Changes in src/GenPoly/Box.cc [9799ec8:c29d9ce]
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/GenPoly/Box.cc
r9799ec8 rc29d9ce 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // Box.cc -- 7 // Box.cc -- 8 8 // 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Jun 29 21:43:03 201613 // Update Count : 29611 // Last Modified By : Rob Schluntz 12 // Last Modified On : Tue Aug 11 16:22:35 2015 13 // Update Count : 89 14 14 // 15 15 16 #include <algorithm>17 #include <iterator>18 #include <list>19 #include <map>20 16 #include <set> 21 17 #include <stack> 22 18 #include <string> 23 #include < utility>24 #include < vector>19 #include <iterator> 20 #include <algorithm> 25 21 #include <cassert> 26 22 27 23 #include "Box.h" 28 #include "DeclMutator.h"29 24 #include "PolyMutator.h" 30 25 #include "FindFunction.h" 31 #include "ScopedMap.h"32 #include "ScopedSet.h"33 26 #include "ScrubTyVars.h" 34 27 35 28 #include "Parser/ParseNode.h" 36 29 37 #include "SynTree/Constant.h" 38 #include "SynTree/Declaration.h" 30 #include "SynTree/Type.h" 39 31 #include "SynTree/Expression.h" 40 32 #include "SynTree/Initializer.h" 33 #include "SynTree/Statement.h" 41 34 #include "SynTree/Mutator.h" 42 #include "SynTree/Statement.h"43 #include "SynTree/Type.h"44 #include "SynTree/TypeSubstitution.h"45 35 46 36 #include "ResolvExpr/TypeEnvironment.h" 47 #include "ResolvExpr/TypeMap.h" 48 #include "ResolvExpr/typeops.h" 49 50 #include "SymTab/Indexer.h" 37 51 38 #include "SymTab/Mangler.h" 52 39 53 #include " Common/SemanticError.h"54 #include " Common/UniqueName.h"55 #include " Common/utility.h"40 #include "SemanticError.h" 41 #include "UniqueName.h" 42 #include "utility.h" 56 43 57 44 #include <ext/functional> // temporary … … 61 48 const std::list<Label> noLabels; 62 49 63 FunctionType *makeAdapterType( FunctionType *adaptee, const TyVarMap &tyVars );64 65 /// Abstracts type equality for a list of parameter types66 struct TypeList {67 TypeList() : params() {}68 TypeList( const std::list< Type* > &_params ) : params() { cloneAll(_params, params); }69 TypeList( std::list< Type* > &&_params ) : params( _params ) {}70 71 TypeList( const TypeList &that ) : params() { cloneAll(that.params, params); }72 TypeList( TypeList &&that ) : params( std::move( that.params ) ) {}73 74 /// Extracts types from a list of TypeExpr*75 TypeList( const std::list< TypeExpr* >& _params ) : params() {76 for ( std::list< TypeExpr* >::const_iterator param = _params.begin(); param != _params.end(); ++param ) {77 params.push_back( (*param)->get_type()->clone() );78 }79 }80 81 TypeList& operator= ( const TypeList &that ) {82 deleteAll( params );83 84 params.clear();85 cloneAll( that.params, params );86 87 return *this;88 }89 90 TypeList& operator= ( TypeList &&that ) {91 deleteAll( params );92 93 params = std::move( that.params );94 95 return *this;96 }97 98 ~TypeList() { deleteAll( params ); }99 100 bool operator== ( const TypeList& that ) const {101 if ( params.size() != that.params.size() ) return false;102 103 SymTab::Indexer dummy;104 for ( std::list< Type* >::const_iterator it = params.begin(), jt = that.params.begin(); it != params.end(); ++it, ++jt ) {105 if ( ! ResolvExpr::typesCompatible( *it, *jt, dummy ) ) return false;106 }107 return true;108 }109 110 std::list< Type* > params; ///< Instantiation parameters111 };112 113 /// Maps a key and a TypeList to the some value, accounting for scope114 template< typename Key, typename Value >115 class InstantiationMap {116 /// Wraps value for a specific (Key, TypeList) combination117 typedef std::pair< TypeList, Value* > Instantiation;118 /// List of TypeLists paired with their appropriate values119 typedef std::vector< Instantiation > ValueList;120 /// Underlying map type; maps keys to a linear list of corresponding TypeLists and values121 typedef ScopedMap< Key*, ValueList > InnerMap;122 123 InnerMap instantiations; ///< instantiations124 125 public:126 /// Starts a new scope127 void beginScope() { instantiations.beginScope(); }128 129 /// Ends a scope130 void endScope() { instantiations.endScope(); }131 132 /// Gets the value for the (key, typeList) pair, returns NULL on none such.133 Value *lookup( Key *key, const std::list< TypeExpr* >& params ) const {134 TypeList typeList( params );135 136 // scan scopes for matches to the key137 for ( typename InnerMap::const_iterator insts = instantiations.find( key ); insts != instantiations.end(); insts = instantiations.findNext( insts, key ) ) {138 for ( typename ValueList::const_reverse_iterator inst = insts->second.rbegin(); inst != insts->second.rend(); ++inst ) {139 if ( inst->first == typeList ) return inst->second;140 }141 }142 // no matching instantiations found143 return 0;144 }145 146 /// Adds a value for a (key, typeList) pair to the current scope147 void insert( Key *key, const std::list< TypeExpr* > ¶ms, Value *value ) {148 instantiations[ key ].push_back( Instantiation( TypeList( params ), value ) );149 }150 };151 152 /// Adds layout-generation functions to polymorphic types153 class LayoutFunctionBuilder : public DeclMutator {154 unsigned int functionNesting; // current level of nested functions155 public:156 LayoutFunctionBuilder() : functionNesting( 0 ) {}157 158 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );159 virtual Declaration *mutate( StructDecl *structDecl );160 virtual Declaration *mutate( UnionDecl *unionDecl );161 };162 163 /// Replaces polymorphic return types with out-parameters, replaces calls to polymorphic functions with adapter calls as needed, and adds appropriate type variables to the function call164 50 class Pass1 : public PolyMutator { 165 51 public: … … 172 58 virtual Expression *mutate( CommaExpr *commaExpr ); 173 59 virtual Expression *mutate( ConditionalExpr *condExpr ); 174 virtual Statement * mutate( ReturnStmt *returnStmt);60 virtual Statement *mutate(ReturnStmt *catchStmt); 175 61 virtual Type *mutate( PointerType *pointerType ); 176 virtual Type * mutate( FunctionType *functionType );177 62 virtual Type *mutate( FunctionType *pointerType ); 63 178 64 virtual void doBeginScope(); 179 65 virtual void doEndScope(); 180 66 private: 181 /// Pass the extra type parameters from polymorphic generic arguments or return types into a function application 182 void passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ); 183 /// passes extra type parameters into a polymorphic function application 184 void passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); 185 /// wraps a function application with a new temporary for the out-parameter return value 67 void passTypeVars( ApplicationExpr *appExpr, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); 186 68 Expression *addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ); 187 /// Replaces all the type parameters of a generic type with their concrete equivalents under the current environment 188 void replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ); 189 /// Replaces a polymorphic type with its concrete equivalant under the current environment (returns itself if concrete). 190 /// If `doClone` is set to false, will not clone interior types 191 Type *replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone = true ); 192 /// wraps a function application returning a polymorphic type with a new temporary for the out-parameter return value 193 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ); 69 Expression *addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, std::string typeName, std::list< Expression *>::iterator &arg ); 194 70 Expression *applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); 195 71 void boxParam( Type *formal, Expression *&arg, const TyVarMap &exprTyVars ); 196 72 void boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ); 197 73 void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ); 198 /// Stores assignment operators from assertion list in local map of assignment operations 199 void findTypeOps( const std::list< TypeDecl *> &forall ); 74 void findAssignOps( const std::list< TypeDecl *> &forall ); 200 75 void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars ); 201 76 FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ); 202 /// Replaces intrinsic operator functions with their arithmetic desugaring203 77 Expression *handleIntrinsics( ApplicationExpr *appExpr ); 204 /// Inserts a new temporary variable into the current scope with an auto-generated name205 78 ObjectDecl *makeTemporary( Type *type ); 206 79 207 ScopedMap< std::string, DeclarationWithType* > assignOps; ///< Currently known type variable assignment operators 208 ScopedMap< std::string, DeclarationWithType* > ctorOps; ///< Currently known type variable constructors 209 ScopedMap< std::string, DeclarationWithType* > copyOps; ///< Currently known type variable copy constructors 210 ScopedMap< std::string, DeclarationWithType* > dtorOps; ///< Currently known type variable destructors 211 ResolvExpr::TypeMap< DeclarationWithType > scopedAssignOps; ///< Currently known assignment operators 212 ResolvExpr::TypeMap< DeclarationWithType > scopedCtorOps; ///< Currently known assignment operators 213 ResolvExpr::TypeMap< DeclarationWithType > scopedCopyOps; ///< Currently known assignment operators 214 ResolvExpr::TypeMap< DeclarationWithType > scopedDtorOps; ///< Currently known assignment operators 215 ScopedMap< std::string, DeclarationWithType* > adapters; ///< Set of adapter functions in the current scope 216 80 typedef std::map< std::string, FunctionDecl *> AdapterMap; 81 std::map< std::string, DeclarationWithType *> assignOps; 82 std::stack< AdapterMap > adapters; 217 83 DeclarationWithType *retval; 218 84 bool useRetval; … … 220 86 }; 221 87 222 /// * Moves polymorphic returns in function types to pointer-type parameters223 /// * adds type size and assertion parameters to parameter lists224 88 class Pass2 : public PolyMutator { 225 89 public: 90 Pass2(); 226 91 template< typename DeclClass > 227 92 DeclClass *handleDecl( DeclClass *decl, Type *type ); … … 232 97 virtual Type *mutate( PointerType *pointerType ); 233 98 virtual Type *mutate( FunctionType *funcType ); 234 235 99 private: 236 100 void addAdapters( FunctionType *functionType ); 237 101 238 102 std::map< UniqueId, std::string > adapterName; 239 103 }; 240 104 241 /// Mutator pass that replaces concrete instantiations of generic types with actual struct declarations, scoped appropriately 242 class GenericInstantiator : public DeclMutator { 243 /// Map of (generic type, parameter list) pairs to concrete type instantiations 244 InstantiationMap< AggregateDecl, AggregateDecl > instantiations; 245 /// Namer for concrete types 246 UniqueName typeNamer; 247 248 public: 249 GenericInstantiator() : DeclMutator(), instantiations(), typeNamer("_conc_") {} 250 251 virtual Type* mutate( StructInstType *inst ); 252 virtual Type* mutate( UnionInstType *inst ); 253 254 // virtual Expression* mutate( MemberExpr *memberExpr ); 255 256 virtual void doBeginScope(); 257 virtual void doEndScope(); 258 private: 259 /// Wrap instantiation lookup for structs 260 StructDecl* lookup( StructInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (StructDecl*)instantiations.lookup( inst->get_baseStruct(), typeSubs ); } 261 /// Wrap instantiation lookup for unions 262 UnionDecl* lookup( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs ) { return (UnionDecl*)instantiations.lookup( inst->get_baseUnion(), typeSubs ); } 263 /// Wrap instantiation insertion for structs 264 void insert( StructInstType *inst, const std::list< TypeExpr* > &typeSubs, StructDecl *decl ) { instantiations.insert( inst->get_baseStruct(), typeSubs, decl ); } 265 /// Wrap instantiation insertion for unions 266 void insert( UnionInstType *inst, const std::list< TypeExpr* > &typeSubs, UnionDecl *decl ) { instantiations.insert( inst->get_baseUnion(), typeSubs, decl ); } 267 }; 268 269 /// Replaces member and size/align/offsetof expressions on polymorphic generic types with calculated expressions. 