Changeset cfe2f0a


Ignore:
Timestamp:
Feb 12, 2018, 11:55:02 AM (6 years ago)
Author:
Thierry Delisle <tdelisle@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
d56ca354, ee2938a
Parents:
827a190 (diff), 43c6dc82 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:software/cfa/cfa-cc

Files:
2 added
15 edited

Legend:

Unmodified
Added
Removed
  • doc/papers/general/Makefile

    r827a190 rcfe2f0a  
    1818
    1919FIGURES = ${addsuffix .tex, \
     20Cdecl \
    2021}
    2122
  • doc/papers/general/Paper.tex

    r827a190 rcfe2f0a  
    22
    33\usepackage{fullpage}
     4\usepackage{epic,eepic}
    45\usepackage{xspace,calc,comment}
    56\usepackage{upquote}                                                                    % switch curled `'" to straight
     
    3637%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    3738
    38 \newcommand{\Textbf}[1]{{\color{red}\textbf{#1}}}
     39\newcommand{\Textbf}[2][red]{{\color{#1}{\textbf{#2}}}}
    3940\newcommand{\TODO}[1]{\textbf{TODO}: {\itshape #1}} % TODO included
    4041%\newcommand{\TODO}[1]{} % TODO elided
     
    101102\makeatother
    102103
     104\newenvironment{cquote}{%
     105        \list{}{\lstset{resetmargins=true,aboveskip=0pt,belowskip=0pt}\topsep=4pt\parsep=0pt\leftmargin=\parindent\rightmargin\leftmargin}%
     106        \item\relax
     107}{%
     108        \endlist
     109}% cquote
     110
    103111% CFA programming language, based on ANSI C (with some gcc additions)
    104112\lstdefinelanguage{CFA}[ANSI]{C}{
     
    226234int forty_two = identity( 42 );                         $\C{// T is bound to int, forty\_two == 42}$
    227235\end{lstlisting}
    228 The @identity@ function above can be applied to any complete \emph{object type} (or @otype@).
     236The @identity@ function above can be applied to any complete \newterm{object type} (or @otype@).
    229237The type variable @T@ is transformed into a set of additional implicit parameters encoding sufficient information about @T@ to create and return a variable of that type.
    230238The \CFA implementation passes the size and alignment of the type represented by an @otype@ parameter, as well as an assignment operator, constructor, copy constructor and destructor.
    231 If this extra information is not needed, \eg for a pointer, the type parameter can be declared as a \emph{data type} (or @dtype@).
     239If this extra information is not needed, \eg for a pointer, the type parameter can be declared as a \newterm{data type} (or @dtype@).
    232240
    233241In \CFA, the polymorphism runtime-cost is spread over each polymorphic call, due to passing more arguments to polymorphic functions;
     
    235243A design advantage is that, unlike \CC template-functions, \CFA polymorphic-functions are compatible with C \emph{separate compilation}, preventing compilation and code bloat.
    236244
    237 Since bare polymorphic-types provide a restricted set of available operations, \CFA provides a \emph{type assertion}~\cite[pp.~37-44]{Alphard} mechanism to provide further type information, where type assertions may be variable or function declarations that depend on a polymorphic type-variable.
     245Since bare polymorphic-types provide a restricted set of available operations, \CFA provides a \newterm{type assertion}~\cite[pp.~37-44]{Alphard} mechanism to provide further type information, where type assertions may be variable or function declarations that depend on a polymorphic type-variable.
    238246For example, the function @twice@ can be defined using the \CFA syntax for operator overloading:
    239247\begin{lstlisting}
     
    302310\end{lstlisting}
    303311Here, the single name @MAX@ replaces all the C type-specific names: @SHRT_MAX@, @INT_MAX@, @DBL_MAX@.
    304 As well, restricted constant overloading is allowed for the values @0@ and @1@, which have special status in C, \eg the value @0@ is both an integer and a pointer literal, so its meaning depends on context.
    305 In addition, several operations are defined in terms values @0@ and @1@, \eg:
    306 \begin{lstlisting}
    307 int x;
    308 if (x) x++                                                                      $\C{// if (x != 0) x += 1;}$
    309 \end{lstlisting}
    310 Every @if@ and iteration statement in C compares the condition with @0@, and every increment and decrement operator is semantically equivalent to adding or subtracting the value @1@ and storing the result.
    311 Due to these rewrite rules, the values @0@ and @1@ have the types @zero_t@ and @one_t@ in \CFA, which allows overloading various operations for new types that seamlessly connect to all special @0@ and @1@ contexts.
    312 The types @zero_t@ and @one_t@ have special built in implicit conversions to the various integral types, and a conversion to pointer types for @0@, which allows standard C code involving @0@ and @1@ to work as normal.
    313 
    314312
    315313\subsection{Traits}
    316314
    317 \CFA provides \emph{traits} to name a group of type assertions, where the trait name allows specifying the same set of assertions in multiple locations, preventing repetition mistakes at each function declaration:
     315\CFA provides \newterm{traits} to name a group of type assertions, where the trait name allows specifying the same set of assertions in multiple locations, preventing repetition mistakes at each function declaration:
    318316\begin{lstlisting}
    319317trait summable( otype T ) {
     
    339337Given the information provided for an @otype@, variables of polymorphic type can be treated as if they were a complete type: stack-allocatable, default or copy-initialized, assigned, and deleted.
    340338
    341 In summation, the \CFA type-system uses \emph{nominal typing} for concrete types, matching with the C type-system, and \emph{structural typing} for polymorphic types.
     339In summation, the \CFA type-system uses \newterm{nominal typing} for concrete types, matching with the C type-system, and \newterm{structural typing} for polymorphic types.
    342340Hence, trait names play no part in type equivalence;
    343341the names are simply macros for a list of polymorphic assertions, which are expanded at usage sites.
     
    384382Furthermore, writing and using preprocessor macros can be unnatural and inflexible.
    385383
    386 \CC, Java, and other languages use \emph{generic types} to produce type-safe abstract data-types.
     384\CC, Java, and other languages use \newterm{generic types} to produce type-safe abstract data-types.
    387385\CFA also implements generic types that integrate efficiently and naturally with the existing polymorphic functions, while retaining backwards compatibility with C and providing separate compilation.
    388386However, for known concrete parameters, the generic-type definition can be inlined, like \CC templates.
     
    405403\end{lstlisting}
    406404
    407 \CFA classifies generic types as either \emph{concrete} or \emph{dynamic}.
     405\CFA classifies generic types as either \newterm{concrete} or \newterm{dynamic}.
    408406Concrete types have a fixed memory layout regardless of type parameters, while dynamic types vary in memory layout depending on their type parameters.
    409 A type may have polymorphic parameters but still be concrete, called \emph{dtype-static}.
     407A type may have polymorphic parameters but still be concrete, called \newterm{dtype-static}.
    410408Polymorphic pointers are an example of dtype-static types, \eg @forall(dtype T) T *@ is a polymorphic type, but for any @T@, @T *@  is a fixed-sized pointer, and therefore, can be represented by a @void *@ in code generation.
    411409
     
    444442Though \CFA implements concrete generic-types efficiently, it also has a fully general system for dynamic generic types.
    445443As mentioned in Section~\ref{sec:poly-fns}, @otype@ function parameters (in fact all @sized@ polymorphic parameters) come with implicit size and alignment parameters provided by the caller.
    446 Dynamic generic-types also have an \emph{offset array} containing structure-member offsets.
     444Dynamic generic-types also have an \newterm{offset array} containing structure-member offsets.
    447445A dynamic generic-union needs no such offset array, as all members are at offset 0, but size and alignment are still necessary.
    448446Access to members of a dynamic structure is provided at runtime via base-displacement addressing with the structure pointer and the member offset (similar to the @offsetof@ macro), moving a compile-time offset calculation to runtime.
     
    457455For instance, modularity is generally provided in C by including an opaque forward-declaration of a structure and associated accessor and mutator functions in a header file, with the actual implementations in a separately-compiled @.c@ file.
    458456\CFA supports this pattern for generic types, but the caller does not know the actual layout or size of the dynamic generic-type, and only holds it by a pointer.
    459 The \CFA translator automatically generates \emph{layout functions} for cases where the size, alignment, and offset array of a generic struct cannot be passed into a function from that function's caller.
     457The \CFA translator automatically generates \newterm{layout functions} for cases where the size, alignment, and offset array of a generic struct cannot be passed into a function from that function's caller.
    460458These layout functions take as arguments pointers to size and alignment variables and a caller-allocated array of member offsets, as well as the size and alignment of all @sized@ parameters to the generic structure (un@sized@ parameters are forbidden from being used in a context that affects layout).
    461459Results of these layout functions are cached so that they are only computed once per type per function. %, as in the example below for @pair@.
     
    481479Since @pair(T *, T * )@ is a concrete type, there are no implicit parameters passed to @lexcmp@, so the generated code is identical to a function written in standard C using @void *@, yet the \CFA version is type-checked to ensure the fields of both pairs and the arguments to the comparison function match in type.
    482480
    483 Another useful pattern enabled by reused dtype-static type instantiations is zero-cost \emph{tag-structures}.
     481Another useful pattern enabled by reused dtype-static type instantiations is zero-cost \newterm{tag-structures}.
    484482Sometimes information is only used for type-checking and can be omitted at runtime, \eg:
    485483\begin{lstlisting}
     
    537535The addition of multiple-return-value functions (MRVF) are useless without a syntax for accepting multiple values at the call-site.
    538536The simplest mechanism for capturing the return values is variable assignment, allowing the values to be retrieved directly.
    539 As such, \CFA allows assigning multiple values from a function into multiple variables, using a square-bracketed list of lvalue expressions (as above), called a \emph{tuple}.
    540 
    541 However, functions also use \emph{composition} (nested calls), with the direct consequence that MRVFs must also support composition to be orthogonal with single-returning-value functions (SRVF), \eg:
     537As such, \CFA allows assigning multiple values from a function into multiple variables, using a square-bracketed list of lvalue expressions (as above), called a \newterm{tuple}.
     538
     539However, functions also use \newterm{composition} (nested calls), with the direct consequence that MRVFs must also support composition to be orthogonal with single-returning-value functions (SRVF), \eg:
    542540\begin{lstlisting}
    543541printf( "%d %d\n", div( 13, 5 ) );                      $\C{// return values seperated into arguments}$
     
