mon accepts \n" ); 114 } 115 else { 116 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 117 118 // Some one else has the monitor, wait in line for it 119 append( this->entry_queue, thrd ); 120 121 BlockInternal( &this->lock ); 122 123 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 124 125 // BlockInternal will unlock spinlock, no need to unlock ourselves 126 return; 127 } 82 // Enter single monitor 83 static void __enter( $monitor * this, const __monitor_group_t & group ) { 84 $thread * thrd = active_thread(); 85 86 // Lock the monitor spinlock 87 lock( this->lock __cfaabi_dbg_ctx2 ); 88 89 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); 90 91 if( unlikely(0 != (0x1 & (uintptr_t)this->owner)) ) { 92 abort( "Attempt by thread \"%.256s\" (%p) to access joined monitor %p.", thrd->self_cor.name, thrd, this ); 93 } 94 else if( !this->owner ) { 95 // No one has the monitor, just take it 96 __set_owner( this, thrd ); 97 98 __cfaabi_dbg_print_safe( "Kernel : mon is free \n" ); 99 } 100 else if( this->owner == thrd) { 101 // We already have the monitor, just note how many times we took it 102 this->recursion += 1; 103 104 __cfaabi_dbg_print_safe( "Kernel : mon already owned \n" ); 105 } 106 else if( is_accepted( this, group) ) { 107 // Some one was waiting for us, enter 108 __set_owner( this, thrd ); 109 110 // Reset mask 111 reset_mask( this ); 112 113 __cfaabi_dbg_print_safe( "Kernel : mon accepts \n" ); 114 } 115 else { 116 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 117 118 // Some one else has the monitor, wait in line for it 119 /* paranoid */ verify( thrd->link.next == 0p ); 120 append( this->entry_queue, thrd ); 121 /* paranoid */ verify( thrd->link.next == 1p ); 122 123 unlock( this->lock ); 124 park(); 128 125 129 126 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 130 127 131 // Release the lock and leave 128 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 129 return; 130 } 131 132 __cfaabi_dbg_print_safe( "Kernel : %10p Entered mon %p\n", thrd, this); 133 134 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 135 /* paranoid */ verify( this->lock.lock ); 136 137 // Release the lock and leave 138 unlock( this->lock ); 139 return; 140 } 141 142 static void __dtor_enter( $monitor * this, fptr_t func, bool join ) { 143 $thread * thrd = active_thread(); 144 #if defined( __CFA_WITH_VERIFY__ ) 145 bool is_thrd = this == &thrd->self_mon; 146 #endif 147 148 // Lock the monitor spinlock 149 lock( this->lock __cfaabi_dbg_ctx2 ); 150 151 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); 152 153 154 if( !this->owner ) { 155 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 156 157 // No one has the monitor, just take it 158 __set_owner( this, thrd ); 159 160 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 161 /* paranoid */ verify( !is_thrd || thrd->state == Halted || thrd->state == Cancelled ); 162 132 163 unlock( this->lock ); 133 164 return; 134 165 } 135 136 static void __enter_monitor_dtor( monitor_desc * this, fptr_t func ) { 137 // Lock the monitor spinlock 138 lock( this->lock __cfaabi_dbg_ctx2 ); 139 // Interrupts disable inside critical section 140 thread_desc * thrd = kernelTLS.this_thread; 141 142 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); 143 144 145 if( !this->owner ) { 146 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 147 148 // No one has the monitor, just take it 149 set_owner( this, thrd ); 150 151 unlock( this->lock ); 152 return; 166 else if( this->owner == thrd && !join) { 167 // We already have the monitor... but where about to destroy it so the nesting will fail 168 // Abort! 169 abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.", this, thrd->self_cor.name, thrd ); 170 } 171 // SKULLDUGGERY: join will act as a dtor so it would normally trigger to above check 172 // because join will not release the monitor after it executed. 173 // to avoid that it sets the owner to the special value thrd | 1p before exiting 174 else if( this->owner == ($thread*)(1 | (uintptr_t)thrd) ) { 175 // restore the owner and just return 176 __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this); 177 178 // No one has the monitor, just take it 179 __set_owner( this, thrd ); 180 181 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 182 /* paranoid */ verify( !is_thrd || thrd->state == Halted || thrd->state == Cancelled ); 183 184 unlock( this->lock ); 185 return; 186 } 187 188 // The monitor is busy, if this is a thread and the thread owns itself, it better be active 189 /* paranoid */ verify( !is_thrd || this->owner != thrd || (thrd->state != Halted && thrd->state != Cancelled) ); 190 191 __lock_size_t count = 1; 192 $monitor ** monitors = &this; 193 __monitor_group_t group = { &this, 1, func }; 194 if( is_accepted( this, group) ) { 195 __cfaabi_dbg_print_safe( "Kernel : mon accepts dtor, block and signal it \n" ); 196 197 // Wake the thread that is waiting for this 198 __condition_criterion_t * urgent = pop( this->signal_stack ); 199 /* paranoid */ verify( urgent ); 200 201 // Reset mask 202 reset_mask( this ); 203 204 // Create the node specific to this wait operation 205 wait_ctx_primed( thrd, 0 ) 206 207 // Some one else has the monitor, wait for him to finish and then run 208 unlock( this->lock ); 209 210 // Release the next thread 211 /* paranoid */ verifyf( urgent->owner->waiting_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 212 unpark( urgent->owner->waiting_thread ); 213 214 // Park current thread waiting 215 park(); 216 217 // Some one was waiting for us, enter 218 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 219 220 __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this); 221 return; 222 } 223 else { 224 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 225 226 wait_ctx( thrd, 0 ) 227 this->dtor_node = &waiter; 228 229 // Some one else has the monitor, wait in line for it 230 /* paranoid */ verify( thrd->link.next == 0p ); 231 append( this->entry_queue, thrd ); 232 /* paranoid */ verify( thrd->link.next == 1p ); 233 unlock( this->lock ); 234 235 // Park current thread waiting 236 park(); 237 238 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 239 return; 240 } 241 } 242 243 // Leave single monitor 244 void __leave( $monitor * this ) { 245 // Lock the monitor spinlock 246 lock( this->lock __cfaabi_dbg_ctx2 ); 247 248 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", active_thread(), this, this->owner); 249 250 /* paranoid */ verifyf( active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 251 252 // Leaving a recursion level, decrement the counter 253 this->recursion -= 1; 254 255 // If we haven't left the last level of recursion 256 // it means we don't need to do anything 257 if( this->recursion != 0) { 258 __cfaabi_dbg_print_safe( "Kernel : recursion still %d\n", this->recursion); 259 unlock( this->lock ); 260 return; 261 } 262 263 // Get the next thread, will be null on low contention monitor 264 $thread * new_owner = next_thread( this ); 265 266 // Check the new owner is consistent with who we wake-up 267 // new_owner might be null even if someone owns the monitor when the owner is still waiting for another monitor 268 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 269 270 // We can now let other threads in safely 271 unlock( this->lock ); 272 273 //We need to wake-up the thread 274 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 275 unpark( new_owner ); 276 } 277 278 // Leave single monitor for the last time 279 void __dtor_leave( $monitor * this, bool join ) { 280 __cfaabi_dbg_debug_do( 281 if( active_thread() != this->owner ) { 282 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, active_thread(), this->owner); 153 283 } 154 else if( this->owner == thrd) { 155 // We already have the monitor... but where about to destroy it so the nesting will fail 156 // Abort! 