270 /// * Replaces member expressions for polymorphic types with calculated add-field-offset-and-dereference 271 /// * Calculates polymorphic offsetof expressions from offset array 272 /// * Inserts dynamic calculation of polymorphic type layouts where needed 273 class PolyGenericCalculator : public PolyMutator { 274 public: 105 class Pass3 : public PolyMutator { 106 public: 275 107 template< typename DeclClass > 276 108 DeclClass *handleDecl( DeclClass *decl, Type *type ); … … 282 114 virtual Type *mutate( PointerType *pointerType ); 283 115 virtual Type *mutate( FunctionType *funcType ); 284 virtual Expression *mutate( MemberExpr *memberExpr );285 virtual Expression *mutate( SizeofExpr *sizeofExpr );286 virtual Expression *mutate( AlignofExpr *alignofExpr );287 virtual Expression *mutate( OffsetofExpr *offsetofExpr );288 virtual Expression *mutate( OffsetPackExpr *offsetPackExpr );289 290 virtual void doBeginScope();291 virtual void doEndScope();292 293 private:294 /// Makes a new variable in the current scope with the given name, type & optional initializer295 ObjectDecl *makeVar( const std::string &name, Type *type, Initializer *init = 0 );296 /// returns true if the type has a dynamic layout; such a layout will be stored in appropriately-named local variables when the function returns297 bool findGeneric( Type *ty );298 /// adds type parameters to the layout call; will generate the appropriate parameters if needed299 void addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams );300 301 /// Enters a new scope for type-variables, adding the type variables from ty302 void beginTypeScope( Type *ty );303 /// Exits the type-variable scope304 void endTypeScope();305 306 ScopedSet< std::string > knownLayouts; ///< Set of generic type layouts known in the current scope, indexed by sizeofName307 ScopedSet< std::string > knownOffsets; ///< Set of non-generic types for which the offset array exists in the current scope, indexed by offsetofName308 };309 310 /// Replaces initialization of polymorphic values with alloca, declaration of dtype/ftype with appropriate void expression, and sizeof expressions of polymorphic types with the proper variable311 class Pass3 : public PolyMutator {312 public:313 template< typename DeclClass >314 DeclClass *handleDecl( DeclClass *decl, Type *type );315 virtual DeclarationWithType *mutate( FunctionDecl *functionDecl );316 virtual ObjectDecl *mutate( ObjectDecl *objectDecl );317 virtual TypedefDecl *mutate( TypedefDecl *objectDecl );318 virtual TypeDecl *mutate( TypeDecl *objectDecl );319 virtual Type *mutate( PointerType *pointerType );320 virtual Type *mutate( FunctionType *funcType );321 116 private: 322 117 }; … … 324 119 } // anonymous namespace 325 120 326 /// version of mutateAll with special handling for translation unit so you can check the end of the prelude when debugging 327 template< typename MutatorType > 328 inline void mutateTranslationUnit( std::list< Declaration* > &translationUnit, MutatorType &mutator ) { 329 bool seenIntrinsic = false; 330 SemanticError errors; 331 for ( typename std::list< Declaration* >::iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { 332 try { 333 if ( *i ) { 334 if ( (*i)->get_linkage() == LinkageSpec::Intrinsic ) { 335 seenIntrinsic = true; 336 } else if ( seenIntrinsic ) { 337 seenIntrinsic = false; // break on this line when debugging for end of prelude 338 } 339 340 *i = dynamic_cast< Declaration* >( (*i)->acceptMutator( mutator ) ); 341 assert( *i ); 342 } // if 343 } catch( SemanticError &e ) { 344 errors.append( e ); 345 } // try 121 void printAllNotBuiltin( const std::list< Declaration *>& translationUnit, std::ostream &os ) { 122 for ( std::list< Declaration *>::const_iterator i = translationUnit.begin(); i != translationUnit.end(); ++i ) { 123 if ( ! LinkageSpec::isBuiltin( (*i)->get_linkage() ) ) { 124 (*i)->print( os ); 125 os << std::endl; 126 } // if 346 127 } // for 347 if ( ! errors.isEmpty() ) {348 throw errors;349 } // if350 128 } 351 129 352 130 void box( std::list< Declaration *>& translationUnit ) { 353 LayoutFunctionBuilder layoutBuilder;354 131 Pass1 pass1; 355 132 Pass2 pass2; 356 GenericInstantiator instantiator;357 PolyGenericCalculator polyCalculator;358 133 Pass3 pass3; 359 360 layoutBuilder.mutateDeclarationList( translationUnit ); 361 mutateTranslationUnit/*All*/( translationUnit, pass1 ); 362 mutateTranslationUnit/*All*/( translationUnit, pass2 ); 363 instantiator.mutateDeclarationList( translationUnit ); 364 mutateTranslationUnit/*All*/( translationUnit, polyCalculator ); 365 mutateTranslationUnit/*All*/( translationUnit, pass3 ); 134 mutateAll( translationUnit, pass1 ); 135 mutateAll( translationUnit, pass2 ); 136 mutateAll( translationUnit, pass3 ); 366 137 } 367 138 368 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////369 370 DeclarationWithType *LayoutFunctionBuilder::mutate( FunctionDecl *functionDecl ) {371 functionDecl->set_functionType( maybeMutate( functionDecl->get_functionType(), *this ) );372 mutateAll( functionDecl->get_oldDecls(), *this );373 ++functionNesting;374 functionDecl->set_statements( maybeMutate( functionDecl->get_statements(), *this ) );375 --functionNesting;376 return functionDecl;377 }378 379 /// Get a list of type declarations that will affect a layout function380 std::list< TypeDecl* > takeOtypeOnly( std::list< TypeDecl* > &decls ) {381 std::list< TypeDecl * > otypeDecls;382 383 for ( std::list< TypeDecl* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) {384 if ( (*decl)->get_kind() == TypeDecl::Any ) {385 otypeDecls.push_back( *decl );386 }387 }388 389 return otypeDecls;390 }391 392 /// Adds parameters for otype layout to a function type393 void addOtypeParams( FunctionType *layoutFnType, std::list< TypeDecl* > &otypeParams ) {394 BasicType sizeAlignType( Type::Qualifiers(), BasicType::LongUnsignedInt );395 396 for ( std::list< TypeDecl* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {397 TypeInstType paramType( Type::Qualifiers(), (*param)->get_name(), *param );398 std::string paramName = mangleType( ¶mType );399 layoutFnType->get_parameters().push_back( new ObjectDecl( sizeofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );400 layoutFnType->get_parameters().push_back( new ObjectDecl( alignofName( paramName ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignType.clone(), 0 ) );401 }402 }403 404 /// Builds a layout function declaration405 FunctionDecl *buildLayoutFunctionDecl( AggregateDecl *typeDecl, unsigned int functionNesting, FunctionType *layoutFnType ) {406 // Routines at global scope marked "static" to prevent multiple definitions is separate translation units407 // because each unit generates copies of the default routines for each aggregate.408 FunctionDecl *layoutDecl = new FunctionDecl(409 layoutofName( typeDecl ), functionNesting > 0 ? DeclarationNode::NoStorageClass : DeclarationNode::Static, LinkageSpec::AutoGen, layoutFnType, new CompoundStmt( noLabels ), true, false );410 layoutDecl->fixUniqueId();411 return layoutDecl;412 }413 414 /// Makes a unary operation415 Expression *makeOp( const std::string &name, Expression *arg ) {416 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );417 expr->get_args().push_back( arg );418 return expr;419 }420 421 /// Makes a binary operation422 Expression *makeOp( const std::string &name, Expression *lhs, Expression *rhs ) {423 UntypedExpr *expr = new UntypedExpr( new NameExpr( name ) );424 expr->get_args().push_back( lhs );425 expr->get_args().push_back( rhs );426 return expr;427 }428 429 /// Returns the dereference of a local pointer variable430 Expression *derefVar( ObjectDecl *var ) {431 return makeOp( "*?", new VariableExpr( var ) );432 }433 434 /// makes an if-statement with a single-expression if-block and no then block435 Statement *makeCond( Expression *cond, Expression *ifPart ) {436 return new IfStmt( noLabels, cond, new ExprStmt( noLabels, ifPart ), 0 );437 }438 439 /// makes a statement that assigns rhs to lhs if lhs < rhs440 Statement *makeAssignMax( Expression *lhs, Expression *rhs ) {441 return makeCond( makeOp( "?<?", lhs, rhs ), makeOp( "?=?", lhs->clone(), rhs->clone() ) );442 }443 444 /// makes a statement that aligns lhs to rhs (rhs should be an integer power of two)445 Statement *makeAlignTo( Expression *lhs, Expression *rhs ) {446 // check that the lhs is zeroed out to the level of rhs447 Expression *ifCond = makeOp( "?&?", lhs, makeOp( "?-?", rhs, new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "1" ) ) ) );448 // if not aligned, increment to alignment449 Expression *ifExpr = makeOp( "?+=?", lhs->clone(), makeOp( "?-?", rhs->clone(), ifCond->clone() ) );450 return makeCond( ifCond, ifExpr );451 }452 453 /// adds an expression to a compound statement454 void addExpr( CompoundStmt *stmts, Expression *expr ) {455 stmts->get_kids().push_back( new ExprStmt( noLabels, expr ) );456 }457 458 /// adds a statement to a compound statement459 void addStmt( CompoundStmt *stmts, Statement *stmt ) {460 stmts->get_kids().push_back( stmt );461 }462 463 Declaration *LayoutFunctionBuilder::mutate( StructDecl *structDecl ) {464 // do not generate layout function for "empty" tag structs465 if ( structDecl->get_members().empty() ) return structDecl;466 467 // get parameters that can change layout, exiting early if none468 std::list< TypeDecl* > otypeParams = takeOtypeOnly( structDecl->get_parameters() );469 if ( otypeParams.empty() ) return structDecl;470 471 // build layout function signature472 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );473 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );474 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );475 476 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );477 layoutFnType->get_parameters().push_back( sizeParam );478 ObjectDecl *alignParam = new ObjectDecl( alignofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );479 layoutFnType->get_parameters().push_back( alignParam );480 ObjectDecl *offsetParam = new ObjectDecl( offsetofName( structDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );481 layoutFnType->get_parameters().push_back( offsetParam );482 addOtypeParams( layoutFnType, otypeParams );483 484 // build function decl485 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( structDecl, functionNesting, layoutFnType );486 487 // calculate struct layout in function body488 489 // initialize size and alignment to 0 and 1 (will have at least one member to re-edit size490 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "0" ) ) ) );491 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );492 unsigned long n_members = 0;493 bool firstMember = true;494 for ( std::list< Declaration* >::const_iterator member = structDecl->get_members().begin(); member != structDecl->get_members().end(); ++member ) {495 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );496 assert( dwt );497 Type *memberType = dwt->get_type();498 499 if ( firstMember ) {500 firstMember = false;501 } else {502 // make sure all members after the first (automatically aligned at 0) are properly padded for alignment503 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), new AlignofExpr( memberType->clone() ) ) );504 }505 506 // place current size in the current offset index507 addExpr( layoutDecl->get_statements(), makeOp( "?=?", makeOp( "?[?]", new VariableExpr( offsetParam ), new ConstantExpr( Constant::from_ulong( n_members ) ) ),508 derefVar( sizeParam ) ) );509 ++n_members;510 511 // add member size to current size512 addExpr( layoutDecl->get_statements(), makeOp( "?+=?", derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );513 514 // take max of member alignment and global alignment515 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );516 }517 // make sure the type is end-padded to a multiple of its alignment518 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );519 520 addDeclarationAfter( layoutDecl );521 return structDecl;522 }523 524 Declaration *LayoutFunctionBuilder::mutate( UnionDecl *unionDecl ) {525 // do not generate layout function for "empty" tag unions526 if ( unionDecl->get_members().empty() ) return unionDecl;527 528 // get parameters that can change layout, exiting early if none529 std::list< TypeDecl* > otypeParams = takeOtypeOnly( unionDecl->get_parameters() );530 if ( otypeParams.empty() ) return unionDecl;531 532 // build layout function signature533 FunctionType *layoutFnType = new FunctionType( Type::Qualifiers(), false );534 BasicType *sizeAlignType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );535 PointerType *sizeAlignOutType = new PointerType( Type::Qualifiers(), sizeAlignType );536 537 ObjectDecl *sizeParam = new ObjectDecl( sizeofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType, 0 );538 layoutFnType->get_parameters().push_back( sizeParam );539 ObjectDecl *alignParam = new ObjectDecl( alignofName( unionDecl->get_name() ), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, sizeAlignOutType->clone(), 0 );540 layoutFnType->get_parameters().push_back( alignParam );541 addOtypeParams( layoutFnType, otypeParams );542 543 // build function decl544 FunctionDecl *layoutDecl = buildLayoutFunctionDecl( unionDecl, functionNesting, layoutFnType );545 546 // calculate union layout in function body547 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( sizeParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );548 addExpr( layoutDecl->get_statements(), makeOp( "?