- Timestamp:
- Jul 24, 2024, 1:49:16 PM (4 months ago)
- Branches:
- master
- Children:
- a03ed29
- Parents:
- 18d7aaf
- Location:
- doc/theses/jiada_liang_MMath
- Files:
-
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/theses/jiada_liang_MMath/CFAenum.tex
r18d7aaf re561551 2 2 3 3 4 \CFA supports C enumeration using the same syntax and semantics for backwards compatibility. 5 \CFA also extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages. 6 Any enumeration extensions must be intuitive to C programmers both in syntax and semantics. 7 The following sections detail all of my new contributions to enumerations in \CFA. 8 9 \begin{comment} 10 Not support. 11 \end{comment} 12 % \section{Aliasing} 13 14 % C already provides @const@-style aliasing using the unnamed enumerator \see{\VRef{s:TypeName}}, even if the name @enum@ is misleading (@const@ would be better). 15 % Given the existence of this form, it is straightforward to extend it with types other than @int@. 16 % \begin{cfa} 17 % enum E { Size = 20u, PI = 3.14159L, Jack = L"John" }; 18 % \end{cfa} 19 % which matches with @const@ aliasing in other programming languages. 20 % Here, the type of the enumerator is the type of the initialization constant, \eg @typeof(20u)@ for @Size@ implies @unsigned int@. 21 % Auto-initialization is restricted to the case where all constants are @int@, matching with C. 22 % As seen in \VRef{s:EnumeratorTyping}, this feature is just a shorthand for multiple typed-enumeration declarations. 23 24 25 \section{Enumerator Visibility} 26 \label{s:EnumeratorVisibility} 27 28 In C, unscoped enumerators present a \newterm{naming problem} when multiple enumeration types appear in the same scope with duplicate enumerator names. 29 There is no mechanism in C to resolve these naming conflicts other than renaming one of the duplicates, which may be impossible if the conflict comes from system include files. 30 31 The \CFA type-system allows extensive overloading, including enumerators. 32 Furthermore, \CFA uses the environment, such as the left-had of assignment and function parameter, to pinpoint the best overloaded name. 33 % Furthermore, \CFA uses the left-hand of assignment in type resolution to pinpoint the best overloaded name. 34 Finally, qualification and casting are provided to disambiguate any ambiguous situations. 35 \begin{cfa} 36 enum E1 { First, Second, Third, Fourth }; 37 enum E2 { @Fourth@, @Third@, @Second@, @First@ }; $\C{// same enumerator names}$ 38 E1 f() { return Third; } $\C{// overloaded functions, different return types}$ 39 E2 f() { return Fourth; } 40 void g(E1 e); 41 void h(E2 e); 42 void foo() { 43 E1 e1 = First; E2 e2 = First; $\C{// initialization}$ 44 e1 = Second; e2 = Second; $\C{// assignment}$ 45 e1 = f(); e2 = f(); $\C{// function return}$ 46 g(First); h(First); $\C{// function parameter}$ 47 int i = @E1.@First + @E2.@First; $\C{// disambiguate with qualification}$ 48 int j = @(E1)@First + @(E2)@First; $\C{// disambiguate with cast}$ 49 } 50 \end{cfa} 51 \CFA overloading allows programmers to use the most meaningful names without fear of name clashes within a program or from external sources, like include files. 52 Experience from \CFA developers is that the type system implicitly and correctly disambiguates the majority of overloaded names, \ie it is rare to get an incorrect selection or ambiguity, even among hundreds of overloaded variables and functions. 53 Any ambiguity can be resolved using qualification or casting. 54 55 56 \section{Enumerator Scoping} 57 58 An enumeration can be scoped, using @'!'@, so the enumerator constants are not projected into the enclosing scope. 59 \begin{cfa} 60 enum Week @!@ { Mon, Tue, Wed, Thu = 10, Fri, Sat, Sun }; 61 enum RGB @!@ { Red, Green, Blue }; 62 \end{cfa} 63 Now the enumerators \emph{must} be qualified with the associated enumeration type. 64 \begin{cfa} 65 Week week = @Week.@Mon; 66 week = @Week.@Sat; 67 RGB rgb = @RGB.@Red; 68 rgb = @RGB.@Blue; 69 \end{cfa} 70 It is possible to toggle back to unscoping using the \CFA @with@ clause/statement (see also \CC \lstinline[language=c++]{using enum} in Section~\ref{s:C++RelatedWork}). 71 \begin{cfa} 72 with ( @Week@, @RGB@ ) { $\C{// type names}$ 73 week = @Sun@; $\C{// no qualification}$ 74 rgb = @Green@; 75 } 76 \end{cfa} 77 As in Section~\ref{s:EnumeratorVisibility}, opening multiple scoped enumerations in a @with@ can result in duplicate enumeration names, but \CFA implicit type resolution and explicit qualification/casting handle this localized scenario. 78 79 80 \section{Enumeration Traits} 81 82 \CFA defines the set of traits containing operators and helper functions for @enum@. 83 A \CFA enumeration satisfies all of these traits allowing it to interact with runtime features in \CFA. 84 Each trait is discussed in detail. 85 86 The trait @CfaEnum@: 87 \begin{cfa} 88 forall( E ) trait CfaEnum { 89 char * label( E e ); 90 unsigned int posn( E e ); 91 }; 92 \end{cfa} 93 94 describes an enumeration as a named constant with position. And @TypeEnum@ 95 \begin{cfa} 96 forall( E, V ) trait TypeEnum { 97 V value( E e ); 98 }; 99 \end{cfa} 100 asserts two types @E@ and @T@, with @T@ being the base type for the enumeration @E@. 