157 abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.", this, thrd->self_cor.name, thrd ); 284 if( this->recursion != 1 && !join ) { 285 abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); 158 286 } 159 160 __lock_size_t count = 1; 161 monitor_desc ** monitors = &this; 162 __monitor_group_t group = { &this, 1, func }; 163 if( is_accepted( this, group) ) { 164 __cfaabi_dbg_print_safe( "Kernel : mon accepts dtor, block and signal it \n" ); 165 166 // Wake the thread that is waiting for this 167 __condition_criterion_t * urgent = pop( this->signal_stack ); 168 verify( urgent ); 169 170 // Reset mask 171 reset_mask( this ); 172 173 // Create the node specific to this wait operation 174 wait_ctx_primed( thrd, 0 ) 175 176 // Some one else has the monitor, wait for him to finish and then run 177 BlockInternal( &this->lock, urgent->owner->waiting_thread ); 178 179 // Some one was waiting for us, enter 180 set_owner( this, thrd ); 181 } 182 else { 183 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 184 185 wait_ctx( thrd, 0 ) 186 this->dtor_node = &waiter; 187 188 // Some one else has the monitor, wait in line for it 189 append( this->entry_queue, thrd ); 190 BlockInternal( &this->lock ); 191 192 // BlockInternal will unlock spinlock, no need to unlock ourselves 193 return; 194 } 195 196 __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this); 197 198 } 199 200 // Leave single monitor 201 void __leave_monitor_desc( monitor_desc * this ) { 202 // Lock the monitor spinlock 203 lock( this->lock __cfaabi_dbg_ctx2 ); 204 205 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", kernelTLS.this_thread, this, this->owner); 206 207 verifyf( kernelTLS.this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", kernelTLS.this_thread, this->owner, this->recursion, this ); 208 209 // Leaving a recursion level, decrement the counter 210 this->recursion -= 1; 211 212 // If we haven't left the last level of recursion 213 // it means we don't need to do anything 214 if( this->recursion != 0) { 215 __cfaabi_dbg_print_safe( "Kernel : recursion still %d\n", this->recursion); 216 unlock( this->lock ); 217 return; 218 } 219 220 // Get the next thread, will be null on low contention monitor 221 thread_desc * new_owner = next_thread( this ); 222 223 // We can now let other threads in safely 224 unlock( this->lock ); 225 226 //We need to wake-up the thread 227 WakeThread( new_owner ); 228 } 229 230 // Leave single monitor for the last time 231 void __leave_dtor_monitor_desc( monitor_desc * this ) { 232 __cfaabi_dbg_debug_do( 233 if( TL_GET( this_thread ) != this->owner ) { 234 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, TL_GET( this_thread ), this->owner); 235 } 236 if( this->recursion != 1 ) { 237 abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1); 238 } 239 ) 240 } 241 242 // Leave the thread monitor 243 // last routine called by a thread. 244 // Should never return 245 void __leave_thread_monitor() { 246 thread_desc * thrd = TL_GET( this_thread ); 247 monitor_desc * this = &thrd->self_mon; 248 249 // Lock the monitor now 250 lock( this->lock __cfaabi_dbg_ctx2 ); 251 252 disable_interrupts(); 253 254 thrd->self_cor.state = Halted; 255 256 verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this ); 257 258 // Leaving a recursion level, decrement the counter 259 this->recursion -= 1; 260 261 // If we haven't left the last level of recursion 262 // it must mean there is an error 263 if( this->recursion != 0) { abort( "Thread internal monitor has unbalanced recursion" ); } 264 265 // Fetch the next thread, can be null 266 thread_desc * new_owner = next_thread( this ); 267 268 // Leave the thread, this will unlock the spinlock 269 // Use leave thread instead of BlockInternal which is 270 // specialized for this case and supports null new_owner 271 LeaveThread( &this->lock, new_owner ); 272 273 // Control flow should never reach here! 274 } 287 ) 288 289 this->owner = ($thread*)(1 | (uintptr_t)this->owner); 290 } 291 292 void __thread_finish( $thread * thrd ) { 293 $monitor * this = &thrd->self_mon; 294 295 // Lock the monitor now 296 /* paranoid */ verify( 0x0D15EA5E0D15EA5Ep == thrd->canary ); 297 /* paranoid */ verify( this->lock.lock ); 298 /* paranoid */ verify( thrd->context.SP ); 299 /* paranoid */ verifyf( ((uintptr_t)thrd->context.SP) > ((uintptr_t)__get_stack(thrd->curr_cor)->limit), "ERROR : $thread %p has been corrupted.\n StackPointer too large.\n", thrd ); 300 /* paranoid */ verifyf( ((uintptr_t)thrd->context.SP) < ((uintptr_t)__get_stack(thrd->curr_cor)->base ), "ERROR : $thread %p has been corrupted.\n StackPointer too small.\n", thrd ); 301 /* paranoid */ verify( ! __preemption_enabled() ); 302 303 /* paranoid */ verifyf( thrd == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", thrd, this->owner, this->recursion, this ); 304 /* paranoid */ verify( thrd->state == Halting ); 305 /* paranoid */ verify( this->recursion == 1 ); 306 307 // Leaving a recursion level, decrement the counter 308 this->recursion -= 1; 309 this->owner = 0p; 310 311 // Fetch the next thread, can be null 312 $thread * new_owner = next_thread( this ); 313 314 // Mark the state as fully halted 315 thrd->state = Halted; 316 317 // Release the monitor lock 318 unlock( this->lock ); 319 320 // Unpark the next owner if needed 321 /* paranoid */ verifyf( !new_owner || new_owner == this->owner, "Expected owner to be %p, got %p (m: %p)", new_owner, this->owner, this ); 322 /* paranoid */ verify( ! __preemption_enabled() ); 323 /* paranoid */ verify( thrd->state == Halted ); 324 unpark( new_owner ); 275 325 } 276 326 … … 279 329 static inline void enter( __monitor_group_t monitors ) { 280 330 for( __lock_size_t i = 0; i < monitors.size; i++) { 281 __enter _monitor_desc( monitors[i], monitors );331 __enter( monitors[i], monitors ); 282 332 } 283 333 } … … 285 335 // Leave multiple monitor 286 336 // relies on the monitor array being sorted 287 static inline void leave( monitor_desc* monitors [], __lock_size_t count) {337 static inline void leave($monitor * monitors [], __lock_size_t count) { 288 338 for( __lock_size_t i = count - 1; i >= 0; i--) { 289 __leave _monitor_desc( monitors[i] );339 __leave( monitors[i] ); 290 340 } 291 341 } … … 293 343 // Ctor for monitor guard 294 344 // Sorts monitors before entering 295 void ?{}( monitor_guard_t & this, monitor_desc* m [], __lock_size_t count, fptr_t func ) {296 thread_desc * thrd = TL_GET( this_thread);345 void ?{}( monitor_guard_t & this, $monitor * m [], __lock_size_t count, fptr_t func ) { 346 $thread * thrd = active_thread(); 297 347 298 348 // Store current array … … 329 379 330 380 // Restore thread context 331 TL_GET( this_thread)->monitors = this.prev;381 active_thread()->monitors = this.prev; 332 382 } 333 383 334 384 // Ctor for monitor guard 335 385 // Sorts monitors before entering 336 void ?{}( monitor_dtor_guard_t & this, monitor_desc * m [], fptr_t func) {386 void ?{}( monitor_dtor_guard_t & this, $monitor * m [], fptr_t func, bool join ) { 337 387 // optimization 338 thread_desc * thrd = TL_GET( this_thread);388 $thread * thrd = active_thread(); 339 389 340 390 // Store current array … … 344 394 this.prev = thrd->monitors; 345 395 396 // Save whether we are in a join or not 397 this.join = join; 398 346 399 // Update thread context (needed for conditions) 347 400 (thrd->monitors){m, 1, func}; 348 401 349 __ enter_monitor_dtor( this.m, func);402 __dtor_enter( this.m, func, join ); 350 403 } 351 404 … … 353 406 void ^?{}( monitor_dtor_guard_t & this ) { 354 407 // Leave the monitors in order 355 __ leave_dtor_monitor_desc( this.m);408 __dtor_leave( this.m, this.join ); 356 409 357 410 // Restore thread context 358 TL_GET( this_thread)->monitors = this.prev;411 active_thread()->monitors = this.prev; 359 412 } 360 413 361 414 //----------------------------------------------------------------------------- 362 415 // Internal scheduling types 363 void ?{}(__condition_node_t & this, thread_desc* waiting_thread, __lock_size_t count, uintptr_t user_info ) {416 void ?{}(__condition_node_t & this, $thread * waiting_thread, __lock_size_t count, uintptr_t user_info ) { 364 417 this.waiting_thread = waiting_thread; 365 418 this.count = count; … … 375 428 } 376 429 377 void ?{}(__condition_criterion_t & this, monitor_desc* target, __condition_node_t & owner ) {430 void ?{}(__condition_criterion_t & this, $monitor * target, __condition_node_t & owner ) { 378 431 this.ready = false; 379 432 this.target = target; … … 396 449 397 450 // Create the node specific to this wait operation 398 wait_ctx( TL_GET( this_thread), user_info );451 wait_ctx( active_thread(), user_info ); 399 452 400 453 // Append the current wait operation to the ones already queued on the condition 401 454 // We don't need locks for that since conditions must always be waited on inside monitor mutual exclusion 455 /* paranoid */ verify( waiter.next == 0p ); 402 456 append( this.blocked, &waiter ); 457 /* paranoid */ verify( waiter.next == 1p ); 403 458 404 459 // Lock all monitors (aggregates the locks as well) … … 407 462 // Find the next thread(s) to run 408 463 __lock_size_t thread_count = 0; 409 thread_desc* threads[ count ];464 $thread * threads[ count ]; 410 465 __builtin_memset( threads, 0, sizeof( threads ) ); 411 466 … … 415 470 // Remove any duplicate threads 416 471 for( __lock_size_t i = 0; i < count; i++) { 417 thread_desc* new_owner = next_thread( monitors[i] );472 $thread * new_owner = next_thread( monitors[i] ); 418 473 insert_unique( threads, thread_count, new_owner ); 419 474 } 420 475 476 // Unlock the locks, we don't need them anymore 477 for(int i = 0; i < count; i++) { 478 unlock( *locks[i] ); 479 } 480 481 // Wake the threads 482 for(int i = 0; i < thread_count; i++) { 483 unpark( threads[i] ); 484 } 485 421 486 // Everything is ready to go to sleep 422 BlockInternal( locks, count, threads, thread_count);487 park(); 423 488 424 489 // We are back, restore the owners and recursions … … 435 500 //Some more checking in debug 436 501 __cfaabi_dbg_debug_do( 437 thread_desc * this_thrd = TL_GET( this_thread);502 $thread * this_thrd = active_thread(); 438 503 if ( this.monitor_count != this_thrd->monitors.size ) { 439 504 abort( "Signal on condition %p made with different number of monitor(s), expected %zi got %zi", &this, this.monitor_count, this_thrd->monitors.size ); … … 483 548 484 549 // Create the node specific to this wait operation 485 wait_ctx_primed( kernelTLS.this_thread, 0 )550 wait_ctx_primed( active_thread(), 0 ) 486 551 487 552 //save contexts … … 489 554 490 555 //Find the thread to run 491 thread_desc* signallee = pop_head( this.blocked )->waiting_thread;492 set_owner( monitors, count, signallee );556 $thread * signallee = pop_head( this.blocked )->waiting_thread; 557 __set_owner( monitors, count, signallee ); 493 558 494 559 __cfaabi_dbg_print_buffer_decl( "Kernel : signal_block condition %p (s: %p)\n", &this, signallee ); 495 560 561 // unlock all the monitors 562 unlock_all( locks, count ); 563 564 // unpark the thread we signalled 565 unpark( signallee ); 566 496 567 //Everything is ready to go to sleep 497 BlockInternal( locks, count, &signallee, 1);568 park(); 498 569 499 570 … … 536 607 // Create one! 537 608 __lock_size_t max = count_max( mask ); 538 monitor_desc* mon_storage[max];609 $monitor * mon_storage[max]; 539 610 __builtin_memset( mon_storage, 0, sizeof( mon_storage ) ); 540 611 __lock_size_t actual_count = aggregate( mon_storage, mask ); … … 554 625 { 555 626 // Check if the entry queue 556 thread_desc* next; int index;627 $thread * next; int index; 557 628 [next, index] = search_entry_queue( mask, monitors, count ); 558 629 … … 564 635 verifyf( accepted.size == 1, "ERROR: Accepted dtor has more than 1 mutex parameter." ); 565 636 566 monitor_desc* mon2dtor = accepted[0];637 $monitor * mon2dtor = accepted[0]; 567 638 verifyf( mon2dtor->dtor_node, "ERROR: Accepted monitor has no dtor_node." ); 568 639 … … 576 647 577 648 // Create the node specific to this wait operation 578 wait_ctx_primed( kernelTLS.this_thread, 0 );649 wait_ctx_primed( active_thread(), 0 ); 579 650 580 651 // Save monitor states … … 590 661 591 662 // Set the owners to be the next thread 592 set_owner( monitors, count, next ); 593 594 // Everything is ready to go to sleep 595 BlockInternal( locks, count, &next, 1 ); 663 __set_owner( monitors, count, next ); 664 665 // unlock all the monitors 666 unlock_all( locks, count ); 667 668 // unpark the thread we signalled 669 unpark( next ); 670 671 //Everything is ready to go to sleep 672 park(); 596 673 597 674 // We are back, restore the owners and recursions … … 622 699 623 700 // Create the node specific to this wait operation 624 wait_ctx_primed( kernelTLS.this_thread, 0 );701 wait_ctx_primed( active_thread(), 0 ); 625 702 626 703 monitor_save; … … 628 705 629 706 for( __lock_size_t i = 0; i < count; i++) { 630 verify( monitors[i]->owner == kernelTLS.this_thread ); 631 } 707 verify( monitors[i]->owner == active_thread() ); 708 } 709 710 // unlock all the monitors 711 unlock_all( locks, count ); 632 712 633 713 //Everything is ready to go to sleep 634 BlockInternal( locks, count);714 park(); 635 715 636 716 … … 649 729 // Utilities 650 730 651 static inline void set_owner( monitor_desc * this, thread_desc* owner ) {652 / / __cfaabi_dbg_print_safe( "Kernal : Setting owner of %p to %p ( was %p)\n", this, owner, this->owner);731 static inline void __set_owner( $monitor * this, $thread * owner ) { 732 /* paranoid */ verify( this->lock.lock ); 653 733 654 734 //Pass the monitor appropriately … … 659 739 } 660 740 661 static inline void set_owner( monitor_desc * monitors [], __lock_size_t count, thread_desc * owner ) { 662 monitors[0]->owner = owner; 663 monitors[0]->recursion = 1; 741 static inline void __set_owner( $monitor * monitors [], __lock_size_t count, $thread * owner ) { 742 /* paranoid */ verify ( monitors[0]->lock.lock ); 743 /* paranoid */ verifyf( monitors[0]->owner == active_thread(), "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), monitors[0]->owner, monitors[0]->recursion, monitors[0] ); 744 monitors[0]->owner = owner; 745 monitors[0]->recursion = 1; 664 746 for( __lock_size_t i = 1; i < count; i++ ) { 665 monitors[i]->owner = owner; 666 monitors[i]->recursion = 0; 667 } 668 } 669 670 static inline void set_mask( monitor_desc * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { 747 /* paranoid */ verify ( monitors[i]->lock.lock ); 748 /* paranoid */ verifyf( monitors[i]->owner == active_thread(), "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), monitors[i]->owner, monitors[i]->recursion, monitors[i] ); 749 monitors[i]->owner = owner; 750 monitors[i]->recursion = 0; 751 } 752 } 753 754 static inline void set_mask( $monitor * storage [], __lock_size_t count, const __waitfor_mask_t & mask ) { 671 755 for( __lock_size_t i = 0; i < count; i++) { 672 756 storage[i]->mask = mask; … … 674 758 } 675 759 676 static inline void reset_mask( monitor_desc* this ) {760 static inline void reset_mask( $monitor * this ) { 677 761 this->mask.accepted = 0p; 678 762 this->mask.data = 0p; … … 680 764 } 681 765 682 static inline thread_desc * next_thread( monitor_desc* this ) {766 static inline $thread * next_thread( $monitor * this ) { 683 767 //Check the signaller stack 684 768 __cfaabi_dbg_print_safe( "Kernel : mon %p AS-stack top %p\n", this, this->signal_stack.top); … … 688 772 //regardless of if we are ready to baton pass, 689 773 //we need to set the monitor as in use 690 set_owner( this, urgent->owner->waiting_thread ); 774 /* paranoid */ verifyf( !this->owner || active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 775 __set_owner( this, urgent->owner->waiting_thread ); 691 776 692 777 return check_condition( urgent ); … … 695 780 // No signaller thread 696 781 // Get the next thread in the entry_queue 697 thread_desc * new_owner = pop_head( this->entry_queue ); 698 set_owner( this, new_owner ); 782 $thread * new_owner = pop_head( this->entry_queue ); 783 /* paranoid */ verifyf( !this->owner || active_thread() == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", active_thread(), this->owner, this->recursion, this ); 784 /* paranoid */ verify( !new_owner || new_owner->link.next == 0p ); 785 __set_owner( this, new_owner ); 699 786 700 787 return new_owner; 701 788 } 702 789 703 static inline bool is_accepted( monitor_desc* this, const __monitor_group_t & group ) {790 static inline bool is_accepted( $monitor * this, const __monitor_group_t & group ) { 704 791 __acceptable_t * it = this->mask.data; // Optim 705 792 __lock_size_t count = this->mask.size; … … 723 810 } 724 811 725 static inline void init( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {812 static inline void init( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { 726 813 for( __lock_size_t i = 0; i < count; i++) { 727 814 (criteria[i]){ monitors[i], waiter }; … … 731 818 } 732 819 733 static inline void init_push( __lock_size_t count, monitor_desc* monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) {820 static inline void init_push( __lock_size_t count, $monitor * monitors [], __condition_node_t & waiter, __condition_criterion_t criteria [] ) { 734 821 for( __lock_size_t i = 0; i < count; i++) { 735 822 (criteria[i]){ monitors[i], waiter }; … … 747 834 } 748 835 749 static inline void lock_all( monitor_desc* source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) {836 static inline void lock_all( $monitor * source [], __spinlock_t * /*out*/ locks [], __lock_size_t count ) { 750 837 for( __lock_size_t i = 0; i < count; i++ ) { 751 838 __spinlock_t * l = &source[i]->lock; … … 761 848 } 762 849 763 static inline void unlock_all( monitor_desc* locks [], __lock_size_t count ) {850 static inline void unlock_all( $monitor * locks [], __lock_size_t count ) { 764 851 for( __lock_size_t i = 0; i < count; i++ ) { 765 852 unlock( locks[i]->lock ); … … 768 855 769 856 static inline void save( 770 monitor_desc* ctx [],857 $monitor * ctx [], 771 858 __lock_size_t count, 772 859 __attribute((unused)) __spinlock_t * locks [], … … 781 868 782 869 static inline void restore( 783 monitor_desc* ctx [],870 $monitor * ctx [], 784 871 __lock_size_t count, 785 872 __spinlock_t * locks [], … … 799 886 // 2 - Checks if all the monitors are ready to run 800 887 // if so return the thread to run 801 static inline thread_desc* check_condition( __condition_criterion_t * target ) {888 static inline $thread * check_condition( __condition_criterion_t * target ) { 802 889 __condition_node_t * node = target->owner; 803 890 unsigned short count = node->count; … … 817 904 } 818 905 819 __cfaabi_dbg_print_safe( "Kernel : Runing %i (%p)\n", ready2run, ready2run ? node->waiting_thread :0p );906 __cfaabi_dbg_print_safe( "Kernel : Runing %i (%p)\n", ready2run, ready2run ? (thread*)node->waiting_thread : (thread*)0p ); 820 907 return ready2run ? node->waiting_thread : 0p; 821 908 } 822 909 823 910 static inline void brand_condition( condition & this ) { 824 thread_desc * thrd = TL_GET( this_thread);911 $thread * thrd = active_thread(); 825 912 if( !this.monitors ) { 826 913 // __cfaabi_dbg_print_safe( "Branding\n" ); … … 828 915 this.monitor_count = thrd->monitors.size; 829 916 830 this.monitors = ( monitor_desc**)malloc( this.monitor_count * sizeof( *this.monitors ) );917 this.monitors = ($monitor **)malloc( this.monitor_count * sizeof( *this.monitors ) ); 831 918 for( int i = 0; i < this.monitor_count; i++ ) { 832 919 this.monitors[i] = thrd->monitors[i]; … … 835 922 } 836 923 837 static inline [ thread_desc *, int] search_entry_queue( const __waitfor_mask_t & mask, monitor_desc* monitors [], __lock_size_t count ) {838 839 __queue_t( thread_desc) & entry_queue = monitors[0]->entry_queue;924 static inline [$thread *, int] search_entry_queue( const __waitfor_mask_t & mask, $monitor * monitors [], __lock_size_t count ) { 925 926 __queue_t($thread) & entry_queue = monitors[0]->entry_queue; 840 927 841 928 // For each thread in the entry-queue 842 for( thread_desc** thrd_it = &entry_queue.head;843 *thrd_it;844 thrd_it = &(*thrd_it)-> next929 for( $thread ** thrd_it = &entry_queue.head; 930 (*thrd_it) != 1p; 931 thrd_it = &(*thrd_it)->link.next 845 932 ) { 846 933 // For each acceptable check if it matches … … 884 971 } 885 972 886 static inline __lock_size_t aggregate( monitor_desc* storage [], const __waitfor_mask_t & mask ) {973 static inline __lock_size_t aggregate( $monitor * storage [], const __waitfor_mask_t & mask ) { 887 974 __lock_size_t size = 0; 888 975 for( __lock_size_t i = 0; i < mask.size; i++ ) { -