=?", derefVar( alignParam ), new ConstantExpr( Constant( sizeAlignType->clone(), "1" ) ) ) );549 for ( std::list< Declaration* >::const_iterator member = unionDecl->get_members().begin(); member != unionDecl->get_members().end(); ++member ) {550 DeclarationWithType *dwt = dynamic_cast< DeclarationWithType * >( *member );551 assert( dwt );552 Type *memberType = dwt->get_type();553 554 // take max member size and global size555 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( sizeParam ), new SizeofExpr( memberType->clone() ) ) );556 557 // take max of member alignment and global alignment558 addStmt( layoutDecl->get_statements(), makeAssignMax( derefVar( alignParam ), new AlignofExpr( memberType->clone() ) ) );559 }560 // make sure the type is end-padded to a multiple of its alignment561 addStmt( layoutDecl->get_statements(), makeAlignTo( derefVar( sizeParam ), derefVar( alignParam ) ) );562 563 addDeclarationAfter( layoutDecl );564 return unionDecl;565 }566 567 139 ////////////////////////////////////////// Pass1 //////////////////////////////////////////////////// 568 140 569 141 namespace { 570 std::string makePolyMonoSuffix( FunctionType * function, const TyVarMap &tyVars ) {571 std::stringstream name;572 573 // NOTE: this function previously used isPolyObj, which failed to produce574 // the correct thing in some situations. It's not clear to me why this wasn't working.575 576 // if the return type or a parameter type involved polymorphic types, then the adapter will need577 // to take those polymorphic types as pointers. Therefore, there can be two different functions578 // with the same mangled name, so we need to further mangle the names.579 for ( std::list< DeclarationWithType *>::iterator retval = function->get_returnVals().begin(); retval != function->get_returnVals().end(); ++retval ) {580 if ( isPolyType( (*retval)->get_type(), tyVars ) ) {581 name << "P";582 } else {583 name << "M";584 }585 }586 name << "_";587 std::list< DeclarationWithType *> ¶mList = function->get_parameters();588 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) {589 if ( isPolyType( (*arg)->get_type(), tyVars ) ) {590 name << "P";591 } else {592 name << "M";593 }594 } // for595 return name.str();596 }597 598 std::string mangleAdapterName( FunctionType * function, const TyVarMap &tyVars ) {599 return SymTab::Mangler::mangle( function ) + makePolyMonoSuffix( function, tyVars );600 }601 602 142 std::string makeAdapterName( const std::string &mangleName ) { 603 143 return "_adapter" + mangleName; 604 144 } 605 145 606 Pass1::Pass1() : useRetval( false ), tempNamer( "_temp" ) {} 607 608 /// Returns T if the given declaration is a function with parameter (T*) for some TypeInstType T, NULL otherwise 609 TypeInstType *isTypeInstPtrFn( DeclarationWithType *decl ) { 610 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) { 611 if ( funType->get_parameters().size() == 1 ) { 612 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) { 613 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) { 614 return refType; 146 bool isPolyRet( FunctionType *function, std::string &name, const TyVarMap &otherTyVars ) { 147 bool doTransform = false; 148 if ( ! function->get_returnVals().empty() ) { 149 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( function->get_returnVals().front()->get_type() ) ) { 150 151 // figure out if the return type is specified by a type parameter 152 for ( std::list< TypeDecl *>::const_iterator tyVar = function->get_forall().begin(); tyVar != function->get_forall().end(); ++tyVar ) { 153 if ( (*tyVar)->get_name() == typeInst->get_name() ) { 154 doTransform = true; 155 name = typeInst->get_name(); 156 break; 615 157 } // if 158 } // for 159 if ( ! doTransform && otherTyVars.find( typeInst->get_name() ) != otherTyVars.end() ) { 160 doTransform = true; 616 161 } // if 617 162 } // if 618 163 } // if 619 return 0; 620 } 621 622 /// Returns T if the given declaration is a function with parameters (T*, T) for some TypeInstType T, NULL otherwise 623 TypeInstType *isTypeInstPtrValFn( DeclarationWithType *decl ) { 624 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) { 625 if ( funType->get_parameters().size() == 2 ) { 626 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) { 627 if ( TypeInstType *refType = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) { 628 if ( TypeInstType *refType2 = dynamic_cast< TypeInstType *>( funType->get_parameters().back()->get_type() ) ) { 629 if ( refType->get_name() == refType2->get_name() ) { 630 return refType; 164 return doTransform; 165 } 166 167 bool isPolyRet( FunctionType *function, std::string &name ) { 168 TyVarMap dummyTyVars; 169 return isPolyRet( function, name, dummyTyVars ); 170 } 171 172 bool isPolyRet( FunctionType *function, const TyVarMap &otherTyVars ) { 173 std::string dummyString; 174 return isPolyRet( function, dummyString, otherTyVars ); 175 } 176 177 Pass1::Pass1() 178 : useRetval( false ), tempNamer( "_temp" ) { 179 } 180 181 bool checkAssignment( DeclarationWithType *decl, std::string &name ) { 182 if ( decl->get_name() == "?=?" ) { 183 if ( PointerType *ptrType = dynamic_cast< PointerType *>( decl->get_type() ) ) { 184 if ( FunctionType *funType = dynamic_cast< FunctionType *>( ptrType->get_base() ) ) { 185 if ( funType->get_parameters().size() == 2 ) { 186 if ( PointerType *pointer = dynamic_cast< PointerType *>( funType->get_parameters().front()->get_type() ) ) { 187 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( pointer->get_base() ) ) { 188 name = typeInst->get_name(); 189 return true; 631 190 } // if 632 191 } // if … … 635 194 } // if 636 195 } // if 637 return 0; 638 } 639 640 /// Returns T if the given declaration is (*?=?)(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise 641 TypeInstType *isTypeInstAssignment( DeclarationWithType *decl ) { 642 return decl->get_name() == "?=?" ? isTypeInstPtrValFn( decl ) : 0; 643 } 644 645 /// Returns T if the given declaration is (*?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise 646 TypeInstType *isTypeInstCtor( DeclarationWithType *decl ) { 647 return decl->get_name() == "?{}" ? isTypeInstPtrFn( decl ) : 0; 648 } 649 650 /// Returns T if the given declaration is (*?{})(T *, T) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise 651 TypeInstType *isTypeInstCopy( DeclarationWithType *decl ) { 652 return decl->get_name() == "?{}" ? isTypeInstPtrValFn( decl ) : 0; 653 } 654 655 /// Returns T if the given declaration is (*^?{})(T *) for some TypeInstType T (return not checked, but maybe should be), NULL otherwise 656 TypeInstType *isTypeInstDtor( DeclarationWithType *decl ) { 657 return decl->get_name() == "^?{}" ? isTypeInstPtrFn( decl ) : 0; 658 } 659 660 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified, 661 /// NULL otherwise 662 Type *isNoCvPtrFn( DeclarationWithType *decl ) { 663 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) { 664 if ( funType->get_parameters().size() == 1 ) { 665 Type::Qualifiers defaultQualifiers; 666 Type *paramType = funType->get_parameters().front()->get_type(); 667 if ( paramType->get_qualifiers() != defaultQualifiers ) return 0; 668 669 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType ) ) { 670 Type *baseType = pointerType->get_base(); 671 if ( baseType->get_qualifiers() == defaultQualifiers ) { 672 return baseType; 673 } // if 674 } // if 675 } // if 676 } // if 677 return 0; 678 } 679 680 /// Returns T if the given declaration is a function with parameters (T*, T) for some type T, where neither parameter is cv-qualified, 681 /// NULL otherwise 682 Type *isNoCvPtrValFn( DeclarationWithType *decl ) { 683 if ( FunctionType *funType = getFunctionType( decl->get_type() ) ) { 684 if ( funType->get_parameters().size() == 2 ) { 685 Type::Qualifiers defaultQualifiers; 686 Type *paramType1 = funType->get_parameters().front()->get_type(); 687 if ( paramType1->get_qualifiers() != defaultQualifiers ) return 0; 688 Type *paramType2 = funType->get_parameters().back()->get_type(); 689 if ( paramType2->get_qualifiers() != defaultQualifiers ) return 0; 690 691 if ( PointerType *pointerType = dynamic_cast< PointerType* >( paramType1 ) ) { 692 Type *baseType1 = pointerType->get_base(); 693 if ( baseType1->get_qualifiers() != defaultQualifiers ) return 0; 694 SymTab::Indexer dummy; 695 if ( ResolvExpr::typesCompatible( baseType1, paramType2, dummy ) ) { 696 return baseType1; 697 } // if 698 } // if 699 } // if 700 } // if 701 return 0; 702 } 703 704 /// returns T if the given declaration is: (*?=?)(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise 705 /// Only picks assignments where neither parameter is cv-qualified 706 Type *isAssignment( DeclarationWithType *decl ) { 707 return decl->get_name() == "?=?" ? isNoCvPtrValFn( decl ) : 0; 708 } 709 710 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise 711 /// Only picks ctors where the parameter is not cv-qualified 712 Type *isCtor( DeclarationWithType *decl ) { 713 return decl->get_name() == "?{}" ? isNoCvPtrFn( decl ) : 0; 714 } 715 716 /// returns T if the given declaration is: (*?{})(T *, T) for some type T (return not checked, but maybe should be), NULL otherwise 717 /// Only picks copy constructors where neither parameter is cv-qualified 718 Type *isCopy( DeclarationWithType *decl ) { 719 return decl->get_name() == "?{}" ? isNoCvPtrValFn( decl ) : 0; 720 } 721 722 /// returns T if the given declaration is: (*?{})(T *) for some type T, NULL otherwise 723 /// Only picks ctors where the parameter is not cv-qualified 724 Type *isDtor( DeclarationWithType *decl ) { 725 return decl->get_name() == "^?{}" ? isNoCvPtrFn( decl ) : 0; 726 } 727 728 void Pass1::findTypeOps( const std::list< TypeDecl *> &forall ) { 729 // what if a nested function uses an assignment operator? 730 // assignOps.clear(); 196 return false; 197 } 198 199 void Pass1::findAssignOps( const std::list< TypeDecl *> &forall ) { 200 assignOps.clear(); 731 201 for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) { 732 202 for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) { 733 203 std::string typeName; 734 if ( TypeInstType *typeInst = isTypeInstAssignment( *assert ) ) { 735 assignOps[ typeInst->get_name() ] = *assert; 736 } else if ( TypeInstType *typeInst = isTypeInstCtor( *assert ) ) { 737 ctorOps[ typeInst->get_name() ] = *assert; 738 } else if ( TypeInstType *typeInst = isTypeInstCopy( *assert ) ) { 739 copyOps[ typeInst->get_name() ] = *assert; 740 } else if ( TypeInstType *typeInst = isTypeInstDtor( *assert ) ) { 741 dtorOps[ typeInst->get_name() ] = *assert; 204 if ( checkAssignment( *assert, typeName ) ) { 205 assignOps[ typeName ] = *assert; 742 206 } // if 743 207 } // for … … 746 210 747 211 DeclarationWithType *Pass1::mutate( FunctionDecl *functionDecl ) { 748 // if this is a assignment function, put it in the map for this scope 749 if ( Type *paramType = isAssignment( functionDecl ) ) { 750 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) { 751 scopedAssignOps.insert( paramType, functionDecl ); 752 } 753 } else if ( Type *paramType = isCtor( functionDecl ) ) { 754 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) { 755 scopedCtorOps.insert( paramType, functionDecl ); 756 } 757 } else if ( Type *paramType = isCopy( functionDecl ) ) { 758 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) { 759 scopedCopyOps.insert( paramType, functionDecl ); 760 } 761 } else if ( Type *paramType = isDtor( functionDecl ) ) { 762 if ( ! dynamic_cast< TypeInstType* >( paramType ) ) { 763 scopedDtorOps.insert( paramType, functionDecl ); 764 } 765 } 766 767 if ( functionDecl->get_statements() ) { // empty routine body ? 