101 102 The declarative syntax 103 \begin{cfa} 104 enum(T) E { A = ..., B = ..., C = ... }; 105 \end{cfa} 106 creates an enumerated type E with @label@, @posn@ and @value@ implemented automatically. 107 108 \begin{cfa} 109 void foo( T t ) { ... } 110 void bar(E e) { 111 choose (e) { 112 case A: printf("\%d", posn(e)); 113 case B: printf("\%s", label(e)); 114 case C: foo(value(e)); 115 } 116 } 117 \end{cfa} 118 119 Implementing general functions across all enumeration types is possible by asserting @CfaEnum( E, T )@, \eg: 120 \begin{cfa} 121 #include <string.hfa> 122 forall( E, T | CfaEnum( E, T ) | {unsigned int toUnsigned(T)} ) 123 string formatEnum( E e ) { 124 unsigned int v = toUnsigned(value(e)); 125 string out = label(e) + '(' + v +')'; 126 return out; 127 } 128 printEunm( Week.Mon ); 129 printEnum( RGB.Green ); 130 \end{cfa} 131 132 \CFA does not define attribute functions for C style enumeration. But it is possilbe for users to explicitly implement 133 enumeration traits for C enum and any other types. 134 135 \begin{cfa} 136 enum Fruit { Apple, Bear, Cherry }; $\C{// C enum}$ 137 char * label(Fruit f) { 138 switch(f) { 139 case Apple: "A"; break; 140 case Bear: "B"; break; 141 case Cherry: "C"; break; 142 } 143 } 144 unsigned posn(Fruit f) { return f; } 145 char* value(Fruit f) { return ""; } $\C{// value can return any non void type}$ 146 formatEnum( Apple ); $\C{// Fruit is now a Cfa enum}$ 147 \end{cfa} 148 149 A type that implements trait @CfaEnum@, \ie, a type has no @value@, is called an opaque enum. 150 151 % \section{Enumerator Opaque Type} 152 153 % \CFA provides a special opaque enumeration type, where the internal representation is chosen by the compiler and only equality operations are available. 4 % \CFA supports C enumeration using the same syntax and semantics for backwards compatibility. 5 % \CFA also extends C-Style enumeration by adding a number of new features that bring enumerations inline with other modern programming languages. 6 % Any enumeration extensions must be intuitive to C programmers both in syntax and semantics. 7 % The following sections detail all of my new contributions to enumerations in \CFA. 8 \CFA extends the enumeration declaration by parameterizing with a type (like a generic type). 9 \begin{clang}[identifierstyle=\linespread{0.9}\it] 10 $\it enum$-specifier: 11 enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { enumerator-list-noinit } 12 enum @(type-specifier$\(_{opt}\)$)@ identifier$\(_{opt}\)$ { enumerator-list-noinit , } 13 enum @(type-specifier$\(_{opt}\)$)@ identifier 14 enumerator-list-noinit: 15 enumeration-constant 16 enumerator-list-noinit , enumeration-constant 17 \end{clang} 18 \CFA enumerations, or \CFA enums, have optional type declaration in a bracket next to the enum keyword. 19 Without optional type declarations, the syntax defines "opaque enums". 20 Otherwise, \CFA enum with type declaration are "typed enums". 21 22 \section{Opaque Enum} 23 \label{s:OpaqueEnum} 24 Opaque enum is a special CFA enumeration type, where the internal representation is chosen by the compiler and hidden from users. 25 Compared C enum, opaque enums are more restrictive in terms of typing, and cannot be implicitly converted to integers. 26 Enumerators of opaque enum cannot have initializer. Declaring initializer in the body of opaque enum results in a syntax error. 154 27 \begin{cfa} 155 28 enum@()@ Planets { MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS, NEPTUNE }; 156 \end{cfa} 157 158 159 In addition, \CFA implements @Bound@ and @Serial@ for \CFA Enums. 160 \begin{cfa} 161 forall( E ) trait Bounded { 162 E first(); 163 E last(); 164 }; 165 \end{cfa} 166 The function @first()@ and @last()@ of enumerated type E return the first and the last enumerator declared in E, respectively. \eg: 167 \begin{cfa} 168 Workday day = first(); $\C{// Mon}$ 169 Planet outermost = last(); $\C{// NEPTUNE}$ 170 \end{cfa} 171 @first()@ and @last()@ are overloaded with return types only, so in the example, the enumeration type is found on the left-hand side of the assignment. 172 Calling either functions without a context results in a type ambiguity, except in the rare case where the type environment has only one enumeration. 173 \begin{cfa} 174 @first();@ $\C{// ambiguous because both Workday and Planet implement Bounded}$ 175 sout | @last()@; 176 Workday day = first(); $\C{// day provides type Workday}$ 177 void foo( Planet p ); 178 foo( last() ); $\C{// parameter provides type Planet}$ 179 \end{cfa} 180 181 The trait @Serial@: 182 \begin{cfa} 183 forall( E | Bounded( E ) ) trait Serial { 184 unsigned fromInstance( E e ); 185 E fromInt( unsigned int posn ); 186 E succ( E e ); 187 E pred( E e ); 188 }; 189 \end{cfa} 190 is a @Bounded@ trait, where elements can be mapped to an integer sequence. 191 A type @T@ matching @Serial@ can project to an unsigned @int@ type, \ie an instance of type T has a corresponding integer value. 192 %However, the inverse may not be possible, and possible requires a bound check. 193 The mapping from a serial type to integer is defined by @fromInstance@, which returns the enumerator's position. 