libcfa/src/concurrency/monitor.hfa
rbdfc032 reef8dfb 23 23 24 24 trait is_monitor(dtype T) { 25 monitor_desc* get_monitor( T & );25 $monitor * get_monitor( T & ); 26 26 void ^?{}( T & mutex ); 27 27 }; 28 28 29 static inline void ?{}( monitor_desc& this) with( this ) {29 static inline void ?{}($monitor & this) with( this ) { 30 30 lock{}; 31 31 entry_queue{}; … … 39 39 } 40 40 41 static inline void ^?{}( monitor_desc& ) {}41 static inline void ^?{}($monitor & ) {} 42 42 43 43 struct monitor_guard_t { 44 monitor_desc** m;44 $monitor ** m; 45 45 __lock_size_t count; 46 46 __monitor_group_t prev; 47 47 }; 48 48 49 void ?{}( monitor_guard_t & this, monitor_desc** m, __lock_size_t count, void (*func)() );49 void ?{}( monitor_guard_t & this, $monitor ** m, __lock_size_t count, void (*func)() ); 50 50 void ^?{}( monitor_guard_t & this ); 51 51 52 52 struct monitor_dtor_guard_t { 53 monitor_desc* m;53 $monitor * m; 54 54 __monitor_group_t prev; 55 bool join; 55 56 }; 56 57 57 void ?{}( monitor_dtor_guard_t & this, monitor_desc ** m, void (*func)());58 void ?{}( monitor_dtor_guard_t & this, $monitor ** m, void (*func)(), bool join ); 58 59 void ^?{}( monitor_dtor_guard_t & this ); 59 60 … … 72 73 73 74 // The monitor this criterion concerns 74 monitor_desc* target;75 $monitor * target; 75 76 76 77 // The parent node to which this criterion belongs … … 87 88 struct __condition_node_t { 88 89 // Thread that needs to be woken when all criteria are met 89 thread_desc* waiting_thread;90 $thread * waiting_thread; 90 91 91 92 // Array of criteria (Criterions are contiguous in memory) … … 106 107 } 107 108 108 void ?{}(__condition_node_t & this, thread_desc* waiting_thread, __lock_size_t count, uintptr_t user_info );109 void ?{}(__condition_node_t & this, $thread * waiting_thread, __lock_size_t count, uintptr_t user_info ); 109 110 void ?{}(__condition_criterion_t & this ); 110 void ?{}(__condition_criterion_t & this, monitor_desc* target, __condition_node_t * owner );111 void ?{}(__condition_criterion_t & this, $monitor * target, __condition_node_t * owner ); 111 112 112 113 struct condition { … … 115 116 116 117 // Array of monitor pointers (Monitors are NOT contiguous in memory) 117 monitor_desc** monitors;118 $monitor ** monitors; 118 119 119 120 // Number of monitors in the array … … 131 132 132 133 void wait ( condition & this, uintptr_t user_info = 0 ); 134 static inline bool is_empty ( condition & this ) { return this.blocked.head == 1p; } 133 135 bool signal ( condition & this ); 134 136 bool signal_block( condition & this ); 135 static inline bool is_empty ( condition & this ) { return !this.blocked.head; }137 static inline bool signal_all ( condition & this ) { bool ret = false; while(!is_empty(this)) { ret = signal(this) || ret; } return ret; } 136 138 uintptr_t front ( condition & this ); 137 139 -
libcfa/src/concurrency/mutex.cfa
rbdfc032 reef8dfb 30 30 this.lock{}; 31 31 this.blocked_threads{}; 32 this.is_locked = false; 32 33 } 33 34 … … 39 40 lock( lock __cfaabi_dbg_ctx2 ); 40 41 if( is_locked ) { 41 append( blocked_threads, kernelTLS.this_thread ); 42 BlockInternal( &lock ); 42 append( blocked_threads, active_thread() ); 43 unlock( lock ); 44 park(); 43 45 } 44 46 else { … … 62 64 lock( this.lock __cfaabi_dbg_ctx2 ); 63 65 this.is_locked = (this.blocked_threads != 0); 64 WakeThread(66 unpark( 65 67 pop_head( this.blocked_threads ) 66 68 ); … … 84 86 lock( lock __cfaabi_dbg_ctx2 ); 85 87 if( owner == 0p ) { 86 owner = kernelTLS.this_thread;88 owner = active_thread(); 87 89 recursion_count = 1; 88 90 unlock( lock ); 89 91 } 90 else if( owner == kernelTLS.this_thread) {92 else if( owner == active_thread() ) { 91 93 recursion_count++; 92 94 unlock( lock ); 93 95 } 94 96 else { 95 append( blocked_threads, kernelTLS.this_thread ); 96 BlockInternal( &lock ); 97 append( blocked_threads, active_thread() ); 98 unlock( lock ); 99 park(); 97 100 } 98 101 } … … 102 105 lock( lock __cfaabi_dbg_ctx2 ); 103 106 if( owner == 0p ) { 104 owner = kernelTLS.this_thread;107 owner = active_thread(); 105 108 recursion_count = 1; 106 109 ret = true; 107 110 } 108 else if( owner == kernelTLS.this_thread) {111 else if( owner == active_thread() ) { 109 112 recursion_count++; 110 113 ret = true; … … 118 121 recursion_count--; 119 122 if( recursion_count == 0 ) { 120 thread_desc* thrd = pop_head( blocked_threads );123 $thread * thrd = pop_head( blocked_threads ); 121 124 owner = thrd; 122 125 recursion_count = (thrd ? 1 : 0); 123 WakeThread( thrd );126 unpark( thrd ); 124 127 } 125 128 unlock( lock ); … … 138 141 void notify_one(condition_variable & this) with(this) { 139 142 lock( lock __cfaabi_dbg_ctx2 ); 140 WakeThread(143 unpark( 141 144 pop_head( this.blocked_threads ) 142 145 ); … … 147 150 lock( lock __cfaabi_dbg_ctx2 ); 148 151 while(this.blocked_threads) { 149 WakeThread(152 unpark( 150 153 pop_head( this.blocked_threads ) 151 154 ); … … 156 159 void wait(condition_variable & this) { 157 160 lock( this.lock __cfaabi_dbg_ctx2 ); 158 append( this.blocked_threads, kernelTLS.this_thread ); 159 BlockInternal( &this.lock ); 161 append( this.blocked_threads, active_thread() ); 162 unlock( this.lock ); 163 park(); 160 164 } 161 165 … … 163 167 void wait(condition_variable & this, L & l) { 164 168 lock( this.lock __cfaabi_dbg_ctx2 ); 165 append( this.blocked_threads, kernelTLS.this_thread ); 166 void __unlock(void) { 167 unlock(l); 168 unlock(this.lock); 169 } 170 BlockInternal( __unlock ); 169 append( this.blocked_threads, active_thread() ); 170 unlock(l); 171 unlock(this.lock); 172 park(); 171 173 lock(l); 172 174 } -
libcfa/src/concurrency/mutex.hfa
rbdfc032 reef8dfb 36 36 37 37 // List of blocked threads 38 __queue_t(struct thread_desc) blocked_threads;38 __queue_t(struct $thread) blocked_threads; 39 39 40 40 // Locked flag … … 55 55 56 56 // List of blocked threads 57 __queue_t(struct thread_desc) blocked_threads;57 __queue_t(struct $thread) blocked_threads; 58 58 59 59 // Current thread owning the lock 60 struct thread_desc* owner;60 struct $thread * owner; 61 61 62 62 // Number of recursion level … … 83 83 84 84 // List of blocked threads 85 __queue_t(struct thread_desc) blocked_threads;85 __queue_t(struct $thread) blocked_threads; 86 86 }; 87 87 -
libcfa/src/concurrency/preemption.cfa
rbdfc032 reef8dfb 10 10 // Created On : Mon Jun 5 14:20:42 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Dec 5 16:34:05 201913 // Update Count : 4312 // Last Modified On : Fri Nov 6 07:42:13 2020 13 // Update Count : 54 14 14 // 15 15 … … 19 19 #include <assert.h> 20 20 21 extern "C" {22 21 #include <errno.h> 23 22 #include <stdio.h> … … 25 24 #include <unistd.h> 26 25 #include <limits.h> // PTHREAD_STACK_MIN 27 }28 26 29 27 #include "bits/signal.hfa" 28 #include "kernel_private.hfa" 30 29 31 30 #if !defined(__CFA_DEFAULT_PREEMPTION__) … … 39 38 // FwdDeclarations : timeout handlers 40 39 static void preempt( processor * this ); 41 static void timeout( thread_desc* this );40 static void timeout( $thread * this ); 42 41 43 42 // FwdDeclarations : Signal handlers 44 43 static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ); 44 static void sigHandler_alarm ( __CFA_SIGPARMS__ ); 45 45 static void sigHandler_segv ( __CFA_SIGPARMS__ ); 46 46 static void sigHandler_ill ( __CFA_SIGPARMS__ ); … … 56 56 #elif defined( __x86_64 ) 57 57 #define CFA_REG_IP gregs[REG_RIP] 58 #elif defined( __ ARM_ARCH)58 #elif defined( __arm__ ) 59 59 #define CFA_REG_IP arm_pc 60 #elif defined( __aarch64__ ) 61 #define CFA_REG_IP pc 60 62 #else 61 #error un knownhardware architecture63 #error unsupported hardware architecture 62 64 #endif 63 65 … … 83 85 // Get next expired node 84 86 static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) { 85 if( ! alarms->head) return 0p; // If no alarms return null86 if( alarms->head->alarm >= currtime ) return 0p; // If alarms head not expired return null87 if( ! & (*alarms)`first ) return 0p; // If no alarms return null 88 if( (*alarms)`first.alarm >= currtime ) return 0p; // If alarms head not expired return null 87 89 return pop(alarms); // Otherwise just pop head 88 90 } 89 91 90 92 // Tick one frame of the Discrete Event Simulation for alarms 91 static void tick_preemption( ) {93 static void tick_preemption(void) { 92 94 alarm_node_t * node = 0p; // Used in the while loop but cannot be declared in the while condition 93 95 alarm_list_t * alarms = &event_kernel->alarms; // Local copy for ease of reading … … 97 99 while( node = get_expired( alarms, currtime ) ) { 98 100 // __cfaabi_dbg_print_buffer_decl( " KERNEL: preemption tick.