768 doBeginScope(); 769 scopeTyVars.beginScope(); 770 assignOps.beginScope(); 771 ctorOps.beginScope(); 772 copyOps.beginScope(); 773 dtorOps.beginScope(); 774 212 if ( functionDecl->get_statements() ) { 213 TyVarMap oldtyVars = scopeTyVars; 775 214 DeclarationWithType *oldRetval = retval; 776 215 bool oldUseRetval = useRetval; 777 778 // process polymorphic return value 216 779 217 retval = 0; 780 if ( isPolyRet( functionDecl->get_functionType() ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) { 218 std::string typeName; 219 if ( isPolyRet( functionDecl->get_functionType(), typeName ) && functionDecl->get_linkage() == LinkageSpec::Cforall ) { 781 220 retval = functionDecl->get_functionType()->get_returnVals().front(); 782 221 783 222 // give names to unnamed return values 784 223 if ( retval->get_name() == "" ) { … … 787 226 } // if 788 227 } // if 789 790 FunctionType *functionType = functionDecl->get_functionType(); 228 229 scopeTyVars.clear(); 230 /// std::cerr << "clear\n"; 791 231 makeTyVarMap( functionDecl->get_functionType(), scopeTyVars ); 792 findTypeOps( functionDecl->get_functionType()->get_forall() ); 793 794 std::list< DeclarationWithType *> ¶mList = functionType->get_parameters(); 795 std::list< FunctionType *> functions; 796 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) { 797 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) { 798 findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter ); 799 } // for 800 } // for 801 for ( std::list< DeclarationWithType *>::iterator arg = paramList.begin(); arg != paramList.end(); ++arg ) { 802 findFunction( (*arg)->get_type(), functions, scopeTyVars, needsAdapter ); 803 } // for 804 805 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) { 806 std::string mangleName = mangleAdapterName( *funType, scopeTyVars ); 807 if ( adapters.find( mangleName ) == adapters.end() ) { 808 std::string adapterName = makeAdapterName( mangleName ); 809 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new PointerType( Type::Qualifiers(), makeAdapterType( *funType, scopeTyVars ) ), 0 ) ) ); 810 } // if 811 } // for 812 232 findAssignOps( functionDecl->get_functionType()->get_forall() ); 813 233 functionDecl->set_statements( functionDecl->get_statements()->acceptMutator( *this ) ); 814 815 scopeTyVars.endScope(); 816 assignOps.endScope(); 817 ctorOps.endScope(); 818 copyOps.endScope(); 819 dtorOps.endScope(); 234 235 scopeTyVars = oldtyVars; 236 /// std::cerr << "end FunctionDecl: "; 237 /// for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) { 238 /// std::cerr << i->first << " "; 239 /// } 240 /// std::cerr << "\n"; 820 241 retval = oldRetval; 821 242 useRetval = oldUseRetval; 822 doEndScope();243 // doEndScope(); 823 244 } // if 824 245 return functionDecl; … … 826 247 827 248 TypeDecl *Pass1::mutate( TypeDecl *typeDecl ) { 249 /// std::cerr << "add " << typeDecl->get_name() << "\n"; 828 250 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind(); 829 251 return Mutator::mutate( typeDecl ); … … 850 272 } 851 273 852 void Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) { 853 Type *polyType = isPolyType( parmType, exprTyVars ); 854 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { 855 std::string typeName = mangleType( polyType ); 856 if ( seenTypes.count( typeName ) ) return; 857 858 arg = appExpr->get_args().insert( arg, new SizeofExpr( argBaseType->clone() ) ); 859 arg++; 860 arg = appExpr->get_args().insert( arg, new AlignofExpr( argBaseType->clone() ) ); 861 arg++; 862 if ( dynamic_cast< StructInstType* >( polyType ) ) { 863 if ( StructInstType *argBaseStructType = dynamic_cast< StructInstType* >( argBaseType ) ) { 864 // zero-length arrays are forbidden by C, so don't pass offset for empty struct 865 if ( ! argBaseStructType->get_baseStruct()->get_members().empty() ) { 866 arg = appExpr->get_args().insert( arg, new OffsetPackExpr( argBaseStructType->clone() ) ); 867 arg++; 868 } 869 } else { 870 throw SemanticError( "Cannot pass non-struct type for generic struct" ); 871 } 872 } 873 874 seenTypes.insert( typeName ); 875 } 876 } 877 878 void Pass1::passTypeVars( ApplicationExpr *appExpr, ReferenceToType *polyRetType, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) { 879 // pass size/align for type variables 274 void Pass1::passTypeVars( ApplicationExpr *appExpr, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) { 880 275 for ( TyVarMap::const_iterator tyParm = exprTyVars.begin(); tyParm != exprTyVars.end(); ++tyParm ) { 881 276 ResolvExpr::EqvClass eqvClass; … … 886 281 arg = appExpr->get_args().insert( arg, new SizeofExpr( concrete->clone() ) ); 887 282 arg++; 888 arg = appExpr->get_args().insert( arg, new AlignofExpr( concrete->clone() ) );889 arg++;890 283 } else { 891 /// xxx - should this be an assertion? 892 throw SemanticError( "unbound type variable: " + tyParm->first + " in application ", appExpr ); 284 throw SemanticError( "unbound type variable in application ", appExpr ); 893 285 } // if 894 286 } // if 895 287 } // for 896 897 // add size/align for generic types to parameter list898 if ( appExpr->get_function()->get_results().empty() ) return;899 FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );900 assert( funcType );901 902 std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin();903 std::list< Expression* >::const_iterator fnArg = arg;904 std::set< std::string > seenTypes; //< names for generic types we've seen905 906 // a polymorphic return type may need to be added to the argument list907 if ( polyRetType ) {908 Type *concRetType = replaceWithConcrete( appExpr, polyRetType );909 passArgTypeVars( appExpr, polyRetType, concRetType, arg, exprTyVars, seenTypes );910 }911 912 // add type information args for presently unseen types in parameter list913 for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {914 VariableExpr *fnArgBase = getBaseVar( *fnArg );915 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;916 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );917 }918 288 } 919 289 … … 924 294 } 925 295 296 TypeInstType *isPolyType( Type *type, const TypeSubstitution *env, const TyVarMap &tyVars ) { 297 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( type ) ) { 298 if ( env ) { 299 if ( Type *newType = env->lookup( typeInst->get_name() ) ) { 300 return isPolyType( newType, env, tyVars ); 301 } // if 302 } // if 303 if ( tyVars.find( typeInst->get_name() ) != tyVars.end() ) { 304 return typeInst; 305 } else { 306 return 0; 307 } // if 308 } else { 309 return 0; 310 } // if 311 } 312 926 313 Expression *Pass1::addRetParam( ApplicationExpr *appExpr, FunctionType *function, Type *retType, std::list< Expression *>::iterator &arg ) { 927 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous. 928 // if ( useRetval ) { 929 // assert( retval ); 930 // arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) ); 931 // arg++; 932 // } else { 933 934 // Create temporary to hold return value of polymorphic function and produce that temporary as a result 935 // using a comma expression. Possibly change comma expression into statement expression "{}" for multiple 936 // return values. 937 ObjectDecl *newObj = makeTemporary( retType->clone() ); 938 Expression *paramExpr = new VariableExpr( newObj ); 939 940 // If the type of the temporary is not polymorphic, box temporary by taking its address; 941 // otherwise the temporary is already boxed and can be used directly. 942 if ( ! isPolyType( newObj->get_type(), scopeTyVars, env ) ) { 943 paramExpr = new AddressExpr( paramExpr ); 944 } // if 945 arg = appExpr->get_args().insert( arg, paramExpr ); // add argument to function call 946 arg++; 947 // Build a comma expression to call the function and emulate a normal return. 948 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) ); 949 commaExpr->set_env( appExpr->get_env() ); 950 appExpr->set_env( 0 ); 951 return commaExpr; 952 // } // if 953 // return appExpr; 954 } 955 956 void Pass1::replaceParametersWithConcrete( ApplicationExpr *appExpr, std::list< Expression* >& params ) { 957 for ( std::list< Expression* >::iterator param = params.begin(); param != params.end(); ++param ) { 958 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 959 assert(paramType && "Aggregate parameters should be type expressions"); 960 paramType->set_type( replaceWithConcrete( appExpr, paramType->get_type(), false ) ); 961 } 962 } 963 964 Type *Pass1::replaceWithConcrete( ApplicationExpr *appExpr, Type *type, bool doClone ) { 965 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { 966 Type *concrete = env->lookup( typeInst->get_name() ); 967 if ( concrete == 0 ) { 968 throw SemanticError( "Unbound type variable " + typeInst->get_name() + " in ", appExpr ); 969 } // if 970 return concrete; 971 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { 972 if ( doClone ) { 973 structType = structType->clone(); 974 } 975 replaceParametersWithConcrete( appExpr, structType->get_parameters() ); 976 return structType; 977 } else if ( UnionInstType *unionType = dynamic_cast< UnionInstType* >( type ) ) { 978 if ( doClone ) { 979 unionType = unionType->clone(); 980 } 981 replaceParametersWithConcrete( appExpr, unionType->get_parameters() ); 982 return unionType; 983 } 984 return type; 985 } 986 987 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, ReferenceToType *polyType, std::list< Expression *>::iterator &arg ) { 314 if ( useRetval ) { 315 assert( retval ); 316 arg = appExpr->get_args().insert( arg, new VariableExpr( retval ) ); 317 arg++; 318 } else { 319 ObjectDecl *newObj = makeTemporary( retType->clone() ); 320 Expression *paramExpr = new VariableExpr( newObj ); 321 if ( ! isPolyType( newObj->get_type(), env, scopeTyVars ) ) { 322 paramExpr = new AddressExpr( paramExpr ); 323 } // if 324 arg = appExpr->get_args().insert( arg, paramExpr ); 325 arg++; 326 /// stmtsToAdd.push_back( new ExprStmt( noLabels, appExpr ) ); 327 CommaExpr *commaExpr = new CommaExpr( appExpr, new VariableExpr( newObj ) ); 328 commaExpr->set_env( appExpr->get_env() ); 329 appExpr->set_env( 0 ); 330 return commaExpr; 331 } // if 332 return appExpr; 333 } 334 335 Expression *Pass1::addPolyRetParam( ApplicationExpr *appExpr, FunctionType *function, std::string typeName, std::list< Expression *>::iterator &arg ) { 336 ResolvExpr::EqvClass eqvClass; 988 337 assert( env ); 989 Type *concrete = replaceWithConcrete( appExpr, polyType ); 990 // add out-parameter for return value 338 Type *concrete = env->lookup( typeName ); 339 if ( concrete == 0 ) { 340 throw SemanticError( "Unbound type variable " + typeName + " in ", appExpr ); 341 } // if 991 342 return addRetParam( appExpr, function, concrete, arg ); 992 343 } … … 994 345 Expression *Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) { 995 346 Expression *ret = appExpr; 996 if ( ! function->get_returnVals().empty() && isPoly Type( function->get_returnVals().front()->get_type(), tyVars ) ) {347 if ( ! function->get_returnVals().empty() && isPolyVal( function->get_returnVals().front()->get_type(), tyVars ) ) { 997 348 ret = addRetParam( appExpr, function, function->get_returnVals().front()->get_type(), arg ); 998 349 } // if 999 std::string mangleName = mangleAdapterName( function, tyVars);350 std::string mangleName = SymTab::Mangler::mangle( function ); 1000 351 std::string adapterName = makeAdapterName( mangleName ); 1001 352 1002 // cast adaptee to void (*)(), since it may have any type inside a polymorphic function 1003 Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ); 1004 appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) ); 353 appExpr->get_args().push_front( appExpr->get_function() ); 1005 354 appExpr->set_function( new NameExpr( adapterName ) ); 1006 355 1007 356 return ret; 1008 357 } … … 1010 359 void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) { 1011 360 assert( ! arg->get_results().empty() ); 1012 if ( isPolyType( param, exprTyVars ) ) { 1013 if ( isPolyType( arg->get_results().front() ) ) { 1014 // if the argument's type is polymorphic, we don't need to box again! 361 /// if ( ! dynamic_cast< PointerType *>( arg->get_results().front() ) ) { 362 TypeInstType *typeInst = dynamic_cast< TypeInstType *>( param ); 363 if ( typeInst && exprTyVars.find( typeInst->get_name() ) != exprTyVars.end() ) { 364 if ( dynamic_cast< TypeInstType *>( arg->get_results().front() ) ) { 365 // if the argument's type is a type parameter, we don't need to box again! 1015 366 return; 1016 367 } else if ( arg->get_results().front()->get_isLvalue() ) { 1017 // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue) 1018 // xxx - need to test that this code is still reachable 1019 if ( CommaExpr *commaArg = dynamic_cast< CommaExpr* >( arg ) ) { 1020 commaArg->set_arg2( new AddressExpr( commaArg->get_arg2() ) ); 1021 } else { 1022 arg = new AddressExpr( arg ); 1023 } 368 // VariableExpr and MemberExpr are lvalues 369 arg = new AddressExpr( arg ); 1024 370 } else { 1025 // use type computed in unification to declare boxed variables 1026 Type * newType = param->clone(); 1027 if ( env ) env->apply( newType ); 1028 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, newType, 0 ); 371 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, arg->get_results().front()->clone(), 0 ); 1029 372 newObj->get_type()->get_qualifiers() = Type::Qualifiers(); // TODO: is this right??? 