    572570printf( "%d %d\n", qr );
    573571\end{lstlisting}
    574 \CFA also supports \emph{tuple indexing} to access single components of a tuple expression:
     572\CFA also supports \newterm{tuple indexing} to access single components of a tuple expression:
    575573\begin{lstlisting}
    576574[int, int] * p = &qr;                                           $\C{// tuple pointer}$
     
    615613\subsection{Tuple Assignment}
    616614
    617 An assignment where the left side is a tuple type is called \emph{tuple assignment}.
    618 There are two kinds of tuple assignment depending on whether the right side of the assignment operator has a tuple type or a non-tuple type, called \emph{multiple} and \emph{mass assignment}, respectively.
     615An assignment where the left side is a tuple type is called \newterm{tuple assignment}.
     616There are two kinds of tuple assignment depending on whether the right side of the assignment operator has a tuple type or a non-tuple type, called \newterm{multiple} and \newterm{mass assignment}, respectively.
    619617%\lstDeleteShortInline@%
    620618%\par\smallskip
     
    650648\subsection{Member Access}
    651649
    652 It is also possible to access multiple fields from a single expression using a \emph{member-access}.
     650It is also possible to access multiple fields from a single expression using a \newterm{member-access}.
    653651The result is a single tuple-valued expression whose type is the tuple of the types of the members, \eg:
    654652\begin{lstlisting}
     
    780778Matching against a @ttype@ parameter consumes all remaining argument components and packages them into a tuple, binding to the resulting tuple of types.
    781779In a given parameter list, there must be at most one @ttype@ parameter that occurs last, which matches normal variadic semantics, with a strong feeling of similarity to \CCeleven variadic templates.
    782 As such, @ttype@ variables are also called \emph{argument packs}.
     780As such, @ttype@ variables are also called \newterm{argument packs}.
    783781
    784782Like variadic templates, the main way to manipulate @ttype@ polymorphic functions is via recursion.
     
    852850\subsection{Implementation}
    853851
    854 Tuples are implemented in the \CFA translator via a transformation into \emph{generic types}.
     852Tuples are implemented in the \CFA translator via a transformation into \newterm{generic types}.
    855853For each $N$, the first time an $N$-tuple is seen in a scope a generic type with $N$ type parameters is generated, \eg:
    856854\begin{lstlisting}
     
    903901Similarly, tuple member expressions are recursively expanded into a list of member access expressions.
    904902
    905 Expressions that may contain side effects are made into \emph{unique expressions} before being expanded by the flattening conversion.
     903Expressions that may contain side effects are made into \newterm{unique expressions} before being expanded by the flattening conversion.
    906904Each unique expression is assigned an identifier and is guaranteed to be executed exactly once:
    907905\begin{lstlisting}
     
    10521050\label{s:WithClauseStatement}
    10531051
    1054 Grouping heterogenous data into \newterm{aggregate}s is a common programming practice, and an aggregate can be further organized into more complex structures, such as arrays and containers:
    1055 \begin{cfa}
    1056 struct S {                                                              $\C{// aggregate}$
    1057         char c;                                                         $\C{// fields}$
     1052Grouping heterogenous data into \newterm{aggregate}s (structure/union) is a common programming practice, and an aggregate can be further organized into more complex structures, such as arrays and containers:
     1053\begin{cfa}
     1054struct S {                                                                      $\C{// aggregate}$
     1055        char c;                                                                 $\C{// fields}$
    10581056        int i;
    10591057        double d;
     
    10611059S s, as[10];
    10621060\end{cfa}
    1063 However, routines manipulating aggregates have repeition of the aggregate name to access its containing fields:
     1061However, routines manipulating aggregates must repeat the aggregate name to access its containing fields:
    10641062\begin{cfa}
    10651063void f( S s ) {
    1066         `s.`c; `s.`i; `s.`d;                            $\C{// access containing fields}$
     1064        `s.`c; `s.`i; `s.`d;                                    $\C{// access containing fields}$
    10671065}
    10681066\end{cfa}
     
    10701068\begin{C++}
    10711069class C {
    1072         char c;                                                         $\C{// fields}$
     1070        char c;                                                                 $\C{// fields}$
    10731071        int i;
    10741072        double d;
    1075         int mem() {                                                     $\C{// implicit "this" parameter}$
    1076                 `this->`c; `this->`i; `this->`d;$\C{// access containing fields}$
     1073        int mem() {                                                             $\C{// implicit "this" parameter}$
     1074                `this->`c; `this->`i; `this->`d;        $\C{// access containing fields}$
    10771075        }
    10781076}
    10791077\end{C++}
    1080 Nesting of member routines in a \lstinline[language=C++]@class@ allows eliding \lstinline[language=C++]@this->@ because of nested lexical-scoping.
     1078Nesting of member routines in a \lstinline[language=C++]@class@ allows eliding \lstinline[language=C++]@this->@ because of lexical scoping.
     1079However, for other aggregate parameters, qualification is necessary:
     1080\begin{cfa}
     1081struct T { double m, n; };
     1082int C::mem( T & t ) {                                           $\C{// multiple aggregate parameters}$
     1083        c; i; d;                                                                $\C{\color{red}// this-\textgreater.c, this-\textgreater.i, this-\textgreater.d}$
     1084        `t.`m; `t.`n;                                                   $\C{// must qualify}$
     1085}
     1086\end{cfa}
    10811087
    10821088% In object-oriented programming, there is an implicit first parameter, often names @self@ or @this@, which is elided.
    10831089% In any programming language, some functions have a naturally close relationship with a particular data type.
    1084 % Object-oriented programming allows this close relationship to be codified in the language by making such functions \emph{class methods} of their related data type.
     1090% Object-oriented programming allows this close relationship to be codified in the language by making such functions \newterm{class methods} of their related data type.
    10851091% Class methods have certain privileges with respect to their associated data type, notably un-prefixed access to the fields of that data type.
    10861092% When writing C functions in an object-oriented style, this un-prefixed access is swiftly missed, as access to fields of a @Foo* f@ requires an extra three characters @f->@ every time, which disrupts coding flow and clutters the produced code.
     
    10881094% \TODO{Fill out section. Be sure to mention arbitrary expressions in with-blocks, recent change driven by Thierry to prioritize field name over parameters.}
    10891095
    1090 \CFA provides a @with@ clause/statement (see Pascal~\cite[\S~4.F]{Pascal}) to elide aggregate qualification to fields by opening a scope containing field identifiers.
    1091 Hence, the qualified fields become variables, and making it easier to optimize field references in a block.
    1092 \begin{cfa}
    1093 void f( S s ) `with( s )` {                             $\C{// with clause}$
    1094         c; i; d;                                                        $\C{\color{red}// s.c, s.i, s.d}$
     1096To simplify the programmer experience, \CFA provides a @with@ clause/statement (see Pascal~\cite[\S~4.F]{Pascal}) to elide aggregate qualification to fields by opening a scope containing the field identifiers.
     1097Hence, the qualified fields become variables with the side-effect that it is easier to optimizing field references in a block.
     1098\begin{cfa}
     1099void f( S s ) `with( s )` {                                     $\C{// with clause}$
     1100        c; i; d;                                                                $\C{\color{red}// s.c, s.i, s.d}$
    10951101}
    10961102\end{cfa}
     
    10981104\begin{cfa}
    10991105int mem( S & this ) `with( this )` {            $\C{// with clause}$
    1100         c; i; d;                                                        $\C{\color{red}// this.c, this.i, this.d}$
    1101 }
    1102 \end{cfa}
    1103 The key generality over the object-oriented approach is that one aggregate parameter \lstinline[language=C++]@this@ is not treated specially over other aggregate parameters:
    1104 \begin{cfa}
    1105 struct T { double m, n; };
     1106        c; i; d;                                                                $\C{\color{red}// this.c, this.i, this.d}$
     1107}
     1108\end{cfa}
     1109with the generality of opening multiple aggregate-parameters:
     1110\begin{cfa}
    11061111int mem( S & s, T & t ) `with( s, t )` {        $\C{// multiple aggregate parameters}$
    1107         c; i; d;                                                        $\C{\color{red}// s.c, s.i, s.d}$
    1108         m; n;                                                           $\C{\color{red}// t.m, t.n}$
    1109 }
    1110 \end{cfa}
    1111 The equivalent object-oriented style is:
    1112 \begin{cfa}
    1113 int S::mem( T & t ) {                                   $\C{// multiple aggregate parameters}$
    1114         c; i; d;                                                        $\C{\color{red}// this-\textgreater.c, this-\textgreater.i, this-\textgreater.d}$
    1115         `t.`m; `t.`n;
     1112        c; i; d;                                                                $\C{\color{red}// s.c, s.i, s.d}$
     1113        m; n;                                                                   $\C{\color{red}// t.m, t.n}$
     1114}
     1115\end{cfa}
     1116
     1117In detail, the @with@ clause/statement has the form:
     1118\begin{cfa}
     1119$\emph{with-statement}$:
     1120        'with' '(' $\emph{expression-list}$ ')' $\emph{compound-statement}$
     1121\end{cfa}
     1122and may appear as the body of a routine or nested within a routine body.
     1123Each expression in the expression-list provides a type and object.
     1124The type must be an aggregate type.
     1125(Enumerations are already opened.)
     1126The object is the implicit qualifier for the open structure-fields.
     1127
     1128All expressions in the expression list are open in ``parallel'' within the compound statement.
     1129This semantic is different from Pascal, which nests the openings.
     1130The difference between parallel and nesting occurs for fields with the same name but different type:
     1131\begin{cfa}
     1132struct S { int i; int j; double m; } s, w;
     1133struct T { int i; int k; int m } t, w;
     1134with( s, t ) {
     1135        j + k;                                                                  $\C{// unambiguous, s.j + t.m}$
     1136        m = 5.0;                                                                $\C{// unambiguous, t.m = 5.0}$
     1137        m = 1;                                                                  $\C{// unambiguous, s.m = 1}$
     1138        int a = s.i + m;                                                $\C{// unambiguous, a = s.i + t.i}$
     1139        int b = s.i + t.i;                                              $\C{// unambiguous, qualification}$
     1140        sout | (double)m | endl;                                $\C{// unambiguous, cast}$
     1141        i;                                                                              $\C{// ambiguous}$
     1142}
     1143\end{cfa}
     1144\CFA's ability to overload variables means usages of field with the same names can be automatically disambiguated, eliminating most qualification.
     1145Qualification or a cast is used to disambiguate.
     1146A cast may be necessary to disambiguate between the overload variables in a @with@ expression:
     1147\begin{cfa}
     1148with( w ) { ... }                                                       $\C{// ambiguous, same name and no context}$
     1149with( (S)w ) { ... }                                            $\C{// unambiguous}$
     1150\end{cfa}
     1151
     1152\begin{cfa}
     1153struct S { int i, j; } sv;
     1154with( sv ) {
     1155        S & sr = sv;
     1156        with( sr ) {
     1157                S * sp = &sv;
     1158                with( *sp ) {
     1159                        i = 3; j = 4;                                   $\C{\color{red}// sp-{\textgreater}i, sp-{\textgreater}j}$
     1160                }
     1161                i = 3; j = 4;                                           $\C{\color{red}// sr.i, sr.j}$
     1162        }
     1163        i = 3; j = 4;                                                   $\C{\color{red}// sv.i, sv.j}$
    11161164}
    11171165\end{cfa}
     