\n" ); 101 Duration period = node->period; 102 if( period == 0) { 103 node->set = false; // Node is one-shot, just mark it as not pending 104 } 99 105 100 106 // Check if this is a kernel 101 if( node-> kernel_alarm) {107 if( node->type == Kernel ) { 102 108 preempt( node->proc ); 103 109 } 110 else if( node->type == User ) { 111 timeout( node->thrd ); 112 } 104 113 else { 105 timeout( node->thrd);114 node->callback(*node); 106 115 } 107 116 108 117 // Check if this is a periodic alarm 109 Duration period = node->period;110 118 if( period > 0 ) { 111 119 // __cfaabi_dbg_print_buffer_local( " KERNEL: alarm period is %lu.\n", period.tv ); … … 113 121 insert( alarms, node ); // Reinsert the node for the next time it triggers 114 122 } 115 else {116 node->set = false; // Node is one-shot, just mark it as not pending117 }118 123 } 119 124 120 125 // If there are still alarms pending, reset the timer 121 if( alarms->head) {122 __cfa abi_dbg_print_buffer_decl(" KERNEL: @%ju(%ju) resetting alarm to %ju.\n", currtime.tv, __kernel_get_time().tv, (alarms->head->alarm - currtime).tv);123 Duration delta = alarms->head->alarm - currtime;124 Duration cap ed = max(delta, 50`us);126 if( & (*alarms)`first ) { 127 __cfadbg_print_buffer_decl(preemption, " KERNEL: @%ju(%ju) resetting alarm to %ju.\n", currtime.tv, __kernel_get_time().tv, (alarms->head->alarm - currtime).tv); 128 Duration delta = (*alarms)`first.alarm - currtime; 129 Duration capped = max(delta, 50`us); 125 130 // itimerval tim = { caped }; 126 131 // __cfaabi_dbg_print_buffer_local( " Values are %lu, %lu, %lu %lu.\n", delta.tv, caped.tv, tim.it_value.tv_sec, tim.it_value.tv_usec); 127 132 128 __kernel_set_timer( cap ed );133 __kernel_set_timer( capped ); 129 134 } 130 135 } … … 158 163 // Kernel Signal Tools 159 164 //============================================================================================= 160 161 __cfaabi_dbg_debug_do( static thread_local void * last_interrupt = 0; ) 165 // In a user-level threading system, there are handful of thread-local variables where this problem occurs on the ARM. 166 // 167 // For each kernel thread running user-level threads, there is a flag variable to indicate if interrupts are 168 // enabled/disabled for that kernel thread. Therefore, this variable is made thread local. 169 // 170 // For example, this code fragment sets the state of the "interrupt" variable in thread-local memory. 171 // 172 // _Thread_local volatile int interrupts; 173 // int main() { 174 // interrupts = 0; // disable interrupts } 175 // 176 // which generates the following code on the ARM 177 // 178 // (gdb) disassemble main 179 // Dump of assembler code for function main: 180 // 0x0000000000000610 <+0>: mrs x1, tpidr_el0 181 // 0x0000000000000614 <+4>: mov w0, #0x0 // #0 182 // 0x0000000000000618 <+8>: add x1, x1, #0x0, lsl #12 183 // 0x000000000000061c <+12>: add x1, x1, #0x10 184 // 0x0000000000000620 <+16>: str wzr, [x1] 185 // 0x0000000000000624 <+20>: ret 186 // 187 // The mrs moves a pointer from coprocessor register tpidr_el0 into register x1. Register w0 is set to 0. The two adds 188 // increase the TLS pointer with the displacement (offset) 0x10, which is the location in the TSL of variable 189 // "interrupts". Finally, 0 is stored into "interrupts" through the pointer in register x1 that points into the 190 // TSL. Now once x1 has the pointer to the location of the TSL for kernel thread N, it can be be preempted at a 191 // user-level and the user thread is put on the user-level ready-queue. When the preempted thread gets to the front of 192 // the user-level ready-queue it is run on kernel thread M. It now stores 0 into "interrupts" back on kernel thread N, 193 // turning off interrupt on the wrong kernel thread. 194 // 195 // On the x86, the following code is generated for the same code fragment. 196 // 197 // (gdb) disassemble main 198 // Dump of assembler code for function main: 199 // 0x0000000000400420 <+0>: movl $0x0,%fs:0xfffffffffffffffc 200 // 0x000000000040042c <+12>: xor %eax,%eax 201 // 0x000000000040042e <+14>: retq 202 // 203 // and there is base-displacement addressing used to atomically reset variable "interrupts" off of the TSL pointer in 204 // register "fs". 205 // 206 // Hence, the ARM has base-displacement address for the general purpose registers, BUT not to the coprocessor 207 // registers. As a result, generating the address for the write into variable "interrupts" is no longer atomic. 208 // 209 // Note this problem does NOT occur when just using multiple kernel threads because the preemption ALWAYS restarts the 210 // thread on the same kernel thread. 211 // 212 // The obvious question is why does ARM use a coprocessor register to store the TSL pointer given that coprocessor 213 // registers are second-class registers with respect to the instruction set. One possible answer is that they did not 214 // want to dedicate one of the general registers to hold the TLS pointer and there was a free coprocessor register 215 // available. 216 217 //----------------------------------------------------------------------------- 218 // Some assembly required 219 #define __cfaasm_label(label, when) when: asm volatile goto(".global __cfaasm_" #label "_" #when "\n" "__cfaasm_" #label "_" #when ":":::"memory":when) 220 221 //---------- 222 // special case for preemption since used often 223 bool __preemption_enabled() { 224 // create a assembler label before 225 // marked as clobber all to avoid movement 226 __cfaasm_label(check, before); 227 228 // access tls as normal 229 bool enabled = __cfaabi_tls.preemption_state.enabled; 230 231 // create a assembler label after 232 // marked as clobber all to avoid movement 233 __cfaasm_label(check, after); 234 return enabled; 235 } 236 237 struct asm_region { 238 void * before; 239 void * after; 240 }; 241 242 static inline bool __cfaasm_in( void * ip, struct asm_region & region ) { 243 return ip >= region.before && ip <= region.after; 244 } 245 246 247 //---------- 248 // Get data from the TLS block 249 // struct asm_region __cfaasm_get; 250 uintptr_t __cfatls_get( unsigned long int offset ) __attribute__((__noinline__)); //no inline to avoid problems 251 uintptr_t __cfatls_get( unsigned long int offset ) { 252 // create a assembler label before 253 // marked as clobber all to avoid movement 254 __cfaasm_label(get, before); 255 256 // access tls as normal (except for pointer arithmetic) 257 uintptr_t val = *(uintptr_t*)((uintptr_t)&__cfaabi_tls + offset); 258 259 // create a assembler label after 260 // marked as clobber all to avoid movement 261 __cfaasm_label(get, after); 262 return val; 263 } 162 264 163 265 extern "C" { 164 266 // Disable interrupts by incrementing the counter 165 267 void disable_interrupts() { 166 with( kernelTLS.preemption_state ) { 268 // create a assembler label before 269 // marked as clobber all to avoid movement 270 __cfaasm_label(dsable, before); 271 272 with( __cfaabi_tls.preemption_state ) { 167 273 #if GCC_VERSION > 50000 168 274 static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free"); … … 181 287 verify( new_val < 65_000u ); // If this triggers someone is disabling interrupts without enabling them 182 288 } 289 290 // create a assembler label after 291 // marked as clobber all to avoid movement 292 __cfaasm_label(dsable, after); 293 183 294 } 184 295 185 296 // Enable interrupts by decrementing the counter 186 // If counter reaches 0, execute any pending CtxSwitch297 // If counter reaches 0, execute any pending __cfactx_switch 187 298 void enable_interrupts( __cfaabi_dbg_ctx_param ) { 188 processor * proc = kernelTLS.this_processor; // Cache the processor now since interrupts can start happening after the atomic store 189 thread_desc * thrd = kernelTLS.this_thread; // Cache the thread now since interrupts can start happening after the atomic store 190 191 with( kernelTLS.preemption_state ){ 299 // Cache the processor now since interrupts can start happening after the atomic store 300 processor * proc = __cfaabi_tls.this_processor; 301 /* paranoid */ verify( proc ); 302 303 with( __cfaabi_tls.preemption_state ){ 192 304 unsigned short prev = disable_count; 193 305 disable_count -= 1; 194 verify( prev != 0u ); // If this triggers someone is enabled already enabled interruptsverify( prev != 0u ); 306 307 // If this triggers someone is enabled already enabled interruptsverify( prev != 0u ); 308 /* paranoid */ verify( prev != 0u ); 195 309 196 310 // Check if we need to prempt the thread because an interrupt was missed 