194 The inverse operation is @fromInt@, which performs a bound check using @first()@ and @last()@ before casting the integer into an enumerator. 195 Specifically, for enumerator @E@ declaring $N$ enumerators, @fromInt( i )@ returns the $i-1_{th}$ enumerator, if $0 \leq i < N$, or raises the exception @enumBound@. 196 197 The @succ( E e )@ and @pred( E e )@ imply the enumeration positions are consecutive and ordinal. 198 Specifically, if @e@ is the $i_{th}$ enumerator, @succ( e )@ returns the $i+1_{th}$ enumerator when $e \ne last()$, and @pred( e )@ returns the $i-1_{th}$ enumerator when $e \ne first()$. 199 The exception @enumRange@ is raised if the result of either operation is outside the range of type @E@. 200 201 Finally, there is an associated trait defining comparison operators among enumerators. 202 \begin{cfa} 203 forall( E, T | CfaEnum( E, T ) ) { 204 // comparison 205 int ?==?( E l, E r ); $\C{// true if l and r are same enumerators}$ 206 int ?!=?( E l, E r ); $\C{// true if l and r are different enumerators}$ 207 int ?!=?( E l, zero_t ); $\C{// true if l is not the first enumerator}$ 208 int ?<?( E l, E r ); $\C{// true if l is an enumerator before r}$ 209 int ?<=?( E l, E r ); $\C{// true if l before or the same as r}$ 210 int ?>?( E l, E r ); $\C{// true if l is an enumerator after r}$ 211 int ?>=?( E l, E r ); $\C{// true if l after or the same as r}$ 212 } 213 \end{cfa} 29 30 Planet p = URANUS; 31 @int i = VENUS; // Error, VENUS cannot be converted into an integral type@ 32 \end{cfa} 33 Each opage enum has two @attributes@: @position@ and @label@. \CFA auto-generates @attribute functions@ @posn()@ and @label()@ for every \CFA enum to returns the respective attributes. 34 \begin{cfa} 35 // Auto-generated 36 int posn(Planet p); 37 char * s label(Planet p); 38 \end{cfa} 39 40 \begin{cfa} 41 unsigned i = posn(VENUS); // 1 42 char * s = label(MARS); // "MARS" 43 \end{cfa} 44 45 % \subsection{Representation} 46 \CFA uses chooses signed int as the underlying representation of an opaque enum variable, holding the value of enumeration position. Therefore, @posn()@ is in fact a cast that bypassing type system, converting an 47 cfa enum to its integral representation. 48 49 Labels information are stored in a global array. @label()@ is a function that maps enum position to an element of the array. 214 50 215 51 \section{Typed Enum} … … 220 56 Note, the synonyms @Liz@ and @Beth@ in the last declaration. 221 57 Because enumerators are constants, the enumeration type is implicitly @const@, so all the enumerator types in Figure~\ref{f:EumeratorTyping} are logically rewritten with @const@. 222 223 C has an implicit type conversion from an enumerator to its base type @int@.224 Correspondingly, \CFA has an implicit (safe) conversion from a typed enumerator to its base type.225 \begin{cfa}226 char currency = Dollar;227 string fred = Fred; $\C{// implicit conversion from char * to \CFA string type}$228 Person student = Beth;229 \end{cfa}230 231 % \begin{cfa}232 % struct S { int i, j; };233 % enum( S ) s { A = { 3, 4 }, B = { 7, 8 } };234 % enum( @char@ ) Currency { Dollar = '$\textdollar$', Euro = '$\texteuro$', Pound = '$\textsterling$' };235 % enum( @double@ ) Planet { Venus = 4.87, Earth = 5.97, Mars = 0.642 }; // mass236 % enum( @char *@ ) Colour { Red = "red", Green = "green", Blue = "blue" };237 % enum( @Currency@ ) Europe { Euro = '$\texteuro$', Pound = '$\textsterling$' }; // intersection238 % \end{cfa}239 58 240 59 \begin{figure} … … 281 100 calling constructors happens at runtime (dynamic). 282 101 102 @value@ is an @attribute@ that defined for typed enum along with position and label. @values@ of a typed enum are stored in a global array of declared typed, initialized with 103 value of enumerator initializers. @value()@ functions maps an enum to an elements of the array. 104 105 106 \subsection{Implicit Conversion} 107 C has an implicit type conversion from an enumerator to its base type @int@. 108 Correspondingly, \CFA has an implicit (safe) conversion from a typed enumerator to its base type. 109 \begin{cfa} 110 char currency = Dollar; 111 string fred = Fred; $\C{// implicit conversion from char * to \CFA string type}$ 112 Person student = Beth; 113 \end{cfa} 114 115 % The implicit conversion is accomplished by the compiler adding @value()@ function calls as a candidate with safe cost. Therefore, the expression 116 % \begin{cfa} 117 % char currency = Dollar; 118 % \end{cfa} 119 % is equivalent to 120 % \begin{cfa} 121 % char currency = value(Dollar); 122 % \end{cfa} 123 % Such conversion an @additional@ safe 124 125 The implicit conversion is accomplished by the resolver adding call to @value()@ functions as a resolution candidate with a @implicit@ cost. 126 Implicit cost is an additional category to Aaron's cost model. It is more signicant than @unsafe@ to have 127 the compiler choosing implicit conversion over the narrowing conversion; It is less signicant to @poly@ 128 so that function overloaded with enum traits will be selected over the implicit. @Enum trait@ will be discussed in the chapter. 