    11221170        struct S1 { ... } s1;
    11231171        struct S2 { ... } s2;
    1124         `with( s1 )` {                                          $\C{// with statement}$
     1172        `with( s1 )` {                                                  $\C{// with statement}$
    11251173                // access fields of s1 without qualification
    1126                 `with( s2 )` {                                  $\C{// nesting}$
     1174                `with( s2 )` {                                          $\C{// nesting}$
    11271175                        // access fields of s1 and s2 without qualification
    11281176                }
     
    11341182\end{cfa}
    11351183
    1136 When opening multiple structures, fields with the same name and type are ambiguous and must be fully qualified.
    1137 For fields with the same name but different type, context/cast can be used to disambiguate.
    1138 \begin{cfa}
    1139 struct S { int i; int j; double m; } a, c;
    1140 struct T { int i; int k; int m } b, c;
    1141 `with( a, b )` {
    1142         j + k;                                                  $\C{// unambiguous, unique names define unique types}$
    1143         i;                                                              $\C{// ambiguous, same name and type}$
    1144         a.i + b.i;                                              $\C{// unambiguous, qualification defines unique names}$
    1145         m;                                                              $\C{// ambiguous, same name and no context to define unique type}$
    1146         m = 5.0;                                                $\C{// unambiguous, same name and context defines unique type}$
    1147         m = 1;                                                  $\C{// unambiguous, same name and context defines unique type}$
    1148 }
    1149 `with( c )` { ... }                                     $\C{// ambiguous, same name and no context}$
    1150 `with( (S)c )` { ... }                                  $\C{// unambiguous, same name and cast defines unique type}$
    1151 \end{cfa}
    1152 
    1153 The components in the "with" clause
    1154 
    1155   with ( a, b, c ) { ... }
    1156 
    1157 serve 2 purposes: each component provides a type and object. The type must be a
    1158 structure type. Enumerations are already opened, and I think a union is opened
    1159 to some extent, too. (Or is that just unnamed unions?) The object is the target
    1160 that the naked structure-fields apply to. The components are open in "parallel"
    1161 at the scope of the "with" clause/statement, so opening "a" does not affect
    1162 opening "b", etc. This semantic is different from Pascal, which nests the
    1163 openings.
    1164 
    1165 Having said the above, it seems reasonable to allow a "with" component to be an
    1166 expression. The type is the static expression-type and the object is the result
    1167 of the expression. Again, the type must be an aggregate. Expressions require
    1168 parenthesis around the components.
    1169 
    1170   with( a, b, c ) { ... }
    1171 
    1172 Does this now make sense?
    1173 
    1174 Having written more CFA code, it is becoming clear to me that I *really* want
    1175 the "with" to be implemented because I hate having to type all those object
    1176 names for fields. It's a great way to drive people away from the language.
    1177 
    11781184
    11791185\subsection{Exception Handling ???}
     
    11901196\subsection{Alternative Declaration Syntax}
    11911197
     1198\newcommand{\R}[1]{\Textbf{#1}}
     1199\newcommand{\B}[1]{{\Textbf[blue]{#1}}}
     1200\newcommand{\G}[1]{{\Textbf[OliveGreen]{#1}}}
     1201
     1202C declaration syntax is notoriously confusing and error prone.
     1203For example, many C programmers are confused by a declaration as simple as:
     1204\begin{cquote}
     1205\lstDeleteShortInline@%
     1206\begin{tabular}{@{}ll@{}}
     1207\begin{cfa}
     1208int * x[5]
     1209\end{cfa}
     1210&
     1211\raisebox{-0.75\totalheight}{\input{Cdecl}}
     1212\end{tabular}
     1213\lstMakeShortInline@%
     1214\end{cquote}
     1215Is this an array of 5 pointers to integers or a pointer to an array of 5 integers?
     1216If there is any doubt, it implies productivity and safety issues even for basic programs.
     1217Another example of confusion results from the fact that a routine name and its parameters are embedded within the return type, mimicking the way the return value is used at the routine's call site.
     1218For example, a routine returning a pointer to an array of integers is defined and used in the following way:
     1219\begin{cfa}
     1220int `(*`f`())[`5`]` {...};                              $\C{// definition}$
     1221 ... `(*`f`())[`3`]` += 1;                              $\C{// usage}$
     1222\end{cfa}
     1223Essentially, the return type is wrapped around the routine name in successive layers (like an onion).
     1224While attempting to make the two contexts consistent is a laudable goal, it has not worked out in practice.
     1225
     1226\CFA provides its own type, variable and routine declarations, using a different syntax.
     1227The new declarations place qualifiers to the left of the base type, while C declarations place qualifiers to the right of the base type.
     1228In the following example, \R{red} is the base type and \B{blue} is qualifiers.
     1229The \CFA declarations move the qualifiers to the left of the base type, \ie move the blue to the left of the red, while the qualifiers have the same meaning but are ordered left to right to specify a variable's type.
     1230\begin{cquote}
     1231\lstDeleteShortInline@%
     1232\lstset{moredelim=**[is][\color{blue}]{+}{+}}
     1233\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     1234\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c}{\textbf{C}}        \\
     1235\begin{cfa}
     1236+[5] *+ `int` x1;
     1237+* [5]+ `int` x2;
     1238+[* [5] int]+ f`( int p )`;
     1239\end{cfa}
     1240&
     1241\begin{cfa}
     1242`int` +*+ x1 +[5]+;
     1243`int` +(*+x2+)[5]+;
     1244+int (*+f`( int p )`+)[5]+;
     1245\end{cfa}
     1246\end{tabular}
     1247\lstMakeShortInline@%
     1248\end{cquote}
     1249The only exception is bit field specification, which always appear to the right of the base type.
     1250% Specifically, the character @*@ is used to indicate a pointer, square brackets @[@\,@]@ are used to represent an array or function return value, and parentheses @()@ are used to indicate a routine parameter.
     1251However, unlike C, \CFA type declaration tokens are distributed across all variables in the declaration list.
     1252For instance, variables @x@ and @y@ of type pointer to integer are defined in \CFA as follows:
     1253\begin{cquote}
     1254\lstDeleteShortInline@%
     1255\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     1256\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c}{\textbf{C}}        \\
     1257\begin{cfa}
     1258`*` int x, y;
     1259\end{cfa}
     1260&
     1261\begin{cfa}
     1262int `*`x, `*`y;
     1263\end{cfa}
     1264\end{tabular}
     1265\lstMakeShortInline@%
     1266\end{cquote}
     1267The downside of this semantics is the need to separate regular and pointer declarations:
     1268\begin{cquote}
     1269\lstDeleteShortInline@%
     1270\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     1271\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c}{\textbf{C}}        \\
     1272\begin{cfa}
     1273`*` int x;
     1274int y;
     1275\end{cfa}
     1276&
     1277\begin{cfa}
     1278int `*`x, y;
     1279
     1280\end{cfa}
     1281\end{tabular}
     1282\lstMakeShortInline@%
     1283\end{cquote}
     1284which is prescribing a safety benefit.
     1285Other examples are:
     1286\begin{cquote}
     1287\lstDeleteShortInline@%
     1288\begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}}
     1289\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{C}} \\
     1290\begin{cfa}
     1291[ 5 ] int z;
     1292[ 5 ] * char w;
     1293* [ 5 ] double v;
     1294struct s {
     1295        int f0:3;
     1296        * int f1;
     1297        [ 5 ] * int f2;
     1298};
     1299\end{cfa}
     1300&
     1301\begin{cfa}
     1302int z[ 5 ];
     1303char * w[ 5 ];
     1304double (* v)[ 5 ];
     1305struct s {
     1306        int f0:3;
     1307        int * f1;
     1308        int * f2[ 5 ]
     1309};
     1310\end{cfa}
     1311&
     1312\begin{cfa}
     1313// array of 5 integers
     1314// array of 5 pointers to char
     1315// pointer to array of 5 doubles
     1316
     1317// common bit field syntax
     1318
     1319
     1320
     1321\end{cfa}
     1322\end{tabular}
     1323\lstMakeShortInline@%
     1324\end{cquote}
     1325
     1326All type qualifiers, \eg @const@, @volatile@, etc., are used in the normal way with the new declarations and also appear left to right, \eg:
     1327\begin{cquote}
     1328\lstDeleteShortInline@%
     1329\begin{tabular}{@{}l@{\hspace{1em}}l@{\hspace{1em}}l@{}}
     1330\multicolumn{1}{c@{\hspace{1em}}}{\textbf{\CFA}}        & \multicolumn{1}{c@{\hspace{1em}}}{\textbf{C}} \\
     1331\begin{cfa}
     1332const * const int x;
     1333const * [ 5 ] const int y;
     1334\end{cfa}
     1335&
     1336\begin{cfa}
     1337int const * const x;
     1338const int (* const y)[ 5 ]
     1339\end{cfa}
     1340&
     1341\begin{cfa}
     1342// const pointer to const integer
     1343// const pointer to array of 5 const integers
     1344\end{cfa}
     1345\end{tabular}
     1346\lstMakeShortInline@%
     1347\end{cquote}
     1348All declaration qualifiers, \eg @extern@, @static@, etc., are used in the normal way with the new declarations but can only appear at the start of a \CFA routine declaration,\footnote{\label{StorageClassSpecifier}
     1349The placement of a storage-class specifier other than at the beginning of the declaration specifiers in a declaration is an obsolescent feature.~\cite[\S~6.11.5(1)]{C11}} \eg:
     1350\begin{cquote}
     1351\lstDeleteShortInline@%
     1352\begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}}
     1353\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{C}} \\
     1354\begin{cfa}
     1355extern [ 5 ] int x;
     1356static * const int y;
     1357\end{cfa}
     1358&
     1359\begin{cfa}
     1360int extern x[ 5 ];
     1361const int static * y;
     1362\end{cfa}
     1363&
     1364\begin{cfa}
     1365// externally visible array of 5 integers
     1366// internally visible pointer to constant int
     1367\end{cfa}
     1368\end{tabular}
     1369\lstMakeShortInline@%
     1370\end{cquote}
     1371
     1372The new declaration syntax can be used in other contexts where types are required, \eg casts and the pseudo-routine @sizeof@:
     1373\begin{cquote}
     1374\lstDeleteShortInline@%
     1375\begin{tabular}{@{}l@{\hspace{3em}}l@{}}
     1376\multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}}        & \multicolumn{1}{c}{\textbf{C}}        \\
     1377\begin{cfa}
     1378y = (* int)x;
     1379i = sizeof([ 5 ] * int);
     1380\end{cfa}
     1381&
     1382\begin{cfa}
     1383y = (int *)x;
     1384i = sizeof(int * [ 5 ]);
     1385\end{cfa}
     1386\end{tabular}
     1387\lstMakeShortInline@%
     1388\end{cquote}
     1389
     1390Finally, new \CFA declarations may appear together with C declarations in the same program block, but cannot be mixed within a specific declaration.
     1391Therefore, a programmer has the option of either continuing to use traditional C declarations or take advantage of the new style.
     1392Clearly, both styles need to be supported for some time due to existing C-style header-files, particularly for UNIX-like systems.
     1393
    11921394
    11931395\subsection{References}
    11941396
    1195 All variables in C have an \emph{address}, a \emph{value}, and a \emph{type}; at the position in the program's memory denoted by the address, there exists a sequence of bits (the value), with the length and semantic meaning of this bit sequence defined by the type.
    1196 The C type system does not always track the relationship between a value and its address; a value that does not have a corresponding address is called a \emph{rvalue} (for ``right-hand value''), while a value that does have an address is called a \emph{lvalue} (for ``left-hand value''); in @int x; x = 42;@ the variable expression @x@ on the left-hand-side of the assignment is a lvalue, while the constant expression @42@ on the right-hand-side of the assignment is a rvalue.
    1197 Which address a value is located at is sometimes significant; the imperative programming paradigm of C relies on the mutation of values at specific addresses.
    1198 Within a lexical scope, lvalue exressions can be used in either their \emph{address interpretation} to determine where a mutated value should be stored or in their \emph{value interpretation} to refer to their stored value; in @x = y;@ in @{ int x, y = 7; x = y; }@, @x@ is used in its address interpretation, while y is used in its value interpretation.
    1199 Though this duality of interpretation is useful, C lacks a direct mechanism to pass lvalues between contexts, instead relying on \emph{pointer types} to serve a similar purpose.
    1200 In C, for any type @T@ there is a pointer type @T*@, the value of which is the address of a value of type @T@; a pointer rvalue can be explicitly \emph{dereferenced} to the pointed-to lvalue with the dereference operator @*?@, while the rvalue representing the address of a lvalue can be obtained with the address-of operator @&?@.
     1397All variables in C have an \newterm{address}, a \newterm{value}, and a \newterm{type};
     1398at the position in the program's memory denoted by the address, there exists a sequence of bits (the value), with the length and semantic meaning of this bit sequence defined by the type.
     1399The C type-system does not always track the relationship between a value and its address;
     1400a value that does not have a corresponding address is called a \newterm{rvalue} (for ``right-hand value''), while a value that does have an address is called a \newterm{lvalue} (for ``left-hand value'').
     1401For example, in @int x; x = 42;@ the variable expression @x@ on the left-hand-side of the assignment is a lvalue, while the constant expression @42@ on the right-hand-side of the assignment is a rvalue.
     1402Despite the nomenclature of ``left-hand'' and ``right-hand'', an expression's classification as lvalue or rvalue is entirely dependent on whether it has an address or not; in imperative programming, the address of a value is used for both reading and writing (mutating) a value, and as such lvalues can be converted to rvalues and read from, but rvalues cannot be mutated because they lack a location to store the updated value.
     1403
     1404Within a lexical scope, lvalue expressions have an \newterm{address interpretation} for writing a value or a \newterm{value interpretation} to read a value.
     1405For example, in @x = y@, @x@ has an address interpretation, while @y@ has a value interpretation.
     1406Though this duality of interpretation is useful, C lacks a direct mechanism to pass lvalues between contexts, instead relying on \newterm{pointer types} to serve a similar purpose.
     1407In C, for any type @T@ there is a pointer type @T *@, the value of which is the address of a value of type @T@.
     1408A pointer rvalue can be explicitly \newterm{dereferenced} to the pointed-to lvalue with the dereference operator @*?@, while the rvalue representing the address of a lvalue can be obtained with the address-of operator @&?@.
    12011409
    12021410\begin{cfa}
    12031411int x = 1, y = 2, * p1, * p2, ** p3;
    1204 p1 = &x;  $\C{// p1 points to x}$
    1205 p2 = &y;  $\C{// p2 points to y}$
    1206 p3 = &p1;  $\C{// p3 points to p1}$
     1412p1 = &x;                                                                $\C{// p1 points to x}$
     1413p2 = &y;                                                                $\C{// p2 points to y}$
     1414p3 = &p1;                                                               $\C{// p3 points to p1}$
    12071415*p2 = ((*p1 + *p2) * (**p3 - *p1)) / (**p3 - 15);
    12081416\end{cfa}
     