197 311 if( prev == 1 ) { 198 312 #if GCC_VERSION > 50000 199 static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free");313 static_assert(__atomic_always_lock_free(sizeof(enabled), &enabled), "Must be lock-free"); 200 314 #endif 201 315 … … 209 323 if( proc->pending_preemption ) { 210 324 proc->pending_preemption = false; 211 BlockInternal( thrd);325 force_yield( __POLL_PREEMPTION ); 212 326 } 213 327 } … … 219 333 220 334 // Disable interrupts by incrementint the counter 221 // Don't execute any pending CtxSwitch even if counter reaches 0335 // Don't execute any pending __cfactx_switch even if counter reaches 0 222 336 void enable_interrupts_noPoll() { 223 unsigned short prev = kernelTLS.preemption_state.disable_count; 224 kernelTLS.preemption_state.disable_count -= 1; 225 verifyf( prev != 0u, "Incremented from %u\n", prev ); // If this triggers someone is enabled already enabled interrupts 337 unsigned short prev = __cfaabi_tls.preemption_state.disable_count; 338 __cfaabi_tls.preemption_state.disable_count -= 1; 339 // If this triggers someone is enabled already enabled interrupts 340 /* paranoid */ verifyf( prev != 0u, "Incremented from %u\n", prev ); 226 341 if( prev == 1 ) { 227 342 #if GCC_VERSION > 50000 228 static_assert(__atomic_always_lock_free(sizeof(kernelTLS.preemption_state.enabled), &kernelTLS.preemption_state.enabled), "Must be lock-free");343 static_assert(__atomic_always_lock_free(sizeof(__cfaabi_tls.preemption_state.enabled), &__cfaabi_tls.preemption_state.enabled), "Must be lock-free"); 229 344 #endif 230 345 // Set enabled flag to true 231 346 // should be atomic to avoid preemption in the middle of the operation. 232 347 // use memory order RELAXED since there is no inter-thread on this variable requirements 233 __atomic_store_n(& kernelTLS.preemption_state.enabled, true, __ATOMIC_RELAXED);348 __atomic_store_n(&__cfaabi_tls.preemption_state.enabled, true, __ATOMIC_RELAXED); 234 349 235 350 // Signal the compiler that a fence is needed but only for signal handlers … … 238 353 } 239 354 } 355 356 //----------------------------------------------------------------------------- 357 // Kernel Signal Debug 358 void __cfaabi_check_preemption() { 359 bool ready = __preemption_enabled(); 360 if(!ready) { abort("Preemption should be ready"); } 361 362 __cfaasm_label(debug, before); 363 364 sigset_t oldset; 365 int ret; 366 ret = pthread_sigmask(0, ( const sigset_t * ) 0p, &oldset); // workaround trac#208: cast should be unnecessary 367 if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); } 368 369 ret = sigismember(&oldset, SIGUSR1); 370 if(ret < 0) { abort("ERROR sigismember returned %d", ret); } 371 if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); } 372 373 ret = sigismember(&oldset, SIGALRM); 374 if(ret < 0) { abort("ERROR sigismember returned %d", ret); } 375 if(ret == 0) { abort("ERROR SIGALRM is enabled"); } 376 377 ret = sigismember(&oldset, SIGTERM); 378 if(ret < 0) { abort("ERROR sigismember returned %d", ret); } 379 if(ret == 1) { abort("ERROR SIGTERM is disabled"); } 380 381 __cfaasm_label(debug, after); 382 } 383 384 #ifdef __CFA_WITH_VERIFY__ 385 bool __cfaabi_dbg_in_kernel() { 386 return !__preemption_enabled(); 387 } 388 #endif 389 390 #undef __cfaasm_label 391 392 //----------------------------------------------------------------------------- 393 // Signal handling 240 394 241 395 // sigprocmask wrapper : unblock a single signal … … 257 411 258 412 if ( pthread_sigmask( SIG_BLOCK, &mask, 0p ) == -1 ) { 259 abort( "internal error, pthread_sigmask" );413 abort( "internal error, pthread_sigmask" ); 260 414 } 261 415 } … … 268 422 269 423 // reserved for future use 270 static void timeout( thread_desc * this ) { 271 //TODO : implement waking threads 272 } 424 static void timeout( $thread * this ) { 425 unpark( this ); 426 } 427 428 //----------------------------------------------------------------------------- 429 // Some assembly required 430 #if defined( __i386 ) 431 #ifdef __PIC__ 432 #define RELOC_PRELUDE( label ) \ 433 "calll .Lcfaasm_prelude_" #label "$pb\n\t" \ 434 ".Lcfaasm_prelude_" #label "$pb:\n\t" \ 435 "popl %%eax\n\t" \ 436 ".Lcfaasm_prelude_" #label "_end:\n\t" \ 437 "addl $_GLOBAL_OFFSET_TABLE_+(.Lcfaasm_prelude_" #label "_end-.Lcfaasm_prelude_" #label "$pb), %%eax\n\t" 438 #define RELOC_PREFIX "" 439 #define RELOC_SUFFIX "@GOT(%%eax)" 440 #else 441 #define RELOC_PREFIX "$" 442 #define RELOC_SUFFIX "" 443 #endif 444 #define __cfaasm_label( label ) struct asm_region label = \ 445 ({ \ 446 struct asm_region region; \ 447 asm( \ 448 RELOC_PRELUDE( label ) \ 449 "movl " RELOC_PREFIX "__cfaasm_" #label "_before" RELOC_SUFFIX ", %[vb]\n\t" \ 450 "movl " RELOC_PREFIX "__cfaasm_" #label "_after" RELOC_SUFFIX ", %[va]\n\t" \ 451 : [vb]"=r"(region.before), [va]"=r"(region.after) \ 452 ); \ 453 region; \ 454 }); 455 #elif defined( __x86_64 ) 456 #ifdef __PIC__ 457 #define RELOC_PREFIX "" 458 #define RELOC_SUFFIX "@GOTPCREL(%%rip)" 459 #else 460 #define RELOC_PREFIX "$" 461 #define RELOC_SUFFIX "" 462 #endif 463 #define __cfaasm_label( label ) struct asm_region label = \ 464 ({ \ 465 struct asm_region region; \ 466 asm( \ 467 "movq " RELOC_PREFIX "__cfaasm_" #label "_before" RELOC_SUFFIX ", %[vb]\n\t" \ 468 "movq " RELOC_PREFIX "__cfaasm_" #label "_after" RELOC_SUFFIX ", %[va]\n\t" \ 469 : [vb]"=r"(region.before), [va]"=r"(region.after) \ 470 ); \ 471 region; \ 472 }); 473 #elif defined( __aarch64__ ) 474 #ifdef __PIC__ 475 // Note that this works only for gcc 476 #define __cfaasm_label( label ) struct asm_region label = \ 477 ({ \ 478 struct asm_region region; \ 479 asm( \ 480 "adrp %[vb], _GLOBAL_OFFSET_TABLE_" "\n\t" \ 481 "ldr %[vb], [%[vb], #:gotpage_lo15:__cfaasm_" #label "_before]" "\n\t" \ 482 "adrp %[va], _GLOBAL_OFFSET_TABLE_" "\n\t" \ 483 "ldr %[va], [%[va], #:gotpage_lo15:__cfaasm_" #label "_after]" "\n\t" \ 484 : [vb]"=r"(region.before), [va]"=r"(region.after) \ 485 ); \ 486 region; \ 487 }); 488 #else 489 #error this is not the right thing to do 490 /* 491 #define __cfaasm_label( label ) struct asm_region label = \ 492 ({ \ 493 struct asm_region region; \ 494 asm( \ 495 "adrp %[vb], __cfaasm_" #label "_before" "\n\t" \ 496 "add %[vb], %[vb], :lo12:__cfaasm_" #label "_before" "\n\t" \ 497 "adrp %[va], :got:__cfaasm_" #label "_after" "\n\t" \ 498 "add %[va], %[va], :lo12:__cfaasm_" #label "_after" "\n\t" \ 499 : [vb]"=r"(region.before), [va]"=r"(region.after) \ 500 ); \ 501 region; \ 502 }); 503 */ 504 #endif 505 #else 506 #error unknown hardware architecture 507 #endif 273 508 274 509 // KERNEL ONLY 275 // Check if a CtxSwitch signal handler shoud defer510 // Check if a __cfactx_switch signal handler shoud defer 276 511 // If true : preemption is safe 277 512 // If false : preemption is unsafe and marked as pending 278 static inline bool preemption_ready() { 513 static inline bool preemption_ready( void * ip ) { 514 // Get all the region for which it is not safe to preempt 515 __cfaasm_label( get ); 516 __cfaasm_label( check ); 517 __cfaasm_label( dsable ); 518 __cfaasm_label( debug ); 519 279 520 // Check if preemption is safe 280 bool ready = kernelTLS.preemption_state.enabled && ! kernelTLS.preemption_state.in_progress; 281 521 bool ready = true; 522 if( __cfaasm_in( ip, get ) ) { ready = false; goto EXIT; }; 523 if( __cfaasm_in( ip, check ) ) { ready = false; goto EXIT; }; 524 if( __cfaasm_in( ip, dsable ) ) { ready = false; goto EXIT; }; 525 if( __cfaasm_in( ip, debug ) ) { ready = false; goto EXIT; }; 526 if( !__cfaabi_tls.preemption_state.enabled) { ready = false; goto EXIT; }; 527 if( __cfaabi_tls.preemption_state.in_progress ) { ready = false; goto EXIT; }; 528 529 EXIT: 282 530 // Adjust the pending flag accordingly 283 kernelTLS.this_processor->pending_preemption = !ready;531 __cfaabi_tls.this_processor->pending_preemption = !ready; 284 532 return ready; 285 533 } … … 291 539 // Startup routine to activate preemption 292 540 // Called from kernel_startup 293 void kernel_start_preemption() {541 void __kernel_alarm_startup() { 294 542 __cfaabi_dbg_print_safe( "Kernel : Starting preemption\n" ); 295 543 296 544 // Start with preemption disabled until ready 297 kernelTLS.preemption_state.enabled = false;298 kernelTLS.preemption_state.disable_count = 1;545 __cfaabi_tls.preemption_state.enabled = false; 546 __cfaabi_tls.preemption_state.disable_count = 1; 299 547 300 548 // Initialize the event kernel … … 303 551 304 552 // Setup proper signal handlers 305 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // CtxSwitch handler 553 __cfaabi_sigaction( SIGUSR1, sigHandler_ctxSwitch, SA_SIGINFO | SA_RESTART ); // __cfactx_switch handler 554 __cfaabi_sigaction( SIGALRM, sigHandler_alarm , SA_SIGINFO | SA_RESTART ); // debug handler 306 555 307 556 signal_block( SIGALRM ); 308 557 309 alarm_stack = create_pthread( &alarm_thread, alarm_loop, 0p );558 alarm_stack = __create_pthread( &alarm_thread, alarm_loop, 0p ); 310 559 } 311 560 312 561 // Shutdown routine to deactivate preemption 313 562 // Called from kernel_shutdown 314 void kernel_stop_preemption() {563 void __kernel_alarm_shutdown() { 