129 130 Therefore, \CFA conversion cost is 8-tuple 131 @@(unsafe, implicit, poly, safe, sign, vars, specialization, reference)@@ 132 133 \section{Auto Initialization} 134 135 C auto-initialization works for the integral type @int@ with constant expressions. 136 \begin{cfa} 137 enum Alphabet ! { 138 A = 'A', B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, 139 a = 'a', b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z 140 }; 141 \end{cfa} 142 The complexity of the constant expression depends on the level of runtime computation the compiler implements, \eg \CC \lstinline[language={[GNU]C++}]{constexpr} provides complex compile-time computation across multiple types, which blurs the compilation/runtime boundary. 143 144 % The notion of auto-initialization can be generalized in \CFA through the trait @AutoInitializable@. 145 % \begin{cfa} 146 % forall(T) @trait@ AutoInitializable { 147 % void ?{}( T & o, T v ); $\C{// initialization}$ 148 % void ?{}( T & t, zero_t ); $\C{// 0}$ 149 % T ?++( T & t); $\C{// increment}$ 150 % }; 151 % \end{cfa} 152 % In addition, there is an implicit enumeration counter, @ecnt@ of type @T@, managed by the compiler. 153 % For example, the type @Odd@ satisfies @AutoInitializable@: 154 % \begin{cfa} 155 % struct Odd { int i; }; 156 % void ?{}( Odd & o, int v ) { if ( v & 1 ) o.i = v; else /* error not odd */ ; }; 157 % void ?{}( Odd & o, zero_t ) { o.i = 1; }; 158 % Odd ?++( Odd o ) { return (Odd){ o.i + 2 }; }; 159 % \end{cfa} 160 % and implicit initialization is available. 161 % \begin{cfa} 162 % enum( Odd ) { A, B, C = 7, D }; $\C{// 1, 3, 7, 9}$ 163 % \end{cfa} 164 % where the compiler performs the following transformation and runs the code. 165 % \begin{cfa} 166 % enum( Odd ) { 167 % ?{}( ecnt, @0@ } ?{}( A, ecnt }, ?++( ecnt ) ?{}( B, ecnt ), 168 % ?{}( ecnt, 7 ) ?{}( C, ecnt ), ?++( ecnt ) ?{}( D, ecnt ) 169 % }; 170 % \end{cfa} 171 172 The notion of auto-initialization is generalized in \CFA enum in the following way: 173 Enumerator e is the first enumerator of \CFA enumeration E with base type T. If e declares no no initializer, e is auto-initialized by the $zero\_t$ constructor of T. 174 \CFA reports a compile time error if T has no $zero\_t$ constructor. 175 Enumerator e is an enumerator of base-type T enumeration E that position i, where $i \neq 0$. And d is the enumerator with position @i-1@, e is auto-initialized with 176 the result of @value(d)++@. If operator @?++@ is not defined for type T, \CFA reports a compile time error. 177 178 Unfortunately, auto-initialization is not implemented because \CFA is only a transpiler, relying on generated C code to perform the detail work. 179 C does not have the equivalent of \CC \lstinline[language={[GNU]C++}]{constexpr}, and it is currently beyond the scope of the \CFA project to implement a complex runtime interpreter in the transpiler. 180 Nevertheless, the necessary language concepts exist to support this feature. 181 182 183 283 184 \section{Enumeration Inheritance} 284 185 … … 291 192 \end{cfa} 292 193 293 Enumeration @Name2@ inherits all the enumerators and their values from enumeration @Names@ by containment, and a @Names@ enumeration is a subtypeof enumeration @Name2@.194 Enumeration @Name2@ inherits all the enumerators and their values from enumeration @Names@ by containment, and a @Names@ enumeration is a @subtype@ of enumeration @Name2@. 294 195 Note, that enumerators must be unique in inheritance but enumerator values may be repeated. 295 196 … … 301 202 Names $\(\subset\)$ Names2 $\(\subset\)$ Names3 $\C{// enum type of Names}$ 302 203 \end{cfa} 303 A subtype can be cast to its supertype, assigned to a supertype variable, or be used as a function argument that expects the supertype. 304 \begin{cfa} 305 Names fred = Name.Fred; 306 (Names2) fred; (Names3) fred; (Name3) Names.Jack; $\C{// cast to super type}$ 307 Names2 fred2 = fred; Names3 fred3 = fred2; $\C{// assign to super type}$ 308 \end{cfa} 204 205 Inlined from \CFA enumeration @O@, new enumeration @N@ copies all enumerators from @O@, including those @O@ obtains through inheritance. Enumerators inherited from @O@ 206 keeps same @label@ and @value@, but @position@ may shift to the right if other enumerators or inline enumeration declared in prior of @inline A@. 207 \begin{cfa} 208 enum() Phynchocephalia { Tuatara }; 209 enum() Squamata { Snake, Lizard }; 210 enum() Lepidosauromorpha { inline Phynchocephalia, inline Squamata, Kuehneosauridae }; 211 \end{cfa} 212 Snake, for example, has the position 0 in Squamata, but 1 in Lepidosauromorpha as Tuatara inherited from Phynchocephalia is position 0 in Lepidosauromorpha. 213 214 A subtype enumeration can be casted, or implicitly converted into its supertype, with a safe cost. 215 \begin{cfa} 216 enum Squamata squamata_lizard = Lizard; 217 posn(quamata_lizard); // 1 218 enum Lepidosauromorpha lepidosauromorpha_lizard = squamata_lizard; 219 posn(lepidosauromorpha_lizard); // 2 220 void foo( Lepidosauromorpha l ); 221 foo( squamata_lizard ); 222 posn( (Lepidosauromorpha) squamata_lizard ); // 2 223 224 Lepidosauromorpha s = Snake; 225 \end{cfa} 226 The last expression in the preceding example is umabigious. While both @Squamata.Snake@ and @Lepidosauromorpha.Snake@ are valid candidate, @Squamata.Snake@ has 227 an associated safe cost and \CFA select the zero cost candidate @Lepidosauromorpha.Snake@. 