    12101418Unfortunately, the dereference and address-of operators introduce a great deal of syntactic noise when dealing with pointed-to values rather than pointers, as well as the potential for subtle bugs.
    12111419For both brevity and clarity, it would be desirable to have the compiler figure out how to elide the dereference operators in a complex expression such as the assignment to @*p2@ above.
    1212 However, since C defines a number of forms of \emph{pointer arithmetic}, two similar expressions involving pointers to arithmetic types (\eg @*p1 + x@ and @p1 + x@) may each have well-defined but distinct semantics, introducing the possibility that a user programmer may write one when they mean the other, and precluding any simple algorithm for elision of dereference operators.
     1420However, since C defines a number of forms of \newterm{pointer arithmetic}, two similar expressions involving pointers to arithmetic types (\eg @*p1 + x@ and @p1 + x@) may each have well-defined but distinct semantics, introducing the possibility that a user programmer may write one when they mean the other, and precluding any simple algorithm for elision of dereference operators.
    12131421To solve these problems, \CFA introduces reference types @T&@; a @T&@ has exactly the same value as a @T*@, but where the @T*@ takes the address interpretation by default, a @T&@ takes the value interpretation by default, as below:
    12141422
    12151423\begin{cfa}
    1216 inx x = 1, y = 2, & r1, & r2, && r3;
     1424int x = 1, y = 2, & r1, & r2, && r3;
    12171425&r1 = &x;  $\C{// r1 points to x}$
    12181426&r2 = &y;  $\C{// r2 points to y}$
     
    12361444This allows \CFA references to be default-initialized (\eg to a null pointer), and also to point to different addresses throughout their lifetime.
    12371445This rebinding is accomplished without adding any new syntax to \CFA, but simply by extending the existing semantics of the address-of operator in C.
     1446
    12381447In C, the address of a lvalue is always a rvalue, as in general that address is not stored anywhere in memory, and does not itself have an address.
    12391448In \CFA, the address of a @T&@ is a lvalue @T*@, as the address of the underlying @T@ is stored in the reference, and can thus be mutated there.
     
    12491458        if @L@ is an lvalue of type {@T &@$_1 \cdots$@ &@$_l$} where $l \ge 0$ references (@&@ symbols) then @&L@ has type {@T `*`&@$_{\color{red}1} \cdots$@ &@$_{\color{red}l}$}, \\ \ie @T@ pointer with $l$ references (@&@ symbols).
    12501459\end{itemize}
    1251 
    12521460Since pointers and references share the same internal representation, code using either is equally performant; in fact the \CFA compiler converts references to pointers internally, and the choice between them in user code can be made based solely on convenience.
    1253 By analogy to pointers, \CFA references also allow cv-qualifiers:
     1461
     1462By analogy to pointers, \CFA references also allow cv-qualifiers such as @const@:
    12541463
    12551464\begin{cfa}
     
    12691478
    12701479More generally, this initialization of references from lvalues rather than pointers is an instance of a ``lvalue-to-reference'' conversion rather than an elision of the address-of operator; this conversion can actually be used in any context in \CFA an implicit conversion would be allowed.
    1271 Similarly, use of a the value pointed to by a reference in an rvalue context can be thought of as a ``reference-to-rvalue'' conversion, and \CFA also includes a qualifier-adding ``reference-to-reference'' conversion, analagous to the @T *@ to @const T *@ conversion in standard C.
     1480Similarly, use of a the value pointed to by a reference in an rvalue context can be thought of as a ``reference-to-rvalue'' conversion, and \CFA also includes a qualifier-adding ``reference-to-reference'' conversion, analogous to the @T *@ to @const T *@ conversion in standard C.
    12721481The final reference conversion included in \CFA is ``rvalue-to-reference'' conversion, implemented by means of an implicit temporary.
    12731482When an rvalue is used to initialize a reference, it is instead used to initialize a hidden temporary value with the same lexical scope as the reference, and the reference is initialized to the address of this temporary.
    12741483This allows complex values to be succinctly and efficiently passed to functions, without the syntactic overhead of explicit definition of a temporary variable or the runtime cost of pass-by-value.
    1275 \CC allows a similar binding, but only for @const@ references; the more general semantics of \CFA are an attempt to avoid the \emph{const hell} problem, in which addition of a @const@ qualifier to one reference requires a cascading chain of added qualifiers.
     1484\CC allows a similar binding, but only for @const@ references; the more general semantics of \CFA are an attempt to avoid the \newterm{const hell} problem, in which addition of a @const@ qualifier to one reference requires a cascading chain of added qualifiers.
     1485
    12761486
    12771487\subsection{Constructors and Destructors}
     
    12791489One of the strengths of C is the control over memory management it gives programmers, allowing resource release to be more consistent and precisely timed than is possible with garbage-collected memory management.
    12801490However, this manual approach to memory management is often verbose, and it is useful to manage resources other than memory (\eg file handles) using the same mechanism as memory.
    1281 \CC is well-known for an approach to manual memory management that addresses both these issues, Resource Aquisition Is Initialization (RAII), implemented by means of special \emph{constructor} and \emph{destructor} functions; we have implemented a similar feature in \CFA.
     1491\CC is well-known for an approach to manual memory management that addresses both these issues, Resource Aquisition Is Initialization (RAII), implemented by means of special \newterm{constructor} and \newterm{destructor} functions; we have implemented a similar feature in \CFA.
    12821492While RAII is a common feature of object-oriented programming languages, its inclusion in \CFA does not violate the design principle that \CFA retain the same procedural paradigm as C.
    12831493In particular, \CFA does not implement class-based encapsulation: neither the constructor nor any other function has privileged access to the implementation details of a type, except through the translation-unit-scope method of opaque structs provided by C.
     