1030 373 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) ); … … 1036 379 } // if 1037 380 } // if 1038 } 1039 1040 /// cast parameters to polymorphic functions so that types are replaced with 1041 /// void * if they are type parameters in the formal type. 1042 /// this gets rid of warnings from gcc. 381 /// } 382 } 383 1043 384 void addCast( Expression *&actual, Type *formal, const TyVarMap &tyVars ) { 1044 Type * newType = formal->clone(); 1045 if ( getFunctionType( newType ) ) { 1046 newType = ScrubTyVars::scrub( newType, tyVars ); 385 Type *newType = formal->clone(); 386 std::list< FunctionType *> functions; 387 // instead of functions needing adapters, this really ought to look for 388 // any function mentioning a polymorphic type 389 findAndReplaceFunction( newType, functions, tyVars, needsAdapter ); 390 if ( ! functions.empty() ) { 1047 391 actual = new CastExpr( actual, newType ); 392 } else { 393 delete newType; 1048 394 } // if 1049 395 } 1050 396 1051 397 void Pass1::boxParams( ApplicationExpr *appExpr, FunctionType *function, std::list< Expression *>::iterator &arg, const TyVarMap &exprTyVars ) { 398 /// std::cout << "function is "; 399 /// function->print( std::cout ); 1052 400 for ( std::list< DeclarationWithType *>::const_iterator param = function->get_parameters().begin(); param != function->get_parameters().end(); ++param, ++arg ) { 401 /// std::cout << "parameter is "; 402 /// (*param)->print( std::fcout ); 403 /// std::cout << std::endl << "argument is "; 404 /// (*arg)->print( std::cout ); 1053 405 assert( arg != appExpr->get_args().end() ); 1054 406 addCast( *arg, (*param)->get_type(), exprTyVars ); … … 1062 414 for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) { 1063 415 InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() ); 1064 assert( inferParam != appExpr->get_inferParams().end() && "NOTE: Explicit casts of polymorphic functions to compatible monomorphic functions are currently unsupported");416 assert( inferParam != appExpr->get_inferParams().end() ); 1065 417 Expression *newExpr = inferParam->second.expr->clone(); 1066 418 addCast( newExpr, (*assert)->get_type(), tyVars ); … … 1085 437 // actually make the adapter type 1086 438 FunctionType *adapter = adaptee->clone(); 1087 if ( ! adapter->get_returnVals().empty() && isPoly Type( adapter->get_returnVals().front()->get_type(), tyVars ) ) {439 if ( ! adapter->get_returnVals().empty() && isPolyVal( adapter->get_returnVals().front()->get_type(), tyVars ) ) { 1088 440 makeRetParm( adapter ); 1089 441 } // if … … 1095 447 assert( param ); 1096 448 assert( arg ); 1097 if ( isPolyType( realParam->get_type(), tyVars ) ) { 1098 if ( ! isPolyType( arg->get_type() ) ) { 1099 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) ); 1100 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) ); 1101 deref->get_results().push_back( arg->get_type()->clone() ); 1102 return deref; 1103 } // if 449 /// std::cout << "arg type is "; 450 /// arg->get_type()->print( std::cout ); 451 /// std::cout << "param type is "; 452 /// param->get_type()->print( std::cout ); 453 /// std::cout << " tyVars are: "; 454 /// printTyVarMap( std::cout, tyVars ); 455 if ( isPolyVal( realParam->get_type(), tyVars ) ) { 456 /// if ( dynamic_cast< PointerType *>( arg->get_type() ) ) { 457 /// return new CastExpr( new VariableExpr( param ), arg->get_type()->clone() ); 458 /// } else { 459 UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) ); 460 deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) ); 461 deref->get_results().push_back( arg->get_type()->clone() ); 462 return deref; 463 /// } 1104 464 } // if 1105 465 return new VariableExpr( param ); … … 1116 476 } // for 1117 477 } 478 479 1118 480 1119 481 FunctionDecl *Pass1::makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) { … … 1124 486 ApplicationExpr *adapteeApp = new ApplicationExpr( new CastExpr( new VariableExpr( adapteeDecl ), new PointerType( Type::Qualifiers(), realType ) ) ); 1125 487 Statement *bodyStmt; 1126 488 1127 489 std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin(); 1128 490 std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin(); … … 1138 500 } // for 1139 501 } // for 1140 502 1141 503 std::list< DeclarationWithType *>::iterator arg = realType->get_parameters().begin(); 1142 504 std::list< DeclarationWithType *>::iterator param = adapterType->get_parameters().begin(); 1143 505 std::list< DeclarationWithType *>::iterator realParam = adaptee->get_parameters().begin(); 1144 param++; // skip adaptee parameter in the adapter type506 param++; // skip adaptee parameter 1145 507 if ( realType->get_returnVals().empty() ) { 1146 // void return1147 508 addAdapterParams( adapteeApp, arg, param, adapterType->get_parameters().end(), realParam, tyVars ); 1148 509 bodyStmt = new ExprStmt( noLabels, adapteeApp ); 1149 } else if ( isPolyType( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 1150 // return type T 510 } else if ( isPolyVal( adaptee->get_returnVals().front()->get_type(), tyVars ) ) { 1151 511 if ( (*param)->get_name() == "" ) { 1152 512 (*param)->set_name( "_ret" ); … … 1184 544 } // for 1185 545 1186 // parameter function types for which an appropriate adapter has been generated. we cannot use the types 1187 // after applying substitutions, since two different parameter types may be unified to the same type 546 // parameter function types for which an appropriate adapter has been generated. 547 // we cannot use the types after applying substitutions, since two different 548 // parameter types may be unified to the same type 1188 549 std::set< std::string > adaptersDone; 1189 550 … … 1193 554 std::string mangleName = SymTab::Mangler::mangle( realFunction ); 1194 555 1195 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this1196 // pre-substitution parameter function type.556 // only attempt to create an adapter or pass one as a parameter if we haven't 557 // already done so for this pre-substitution parameter function type. 1197 558 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) { 559 std::string mangleName = SymTab::Mangler::mangle( realFunction ); 1198 560 adaptersDone.insert( adaptersDone.begin(), mangleName ); 1199 1200 // apply substitution to type variables to figure out what the adapter's type should look like 561 562 // apply substitution to type variables to figure out what the 563 // adapter's type should look like 1201 564 assert( env ); 1202 565 env->apply( realFunction ); 1203 566 mangleName = SymTab::Mangler::mangle( realFunction ); 1204 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars ); 1205 1206 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter; 1207 AdapterIter adapter = adapters.find( mangleName ); 1208 if ( adapter == adapters.end() ) { 1209 // adapter has not been created yet in the current scope, so define it 1210 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars ); 1211 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) ); 1212 adapter = answer.first; 1213 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) ); 567 568 if ( needsAdapter( realFunction, exprTyVars, true ) ) { 569 // the function still contains type variables, which means we are in a polymorphic 570 // context and the adapter function is a parameter - call the parameter and don't 571 // create a new adapter. 572 appExpr->get_args().push_front( new NameExpr( makeAdapterName ( mangleName ) ) ); 573 } else { 574 if ( isPolyRet( originalFunction, exprTyVars ) ) { 575 // if the return type involved polymorphic types, then 576 // the adapter will need to take those polymorphic types 577 // as pointers. Therefore, there can be two different 578 // functions with the same mangled name, so we need two adapter map 579 // stacks and also we need the mangled names to be different. 580 mangleName += "polyret_"; 581 } 582 583 AdapterMap & adapters = Pass1::adapters.top(); 584 AdapterMap::iterator adapter = adapters.find( mangleName ); 585 if ( adapter == adapters.end() ) { 586 // adapter has not been created yet in the current scope, so define it 587 FunctionDecl *newAdapter = makeAdapter( *funType, realFunction, mangleName, exprTyVars ); 588 adapter = adapters.insert( adapters.begin(), std::pair< std::string, FunctionDecl *>( mangleName, newAdapter ) ); 589 stmtsToAdd.push_back( new DeclStmt( noLabels, newAdapter ) ); 590 } // if 591 assert( adapter != adapters.end() ); 592 593 // add the appropriate adapter as a parameter 594 appExpr->get_args().push_front( new VariableExpr( adapter->second ) ); 1214 595 } // if 1215 assert( adapter != adapters.end() );1216 1217 // add the appropriate adapter as a parameter1218 appExpr->get_args().push_front( new VariableExpr( adapter->second ) );1219 596 } // if 1220 597 } // for 1221 } // passAdapters 1222 1223 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, Type *polyType, bool isIncr ) { 598 } 599 600 TypeInstType *isPolyPtr( Type *type, const TypeSubstitution *env, const TyVarMap &tyVars ) { 601 if ( PointerType *ptr = dynamic_cast< PointerType *>( type ) ) { 602 return isPolyType( ptr->get_base(), env, tyVars ); 603 } else if ( env ) { 604 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( type ) ) { 605 if ( Type *newType = env->lookup( typeInst->get_name() ) ) { 606 return isPolyPtr( newType, env, tyVars ); 607 } // if 608 } // if 609 } // if 610 return 0; 611 } 612 613 TypeInstType *isPolyPtrPtr( Type *type, const TypeSubstitution *env, const TyVarMap &tyVars ) { 614 if ( PointerType *ptr = dynamic_cast< PointerType *>( type ) ) { 615 return isPolyPtr( ptr->get_base(), env, tyVars ); 616 } else if ( env ) { 617 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( type ) ) { 618 if ( Type *newType = env->lookup( typeInst->get_name() ) ) { 619 return isPolyPtrPtr( newType, env, tyVars ); 620 } // if 621 } // if 622 } // if 623 return 0; 624 } 625 626 Expression *makeIncrDecrExpr( ApplicationExpr *appExpr, std::string polyName, bool isIncr ) { 1224 627 NameExpr *opExpr; 1225 628 if ( isIncr ) { … … 1234 637 addAssign->get_args().push_back( appExpr->get_args().front() ); 1235 638 } // if 1236 addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) )) );639 addAssign->get_args().push_back( new NameExpr( polyName ) ); 1237 640 addAssign->get_results().front() = appExpr->get_results().front()->clone(); 1238 641 if ( appExpr->get_env() ) { … … 1251 654 assert( ! appExpr->get_results().empty() ); 1252 655 assert( appExpr->get_args().size() == 2 ); 1253 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env);1254 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env);1255 assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers656 TypeInstType *typeInst1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), env, scopeTyVars ); 657 TypeInstType *typeInst2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), env, scopeTyVars ); 658 assert( ! typeInst1 || ! typeInst2 ); 1256 659 UntypedExpr *ret = 0; 1257 if ( baseType1 || baseType2 ) { // one of the arguments is a polymorphic pointer660 if ( typeInst1 || typeInst2 ) { 1258 661 ret = new UntypedExpr( new NameExpr( "?+?" ) ); 1259 662 } // if 1260 if ( baseType1 ) {663 if ( typeInst1 ) { 1261 664 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1262 665 multiply->get_args().push_back( appExpr->get_args().back() ); 1263 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );666 multiply->get_args().push_back( new NameExpr( typeInst1->get_name() ) ); 1264 667 ret->get_args().push_back( appExpr->get_args().front() ); 1265 668 ret->get_args().push_back( multiply ); 1266 } else if ( baseType2 ) {669 } else if ( typeInst2 ) { 1267 670 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1268 671 multiply->get_args().push_back( appExpr->get_args().front() ); 1269 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );672 multiply->get_args().push_back( new NameExpr( typeInst2->get_name() ) ); 1270 673 ret->get_args().push_back( multiply ); 1271 674 ret->get_args().push_back( appExpr->get_args().back() ); 1272 675 } // if 1273 if ( baseType1 || baseType2 ) {676 if ( typeInst1 || typeInst2 ) { 1274 677 ret->get_results().push_front( appExpr->get_results().front()->clone() ); 1275 678 if ( appExpr->get_env() ) { … … 1284 687 assert( ! appExpr->get_results().empty() ); 1285 688 assert( ! appExpr->get_args().empty() ); 1286 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env) ) {689 if ( isPolyType( appExpr->get_results().front(), env, scopeTyVars ) ) { 1287 690 Expression *ret = appExpr->get_args().front(); 1288 691 delete ret->get_results().front(); … … 1299 702 assert( ! appExpr->get_results().empty() ); 1300 703 assert( appExpr->get_args().size() == 1 ); 1301 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env) ) {704 if ( TypeInstType *typeInst = isPolyPtr( appExpr->get_results().front(), env, scopeTyVars ) ) { 1302 705 Type *tempType = appExpr->get_results().front()->clone(); 1303 706 if ( env ) { … … 1313 716 assignExpr->get_args().push_back( appExpr->get_args().front()->clone() ); 1314 717 } // if 1315 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "?++" ) );718 CommaExpr *firstComma = new CommaExpr( assignExpr, makeIncrDecrExpr( appExpr, typeInst->get_name(), varExpr->get_var()->get_name() == "?