228 229 As discussed in \VRef{s:OpaqueEnum}, \CFA chooses position as a representation of \CFA enum. Conversion involves both change of typing 230 and possibly @position@. 231 232 When converting a subtype to a supertype, the position can only be a larger value. The difference between the position in subtype and in supertype is an "offset". 233 \CFA runs a the following algorithm to determine the offset for an enumerator to a super type. 234 % In a summary, \CFA loops over members (include enumerators and inline enums) of the supertype. 235 % If the member is the matching enumerator, the algorithm returns its position. 236 % If the member is a inline enumeration, the algorithm trys to find the enumerator in the inline enumeration. If success, it returns the position of enumerator in the inline enumeration, plus 237 % the position in the current enumeration. Otherwises, it increase the offset by the size of inline enumeration. 238 239 \begin{cfa} 240 struct Enumerator; 241 struct CFAEnum { 242 vector<variant<CFAEnum, Enumerator>> members; 243 }; 244 pair<bool, int> calculateEnumOffset( CFAEnum dst, Enumerator e ) { 245 int offset = 0; 246 for( auto v: dst.members ) { 247 if ( v.holds_alternative<Enumerator>() ) { 248 auto m = v.get<Enumerator>(); 249 if ( m == e ) return make_pair( true, 0 ); 250 offset++; 251 } else { 252 auto p = calculateEnumOffset( v, e ); 253 if ( p.first ) return make_pair( true, offset + p.second ); 254 offset += p.second; 255 } 256 } 257 return make_pair( false, offset ); 258 } 259 \end{cfa} 260 261 % \begin{cfa} 262 % Names fred = Name.Fred; 263 % (Names2) fred; (Names3) fred; (Name3) Names.Jack; $\C{// cast to super type}$ 264 % Names2 fred2 = fred; Names3 fred3 = fred2; $\C{// assign to super type}$ 265 % \end{cfa} 309 266 For the given function prototypes, the following calls are valid. 310 267 \begin{cquote} … … 326 283 \end{cquote} 327 284 Note, the validity of calls is the same for call-by-reference as for call-by-value, and @const@ restrictions are the same as for other types. 285 286 287 288 \section{Enumeration Traits} 289 290 \CFA defines the set of traits containing operators and helper functions for @enum@. 291 A \CFA enumeration satisfies all of these traits allowing it to interact with runtime features in \CFA. 292 Each trait is discussed in detail. 293 294 The trait @CfaEnum@: 295 \begin{cfa} 296 forall( E ) trait CfaEnum { 297 char * label( E e ); 298 unsigned int posn( E e ); 299 }; 300 \end{cfa} 301 302 describes an enumeration as a named constant with position. And @TypeEnum@ 303 \begin{cfa} 304 forall( E, V ) trait TypeEnum { 305 V value( E e ); 306 }; 307 \end{cfa} 308 asserts two types @E@ and @T@, with @T@ being the base type for the enumeration @E@. 309 310 The declarative syntax 311 \begin{cfa} 312 enum(T) E { A = ..., B = ..., C = ... }; 313 \end{cfa} 314 creates an enumerated type E with @label@, @posn@ and @value@ implemented automatically. 315 316 \begin{cfa} 317 void foo( T t ) { ... } 318 void bar(E e) { 319 choose (e) { 320 case A: printf("\%d", posn(e)); 321 case B: printf("\%s", label(e)); 322 case C: foo(value(e)); 323 } 324 } 325 \end{cfa} 326 327 Implementing general functions across all enumeration types is possible by asserting @CfaEnum( E, T )@, \eg: 328 \begin{cfa} 329 #include <string.hfa> 330 forall( E, T | CfaEnum( E, T ) | {unsigned int toUnsigned(T)} ) 331 string formatEnum( E e ) { 332 unsigned int v = toUnsigned(value(e)); 333 string out = label(e) + '(' + v +')'; 334 return out; 335 } 336 printEunm( Week.Mon ); 337 printEnum( RGB.Green ); 338 \end{cfa} 339 340 \CFA does not define attribute functions for C style enumeration. But it is possilbe for users to explicitly implement 341 enumeration traits for C enum and any other types. 342 343 \begin{cfa} 344 enum Fruit { Apple, Bear, Cherry }; $\C{// C enum}$ 345 char * label(Fruit f) { 346 switch(f) { 347 case Apple: "A"; break; 348 case Bear: "B"; break; 349 case Cherry: "C"; break; 350 } 351 } 352 unsigned posn(Fruit f) { return f; } 353 char* value(Fruit f) { return ""; } $\C{// value can return any non void type}$ 354 formatEnum( Apple ); $\C{// Fruit is now a Cfa enum}$ 355 \end{cfa} 356 357 A type that implements trait @CfaEnum@, \ie, a type has no @value@, is called an opaque enum. 358 359 % \section{Enumerator Opaque Type} 360 361 % \CFA provides a special opaque enumeration type, where the internal representation is chosen by the compiler and only equality operations are available. 362 \begin{cfa} 363 enum@()@ Planets { MERCURY, VENUS, EARTH, MARS, JUPITER, SATURN, URANUS, NEPTUNE }; 364 \end{cfa} 365 366 367 In addition, \CFA implements @Bound@ and @Serial@ for \CFA Enums. 368 \begin{cfa} 369 forall( E ) trait Bounded { 370 E first(); 371 E last(); 372 }; 373 \end{cfa} 374 The function @first()@ and @last()@ of enumerated type E return the first and the last enumerator declared in E, respectively. \eg: 375 \begin{cfa} 376 Workday day = first(); $\C{// Mon}$ 377 Planet outermost = last(); $\C{// NEPTUNE}$ 378 \end{cfa} 379 @first()@ and @last()@ are overloaded with return types only, so in the example, the enumeration type is found on the left-hand side of the assignment. 