    13111521\end{cfa}
    13121522
    1313 In the example above, a \emph{default constructor} (\ie one with no parameters besides the @this@ parameter) and destructor are defined for the @Array@ struct, a dynamic array of @int@.
    1314 @Array@ is an example of a \emph{managed type} in \CFA, a type with a non-trivial constructor or destructor, or with a field of a managed type.
     1523In the example above, a \newterm{default constructor} (\ie one with no parameters besides the @this@ parameter) and destructor are defined for the @Array@ struct, a dynamic array of @int@.
     1524@Array@ is an example of a \newterm{managed type} in \CFA, a type with a non-trivial constructor or destructor, or with a field of a managed type.
    13151525As in the example, all instances of managed types are implicitly constructed upon allocation, and destructed upon deallocation; this ensures proper initialization and cleanup of resources contained in managed types, in this case the @data@ array on the heap.
    13161526The exact details of the placement of these implicit constructor and destructor calls are omitted here for brevity, the interested reader should consult \cite{Schluntz17}.
    13171527
    13181528Constructor calls are intended to seamlessly integrate with existing C initialization syntax, providing a simple and familiar syntax to veteran C programmers and allowing constructor calls to be inserted into legacy C code with minimal code changes.
    1319 As such, \CFA also provides syntax for \emph{copy initialization} and \emph{initialization parameters}:
     1529As such, \CFA also provides syntax for \newterm{copy initialization} and \newterm{initialization parameters}:
    13201530
    13211531\begin{cfa}
     
    13321542In addition to initialization syntax, \CFA provides two ways to explicitly call constructors and destructors.
    13331543Explicit calls to constructors double as a placement syntax, useful for construction of member fields in user-defined constructors and reuse of large storage allocations.
    1334 While the existing function-call syntax works for explicit calls to constructors and destructors, \CFA also provides a more concise \emph{operator syntax} for both:
     1544While the existing function-call syntax works for explicit calls to constructors and destructors, \CFA also provides a more concise \newterm{operator syntax} for both:
    13351545
    13361546\begin{cfa}
     
    13491559For compatibility with C, a copy constructor from the first union member type is also defined.
    13501560For @struct@ types, each of the four functions are implicitly defined to call their corresponding functions on each member of the struct.
    1351 To better simulate the behaviour of C initializers, a set of \emph{field constructors} is also generated for structures.
     1561To better simulate the behaviour of C initializers, a set of \newterm{field constructors} is also generated for structures.
    13521562A constructor is generated for each non-empty prefix of a structure's member-list which copy-constructs the members passed as parameters and default-constructs the remaining members.
    13531563To allow users to limit the set of constructors available for a type, when a user declares any constructor or destructor, the corresponding generated function and all field constructors for that type are hidden from expression resolution; similarly, the generated default constructor is hidden upon declaration of any constructor.
     
    13551565
    13561566In rare situations user programmers may not wish to have constructors and destructors called; in these cases, \CFA provides an ``escape hatch'' to not call them.
    1357 If a variable is initialized using the syntax \lstinline|S x @= {}| it will be an \emph{unmanaged object}, and will not have constructors or destructors called.
     1567If a variable is initialized using the syntax \lstinline|S x @= {}| it will be an \newterm{unmanaged object}, and will not have constructors or destructors called.
    13581568Any C initializer can be the right-hand side of an \lstinline|@=| initializer, \eg  \lstinline|Array a @= { 0, 0x0 }|, with the usual C initialization semantics.
    13591569In addition to the expressive power, \lstinline|@=| provides a simple path for migrating legacy C code to \CFA, by providing a mechanism to incrementally convert initializers; the \CFA design team decided to introduce a new syntax for this escape hatch because we believe that our RAII implementation will handle the vast majority of code in a desirable way, and we wished to maintain familiar syntax for this common case.
     
    13641574\section{Literals}
    13651575
     1576C already includes limited polymorphism for literals -- @0@ can be either an integer or a pointer literal, depending on context, while the syntactic forms of literals of the various integer and floating-point types are very similar, differing from each other only in suffix.
     1577In keeping with the general \CFA approach of adding features while respecting ``the C way'' of doing things, we have extended both C's polymorphic zero and typed literal syntax to interoperate with user-defined types, while maintaining a backwards-compatible semantics.
    13661578
    13671579\subsection{0/1}
    13681580
    1369 \TODO{Some text already at the end of Section~\ref{sec:poly-fns}}
    1370 
     1581In C, @0@ has the special property that it is the only ``false'' value; by the standard, any value which compares equal to @0@ is false, while any value that compares unequal to @0@ is true.
     1582As such, an expression @x@ in any boolean context (such as the condition of an @if@ or @while@ statement, or the arguments to an @&&@, @||@, or ternary operator) can be rewritten as @x != 0@ without changing its semantics.
     1583The operator overloading feature of \CFA provides a natural means to implement this truth value comparison for arbitrary types, but the C type system is not precise enough to distinguish an equality comparison with @0@ from an equality comparison with an arbitrary integer or pointer.
     1584To provide this precision, \CFA introduces a new type @zero_t@ as type type of literal @0@ (somewhat analagous to @nullptr_t@ and @nullptr@ in \CCeleven); @zero_t@ can only take the value @0@, but has implicit conversions to the integer and pointer types so that standard C code involving @0@ continues to work properly.
     1585With this addition, the \CFA compiler rewrites @if (x)@ and similar expressions to @if ((x) != 0)@ or the appropriate analogue, and any type @T@ can be made ``truthy'' by defining an operator overload @int ?!=?(T, zero_t)@.
     1586\CC makes types truthy by adding a conversion to @bool@; prior to the addition of explicit cast operators in \CCeleven this approach had the pitfall of making truthy types transitively convertable to any numeric type; our design for \CFA avoids this issue.
     1587
     1588\CFA also includes a special type for @1@, @one_t@; like @zero_t@, @one_t@ has built-in implicit conversions to the various integral types so that @1@ maintains its expected semantics in legacy code.
     1589The addition of @one_t@ allows generic algorithms to handle the unit value uniformly for types where that is meaningful.
     1590\TODO{Make this sentence true} In particular, polymorphic functions in the \CFA prelude define @++x@ and @x++@ in terms of @x += 1@, allowing users to idiomatically define all forms of increment for a type @T@ by defining the single function @T& ?+=(T&, one_t)@; analogous overloads for the decrement operators are present as well.
    13711591
    13721592\subsection{Units}
     
    13971617\end{cfa}
    13981618}%
    1399 
    14001619
    14011620\section{Evaluation}
     
    15731792Finally, we demonstrate that \CFA performance for some idiomatic cases is better than C and close to \CC, showing the design is practically applicable.
    15741793
    1575 There is ongoing work on a wide range of \CFA feature extensions, including reference types, arrays with size, exceptions, concurrent primitives and modules.
     1794There is ongoing work on a wide range of \CFA feature extensions, including arrays with size, exceptions, concurrent primitives, modules, and user-defined conversions.
    15761795(While all examples in the paper compile and run, a public beta-release of \CFA will take another 8--12 months to finalize these additional extensions.)
    15771796In addition, there are interesting future directions for the polymorphism design.
  • src/libcfa/Makefile.am

    r827a190 rcfe2f0a  
    1010## Author           : Peter A. Buhr
    1111## Created On       : Sun May 31 08:54:01 2015
    12 ## Last Modified By : Andrew Beach
    13 ## Last Modified On : Wed Jul 26 14:15:00 2017
    14 ## Update Count     : 221
     12## Last Modified By : Peter A. Buhr
     13## Last Modified On : Fri Feb  9 15:51:24 2018
     14## Update Count     : 223
    1515###############################################################################
    1616
     
    9292libcfa_d_a_CFLAGS = -debug -O0 #No need for __CFA_DEBUG__ since we pass -debug
    9393
    94 stdhdr = ${shell echo stdhdr/*}
     94stdhdr = ${shell find stdhdr -type f -printf "%p "}
    9595
    9696cfa_includedir = $(CFA_INCDIR)
  • src/libcfa/bits/debug.c

    r827a190 rcfe2f0a  
    1111// Last Modified By :
    1212// Last Modified On :
    13 // Update Count     : 0
     13// Update Count     : 1
    1414//
    1515
     
    4747        void __cfaabi_dbg_bits_release() __attribute__((__weak__)) {}
    4848
    49         void __cfaabi_dbg_bits_print_safe  ( const char fmt[], ... ) __attribute__(( format (printf, 1, 2) )) {
     49        void __cfaabi_dbg_bits_print_safe  ( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) )) {
    5050                va_list args;
    5151
     
    6060        }
    6161
    62         void __cfaabi_dbg_bits_print_nolock( const char fmt[], ... ) __attribute__(( format (printf, 1, 2) )) {
     62        void __cfaabi_dbg_bits_print_nolock( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) )) {
    6363                va_list args;
    6464
     