315 564 __cfaabi_dbg_print_safe( "Kernel : Preemption stopping\n" ); 316 565 … … 326 575 // Wait for the preemption thread to finish 327 576 328 pthread_join( alarm_thread, 0p ); 329 free( alarm_stack ); 577 __destroy_pthread( alarm_thread, alarm_stack, 0p ); 330 578 331 579 // Preemption is now fully stopped … … 353 601 // Kernel Signal Handlers 354 602 //============================================================================================= 603 __cfaabi_dbg_debug_do( static thread_local void * last_interrupt = 0; ) 355 604 356 605 // Context switch signal handler 357 606 // Receives SIGUSR1 signal and causes the current thread to yield 358 607 static void sigHandler_ctxSwitch( __CFA_SIGPARMS__ ) { 359 __cfaabi_dbg_debug_do( last_interrupt = (void *)(cxt->uc_mcontext.CFA_REG_IP); ) 608 void * ip = (void *)(cxt->uc_mcontext.CFA_REG_IP); 609 __cfaabi_dbg_debug_do( last_interrupt = ip; ) 360 610 361 611 // SKULLDUGGERY: if a thread creates a processor and the immediately deletes it, 362 612 // the interrupt that is supposed to force the kernel thread to preempt might arrive 363 // before the kernel thread has even started running. When that happens an iterrupt364 // w ea null 'this_processor' will be caught, just ignore it.365 if(! kernelTLS.this_processor ) return;613 // before the kernel thread has even started running. When that happens, an interrupt 614 // with a null 'this_processor' will be caught, just ignore it. 615 if(! __cfaabi_tls.this_processor ) return; 366 616 367 617 choose(sfp->si_value.sival_int) { 368 618 case PREEMPT_NORMAL : ;// Normal case, nothing to do here 369 case PREEMPT_TERMINATE: verify( __atomic_load_n( & kernelTLS.this_processor->do_terminate, __ATOMIC_SEQ_CST ) );619 case PREEMPT_TERMINATE: verify( __atomic_load_n( &__cfaabi_tls.this_processor->do_terminate, __ATOMIC_SEQ_CST ) ); 370 620 default: 371 621 abort( "internal error, signal value is %d", sfp->si_value.sival_int ); … … 373 623 374 624 // Check if it is safe to preempt here 375 if( !preemption_ready( ) ) { return; }376 377 __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p @ %p).\n", kernelTLS.this_processor, kernelTLS.this_thread, (void *)(cxt->uc_mcontext.CFA_REG_IP) );625 if( !preemption_ready( ip ) ) { return; } 626 627 __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p @ %p).\n", __cfaabi_tls.this_processor, __cfaabi_tls.this_thread, (void *)(cxt->uc_mcontext.CFA_REG_IP) ); 378 628 379 629 // Sync flag : prevent recursive calls to the signal handler 380 kernelTLS.preemption_state.in_progress = true;630 __cfaabi_tls.preemption_state.in_progress = true; 381 631 382 632 // Clear sighandler mask before context switching. … … 388 638 } 389 639 390 // TODO: this should go in finish action391 640 // Clear the in progress flag 392 kernelTLS.preemption_state.in_progress = false;641 __cfaabi_tls.preemption_state.in_progress = false; 393 642 394 643 // Preemption can occur here 395 644 396 BlockInternal( kernelTLS.this_thread ); // Do the actual CtxSwitch 397 } 645 force_yield( __ALARM_PREEMPTION ); // Do the actual __cfactx_switch 646 } 647 648 static void sigHandler_alarm( __CFA_SIGPARMS__ ) { 649 abort("SIGALRM should never reach the signal handler"); 650 } 651 652 #if !defined(__CFA_NO_STATISTICS__) 653 int __print_alarm_stats = 0; 654 #endif 398 655 399 656 // Main of the alarm thread 400 657 // Waits on SIGALRM and send SIGUSR1 to whom ever needs it 401 658 static void * alarm_loop( __attribute__((unused)) void * args ) { 659 __processor_id_t id; 660 id.full_proc = false; 661 id.id = doregister(&id); 662 __cfaabi_tls.this_proc_id = &id; 663 664 #if !defined(__CFA_NO_STATISTICS__) 665 struct __stats_t local_stats; 666 __cfaabi_tls.this_stats = &local_stats; 667 __init_stats( &local_stats ); 668 #endif 669 402 670 // Block sigalrms to control when they arrive 403 671 sigset_t mask; … … 457 725 EXIT: 458 726 __cfaabi_dbg_print_safe( "Kernel : Preemption thread stopping\n" ); 727 unregister(&id); 728 729 #if !defined(__CFA_NO_STATISTICS__) 730 if( 0 != __print_alarm_stats ) { 731 __print_stats( &local_stats, __print_alarm_stats, "Alarm", "Thread", 0p ); 732 } 733 #endif 459 734 return 0p; 460 735 } 461 462 //=============================================================================================463 // Kernel Signal Debug464 //=============================================================================================465 466 void __cfaabi_check_preemption() {467 bool ready = kernelTLS.preemption_state.enabled;468 if(!ready) { abort("Preemption should be ready"); }469 470 sigset_t oldset;471 int ret;472 ret = pthread_sigmask(0, 0p, &oldset);473 if(ret != 0) { abort("ERROR sigprocmask returned %d", ret); }474 475 ret = sigismember(&oldset, SIGUSR1);476 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }477 if(ret == 1) { abort("ERROR SIGUSR1 is disabled"); }478 479 ret = sigismember(&oldset, SIGALRM);480 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }481 if(ret == 0) { abort("ERROR SIGALRM is enabled"); }482 483 ret = sigismember(&oldset, SIGTERM);484 if(ret < 0) { abort("ERROR sigismember returned %d", ret); }485 if(ret == 1) { abort("ERROR SIGTERM is disabled"); }486 }487 488 #ifdef __CFA_WITH_VERIFY__489 bool __cfaabi_dbg_in_kernel() {490 return !kernelTLS.preemption_state.enabled;491 }492 #endif493 736 494 737 // Local Variables: // -
libcfa/src/concurrency/preemption.hfa
rbdfc032 reef8dfb 16 16 #pragma once 17 17 18 #include "bits/locks.hfa" 18 19 #include "alarm.hfa" 19 #include "kernel_private.hfa"20 20 21 void kernel_start_preemption(); 22 void kernel_stop_preemption(); 21 struct event_kernel_t { 22 alarm_list_t alarms; 23 __spinlock_t lock; 24 }; 25 26 extern event_kernel_t * event_kernel; 27 23 28 void update_preemption( processor * this, Duration duration ); 24 29 -
libcfa/src/concurrency/thread.cfa
rbdfc032 reef8dfb 19 19 20 20 #include "kernel_private.hfa" 21 #include "exception.hfa" 21 22 22 23 #define __CFA_INVOKE_PRIVATE__ 23 24 #include "invoke.h" 24 25 25 extern "C" {26 #include <fenv.h>27 #include <stddef.h>28 }29 30 //extern volatile thread_local processor * this_processor;31 32 26 //----------------------------------------------------------------------------- 33 27 // Thread ctors and dtors 34 void ?{}( thread_desc& this, const char * const name, cluster & cl, void * storage, size_t storageSize ) with( this ) {28 void ?{}($thread & this, const char * const name, cluster & cl, void * storage, size_t storageSize ) with( this ) { 35 29 context{ 0p, 0p }; 36 30 self_cor{ name, storage, storageSize }; 31 ticket = TICKET_RUNNING; 37 32 state = Start; 33 preempted = __NO_PREEMPTION; 38 34 curr_cor = &self_cor; 39 35 self_mon.owner = &this; … … 41 37 self_mon_p = &self_mon; 42 38 curr_cluster = &cl; 43 next = 0p; 39 link.next = 0p; 40 link.prev = 0p; 41 link.preferred = -1; 42 #if defined( __CFA_WITH_VERIFY__ ) 43 canary = 0x0D15EA5E0D15EA5Ep; 44 #endif 45 46 seqable.next = 0p; 47 seqable.back = 0p; 44 48 45 49 node.next = 0p; … … 50 54 } 51 55 52 void ^?{}(thread_desc& this) with( this ) { 56 void ^?{}($thread& this) with( this ) { 57 #if defined( __CFA_WITH_VERIFY__ ) 58 canary = 0xDEADDEADDEADDEADp; 59 #endif 53 60 unregister(curr_cluster, this); 54 61 ^self_cor{}; 55 62 } 56 63 64 FORALL_DATA_INSTANCE(ThreadCancelled, (dtype thread_t), (thread_t)) 65 66 forall(dtype T) 67 void copy(ThreadCancelled(T) * dst, ThreadCancelled(T) * src) { 68 dst->virtual_table = src->virtual_table; 69 dst->the_thread = src->the_thread; 70 dst->the_exception = src->the_exception; 71 } 72 73 forall(dtype T) 74 const char * msg(ThreadCancelled(T) *) { 75 return "ThreadCancelled"; 76 } 77 78 forall(dtype T) 79 static void default_thread_cancel_handler(ThreadCancelled(T) & ) { 80 abort( "Unhandled thread cancellation.\n" ); 81 } 82 83 forall(dtype T | is_thread(T) | IS_EXCEPTION(ThreadCancelled, (T))) 84 void ?{}( thread_dtor_guard_t & this, 85 T & thrd, void(*defaultResumptionHandler)(ThreadCancelled(T) &)) { 86 $monitor * m = get_monitor(thrd); 87 $thread * desc = get_thread(thrd); 88 89 // Setup the monitor guard 90 void (*dtor)(T& mutex this) = ^?{}; 91 bool join = defaultResumptionHandler != (void(*)(ThreadCancelled(T)&))0; 92 (this.mg){&m, (void(*)())dtor, join}; 93 94 95 /* paranoid */ verifyf( Halted == desc->state || Cancelled == desc->state, "Expected thread to be Halted or Cancelled, was %d\n", (int)desc->state ); 96 97 // After the guard set-up and any wait, check for cancellation. 98 struct _Unwind_Exception * cancellation = desc->self_cor.cancellation; 99 if ( likely( 0p == cancellation ) ) { 100 return; 101 } else if ( Cancelled == desc->state ) { 102 return; 103 } 104 desc->state = Cancelled; 105 if (!join) { 106 defaultResumptionHandler = default_thread_cancel_handler; 107 } 108 109 ThreadCancelled(T) except; 110 // TODO: Remove explitate vtable set once trac#186 is fixed. 111 except.virtual_table = &get_exception_vtable(&except); 112 except.the_thread = &thrd; 113 except.the_exception = __cfaehm_cancellation_exception( cancellation ); 114 throwResume except; 115 116 except.the_exception->virtual_table->free( except.the_exception ); 117 free( cancellation ); 118 desc->self_cor.cancellation = 0p; 119 } 120 121 void ^?