380 Calling either functions without a context results in a type ambiguity, except in the rare case where the type environment has only one enumeration. 381 \begin{cfa} 382 @first();@ $\C{// ambiguous because both Workday and Planet implement Bounded}$ 383 sout | @last()@; 384 Workday day = first(); $\C{// day provides type Workday}$ 385 void foo( Planet p ); 386 foo( last() ); $\C{// parameter provides type Planet}$ 387 \end{cfa} 388 389 The trait @Serial@: 390 \begin{cfa} 391 forall( E | Bounded( E ) ) trait Serial { 392 unsigned fromInstance( E e ); 393 E fromInt( unsigned int posn ); 394 E succ( E e ); 395 E pred( E e ); 396 }; 397 \end{cfa} 398 is a @Bounded@ trait, where elements can be mapped to an integer sequence. 399 A type @T@ matching @Serial@ can project to an unsigned @int@ type, \ie an instance of type T has a corresponding integer value. 400 %However, the inverse may not be possible, and possible requires a bound check. 401 The mapping from a serial type to integer is defined by @fromInstance@, which returns the enumerator's position. 402 The inverse operation is @fromInt@, which performs a bound check using @first()@ and @last()@ before casting the integer into an enumerator. 403 Specifically, for enumerator @E@ declaring $N$ enumerators, @fromInt( i )@ returns the $i-1_{th}$ enumerator, if $0 \leq i < N$, or raises the exception @enumBound@. 404 405 The @succ( E e )@ and @pred( E e )@ imply the enumeration positions are consecutive and ordinal. 406 Specifically, if @e@ is the $i_{th}$ enumerator, @succ( e )@ returns the $i+1_{th}$ enumerator when $e \ne last()$, and @pred( e )@ returns the $i-1_{th}$ enumerator when $e \ne first()$. 407 The exception @enumRange@ is raised if the result of either operation is outside the range of type @E@. 408 409 Finally, there is an associated trait defining comparison operators among enumerators. 410 \begin{cfa} 411 forall( E, T | CfaEnum( E, T ) ) { 412 // comparison 413 int ?==?( E l, E r ); $\C{// true if l and r are same enumerators}$ 414 int ?!=?( E l, E r ); $\C{// true if l and r are different enumerators}$ 415 int ?!=?( E l, zero_t ); $\C{// true if l is not the first enumerator}$ 416 int ?<?( E l, E r ); $\C{// true if l is an enumerator before r}$ 417 int ?<=?( E l, E r ); $\C{// true if l before or the same as r}$ 418 int ?>?( E l, E r ); $\C{// true if l is an enumerator after r}$ 419 int ?>=?( E l, E r ); $\C{// true if l after or the same as r}$ 420 } 421 \end{cfa} 422 423 424 425 328 426 329 427 \section{Enumerator Control Structures} -
doc/theses/jiada_liang_MMath/background.tex
r18d7aaf re561551 129 129 130 130 131 \subsection{ Implementation}132 133 In theory, a Cenumeration \emph{variable} is an implementation-defined integral type large enough to hold all enumerator values.131 \subsection{Representation} 132 133 C standard specifies enumeration \emph{variable} is an implementation-defined integral type large enough to hold all enumerator values. 134 134 In practice, C uses @int@ as the underlying type for enumeration variables, because of the restriction to integral constants, which have type @int@ (unless qualified with a size suffix). 135 136 135 137 136 \subsection{Usage} … … 198 197 \bigskip 199 198 While C provides a true enumeration, it is restricted, has unsafe semantics, and does provide useful enumeration features in other programming languages. 199 200 \section{\CFA Polymorphism} 201 \subsection{Function Overloading} 202 Function overloading is programming languages feature wherein functions may share the same name, but with different function signatures. In both C++ and \CFA, function names can be overloaded 203 with different entities as long as they are different in terms of the number and type of parameters. 204 205 \begin{cfa} 206 void f(); // (1) 207 void f(int); // (2); Overloaded on the number of parameters 208 void f(char); // (3); Overloaded on parameter type 209 210 f('A'); 211 \end{cfa} 212 In this case, the name f is overloaded with a nullity function and two arity functions with different parameters types. Exactly which precedures being executed 213 is determined based on the passing arguments. The last expression of the preceding example calls f with one arguments, narrowing the possible candidates down to (2) and (3). 214 Between those, function argument 'A' is an exact match to the parameter expected by (3), while needing an @implicit conversion@ to call (2). The compiler determines (3) is the better candidates among 215 and procedure (3) is being executed. 216 217 \begin{cfa} 218 int f(int); // (4); Overloaded on return type 219 [int, int] f(int); // (5) Overloaded on the number of return value 220 \end{cfa} 221 The function declarations (4) and (5) show the ability of \CFA functions overloaded with different return value, a feature that is not shared by C++. 222 223 224 \subsection{Operator Overloading} 225 Operators in \CFA are specialized function and are overloadable by with specially-named functions represents the syntax used to call the operator. 