    7676        }
    7777
    78         void __cfaabi_dbg_bits_print_buffer( char in_buffer[], int in_buffer_size, const char fmt[], ... ) __attribute__(( format (printf, 3, 4) )) {
     78        void __cfaabi_dbg_bits_print_buffer( char in_buffer[], int in_buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 3, 4) )) {
    7979                va_list args;
    8080
  • src/libcfa/bits/debug.h

    r827a190 rcfe2f0a  
    1010// Created On       : Mon Nov 28 12:27:26 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Sat Jul 22 10:02:24 2017
    13 // Update Count     : 1
     12// Last Modified On : Thu Feb  8 12:35:19 2018
     13// Update Count     : 2
    1414//
    1515
     
    4141      extern void __cfaabi_dbg_bits_acquire();
    4242      extern void __cfaabi_dbg_bits_release();
    43       extern void __cfaabi_dbg_bits_print_safe  ( const char fmt[], ... ) __attribute__(( format (printf, 1, 2) ));
    44       extern void __cfaabi_dbg_bits_print_nolock( const char fmt[], ... ) __attribute__(( format (printf, 1, 2) ));
     43      extern void __cfaabi_dbg_bits_print_safe  ( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) ));
     44      extern void __cfaabi_dbg_bits_print_nolock( const char fmt[], ... ) __attribute__(( format(printf, 1, 2) ));
    4545      extern void __cfaabi_dbg_bits_print_vararg( const char fmt[], va_list arg );
    46       extern void __cfaabi_dbg_bits_print_buffer( char buffer[], int buffer_size, const char fmt[], ... ) __attribute__(( format (printf, 3, 4) ));
     46      extern void __cfaabi_dbg_bits_print_buffer( char buffer[], int buffer_size, const char fmt[], ... ) __attribute__(( format(printf, 3, 4) ));
    4747#ifdef __cforall
    4848}
  • src/libcfa/bits/defs.h

    r827a190 rcfe2f0a  
    1010// Created On       : Thu Nov  9 13:24:10 2017
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Jan  2 09:17:06 2018
    13 // Update Count     : 2
     12// Last Modified On : Thu Feb  8 16:22:41 2018
     13// Update Count     : 8
    1414//
    1515
     
    3434
    3535#ifdef __cforall
    36 #ifndef __NO_ABORT_OVERLOAD
    37 void abort ( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__));
    38 #endif
     36void abort ( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ ));
    3937extern "C" {
    4038#endif
    41 void abortf( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__));
     39void __cabi_abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ ));
    4240#ifdef __cforall
    4341}
  • src/libcfa/concurrency/coroutine.c

    r827a190 rcfe2f0a  
    1010// Created On       : Mon Nov 28 12:27:26 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Fri Jul 21 22:34:57 2017
    13 // Update Count     : 1
     12// Last Modified On : Thu Feb  8 16:10:31 2018
     13// Update Count     : 4
    1414//
    1515
     
    7777                __cfaabi_dbg_debug_do(
    7878                        if ( mprotect( this.storage, pageSize, PROT_READ | PROT_WRITE ) == -1 ) {
    79                                 abortf( "(coStack_t *)%p.^?{}() : internal error, mprotect failure, error(%d) %s.", &this, errno, strerror( errno ) );
     79                                abort( "(coStack_t *)%p.^?{}() : internal error, mprotect failure, error(%d) %s.", &this, errno, strerror( errno ) );
    8080                        }
    8181                );
     
    135135                __cfaabi_dbg_debug_do(
    136136                        if ( mprotect( storage, pageSize, PROT_NONE ) == -1 ) {
    137                                 abortf( "(uMachContext &)%p.createContext() : internal error, mprotect failure, error(%d) %s.", this, (int)errno, strerror( (int)errno ) );
     137                                abort( "(uMachContext &)%p.createContext() : internal error, mprotect failure, error(%d) %s.", this, (int)errno, strerror( (int)errno ) );
    138138                        } // if
    139139                );
    140140
    141141                if ( (intptr_t)storage == 0 ) {
    142                         abortf( "Attempt to allocate %d bytes of storage for coroutine or task execution-state but insufficient memory available.", size );
     142                        abort( "Attempt to allocate %zd bytes of storage for coroutine or task execution-state but insufficient memory available.", size );
    143143                } // if
    144144
  • src/libcfa/concurrency/invoke.c

    r827a190 rcfe2f0a  
    1010// Created On       : Tue Jan 17 12:27:26 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Feb  6 23:00:57 2018
    13 // Update Count     : 3
     12// Last Modified On : Fri Feb  9 16:37:42 2018
     13// Update Count     : 5
    1414//
    1515
     
    5151        //Final suspend, should never return
    5252        __leave_coroutine();
    53         abortf( "Resumed dead coroutine" );
     53        __cabi_abort( "Resumed dead coroutine" );
    5454}
    5555
     
    8181        //Final suspend, should never return
    8282        __leave_thread_monitor( thrd );
    83         abortf( "Resumed dead thread" );
     83        __cabi_abort( "Resumed dead thread" );
    8484}
    8585
     
    9393        struct coStack_t* stack = &get_coroutine( this )->stack;
    9494
    95 #if defined( __i386__ )
     95#if defined( __i386 )
    9696
    9797        struct FakeStack {
     
    114114        ((struct FakeStack *)(((struct machine_context_t *)stack->context)->SP))->fcw = 0x037F;  //Vol. 1 8-7
    115115
    116 #elif defined( __x86_64__ )
     116#elif defined( __x86_64 )
    117117
    118118        struct FakeStack {
     
    150150        fs->arg[0] = this;
    151151        fs->arg[1] = invoke;
     152
    152153#else
    153         #error Only __i386__ and __x86_64__ is supported for threads in cfa
     154        #error uknown hardware architecture
    154155#endif
    155156}
  • src/libcfa/concurrency/invoke.h

    r827a190 rcfe2f0a  
    1010// Created On       : Tue Jan 17 12:27:26 2016
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Jan 23 14:55:46 2018
    13 // Update Count     : 3
     12// Last Modified On : Fri Feb  9 14:41:55 2018
     13// Update Count     : 6
    1414//
    1515
     
    202202        void CtxSwitch( void * from, void * to ) asm ("CtxSwitch");
    203203
    204         #if   defined( __x86_64__ )
     204        #if   defined( __i386 )
     205        #define CtxGet( ctx ) __asm__ ( \
     206                        "movl %%esp,%0\n"   \
     207                        "movl %%ebp,%1\n"   \
     208                : "=rm" (ctx.SP), "=rm" (ctx.FP) )
     209        #elif defined( __x86_64 )
    205210        #define CtxGet( ctx ) __asm__ ( \
    206211                        "movq %%rsp,%0\n"   \
    207212                        "movq %%rbp,%1\n"   \
    208                 : "=rm" (ctx.SP), "=rm" (ctx.FP) )
    209         #elif defined( __i386__ )
    210         #define CtxGet( ctx ) __asm__ ( \
    211                         "movl %%esp,%0\n"   \
    212                         "movl %%ebp,%1\n"   \
    213213                : "=rm" (ctx.SP), "=rm" (ctx.FP) )
    214214        #elif defined( __ARM_ARCH )
     
    217217                        "mov %1,%%r11\n"   \
    218218                : "=rm" (ctx.SP), "=rm" (ctx.FP) )
     219        #else
     220                #error unknown hardware architecture
    219221        #endif
    220222
  • src/libcfa/concurrency/kernel.c

    r827a190 rcfe2f0a  
    1010// Created On       : Tue Jan 17 12:27:26 2017
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Feb  6 21:51:26 2018
    13 // Update Count     : 4
     12// Last Modified On : Thu Feb  8 23:52:19 2018
     13// Update Count     : 5
    1414//
    1515
    1616//C Includes
    1717#include <stddef.h>
    18 #define ftype `ftype`
    1918extern "C" {
    2019#include <stdio.h>
     
    2423#include <unistd.h>
    2524}
    26 #undef ftype
    2725
    2826//CFA Includes
  • src/libcfa/concurrency/monitor.c

    r827a190 rcfe2f0a  
    1010// Created On       : Thd Feb 23 12:27:26 2017
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Mon Jul 31 14:59:05 2017
    13 // Update Count     : 3
     12// Last Modified On : Thu Feb  8 16:12:20 2018
     13// Update Count     : 4
    1414//
    1515
     
    8787                thread_desc * thrd = this_thread;
    8888
    89                 __cfaabi_dbg_print_safe("Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner);
     89                __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner);
    9090
    9191                if( !this->owner ) {
     
    9393                        set_owner( this, thrd );
    9494
    95                         __cfaabi_dbg_print_safe("Kernel :  mon is free \n");
     95                        __cfaabi_dbg_print_safe( "Kernel :  mon is free \n" );
    9696                }
    9797                else if( this->owner == thrd) {
     
    9999                        this->recursion += 1;
    100100
    101                         __cfaabi_dbg_print_safe("Kernel :  mon already owned \n");
     101                        __cfaabi_dbg_print_safe( "Kernel :  mon already owned \n" );
    102102                }
    103103                else if( is_accepted( this, group) ) {
     
    108108                        reset_mask( this );
    109109
    110                         __cfaabi_dbg_print_safe("Kernel :  mon accepts \n");
     110                        __cfaabi_dbg_print_safe( "Kernel :  mon accepts \n" );
    111111                }
    112112                else {
    113                         __cfaabi_dbg_print_safe("Kernel :  blocking \n");
     113                        __cfaabi_dbg_print_safe( "Kernel :  blocking \n" );
    114114
    115115                        // Some one else has the monitor, wait in line for it
     
    118118                        BlockInternal( &this->lock );
    119119
    120                         __cfaabi_dbg_print_safe("Kernel : %10p Entered  mon %p\n", thrd, this);
     120                        __cfaabi_dbg_print_safe( "Kernel : %10p Entered  mon %p\n", thrd, this);
    121121
    122122                        // BlockInternal will unlock spinlock, no need to unlock ourselves
     
    124124                }
    125125
    126                 __cfaabi_dbg_print_safe("Kernel : %10p Entered  mon %p\n", thrd, this);
     126                __cfaabi_dbg_print_safe( "Kernel : %10p Entered  mon %p\n", thrd, this);
    127127
    128128                // Release the lock and leave
     
    136136                thread_desc * thrd = this_thread;
    137137
    138                 __cfaabi_dbg_print_safe("Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner);
     138                __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner);
    139139
    140140
    141141                if( !this->owner ) {
    142                         __cfaabi_dbg_print_safe("Kernel : Destroying free mon %p\n", this);
     142                        __cfaabi_dbg_print_safe( "Kernel : Destroying free mon %p\n", this);
    143143
    144144                        // No one has the monitor, just take it
     