++" ) ); 1316 719 return new CommaExpr( firstComma, tempExpr ); 1317 720 } // if … … 1319 722 assert( ! appExpr->get_results().empty() ); 1320 723 assert( appExpr->get_args().size() == 1 ); 1321 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env) ) {1322 return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );724 if ( TypeInstType *typeInst = isPolyPtr( appExpr->get_results().front(), env, scopeTyVars ) ) { 725 return makeIncrDecrExpr( appExpr, typeInst->get_name(), varExpr->get_var()->get_name() == "++?" ); 1323 726 } // if 1324 727 } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) { 1325 728 assert( ! appExpr->get_results().empty() ); 1326 729 assert( appExpr->get_args().size() == 2 ); 1327 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env);1328 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env);1329 if ( baseType1 && baseType2 ) {730 TypeInstType *typeInst1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), env, scopeTyVars ); 731 TypeInstType *typeInst2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), env, scopeTyVars ); 732 if ( typeInst1 && typeInst2 ) { 1330 733 UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) ); 1331 734 divide->get_args().push_back( appExpr ); 1332 divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );735 divide->get_args().push_back( new NameExpr( typeInst1->get_name() ) ); 1333 736 divide->get_results().push_front( appExpr->get_results().front()->clone() ); 1334 737 if ( appExpr->get_env() ) { … … 1337 740 } // if 1338 741 return divide; 1339 } else if ( baseType1 ) {742 } else if ( typeInst1 ) { 1340 743 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1341 744 multiply->get_args().push_back( appExpr->get_args().back() ); 1342 multiply->get_args().push_back( new SizeofExpr( baseType1->clone() ) );745 multiply->get_args().push_back( new NameExpr( typeInst1->get_name() ) ); 1343 746 appExpr->get_args().back() = multiply; 1344 } else if ( baseType2 ) {747 } else if ( typeInst2 ) { 1345 748 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1346 749 multiply->get_args().push_back( appExpr->get_args().front() ); 1347 multiply->get_args().push_back( new SizeofExpr( baseType2->clone() ) );750 multiply->get_args().push_back( new NameExpr( typeInst2->get_name() ) ); 1348 751 appExpr->get_args().front() = multiply; 1349 752 } // if … … 1351 754 assert( ! appExpr->get_results().empty() ); 1352 755 assert( appExpr->get_args().size() == 2 ); 1353 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env);1354 if ( baseType) {756 TypeInstType *typeInst = isPolyPtr( appExpr->get_results().front(), env, scopeTyVars ); 757 if ( typeInst ) { 1355 758 UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) ); 1356 759 multiply->get_args().push_back( appExpr->get_args().back() ); 1357 multiply->get_args().push_back( new SizeofExpr( baseType->clone() ) );760 multiply->get_args().push_back( new NameExpr( typeInst->get_name() ) ); 1358 761 appExpr->get_args().back() = multiply; 1359 762 } // if … … 1366 769 1367 770 Expression *Pass1::mutate( ApplicationExpr *appExpr ) { 1368 //std::cerr << "mutate appExpr: ";1369 //for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) {1370 //std::cerr << i->first << " ";1371 //}1372 //std::cerr << "\n";771 /// std::cerr << "mutate appExpr: "; 772 /// for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) { 773 /// std::cerr << i->first << " "; 774 /// } 775 /// std::cerr << "\n"; 1373 776 bool oldUseRetval = useRetval; 1374 777 useRetval = false; … … 1376 779 mutateAll( appExpr->get_args(), *this ); 1377 780 useRetval = oldUseRetval; 1378 781 1379 782 assert( ! appExpr->get_function()->get_results().empty() ); 1380 783 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() ); … … 1382 785 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() ); 1383 786 assert( function ); 1384 787 1385 788 if ( Expression *newExpr = handleIntrinsics( appExpr ) ) { 1386 789 return newExpr; 1387 790 } // if 1388 791 1389 792 Expression *ret = appExpr; 1390 793 1391 794 std::list< Expression *>::iterator arg = appExpr->get_args().begin(); 1392 795 std::list< Expression *>::iterator paramBegin = appExpr->get_args().begin(); 1393 1394 TyVarMap exprTyVars( (TypeDecl::Kind)-1 ); 1395 makeTyVarMap( function, exprTyVars ); 1396 ReferenceToType *polyRetType = isPolyRet( function ); 1397 1398 if ( polyRetType ) { 1399 ret = addPolyRetParam( appExpr, function, polyRetType, arg ); 796 797 std::string typeName; 798 if ( isPolyRet( function, typeName ) ) { 799 ret = addPolyRetParam( appExpr, function, typeName, arg ); 1400 800 } else if ( needsAdapter( function, scopeTyVars ) ) { 1401 // std::cerr << "needs adapter: "; 1402 // printTyVarMap( std::cerr, scopeTyVars ); 1403 // std::cerr << *env << std::endl; 801 /// std::cerr << "needs adapter: "; 802 /// for ( TyVarMap::iterator i = scopeTyVars.begin(); i != scopeTyVars.end(); ++i ) { 803 /// std::cerr << i->first << " "; 804 /// } 805 /// std::cerr << "\n"; 1404 806 // change the application so it calls the adapter rather than the passed function 1405 807 ret = applyAdapter( appExpr, function, arg, scopeTyVars ); 1406 808 } // if 1407 809 arg = appExpr->get_args().begin(); 1408 1409 passTypeVars( appExpr, polyRetType, arg, exprTyVars ); 810 811 TyVarMap exprTyVars; 812 makeTyVarMap( function, exprTyVars ); 813 814 passTypeVars( appExpr, arg, exprTyVars ); 1410 815 addInferredParams( appExpr, function, arg, exprTyVars ); 1411 816 1412 817 arg = paramBegin; 1413 818 1414 819 boxParams( appExpr, function, arg, exprTyVars ); 820 1415 821 passAdapters( appExpr, function, exprTyVars ); 1416 822 … … 1419 825 1420 826 Expression *Pass1::mutate( UntypedExpr *expr ) { 1421 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env) ) {827 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), env, scopeTyVars ) ) { 1422 828 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) { 1423 829 if ( name->get_name() == "*?" ) { … … 1434 840 Expression *Pass1::mutate( AddressExpr *addrExpr ) { 1435 841 assert( ! addrExpr->get_arg()->get_results().empty() ); 1436 1437 bool needs = false;1438 if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {1439 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {1440 if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {1441 if ( name->get_name() == "*?" ) {1442 if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {1443 assert( ! appExpr->get_function()->get_results().empty() );1444 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );1445 assert( pointer );1446 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );1447 assert( function );1448 needs = needsAdapter( function, scopeTyVars );1449 } // if1450 } // if1451 } // if1452 } // if1453 } // if1454 // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward1455 // out of the if condition.1456 bool polytype = isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env );1457 842 addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) ); 1458 if ( polytype || needs) {843 if ( isPolyType( addrExpr->get_arg()->get_results().front(), env, scopeTyVars ) ) { 1459 844 Expression *ret = addrExpr->get_arg(); 1460 845 delete ret->get_results().front(); … … 1468 853 } 1469 854 1470 /// Wraps a function declaration in a new pointer-to-function variable expression 1471 VariableExpr *wrapFunctionDecl( DeclarationWithType *functionDecl ) { 1472 // line below cloned from FixFunction.cc 1473 // xxx - functionObj is never added to a list of declarations... 1474 ObjectDecl *functionObj = new ObjectDecl( functionDecl->get_name(), functionDecl->get_storageClass(), functionDecl->get_linkage(), 0, 1475 new PointerType( Type::Qualifiers(), functionDecl->get_type()->clone() ), 0 ); 1476 functionObj->set_mangleName( functionDecl->get_mangleName() ); 1477 functionObj->set_scopeLevel( functionDecl->get_scopeLevel() ); 1478 return new VariableExpr( functionObj ); 1479 } 1480 1481 /// Finds the operation declaration for a given type in one of the two maps 1482 DeclarationWithType* findOpForType( Type *formalType, const ScopedMap< std::string, DeclarationWithType* >& ops, ResolvExpr::TypeMap< DeclarationWithType >& scopedOps ) { 1483 if ( TypeInstType *formalTypeInstType = dynamic_cast< TypeInstType* >( formalType ) ) { 1484 ScopedMap< std::string, DeclarationWithType *>::const_iterator opIt = ops.find( formalTypeInstType->get_name() ); 1485 return opIt == ops.end() ? 0 : opIt->second; 855 Statement * Pass1::mutate(ReturnStmt *retStmt) { 856 // a cast expr on a polymorphic return value is either redundant or invalid 857 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( retStmt->get_expr() ) ) { 858 retStmt->set_expr( castExpr->get_arg() ); 859 retStmt->get_expr()->set_env( castExpr->get_env() ); 860 castExpr->set_env( 0 ); 861 castExpr->set_arg( 0 ); 862 delete castExpr; 863 } 864 if ( retval && retStmt->get_expr() ) { 865 assert( ! retStmt->get_expr()->get_results().empty() ); 866 if ( retStmt->get_expr()->get_results().front()->get_isLvalue() ) { 867 /// retStmt->set_expr( mutateExpression( retStmt->get_expr() ) ); 868 TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ); 869 assert( typeInst ); 870 std::map< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() ); 871 if ( assignIter == assignOps.end() ) { 872 throw SemanticError( "Attempt to return dtype or ftype object in ", retStmt->get_expr() ); 873 } // if 874 ApplicationExpr *assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) ); 875 Expression *retParm = new NameExpr( retval->get_name() ); 876 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) ); 877 assignExpr->get_args().push_back( retParm ); 878 assignExpr->get_args().push_back( retStmt->get_expr() ); 879 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) ); 880 } else { 881 useRetval = true; 882 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( retStmt->get_expr() ) ) ); 883 useRetval = false; 884 } // if 885 retStmt->set_expr( 0 ); 1486 886 } else { 1487 return scopedOps.find( formalType ); 1488 } 1489 } 1490 1491 /// Adds an assertion parameter to the application expression for the actual assertion declaration valued with the assert op 1492 void addAssertionFor( ApplicationExpr *appExpr, DeclarationWithType *actualDecl, DeclarationWithType *assertOp ) { 1493 appExpr->get_inferParams()[ actualDecl->get_uniqueId() ] 1494 = ParamEntry( assertOp->get_uniqueId(), assertOp->get_type()->clone(), actualDecl->get_type()->clone(), wrapFunctionDecl( assertOp ) ); 1495 } 1496 1497 Statement * Pass1::mutate( ReturnStmt *returnStmt ) { 1498 if ( retval && returnStmt->get_expr() ) { 1499 assert( ! returnStmt->get_expr()->get_results().empty() ); 1500 // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous. 1501 // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) { 1502 // by this point, a cast expr on a polymorphic return value is redundant 1503 while ( CastExpr *castExpr = dynamic_cast< CastExpr *>( returnStmt->get_expr() ) ) { 1504 returnStmt->set_expr( castExpr->get_arg() ); 1505 returnStmt->get_expr()->set_env( castExpr->get_env() ); 1506 castExpr->set_env( 0 ); 1507 castExpr->set_arg( 0 ); 1508 delete castExpr; 1509 } //while 1510 1511 // find assignment operator for (polymorphic) return type 1512 ApplicationExpr *assignExpr = 0; 1513 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType *>( retval->get_type() ) ) { 1514 // find assignment operator for type variable 1515 ScopedMap< std::string, DeclarationWithType *>::const_iterator assignIter = assignOps.find( typeInst->get_name() ); 1516 if ( assignIter == assignOps.end() ) { 1517 throw SemanticError( "Attempt to return dtype or ftype object in ", returnStmt->get_expr() ); 1518 } // if 1519 assignExpr = new ApplicationExpr( new VariableExpr( assignIter->second ) ); 1520 } else if ( ReferenceToType *refType = dynamic_cast< ReferenceToType *>( retval->get_type() ) ) { 1521 // find assignment operator for generic type 1522 DeclarationWithType *functionDecl = scopedAssignOps.find( refType ); 1523 if ( ! functionDecl ) { 1524 throw SemanticError( "Attempt to return dtype or ftype generic object in ", returnStmt->get_expr() ); 1525 } 1526 1527 // wrap it up in an application expression 1528 assignExpr = new ApplicationExpr( wrapFunctionDecl( functionDecl ) ); 1529 assignExpr->set_env( env->clone() ); 1530 1531 // find each of its needed secondary assignment operators 1532 std::list< Expression* > &tyParams = refType->get_parameters(); 1533 std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall(); 1534 std::list< Expression* >::const_iterator tyIt = tyParams.begin(); 1535 std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin(); 1536 for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) { 1537 // Add appropriate mapping to assignment expression environment 1538 TypeExpr *formalTypeExpr = dynamic_cast< TypeExpr* >( *tyIt ); 1539 assert( formalTypeExpr && "type parameters must be type expressions" ); 1540 Type *formalType = formalTypeExpr->get_type(); 1541 assignExpr->get_env()->add( (*forallIt)->get_name(), formalType ); 1542 1543 // skip non-otype parameters (ftype/dtype) 1544 if ( (*forallIt)->get_kind() != TypeDecl::Any ) continue; 1545 1546 // find otype operators for formal type 1547 DeclarationWithType *assertAssign = findOpForType( formalType, assignOps, scopedAssignOps ); 1548 if ( ! assertAssign ) throw SemanticError( "No assignment operation found for ", formalType ); 1549 1550 DeclarationWithType *assertCtor = findOpForType( formalType, ctorOps, scopedCtorOps ); 1551 if ( ! assertCtor ) throw SemanticError( "No default constructor found for ", formalType ); 1552 1553 DeclarationWithType *assertCopy = findOpForType( formalType, copyOps, scopedCopyOps ); 1554 if ( ! assertCopy ) throw SemanticError( "No copy constructor found for ", formalType ); 1555 1556 DeclarationWithType *assertDtor = findOpForType( formalType, dtorOps, scopedDtorOps ); 1557 if ( ! assertDtor ) throw SemanticError( "No destructor found for ", formalType ); 1558 1559 // add inferred parameters for otype operators to assignment expression 1560 // NOTE: Code here assumes that first four assertions are assign op, ctor, copy ctor, dtor, in that order 1561 std::list< DeclarationWithType* > &asserts = (*forallIt)->get_assertions(); 1562 