226 % For example, @bool ?==?T(T lhs, T rhs)@ overloads equality operator for type T, where @?@ is the placeholders for operands for the operator. 227 \begin{cfa} 228 enum Weekday { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday }; 229 bool ?<?(const Weekday a, const Weekday b) { 230 return ((int)a + 1); 231 } 232 Monday < Sunday; // False 233 ?<?( Monday, Sunday ); // Equivalent syntax 234 \end{cfa} 235 Unary operators are functions that takes one argument and have name @operator?@ or @?operator@, where @?@ is the placeholders for operands. 236 Binary operators are function with two parameters. They are overloadable with function name @?operator?@. 237 238 \subsection{Constructor and Destructor} 239 In \CFA, all objects are initialized by @constructors@ during its allocation, including basic types, 240 which are initialized by constructors default-generated by a compiler. 241 242 Constructors are overloadable functions with name @?{}@, return @void@, and have at least one parameter, which is a reference 243 to the object being constructored (Colloquially referred to "this" or "self" in other language). 244 245 \begin{cfa} 246 struct Employee { 247 const char * name; 248 double salary; 249 }; 250 251 void ?{}( Employee& this, const char * name, double salary ) { 252 this.name = name; 253 this.salary = salary; 254 } 255 256 Employee Sara { "Sara Schmidt", 20.5 }; 257 \end{cfa} 258 Like Python, the "self" reference is implicitly passed to a constructor. The Employee constructors takes two additional arugments used in its 259 field initialization. 260 261 A destructor in \CFA is a function that has name @^?{}@. It returns void, and take only one arugment as its "self". 262 \begin{cfa} 263 void ^?{}( Employee& this ) { 264 free(this.name); 265 this.name = 0p; 266 this.salary = 0; 267 } 268 \end{cfa} 269 Destructor can be explicitly evoked as a function call, or implicitly called at the end of the block in which the object is delcared. 270 \begin{cfa} 271 { 272 ^Sara{}; 273 Sara{ "Sara Craft", 20 }; 274 } // ^Sara{} 275 \end{cfa} 276 277 \subsection{Variable Overloading} 278 C and C++ disallow more than one variable declared in the same scope with the same name. When a variable declare in a inner scope has the same name as 279 a variable in an outer scope, the outer scope variable is "shadowed" by the inner scope variable and cannot be accessed directly. 280 281 \CFA has variable overloading: multiple variables can share the same name in the same scope, as long as they have different type. Name shadowing only 282 happens when the inner scope variable and the outer scope ones have the same type. 283 \begin{cfa} 284 double i = 6.0; 285 int i = 5; 286 void foo( double i ) { sout | i; } // 6.0 287 \end{cfa} 288 289 \subsection{Special Literals} 290 Literal 0 has special meanings within different contexts: it can means "nothing" or "empty", an additive identity in arithmetic, a default value as in C (null pointer), 291 or an initial state. 292 Awaring of its significance, \CFA provides a special type for the 0 literal, @zero_t@, to define the logical @zero@ for custom types. 293 \begin{cfa} 294 struct S { int i, j; }; 295 void ?{}( S & this, @zero_t@ ) { this.i = 0; this.j = 0; } // zero_t, no parameter name allowed 296 S s0 = @0@; 297 \end{cfa} 298 Overloading @zero_t@ for S provides new definition for @zero@ of type S. 299 300 According to the C standard, @0@ is the @only@ false value. Any values compares equals to @0@ is false, and not euqals @0@ is true. As a consequence, control structure 301 such as @if()@ and @while()@ only runs it true clause when its predicate @not equals@ to @0@. 302 303 \CFA generalizes this concept and allows to logically overloads the boolean value for any type by overloading @not equal@ comparison against @zero_t@. 304 \begin{cfa} 305 int ?@!=@?( S this, @zero_t@ ) { return this.i != 0 && this.j != 0; } 306 \end{cfa} 307 308 % In C, the literal 0 represents the Boolean value false. The expression such as @if (x)@ is equivalent to @if (x != 0)@ . 309 % \CFA allows user to define the logical zero for a custom type by overloading the @!=@ operation against a special type, @zero_t@, 310 % so that an expression with the custom type can be used as a predicate without the need of conversion to the literal 0. 311 % \begin{cfa} 312 % struct S s; 313 % int ?!=?(S, zero_t); 314 % if (s) {} 315 % \end{cfa} 316 Literal 1 is also special. Particularly in C, the pre-increment operator and post-increment operator can be interpreted in terms of @+= 1@. 317 The logical @1@ in \CFA is represented by special type @one_t@. 318 \begin{cfa} 319 void ?{}( S & this, one_t ) { this.i = 1; this.j = 1; } // one_t, no parameter name allowed 320 S & ?+=?( S & this, one_t ) { this.i += 1; this.j += 1; return op; } 321 \end{cfa} 322 Without explictly overloaded by a user, \CFA uses the user-defined @+=(S&, one_t)@ to interpret @?++@ and @++?@, as both are polymorphic functions in \CFA. 323 324 \subsection{Polymorphics Functions} 325 Parametric-Polymorphics functions are the functions that applied to all types. \CFA functions are parametric-polymorphics when 326 they are written with the @forall@ clause. 