    151151                        // We already have the monitor... but where about to destroy it so the nesting will fail
    152152                        // Abort!
    153                         abortf("Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex.");
     153                        abort( "Attempt to destroy monitor %p by thread \"%.256s\" (%p) in nested mutex." );
    154154                }
    155155
     
    158158                __monitor_group_t group = { &this, 1, func };
    159159                if( is_accepted( this, group) ) {
    160                         __cfaabi_dbg_print_safe("Kernel :  mon accepts dtor, block and signal it \n");
     160                        __cfaabi_dbg_print_safe( "Kernel :  mon accepts dtor, block and signal it \n" );
    161161
    162162                        // Wake the thread that is waiting for this
     
    177177                }
    178178                else {
    179                         __cfaabi_dbg_print_safe("Kernel :  blocking \n");
     179                        __cfaabi_dbg_print_safe( "Kernel :  blocking \n" );
    180180
    181181                        wait_ctx( this_thread, 0 )
     
    190190                }
    191191
    192                 __cfaabi_dbg_print_safe("Kernel : Destroying %p\n", this);
     192                __cfaabi_dbg_print_safe( "Kernel : Destroying %p\n", this);
    193193
    194194        }
     
    199199                lock( this->lock __cfaabi_dbg_ctx2 );
    200200
    201                 __cfaabi_dbg_print_safe("Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner);
     201                __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner);
    202202
    203203                verifyf( this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", this_thread, this->owner, this->recursion, this );
     
    209209                // it means we don't need to do anything
    210210                if( this->recursion != 0) {
    211                         __cfaabi_dbg_print_safe("Kernel :  recursion still %d\n", this->recursion);
     211                        __cfaabi_dbg_print_safe( "Kernel :  recursion still %d\n", this->recursion);
    212212                        unlock( this->lock );
    213213                        return;
     
    228228                __cfaabi_dbg_debug_do(
    229229                        if( this_thread != this->owner ) {
    230                                 abortf("Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, this_thread, this->owner);
     230                                abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, this_thread, this->owner);
    231231                        }
    232232                        if( this->recursion != 1 ) {
    233                                 abortf("Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1);
     233                                abort( "Destroyed monitor %p has %d outstanding nested calls.\n", this, this->recursion - 1);
    234234                        }
    235235                )
     
    256256                // If we haven't left the last level of recursion
    257257                // it must mean there is an error
    258                 if( this->recursion != 0) { abortf("Thread internal monitor has unbalanced recursion"); }
     258                if( this->recursion != 0) { abort( "Thread internal monitor has unbalanced recursion" ); }
    259259
    260260                // Fetch the next thread, can be null
     
    302302        (this_thread->monitors){m, count, func};
    303303
    304         // __cfaabi_dbg_print_safe("MGUARD : enter %d\n", count);
     304        // __cfaabi_dbg_print_safe( "MGUARD : enter %d\n", count);
    305305
    306306        // Enter the monitors in order
     
    308308        enter( group );
    309309
    310         // __cfaabi_dbg_print_safe("MGUARD : entered\n");
     310        // __cfaabi_dbg_print_safe( "MGUARD : entered\n" );
    311311}
    312312
     
    314314// Dtor for monitor guard
    315315void ^?{}( monitor_guard_t & this ) {
    316         // __cfaabi_dbg_print_safe("MGUARD : leaving %d\n", this.count);
     316        // __cfaabi_dbg_print_safe( "MGUARD : leaving %d\n", this.count);
    317317
    318318        // Leave the monitors in order
    319319        leave( this.m, this.count );
    320320
    321         // __cfaabi_dbg_print_safe("MGUARD : left\n");
     321        // __cfaabi_dbg_print_safe( "MGUARD : left\n" );
    322322
    323323        // Restore thread context
     
    427427                thread_desc * this_thrd = this_thread;
    428428                if ( this.monitor_count != this_thrd->monitors.size ) {
    429                         abortf( "Signal on condition %p made with different number of monitor(s), expected %i got %i", &this, this.monitor_count, this_thrd->monitors.size );
     429                        abort( "Signal on condition %p made with different number of monitor(s), expected %i got %i", &this, this.monitor_count, this_thrd->monitors.size );
    430430                }
    431431
    432432                for(int i = 0; i < this.monitor_count; i++) {
    433433                        if ( this.monitors[i] != this_thrd->monitors[i] ) {
    434                                 abortf( "Signal on condition %p made with different monitor, expected %p got %i", &this, this.monitors[i], this_thrd->monitors[i] );
     434                                abort( "Signal on condition %p made with different monitor, expected %p got %i", &this, this.monitors[i], this_thrd->monitors[i] );
    435435                        }
    436436                }
     
    534534        if(actual_count == 0) return;
    535535
    536         __cfaabi_dbg_print_buffer_local( "Kernel : waitfor internal proceeding\n");
     536        __cfaabi_dbg_print_buffer_local( "Kernel : waitfor internal proceeding\n" );
    537537
    538538        // Create storage for monitor context
     
    551551                        __acceptable_t& accepted = mask[index];
    552552                        if( accepted.is_dtor ) {
    553                                 __cfaabi_dbg_print_buffer_local( "Kernel : dtor already there\n");
     553                                __cfaabi_dbg_print_buffer_local( "Kernel : dtor already there\n" );
    554554                                verifyf( accepted.size == 1,  "ERROR: Accepted dtor has more than 1 mutex parameter." );
    555555
     
    563563                        }
    564564                        else {
    565                                 __cfaabi_dbg_print_buffer_local( "Kernel : thread present, baton-passing\n");
     565                                __cfaabi_dbg_print_buffer_local( "Kernel : thread present, baton-passing\n" );
    566566
    567567                                // Create the node specific to this wait operation
     
    577577                                        }
    578578                                #endif
    579                                 __cfaabi_dbg_print_buffer_local( "\n");
     579                                __cfaabi_dbg_print_buffer_local( "\n" );
    580580
    581581                                // Set the owners to be the next thread
     
    588588                                monitor_restore;
    589589
    590                                 __cfaabi_dbg_print_buffer_local( "Kernel : thread present, returned\n");
     590                                __cfaabi_dbg_print_buffer_local( "Kernel : thread present, returned\n" );
    591591                        }
    592592
     
    598598
    599599        if( duration == 0 ) {
    600                 __cfaabi_dbg_print_buffer_local( "Kernel : non-blocking, exiting\n");
     600                __cfaabi_dbg_print_buffer_local( "Kernel : non-blocking, exiting\n" );
    601601
    602602                unlock_all( locks, count );
     
    607607
    608608
    609         verifyf( duration < 0, "Timeout on waitfor statments not supported yet.");
    610 
    611         __cfaabi_dbg_print_buffer_local( "Kernel : blocking waitfor\n");
     609        verifyf( duration < 0, "Timeout on waitfor statments not supported yet." );
     610
     611        __cfaabi_dbg_print_buffer_local( "Kernel : blocking waitfor\n" );
    612612
    613613        // Create the node specific to this wait operation
     
    631631        monitor_restore;
    632632
    633         __cfaabi_dbg_print_buffer_local( "Kernel : exiting\n");
     633        __cfaabi_dbg_print_buffer_local( "Kernel : exiting\n" );
    634634
    635635        __cfaabi_dbg_print_buffer_local( "Kernel : accepted %d\n", *mask.accepted);
     
    640640
    641641static inline void set_owner( monitor_desc * this, thread_desc * owner ) {
    642         // __cfaabi_dbg_print_safe("Kernal :   Setting owner of %p to %p ( was %p)\n", this, owner, this->owner );
     642        // __cfaabi_dbg_print_safe( "Kernal :   Setting owner of %p to %p ( was %p)\n", this, owner, this->owner );
    643643
    644644        //Pass the monitor appropriately
     
    672672static inline thread_desc * next_thread( monitor_desc * this ) {
    673673        //Check the signaller stack
    674         __cfaabi_dbg_print_safe("Kernel :  mon %p AS-stack top %p\n", this, this->signal_stack.top);
     674        __cfaabi_dbg_print_safe( "Kernel :  mon %p AS-stack top %p\n", this, this->signal_stack.top);
    675675        __condition_criterion_t * urgent = pop( this->signal_stack );
    676676        if( urgent ) {
     
    814814        thread_desc * thrd = this_thread;
    815815        if( !this.monitors ) {
    816                 // __cfaabi_dbg_print_safe("Branding\n");
     816                // __cfaabi_dbg_print_safe( "Branding\n" );
    817817                assertf( thrd->monitors.data != NULL, "No current monitor to brand condition %p", thrd->monitors.data );
    818818                this.monitor_count = thrd->monitors.size;
  • src/libcfa/concurrency/preemption.c

    r827a190 rcfe2f0a  
    1010// Created On       : Mon Jun 5 14:20:42 2017
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Tue Feb  6 15:00:36 2018
    13 // Update Count     : 10
     12// Last Modified On : Fri Feb  9 16:38:13 2018
     13// Update Count     : 14
    1414//
    1515
    1616#include "preemption.h"
    1717
    18 #define ftype `ftype`
    1918extern "C" {
    2019#include <errno.h>
     
    2322#include <unistd.h>
    2423}
    25 #undef ftype
    2624
    2725#include "bits/signal.h"
     
    5048
    5149// Machine specific register name
    52 #if   defined(__x86_64__)
     50#if   defined( __i386 )
     51#define CFA_REG_IP gregs[REG_EIP]
     52#elif defined( __x86_64 )
    5353#define CFA_REG_IP gregs[REG_RIP]
    54 #elif defined(__i386__)
    55 #define CFA_REG_IP gregs[REG_EIP]
    56 #elif defined(__ARM_ARCH__)
     54#elif defined( __ARM_ARCH )
    5755#define CFA_REG_IP arm_pc
     56#else
     57#error unknown hardware architecture
    5858#endif
    5959
     
    197197
    198198        if ( pthread_sigmask( SIG_UNBLOCK, &mask, NULL ) == -1 ) {
    199             abortf( "internal error, pthread_sigmask" );
     199            abort( "internal error, pthread_sigmask" );
    200200        }
    201201}
     
    208208
    209209        if ( pthread_sigmask( SIG_BLOCK, &mask, NULL ) == -1 ) {
    210             abortf( "internal error, pthread_sigmask" );
     210            abort( "internal error, pthread_sigmask" );
    211211        }
    212212}
     