assert( asserts.size() >= 4 && "Type param needs otype operator assertions" ); 1563 1564 std::list< DeclarationWithType* >::iterator actualIt = asserts.begin(); 1565 addAssertionFor( assignExpr, *actualIt, assertAssign ); 1566 ++actualIt; 1567 addAssertionFor( assignExpr, *actualIt, assertCtor ); 1568 ++actualIt; 1569 addAssertionFor( assignExpr, *actualIt, assertCopy ); 1570 ++actualIt; 1571 addAssertionFor( assignExpr, *actualIt, assertDtor ); 1572 1573 } 1574 } 1575 assert( assignExpr ); 1576 1577 // replace return statement with appropriate assignment to out parameter 1578 Expression *retParm = new NameExpr( retval->get_name() ); 1579 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) ); 1580 assignExpr->get_args().push_back( retParm ); 1581 assignExpr->get_args().push_back( returnStmt->get_expr() ); 1582 stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( assignExpr ) ) ); 1583 // } else { 1584 // useRetval = true; 1585 // stmtsToAdd.push_back( new ExprStmt( noLabels, mutateExpression( returnStmt->get_expr() ) ) ); 1586 // useRetval = false; 1587 // } // if 1588 returnStmt->set_expr( 0 ); 1589 } else { 1590 returnStmt->set_expr( mutateExpression( returnStmt->get_expr() ) ); 1591 } // if 1592 return returnStmt; 887 retStmt->set_expr( mutateExpression( retStmt->get_expr() ) ); 888 } // if 889 return retStmt; 1593 890 } 1594 891 1595 892 Type * Pass1::mutate( PointerType *pointerType ) { 1596 scopeTyVars.beginScope();893 TyVarMap oldtyVars = scopeTyVars; 1597 894 makeTyVarMap( pointerType, scopeTyVars ); 1598 895 1599 896 Type *ret = Mutator::mutate( pointerType ); 1600 1601 scopeTyVars .endScope();897 898 scopeTyVars = oldtyVars; 1602 899 return ret; 1603 900 } 1604 901 1605 902 Type * Pass1::mutate( FunctionType *functionType ) { 1606 scopeTyVars.beginScope();903 TyVarMap oldtyVars = scopeTyVars; 1607 904 makeTyVarMap( functionType, scopeTyVars ); 1608 905 1609 906 Type *ret = Mutator::mutate( functionType ); 1610 1611 scopeTyVars .endScope();907 908 scopeTyVars = oldtyVars; 1612 909 return ret; 1613 910 } 1614 911 1615 912 void Pass1::doBeginScope() { 1616 adapters.beginScope(); 1617 scopedAssignOps.beginScope(); 1618 scopedCtorOps.beginScope(); 1619 scopedCopyOps.beginScope(); 1620 scopedDtorOps.beginScope(); 913 // actually, maybe this could (should?) push 914 // a copy of the current map 915 adapters.push(AdapterMap()); 1621 916 } 1622 917 1623 918 void Pass1::doEndScope() { 1624 adapters.endScope(); 1625 scopedAssignOps.endScope(); 1626 scopedCtorOps.endScope(); 1627 scopedCopyOps.endScope(); 1628 scopedDtorOps.endScope(); 919 adapters.pop(); 1629 920 } 1630 921 1631 922 ////////////////////////////////////////// Pass2 //////////////////////////////////////////////////// 923 924 Pass2::Pass2() {} 1632 925 1633 926 void Pass2::addAdapters( FunctionType *functionType ) { … … 1641 934 std::set< std::string > adaptersDone; 1642 935 for ( std::list< FunctionType *>::iterator funType = functions.begin(); funType != functions.end(); ++funType ) { 1643 std::string mangleName = mangleAdapterName( *funType, scopeTyVars);936 std::string mangleName = SymTab::Mangler::mangle( *funType ); 1644 937 if ( adaptersDone.find( mangleName ) == adaptersDone.end() ) { 1645 938 std::string adapterName = makeAdapterName( mangleName ); … … 1648 941 } 1649 942 } 1650 // deleteAll( functions );943 /// deleteAll( functions ); 1651 944 } 1652 945 … … 1680 973 1681 974 Type * Pass2::mutate( PointerType *pointerType ) { 1682 scopeTyVars.beginScope();975 TyVarMap oldtyVars = scopeTyVars; 1683 976 makeTyVarMap( pointerType, scopeTyVars ); 1684 977 1685 978 Type *ret = Mutator::mutate( pointerType ); 1686 1687 scopeTyVars .endScope();979 980 scopeTyVars = oldtyVars; 1688 981 return ret; 1689 982 } 1690 983 1691 984 Type *Pass2::mutate( FunctionType *funcType ) { 1692 scopeTyVars.beginScope();985 TyVarMap oldtyVars = scopeTyVars; 1693 986 makeTyVarMap( funcType, scopeTyVars ); 1694 1695 // move polymorphic return type to parameter list1696 if ( isPolyRet( funcType ) ) {987 988 std::string typeName; 989 if ( isPolyRet( funcType, typeName ) ) { 1697 990 DeclarationWithType *ret = funcType->get_returnVals().front(); 1698 991 ret->set_type( new PointerType( Type::Qualifiers(), ret->get_type() ) ); … … 1700 993 funcType->get_returnVals().pop_front(); 1701 994 } 1702 1703 // add size/align and assertions for type parameters to parameter list 995 1704 996 std::list< DeclarationWithType *>::iterator last = funcType->get_parameters().begin(); 1705 997 std::list< DeclarationWithType *> inferredParams; 1706 ObjectDecl newObj( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 ); 1707 ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, 1708 new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 ); 998 ObjectDecl *newObj = new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), 0 ); 999 /// ObjectDecl *newFunPtr = new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) ), 0 ); 1709 1000 for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) { 1710 ObjectDecl *sizeParm, *alignParm; 1711 // add all size and alignment parameters to parameter list 1001 ObjectDecl *thisParm; 1712 1002 if ( (*tyParm)->get_kind() == TypeDecl::Any ) { 1713 TypeInstType parmType( Type::Qualifiers(), (*tyParm)->get_name(), *tyParm ); 1714 std::string parmName = mangleType( &parmType ); 1715 1716 sizeParm = newObj.clone(); 1717 sizeParm->set_name( sizeofName( parmName ) ); 1718 last = funcType->get_parameters().insert( last, sizeParm ); 1719 ++last; 1720 1721 alignParm = newObj.clone(); 1722 alignParm->set_name( alignofName( parmName ) ); 1723 last = funcType->get_parameters().insert( last, alignParm ); 1003 thisParm = newObj->clone(); 1004 thisParm->set_name( (*tyParm)->get_name() ); 1005 last = funcType->get_parameters().insert( last, thisParm ); 1724 1006 ++last; 1725 1007 } 1726 // move all assertions into parameter list1727 1008 for ( std::list< DeclarationWithType *>::iterator assert = (*tyParm)->get_assertions().begin(); assert != (*tyParm)->get_assertions().end(); ++assert ) { 1728 // *assert = (*assert)->acceptMutator( *this );1009 /// *assert = (*assert)->acceptMutator( *this ); 1729 1010 inferredParams.push_back( *assert ); 1730 1011 } 1731 1012 (*tyParm)->get_assertions().clear(); 1732 1013 } 1733 1734 // add size/align for generic parameter types to parameter list 1735 std::set< std::string > seenTypes; // sizeofName for generic types we've seen 1736 for ( std::list< DeclarationWithType* >::const_iterator fnParm = last; fnParm != funcType->get_parameters().end(); ++fnParm ) { 1737 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars ); 1738 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { 1739 std::string typeName = mangleType( polyType ); 1740 if ( seenTypes.count( typeName ) ) continue; 1741 1742 ObjectDecl *sizeParm, *alignParm, *offsetParm; 1743 sizeParm = newObj.clone(); 1744 sizeParm->set_name( sizeofName( typeName ) ); 1745 last = funcType->get_parameters().insert( last, sizeParm ); 1746 ++last; 1747 1748 alignParm = newObj.clone(); 1749 alignParm->set_name( alignofName( typeName ) ); 1750 last = funcType->get_parameters().insert( last, alignParm ); 1751 ++last; 1752 1753 if ( StructInstType *polyBaseStruct = dynamic_cast< StructInstType* >( polyType ) ) { 1754 // NOTE zero-length arrays are illegal in C, so empty structs have no offset array 1755 if ( ! polyBaseStruct->get_baseStruct()->get_members().empty() ) { 1756 offsetParm = newPtr.clone(); 1757 offsetParm->set_name( offsetofName( typeName ) ); 1758 last = funcType->get_parameters().insert( last, offsetParm ); 1759 ++last; 1760 } 1761 } 1762 1763 seenTypes.insert( typeName ); 1764 } 1765 } 1766 1767 // splice assertion parameters into parameter list 1014 delete newObj; 1768 1015 funcType->get_parameters().splice( last, inferredParams ); 1769 1016 addAdapters( funcType ); 1770 1017 mutateAll( funcType->get_returnVals(), *this ); 1771 1018 mutateAll( funcType->get_parameters(), *this ); 1772 1773 scopeTyVars .endScope();1019 1020 scopeTyVars = oldtyVars; 1774 1021 return funcType; 1775 1022 } 1776 1023 1777 //////////////////////////////////////// GenericInstantiator ////////////////////////////////////////////////// 1778 1779 /// Makes substitutions of params into baseParams; returns true if all parameters substituted for a concrete type 1780 bool makeSubstitutions( const std::list< TypeDecl* >& baseParams, const std::list< Expression* >& params, std::list< TypeExpr* >& out ) { 1781 bool allConcrete = true; // will finish the substitution list even if they're not all concrete 1782 1783 // substitute concrete types for given parameters, and incomplete types for placeholders 1784 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin(); 1785 std::list< Expression* >::const_iterator param = params.begin(); 1786 for ( ; baseParam != baseParams.end() && param != params.end(); ++baseParam, ++param ) { 1787 // switch ( (*baseParam)->get_kind() ) { 1788 // case TypeDecl::Any: { // any type is a valid substitution here; complete types can be used to instantiate generics 1789 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 1790 assert(paramType && "Aggregate parameters should be type expressions"); 1791 out.push_back( paramType->clone() ); 1792 // check that the substituted type isn't a type variable itself 1793 if ( dynamic_cast< TypeInstType* >( paramType->get_type() ) ) { 1794 allConcrete = false; 1795 } 1796 // break; 1797 // } 1798 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*] 1799 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) ); 1800 // break; 1801 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype] 1802 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) ); 1803 // break; 1804 // } 1805 } 1806 1807 // if any parameters left over, not done 1808 if ( baseParam != baseParams.end() ) return false; 1809 // // if not enough parameters given, substitute remaining incomplete types for placeholders 1810 // for ( ; baseParam != baseParams.end(); ++baseParam ) { 1811 // switch ( (*baseParam)->get_kind() ) { 1812 // case TypeDecl::Any: // no more substitutions here, fail early 1813 // return false; 1814 // case TypeDecl::Dtype: // dtype can be consistently replaced with void [only pointers, which become void*] 1815 // out.push_back( new TypeExpr( new VoidType( Type::Qualifiers() ) ) ); 1816 // break; 1817 // case TypeDecl::Ftype: // pointer-to-ftype can be consistently replaced with void (*)(void) [similar to dtype] 1818 // out.push_back( new TypeExpr( new FunctionType( Type::Qualifiers(), false ) ) ); 1819 // break; 1820 // } 1821 // } 1822 1823 return allConcrete; 1824 } 1825 1826 /// Substitutes types of members of in according to baseParams => typeSubs, appending the result to out 1827 void substituteMembers( const std::list< Declaration* >& in, const std::list< TypeDecl* >& baseParams, const std::list< TypeExpr* >& typeSubs, 1828 std::list< Declaration* >& out ) { 1829 // substitute types into new members 1830 TypeSubstitution subs( baseParams.begin(), baseParams.end(), typeSubs.begin() ); 1831 for ( std::list< Declaration* >::const_iterator member = in.begin(); member != in.end(); ++member ) { 1832 Declaration *newMember = (*member)->clone(); 1833 subs.apply(newMember); 1834 out.push_back( newMember ); 1835 } 1836 } 1837 1838 Type* GenericInstantiator::mutate( StructInstType *inst ) { 1839 // mutate subtypes 1840 Type *mutated = Mutator::mutate( inst ); 1841 inst = dynamic_cast< StructInstType* >( mutated ); 1842 if ( ! inst ) return mutated; 1843 1844 // exit early if no need for further mutation 1845 if ( inst->get_parameters().empty() ) return inst; 1846 assert( inst->get_baseParameters() && "Base struct has parameters" ); 1847 1848 // check if type can be concretely instantiated; put substitutions into typeSubs 1849 std::list< TypeExpr* > typeSubs; 1850 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) { 1851 deleteAll( typeSubs ); 1852 return inst; 1853 } 1854 1855 // make concrete instantiation of generic type 1856 StructDecl *concDecl = lookup( inst, typeSubs ); 1857 if ( ! concDecl ) { 1858 // set concDecl to new type, insert type declaration into statements to add 1859 concDecl = new StructDecl( typeNamer.newName( inst->get_name() ) ); 1860 substituteMembers( inst->get_baseStruct()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() ); 1861 DeclMutator::addDeclaration( concDecl ); 1862 insert( inst, typeSubs, concDecl ); 1863 } 1864 StructInstType *newInst = new StructInstType( inst->get_qualifiers(), concDecl->get_name() ); 1865 newInst->set_baseStruct( concDecl ); 1866 1867 deleteAll( typeSubs ); 1868 delete inst; 1869 return newInst; 1870 } 1871 1872 Type* GenericInstantiator::mutate( UnionInstType *inst ) { 1873 // mutate subtypes 1874 Type *mutated = Mutator::mutate( inst ); 1875 inst = dynamic_cast< UnionInstType* >( mutated ); 1876 if ( ! inst ) return mutated; 1877 1878 // exit early if no need for further mutation 1879 if ( inst->get_parameters().empty() ) return