327 328 \begin{cfa} 329 forall(T) 330 T identity(T x) { return x; } 331 identity(42); 332 \end{cfa} 333 The identity function accepts a value from any type as an arugment, and the type parameter @T@ is bounded to @int@ when the function 334 is called with 42. 335 336 The forall clause can takes @type assertions@ that restricts the polymorphics type. 337 \begin{cfa} 338 forall( T | { void foo(T); } ) 339 void bar(T t) { foo(t); } 340 341 struct S {} s; 342 void foo(struct S); 343 344 bar(s); 345 \end{cfa} 346 The assertion on @T@ restricts the range of types for bar to only those implements foo with the matching a signature, so that bar() 347 can call @foo@ in its body with type safe. 348 Calling on type with no mathcing @foo()@ implemented, such as int, causes a compile time type assertion error. 349 350 A @forall@ clause can asserts on multiple types and with multiple asserting functions. A common practice in \CFA is to group 351 the asserting functions in to a named @trait@ . 352 353 \begin{cfa} 354 trait Bird(T) { 355 int days_can_fly(T i); 356 void fly(T t); 357 }; 358 359 forall(B | Bird(B)) { 360 void bird_fly(int days_since_born, B bird) { 361 if (days_since_born > days_can_fly(bird)) { 362 fly(bird); 363 } 364 } 365 } 366 367 struct Robin {} r; 368 int days_can_fly(Robin r) { return 23; } 369 void fly(Robin r) {} 370 371 bird_fly( r ); 372 \end{cfa} 373 374 Grouping type assertions into named trait effectively create a reusable interface for parametrics polymorphics types. 375 376 \section{Expression Resolution} 377 378 The overloading feature poses a challenge in \CFA expression resolution. Overloadeded identifiers can refer multiple 379 candidates, with multiples being simultaneously valid. The main task of \CFA resolver is to identity a best candidate that 380 involes less implicit conversion and polymorphism. 381 382 \subsection{Conversion Cost} 383 In C, functions argument and parameter type does not need to be exact match, and the compiler performs an @implicit conversion@ on argument. 384 \begin{cfa} 385 void foo(double i); 386 foo(42); 387 \end{cfa} 388 The implicit conversion in C is relatively simple because of the abscence of overloading, with the exception of binary operators, for which the 389 compiler needs to find a common type of both operands and the result. The pattern is known as "usual arithmetic conversions". 390 391 \CFA generalizes C implicit conversion to function overloading as a concept of @conversion cost@. 392 Initially designed by Bilson, conversion cost is a 3-tuple, @(unsafe, poly, safe)@, where unsafe is the number of narrowing conversion, 393 poly is the count of polymorphics type binding, and safe is the sum of the degree of widening conversion. Every 394 basic type in \CFA has been assigned with a @distance to Byte@, or @distance@, and the degree of widening conversion is the difference between two distances. 395 396 Aaron extends conversion cost to a 7-tuple, 397 @@(unsafe, poly, safe, sign, vars, specialization, reference)@@. The summary of Aaron's cost model is the following: 398 \begin{itemize} 399 \item Unsafe is the number of argument that implicitly convert to a type with high rank. 400 \item Poly accounts for number of polymorphics binding in the function declaration. 401 \item Safe is sum of distance (add reference/appendix later). 402 \item Sign is the number of sign/unsign variable conversion. 403 \item Vars is the number of polymorphics type declared in @forall@. 404 \item Specialization is opposite number of function declared in @forall@. More function declared implies more constraint on polymorphics type, and therefore has the lower cost. 405 \item Reference is number of lvalue-to-rvalue conversion. 406 \end{itemize} -
doc/theses/jiada_liang_MMath/implementation.tex
r18d7aaf re561551 1 1 \chapter{Enumeration Implementation} 2 3 4 \section{Enumeration Variable}5 6 Although \CFA enumeration captures three different attributes, an enumeration instance does not store all this information.7 The @sizeof@ a \CFA enumeration instance is always 4 bytes, the same size as a C enumeration instance (@sizeof( int )@).8 It comes from the fact that:9 \begin{enumerate}10 \item11 a \CFA enumeration is always statically typed;12 \item13 it is always resolved as one of its attributes regarding real usage.14 \end{enumerate}15 When creating an enumeration instance @colour@ and assigning it with the enumerator @Color.Green@, the compiler allocates an integer variable and stores the position 1.16 The invocations of $positions()$, $value()$, and $label()$ turn into calls to special functions defined in the prelude:17 \begin{cfa}18 position( green );19 >>> position( Colour, 1 ) -> int20 value( green );21 >>> value( Colour, 1 ) -> T22 label( green );23 >>> label( Colour, 1) -> char *24 \end{cfa}25 @T@ represents the type declared in the \CFA enumeration defined and @char *@ in the example.26 These generated functions are $Companion Functions$, they take an $companion$ object and the position as parameters.27 28 2 29 3 \section{Enumeration Data}
Note: See TracChangeset
for help on using the changeset viewer.