{}( thread_dtor_guard_t & this ) { 122 ^(this.mg){}; 123 } 124 125 //----------------------------------------------------------------------------- 126 // Starting and stopping threads 127 forall( dtype T | is_thread(T) ) 128 void __thrd_start( T & this, void (*main_p)(T &) ) { 129 $thread * this_thrd = get_thread(this); 130 131 disable_interrupts(); 132 __cfactx_start(main_p, get_coroutine(this), this, __cfactx_invoke_thread); 133 134 this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP]; 135 /* paranoid */ verify( this_thrd->context.SP ); 136 137 __schedule_thread( this_thrd ); 138 enable_interrupts( __cfaabi_dbg_ctx ); 139 } 140 141 //----------------------------------------------------------------------------- 142 // Support for threads that don't ues the thread keyword 57 143 forall( dtype T | sized(T) | is_thread(T) | { void ?{}(T&); } ) 58 144 void ?{}( scoped(T)& this ) with( this ) { … … 73 159 74 160 //----------------------------------------------------------------------------- 75 // Starting and stopping threads 76 forall( dtype T | is_thread(T) ) 77 void __thrd_start( T & this, void (*main_p)(T &) ) { 78 thread_desc * this_thrd = get_thread(this); 79 thread_desc * curr_thrd = TL_GET( this_thread ); 80 81 disable_interrupts(); 82 CtxStart(main_p, get_coroutine(this), this, CtxInvokeThread); 83 84 this_thrd->context.[SP, FP] = this_thrd->self_cor.context.[SP, FP]; 85 verify( this_thrd->context.SP ); 86 // CtxSwitch( &curr_thrd->context, &this_thrd->context ); 87 88 ScheduleThread(this_thrd); 89 enable_interrupts( __cfaabi_dbg_ctx ); 161 forall(dtype T | is_thread(T) | IS_RESUMPTION_EXCEPTION(ThreadCancelled, (T))) 162 T & join( T & this ) { 163 thread_dtor_guard_t guard = { this, defaultResumptionHandler }; 164 return this; 90 165 } 91 166 92 void yield( void ) { 93 // Safety note : This could cause some false positives due to preemption 94 verify( TL_GET( preemption_state.enabled ) ); 95 BlockInternal( TL_GET( this_thread ) ); 96 // Safety note : This could cause some false positives due to preemption 97 verify( TL_GET( preemption_state.enabled ) ); 98 } 99 100 void yield( unsigned times ) { 101 for( unsigned i = 0; i < times; i++ ) { 102 yield(); 103 } 167 uint64_t thread_rand() { 168 disable_interrupts(); 169 uint64_t ret = __tls_rand(); 170 enable_interrupts( __cfaabi_dbg_ctx ); 171 return ret; 104 172 } 105 173 -
libcfa/src/concurrency/thread.hfa
rbdfc032 reef8dfb 22 22 #include "kernel.hfa" 23 23 #include "monitor.hfa" 24 #include "exception.hfa" 24 25 25 26 //----------------------------------------------------------------------------- 26 27 // thread trait 27 28 trait is_thread(dtype T) { 28 void ^?{}(T& mutex this);29 void main(T& this);30 thread_desc* get_thread(T& this);29 void ^?{}(T& mutex this); 30 void main(T& this); 31 $thread* get_thread(T& this); 31 32 }; 32 33 33 #define DECL_THREAD(X) thread_desc* get_thread(X& this) { return &this.__thrd; } void main(X& this) 34 FORALL_DATA_EXCEPTION(ThreadCancelled, (dtype thread_t), (thread_t)) ( 35 thread_t * the_thread; 36 exception_t * the_exception; 37 ); 38 39 forall(dtype T) 40 void copy(ThreadCancelled(T) * dst, ThreadCancelled(T) * src); 41 42 forall(dtype T) 43 const char * msg(ThreadCancelled(T) *); 44 45 // define that satisfies the trait without using the thread keyword 46 #define DECL_THREAD(X) $thread* get_thread(X& this) __attribute__((const)) { return &this.__thrd; } void main(X& this) 47 48 // Inline getters for threads/coroutines/monitors 49 forall( dtype T | is_thread(T) ) 50 static inline $coroutine* get_coroutine(T & this) __attribute__((const)) { return &get_thread(this)->self_cor; } 34 51 35 52 forall( dtype T | is_thread(T) ) 36 static inline coroutine_desc* get_coroutine(T & this) { 37 return &get_thread(this)->self_cor; 38 } 53 static inline $monitor * get_monitor (T & this) __attribute__((const)) { return &get_thread(this)->self_mon; } 39 54 40 forall( dtype T | is_thread(T) ) 41 static inline monitor_desc* get_monitor(T & this) { 42 return &get_thread(this)->self_mon; 43 } 55 static inline $coroutine* get_coroutine($thread * this) __attribute__((const)) { return &this->self_cor; } 56 static inline $monitor * get_monitor ($thread * this) __attribute__((const)) { return &this->self_mon; } 44 57 45 static inline coroutine_desc* get_coroutine(thread_desc * this) { 46 return &this->self_cor; 47 } 48 49 static inline monitor_desc* get_monitor(thread_desc * this) { 50 return &this->self_mon; 51 } 52 58 //----------------------------------------------------------------------------- 59 // forward declarations needed for threads 53 60 extern struct cluster * mainCluster; 54 61 … … 58 65 //----------------------------------------------------------------------------- 59 66 // Ctors and dtors 60 void ?{}( thread_desc& this, const char * const name, struct cluster & cl, void * storage, size_t storageSize );61 void ^?{}( thread_desc& this);67 void ?{}($thread & this, const char * const name, struct cluster & cl, void * storage, size_t storageSize ); 68 void ^?{}($thread & this); 62 69 63 static inline void ?{}(thread_desc & this) { this{ "Anonymous Thread", *mainCluster, 0p, 65000 }; } 64 static inline void ?{}(thread_desc & this, size_t stackSize ) { this{ "Anonymous Thread", *mainCluster, 0p, stackSize }; } 65 static inline void ?{}(thread_desc & this, void * storage, size_t storageSize ) { this{ "Anonymous Thread", *mainCluster, storage, storageSize }; } 66 static inline void ?{}(thread_desc & this, struct cluster & cl ) { this{ "Anonymous Thread", cl, 0p, 65000 }; } 67 static inline void ?{}(thread_desc & this, struct cluster & cl, size_t stackSize ) { this{ "Anonymous Thread", cl, 0p, stackSize }; } 68 static inline void ?{}(thread_desc & this, struct cluster & cl, void * storage, size_t storageSize ) { this{ "Anonymous Thread", cl, storage, storageSize }; } 69 static inline void ?{}(thread_desc & this, const char * const name) { this{ name, *mainCluster, 0p, 65000 }; } 70 static inline void ?{}(thread_desc & this, const char * const name, struct cluster & cl ) { this{ name, cl, 0p, 65000 }; } 71 static inline void ?{}(thread_desc & this, const char * const name, struct cluster & cl, size_t stackSize ) { this{ name, cl, 0p, stackSize }; } 70 static inline void ?{}($thread & this) { this{ "Anonymous Thread", *mainCluster, 0p, 65000 }; } 71 static inline void ?{}($thread & this, size_t stackSize ) { this{ "Anonymous Thread", *mainCluster, 0p, stackSize }; } 72 static inline void ?{}($thread & this, void * storage, size_t storageSize ) { this{ "Anonymous Thread", *mainCluster, storage, storageSize }; } 73 static inline void ?{}($thread & this, struct cluster & cl ) { this{ "Anonymous Thread", cl, 0p, 65000 }; } 74 static inline void ?{}($thread & this, struct cluster & cl, size_t stackSize ) { this{ "Anonymous Thread", cl, 0p, stackSize }; } 75 static inline void ?{}($thread & this, struct cluster & cl, void * storage, size_t storageSize ) { this{ "Anonymous Thread", cl, storage, storageSize }; } 76 static inline void ?{}($thread & this, const char * const name) { this{ name, *mainCluster, 0p, 65000 }; } 77 static inline void ?{}($thread & this, const char * const name, struct cluster & cl ) { this{ name, cl, 0p, 65000 }; } 78 static inline void ?{}($thread & this, const char * const name, struct cluster & cl, size_t stackSize ) { this{ name, cl, 0p, stackSize }; } 79 80 struct thread_dtor_guard_t { 81 monitor_dtor_guard_t mg; 82 }; 83 84 forall( dtype T | is_thread(T) | IS_EXCEPTION(ThreadCancelled, (T)) ) 85 void ?{}( thread_dtor_guard_t & this, T & thrd, void(*)(ThreadCancelled(T) &) ); 86 void ^?{}( thread_dtor_guard_t & this ); 72 87 73 88 //----------------------------------------------------------------------------- … … 88 103 void ^?{}( scoped(T)& this ); 89 104 90 void yield(); 91 void yield( unsigned times ); 105 //----------------------------------------------------------------------------- 106 // Scheduler API 92 107 93 static inline struct thread_desc * active_thread () { return TL_GET( this_thread ); } 108 //---------- 109 // Park thread: block until corresponding call to unpark, won't block if unpark is already called 110 void park( void ); 111 112 //---------- 113 // Unpark a thread, if the thread is already blocked, schedule it 114 // if the thread is not yet block, signal that it should rerun immediately 115 void unpark( $thread * this ); 116 117 forall( dtype T | is_thread(T) ) 118 static inline void unpark( T & this ) { if(!&this) return; unpark( get_thread( this ) );} 119 120 //---------- 121 // Yield: force thread to block and be rescheduled 122 bool force_yield( enum __Preemption_Reason ); 123 124 //---------- 125 // sleep: force thread to block and be rescheduled after Duration duration 126 void sleep( Duration duration ); 127 128 //---------- 129 // join 130 forall( dtype T | is_thread(T) | IS_RESUMPTION_EXCEPTION(ThreadCancelled, (T)) ) 131 T & join( T & this ); 94 132 95 133 // Local Variables: //
Note:
See TracChangeset
for help on using the changeset viewer.