    247247// Called from kernel_startup
    248248void kernel_start_preemption() {
    249         __cfaabi_dbg_print_safe("Kernel : Starting preemption\n");
     249        __cfaabi_dbg_print_safe( "Kernel : Starting preemption\n" );
    250250
    251251        // Start with preemption disabled until ready
     
    268268// Called from kernel_shutdown
    269269void kernel_stop_preemption() {
    270         __cfaabi_dbg_print_safe("Kernel : Preemption stopping\n");
     270        __cfaabi_dbg_print_safe( "Kernel : Preemption stopping\n" );
    271271
    272272        // Block all signals since we are already shutting down
     
    284284        // Preemption is now fully stopped
    285285
    286         __cfaabi_dbg_print_safe("Kernel : Preemption stopped\n");
     286        __cfaabi_dbg_print_safe( "Kernel : Preemption stopped\n" );
    287287}
    288288
     
    322322                case PREEMPT_TERMINATE: verify(this_processor->do_terminate);
    323323                default:
    324                         abortf( "internal error, signal value is %d", sfp->si_value.sival_int );
     324                        abort( "internal error, signal value is %d", sfp->si_value.sival_int );
    325325        }
    326326
     
    328328        if( !preemption_ready() ) { return; }
    329329
    330         __cfaabi_dbg_print_buffer_decl(" KERNEL: preempting core %p (%p).\n", this_processor, this_thread);
     330        __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p).\n", this_processor, this_thread);
    331331
    332332        preemption_in_progress = true;                      // Sync flag : prevent recursive calls to the signal handler
     
    348348
    349349        if ( pthread_sigmask( SIG_BLOCK, &mask, NULL ) == -1 ) {
    350             abortf( "internal error, pthread_sigmask" );
     350            abort( "internal error, pthread_sigmask" );
    351351        }
    352352
     
    365365                                        continue;
    366366                        case EINVAL :
    367                                         abortf("Timeout was invalid.");
     367                                        abort( "Timeout was invalid." );
    368368                                default:
    369                                         abortf("Unhandled error %d", err);
     369                                        abort( "Unhandled error %d", err);
    370370                        }
    371371                }
     
    374374                assertf(sig == SIGALRM, "Kernel Internal Error, sigwait: Unexpected signal %d (%d : %d)\n", sig, info.si_code, info.si_value.sival_int);
    375375
    376                 // __cfaabi_dbg_print_safe("Kernel : Caught alarm from %d with %d\n", info.si_code, info.si_value.sival_int );
     376                // __cfaabi_dbg_print_safe( "Kernel : Caught alarm from %d with %d\n", info.si_code, info.si_value.sival_int );
    377377                // Switch on the code (a.k.a. the sender) to
    378378                switch( info.si_code )
     
    382382                case SI_TIMER:
    383383                case SI_KERNEL:
    384                         // __cfaabi_dbg_print_safe("Kernel : Preemption thread tick\n");
     384                        // __cfaabi_dbg_print_safe( "Kernel : Preemption thread tick\n" );
    385385                        lock( event_kernel->lock __cfaabi_dbg_ctx2 );
    386386                        tick_preemption();
     
    396396
    397397EXIT:
    398         __cfaabi_dbg_print_safe("Kernel : Preemption thread stopping\n");
     398        __cfaabi_dbg_print_safe( "Kernel : Preemption thread stopping\n" );
    399399        return NULL;
    400400}
  • src/libcfa/exception.c

    r827a190 rcfe2f0a  
    99// Author           : Andrew Beach
    1010// Created On       : Mon Jun 26 15:13:00 2017
    11 // Last Modified By : Andrew Beach
    12 // Last Modified On : Thr Aug 17 15:45:00 2017
    13 // Update Count     : 7
     11// Last Modified By : Peter A. Buhr
     12// Last Modified On : Fri Feb  9 14:41:55 2018
     13// Update Count     : 8
    1414//
    1515
     
    453453// match, which is no way generic.  Some more works need to be done if we want to have a single call to the try routine.
    454454
    455 #if defined( __x86_64__ ) || defined( __i386__ )
     455#if defined( __i386 ) || defined( __x86_64 )
    456456asm (
    457457        //HEADER
     
    476476//      "       .section        .note.GNU-stack,\"x\",@progbits\n"
    477477);
    478 #endif // __x86_64__ || __i386__
     478#endif // __i386 || __x86_64
  • src/libcfa/interpose.c

    r827a190 rcfe2f0a  
    1010// Created On       : Wed Mar 29 16:10:31 2017
    1111// Last Modified By : Peter A. Buhr
    12 // Last Modified On : Wed Feb  7 09:05:18 2018
    13 // Update Count     : 59
     12// Last Modified On : Thu Feb  8 16:18:09 2018
     13// Update Count     : 75
    1414//
    1515
     
    2828}
    2929
    30 #define __NO_ABORT_OVERLOAD // no abort overload avoid ambiguities
    3130#include "bits/debug.h"
    3231#include "bits/defs.h"
     
    5150                        error = dlerror();
    5251                        if ( error ) {
    53                                 abortf( "interpose_symbol : failed to open libc, %s\n", error );
     52                                abort( "interpose_symbol : failed to open libc, %s\n", error );
    5453                        }
    5554                #endif
     
    6968
    7069        error = dlerror();
    71         if ( error ) abortf( "interpose_symbol : internal error, %s\n", error );
     70        if ( error ) abort( "interpose_symbol : internal error, %s\n", error );
    7271
    7372        return originalFunc.fptr;
     
    9897
    9998struct {
    100         __typeof__( exit  ) exit  __attribute__(( noreturn ));
    101         __typeof__( abort ) abort __attribute__(( noreturn ));
     99        void (* exit)( int ) __attribute__ (( __noreturn__ ));
     100        void (* abort)( void ) __attribute__ (( __noreturn__ ));
    102101} __cabi_libc;
    103102
     
    123122
    124123// Forward declare abort after the __typeof__ call to avoid ambiguities
    125 void abort ( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__));
     124void exit( int status, const char fmt[], ... ) __attribute__ (( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ ));
     125void abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ ));
    126126
    127127extern "C" {
    128         void abort( void ) __attribute__ ((__nothrow__, __leaf__, __noreturn__)) {
    129                 abortf( NULL );
    130         }
    131 
    132         void abortf( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__)) {
     128        void abort( void ) __attribute__ (( __nothrow__, __leaf__, __noreturn__ )) {
     129                abort( NULL );
     130        }
     131
     132        void __cabi_abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )) {
    133133                va_list argp;
    134134                va_start( argp, fmt );
     
    137137        }
    138138
    139         void exit( int __status ) __attribute__ ((__nothrow__, __leaf__, __noreturn__)) {
    140                 __cabi_libc.exit(__status);
    141         }
    142 }
    143 
    144 void * kernel_abort    ( void ) __attribute__ ((__nothrow__, __leaf__, __weak__)) { return NULL; }
    145 void   kernel_abort_msg( void * data, char * buffer, int size ) __attribute__ ((__nothrow__, __leaf__, __weak__)) {}
    146 int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__, __leaf__, __weak__)) { return 4; }
     139        void exit( int status ) __attribute__ (( __nothrow__, __leaf__, __noreturn__ )) {
     140                __cabi_libc.exit( status );
     141        }
     142}
     143
     144void * kernel_abort    ( void ) __attribute__ (( __nothrow__, __leaf__, __weak__ )) { return NULL; }
     145void   kernel_abort_msg( void * data, char * buffer, int size ) __attribute__ (( __nothrow__, __leaf__, __weak__ )) {}
     146int kernel_abort_lastframe( void ) __attribute__ (( __nothrow__, __leaf__, __weak__ )) { return 4; }
    147147
    148148enum { abort_text_size = 1024 };
     
    150150static int abort_lastframe;
    151151
    152 void abort( const char fmt[], ... ) __attribute__ ((__nothrow__, __leaf__, __noreturn__)) {
     152void exit( int status, const char fmt[], ... ) __attribute__ (( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ )) {
     153    va_list args;
     154    va_start( args, fmt );
     155    vfprintf( stderr, fmt, args );
     156    va_end( args );
     157        __cabi_libc.exit( status );
     158}
     159
     160void abort( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ )) {
    153161        void * kernel_data = kernel_abort();                    // must be done here to lock down kernel
    154162        int len;
     
    226234
    227235void sigHandler_segv( __CFA_SIGPARMS__ ) {
    228         abortf( "Addressing invalid memory at location %p\n"
     236        abort( "Addressing invalid memory at location %p\n"
    229237                        "Possible cause is reading outside the address space or writing to a protected area within the address space with an invalid pointer or subscript.\n",
    230238                        sfp->si_addr );
     
    232240
    233241void sigHandler_ill( __CFA_SIGPARMS__ ) {
    234         abortf( "Executing illegal instruction at location %p.\n"
     242        abort( "Executing illegal instruction at location %p.\n"
    235243                        "Possible cause is stack corruption.\n",
    236244                        sfp->si_addr );
     
    248256          default: msg = "unknown";
    249257        } // choose
    250         abortf( "Computation error %s at location %p.\n", msg, sfp->si_addr );
     258        abort( "Computation error %s at location %p.\n", msg, sfp->si_addr );
    251259}
    252260
  • src/prelude/builtins.c

    r827a190 rcfe2f0a  
    99// Author           : Peter A. Buhr
    1010// Created On       : Fri Jul 21 16:21:03 2017
    11 // Last Modified By : Andrew Beach
    12 // Last Modified On : Tus Jul 25 15:33:00 2017
    13 // Update Count     : 14
     11// Last Modified By : Peter A. Buhr
     12// Last Modified On : Thu Feb  8 12:47:59 2018
     13// Update Count     : 19
    1414//
    1515
     
    2020#include "../libcfa/virtual.h"
    2121#include "../libcfa/exception.h"
     22
     23void exit( int status, const char fmt[], ... ) __attribute__ (( format(printf, 2, 3), __nothrow__, __leaf__, __noreturn__ ));
     24void abort ( const char fmt[], ... ) __attribute__ (( format(printf, 1, 2), __nothrow__, __leaf__, __noreturn__ ));
    2225
    2326// exponentiation operator implementation
Note: See TracChangeset for help on using the changeset viewer.