inst; 1880 assert( inst->get_baseParameters() && "Base union has parameters" ); 1881 1882 // check if type can be concretely instantiated; put substitutions into typeSubs 1883 std::list< TypeExpr* > typeSubs; 1884 if ( ! makeSubstitutions( *inst->get_baseParameters(), inst->get_parameters(), typeSubs ) ) { 1885 deleteAll( typeSubs ); 1886 return inst; 1887 } 1888 1889 // make concrete instantiation of generic type 1890 UnionDecl *concDecl = lookup( inst, typeSubs ); 1891 if ( ! concDecl ) { 1892 // set concDecl to new type, insert type declaration into statements to add 1893 concDecl = new UnionDecl( typeNamer.newName( inst->get_name() ) ); 1894 substituteMembers( inst->get_baseUnion()->get_members(), *inst->get_baseParameters(), typeSubs, concDecl->get_members() ); 1895 DeclMutator::addDeclaration( concDecl ); 1896 insert( inst, typeSubs, concDecl ); 1897 } 1898 UnionInstType *newInst = new UnionInstType( inst->get_qualifiers(), concDecl->get_name() ); 1899 newInst->set_baseUnion( concDecl ); 1900 1901 deleteAll( typeSubs ); 1902 delete inst; 1903 return newInst; 1904 } 1905 1906 // /// Gets the base struct or union declaration for a member expression; NULL if not applicable 1907 // AggregateDecl* getMemberBaseDecl( MemberExpr *memberExpr ) { 1908 // // get variable for member aggregate 1909 // VariableExpr *varExpr = dynamic_cast< VariableExpr* >( memberExpr->get_aggregate() ); 1910 // if ( ! varExpr ) return NULL; 1911 // 1912 // // get object for variable 1913 // ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() ); 1914 // if ( ! objectDecl ) return NULL; 1915 // 1916 // // get base declaration from object type 1917 // Type *objectType = objectDecl->get_type(); 1918 // StructInstType *structType = dynamic_cast< StructInstType* >( objectType ); 1919 // if ( structType ) return structType->get_baseStruct(); 1920 // UnionInstType *unionType = dynamic_cast< UnionInstType* >( objectType ); 1921 // if ( unionType ) return unionType->get_baseUnion(); 1922 // 1923 // return NULL; 1924 // } 1925 // 1926 // /// Finds the declaration with the given name, returning decls.end() if none such 1927 // std::list< Declaration* >::const_iterator findDeclNamed( const std::list< Declaration* > &decls, const std::string &name ) { 1928 // for( std::list< Declaration* >::const_iterator decl = decls.begin(); decl != decls.end(); ++decl ) { 1929 // if ( (*decl)->get_name() == name ) return decl; 1930 // } 1931 // return decls.end(); 1932 // } 1933 // 1934 // Expression* Instantiate::mutate( MemberExpr *memberExpr ) { 1935 // // mutate, exiting early if no longer MemberExpr 1936 // Expression *expr = Mutator::mutate( memberExpr ); 1937 // memberExpr = dynamic_cast< MemberExpr* >( expr ); 1938 // if ( ! memberExpr ) return expr; 1939 // 1940 // // get declaration of member and base declaration of member, exiting early if not found 1941 // AggregateDecl *memberBase = getMemberBaseDecl( memberExpr ); 1942 // if ( ! memberBase ) return memberExpr; 1943 // DeclarationWithType *memberDecl = memberExpr->get_member(); 1944 // std::list< Declaration* >::const_iterator baseIt = findDeclNamed( memberBase->get_members(), memberDecl->get_name() ); 1945 // if ( baseIt == memberBase->get_members().end() ) return memberExpr; 1946 // DeclarationWithType *baseDecl = dynamic_cast< DeclarationWithType* >( *baseIt ); 1947 // if ( ! baseDecl ) return memberExpr; 1948 // 1949 // // check if stated type of the member is not the type of the member's declaration; if so, need a cast 1950 // // this *SHOULD* be safe, I don't think anything but the void-replacements I put in for dtypes would make it past the typechecker 1951 // SymTab::Indexer dummy; 1952 // if ( ResolvExpr::typesCompatible( memberDecl->get_type(), baseDecl->get_type(), dummy ) ) return memberExpr; 1953 // else return new CastExpr( memberExpr, memberDecl->get_type() ); 1954 // } 1955 1956 void GenericInstantiator::doBeginScope() { 1957 DeclMutator::doBeginScope(); 1958 instantiations.beginScope(); 1959 } 1960 1961 void GenericInstantiator::doEndScope() { 1962 DeclMutator::doEndScope(); 1963 instantiations.endScope(); 1964 } 1965 1966 ////////////////////////////////////////// PolyGenericCalculator //////////////////////////////////////////////////// 1967 1968 void PolyGenericCalculator::beginTypeScope( Type *ty ) { 1969 scopeTyVars.beginScope(); 1970 makeTyVarMap( ty, scopeTyVars ); 1971 } 1972 1973 void PolyGenericCalculator::endTypeScope() { 1974 scopeTyVars.endScope(); 1975 } 1024 ////////////////////////////////////////// Pass3 //////////////////////////////////////////////////// 1976 1025 1977 1026 template< typename DeclClass > 1978 DeclClass * PolyGenericCalculator::handleDecl( DeclClass *decl, Type *type ) { 1979 beginTypeScope( type ); 1980 knownLayouts.beginScope(); 1981 knownOffsets.beginScope(); 1982 1027 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) { 1028 TyVarMap oldtyVars = scopeTyVars; 1029 makeTyVarMap( type, scopeTyVars ); 1030 1983 1031 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) ); 1984 1985 knownOffsets.endScope(); 1986 knownLayouts.endScope(); 1987 endTypeScope(); 1032 ScrubTyVars::scrub( decl, scopeTyVars ); 1033 1034 scopeTyVars = oldtyVars; 1988 1035 return ret; 1989 1036 } 1990 1037 1991 ObjectDecl * P olyGenericCalculator::mutate( ObjectDecl *objectDecl ) {1038 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) { 1992 1039 return handleDecl( objectDecl, objectDecl->get_type() ); 1993 1040 } 1994 1041 1995 DeclarationWithType * P olyGenericCalculator::mutate( FunctionDecl *functionDecl ) {1042 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) { 1996 1043 return handleDecl( functionDecl, functionDecl->get_functionType() ); 1997 1044 } 1998 1045 1999 TypedefDecl * P olyGenericCalculator::mutate( TypedefDecl *typedefDecl ) {1046 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) { 2000 1047 return handleDecl( typedefDecl, typedefDecl->get_base() ); 2001 1048 } 2002 1049 2003 TypeDecl * PolyGenericCalculator::mutate( TypeDecl *typeDecl ) { 1050 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) { 1051 /// Initializer *init = 0; 1052 /// std::list< Expression *> designators; 1053 /// scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind(); 1054 /// if ( typeDecl->get_base() ) { 1055 /// init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators ); 1056 /// } 1057 /// return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init ); 1058 2004 1059 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind(); 2005 1060 return Mutator::mutate( typeDecl ); 2006 1061 } 2007 1062 2008 Type * PolyGenericCalculator::mutate( PointerType *pointerType ) { 2009 beginTypeScope( pointerType ); 2010 1063 Type * Pass3::mutate( PointerType *pointerType ) { 1064 TyVarMap oldtyVars = scopeTyVars; 1065 makeTyVarMap( pointerType, scopeTyVars ); 1066 2011 1067 Type *ret = Mutator::mutate( pointerType ); 2012 2013 endTypeScope();1068 1069 scopeTyVars = oldtyVars; 2014 1070 return ret; 2015 1071 } 2016 1072 2017 Type * PolyGenericCalculator::mutate( FunctionType *funcType ) { 2018 beginTypeScope( funcType ); 2019 2020 // make sure that any type information passed into the function is accounted for 2021 for ( std::list< DeclarationWithType* >::const_iterator fnParm = funcType->get_parameters().begin(); fnParm != funcType->get_parameters().end(); ++fnParm ) { 2022 // condition here duplicates that in Pass2::mutate( FunctionType* ) 2023 Type *polyType = isPolyType( (*fnParm)->get_type(), scopeTyVars ); 2024 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { 2025 knownLayouts.insert( mangleType( polyType ) ); 2026 } 2027 } 2028 2029 Type *ret = Mutator::mutate( funcType ); 2030 2031 endTypeScope(); 1073 Type * Pass3::mutate( FunctionType *functionType ) { 1074 TyVarMap oldtyVars = scopeTyVars; 1075 makeTyVarMap( functionType, scopeTyVars ); 1076 1077 Type *ret = Mutator::mutate( functionType ); 1078 1079 scopeTyVars = oldtyVars; 2032 1080 return ret; 2033 1081 } 2034 1082 2035 Statement *P olyGenericCalculator::mutate( DeclStmt *declStmt ) {1083 Statement *Pass3::mutate( DeclStmt *declStmt ) { 2036 1084 if ( ObjectDecl *objectDecl = dynamic_cast< ObjectDecl *>( declStmt->get_decl() ) ) { 2037 if ( findGeneric( objectDecl->get_type()) ) {1085 if ( isPolyVal( objectDecl->get_type(), scopeTyVars ) ) { 2038 1086 // change initialization of a polymorphic value object 2039 1087 // to allocate storage with alloca 2040 Type *declType = objectDecl->get_type(); 1088 TypeInstType *typeInst = dynamic_cast< TypeInstType *>( objectDecl->get_type() ); 1089 assert( typeInst ); 2041 1090 UntypedExpr *alloc = new UntypedExpr( new NameExpr( "__builtin_alloca" ) ); 2042 alloc->get_args().push_back( new NameExpr( sizeofName( mangleType( declType )) ) );1091 alloc->get_args().push_back( new NameExpr( typeInst->get_name() ) ); 2043 1092 2044 1093 delete objectDecl->get_init(); 2045 1094 2046 1095 std::list<Expression*> designators; 2047 objectDecl->set_init( new SingleInit( alloc, designators , false ) ); // not constructed1096 objectDecl->set_init( new SingleInit( alloc, designators ) ); 2048 1097 } 2049 1098 } 2050 1099 return Mutator::mutate( declStmt ); 2051 }2052 2053 /// Finds the member in the base list that matches the given declaration; returns its index, or -1 if not present2054 long findMember( DeclarationWithType *memberDecl, std::list< Declaration* > &baseDecls ) {2055 long i = 0;2056 for(std::list< Declaration* >::const_iterator decl = baseDecls.begin(); decl != baseDecls.end(); ++decl, ++i ) {2057 if ( memberDecl->get_name() != (*decl)->get_name() ) continue;2058 2059 if ( DeclarationWithType *declWithType = dynamic_cast< DeclarationWithType* >( *decl ) ) {2060 if ( memberDecl->get_mangleName().empty() || declWithType->get_mangleName().empty()2061 || memberDecl->get_mangleName() == declWithType->get_mangleName() ) return i;2062 else continue;2063 } else return i;2064 }2065 return -1;2066 }2067 2068 /// Returns an index expression into the offset array for a type2069 Expression *makeOffsetIndex( Type *objectType, long i ) {2070 std::stringstream offset_namer;2071 offset_namer << i;2072 ConstantExpr *fieldIndex = new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), offset_namer.str() ) );2073 UntypedExpr *fieldOffset = new UntypedExpr( new NameExpr( "?[?]" ) );2074 fieldOffset->get_args().push_back( new NameExpr( offsetofName( mangleType( objectType ) ) ) );2075 fieldOffset->get_args().push_back( fieldIndex );2076 return fieldOffset;2077 }2078 2079 /// Returns an expression dereferenced n times2080 Expression *makeDerefdVar( Expression *derefdVar, long n ) {2081 for ( int i = 1; i < n; ++i ) {2082 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );2083 derefExpr->get_args().push_back( derefdVar );2084 // xxx - should set results on derefExpr2085 derefdVar = derefExpr;2086 }2087 return derefdVar;2088 }2089 2090 Expression *PolyGenericCalculator::mutate( MemberExpr *memberExpr ) {2091 // mutate, exiting early if no longer MemberExpr2092 Expression *expr = Mutator::mutate( memberExpr );2093 memberExpr = dynamic_cast< MemberExpr* >( expr );2094 if ( ! memberExpr ) return expr;2095 2096 // get declaration for base struct, exiting early if not found2097 int varDepth;2098 VariableExpr *varExpr = getBaseVar( memberExpr->get_aggregate(), &varDepth );2099 if ( ! varExpr ) return memberExpr;2100 ObjectDecl *objectDecl = dynamic_cast< ObjectDecl* >( varExpr->get_var() );2101 if ( ! objectDecl ) return memberExpr;2102 2103 // only mutate member expressions for polymorphic types2104 int tyDepth;2105 Type *objectType = hasPolyBase( objectDecl->get_type(), scopeTyVars, &tyDepth );2106 if ( ! objectType ) return memberExpr;2107 findGeneric( objectType ); // ensure layout for this type is available2108 2109 Expression *newMemberExpr = 0;2110 if ( StructInstType *structType = dynamic_cast< StructInstType* >( objectType ) ) {2111 // look up offset index2112 long i = findMember( memberExpr->get_member(), structType->get_baseStruct()->get_members() );2113 if ( i == -1 ) return memberExpr;2114 2115 // replace member expression with pointer to base plus offset2116 UntypedExpr *fieldLoc = new UntypedExpr( new NameExpr( "?+?" ) );2117 fieldLoc->get_args().push_back( makeDerefdVar( varExpr->clone(), varDepth ) );2118 fieldLoc->get_args().push_back( makeOffsetIndex( objectType, i ) );2119 newMemberExpr = fieldLoc;2120 } else if ( dynamic_cast< UnionInstType* >( objectType ) ) {2121 // union members are all at offset zero, so build appropriately-dereferenced variable2122 newMemberExpr = makeDerefdVar( varExpr->clone(), varDepth );2123 } else return memberExpr;2124 assert( newMemberExpr );2125 2126 Type *memberType = memberExpr->get_member()->get_type();2127 if ( ! isPolyType( memberType, scopeTyVars ) ) {2128 // Not all members of a polymorphic type are themselves of polymorphic type; in this case the member expression should be wrapped and dereferenced to form an lvalue2129 CastExpr *ptrCastExpr = new CastExpr( newMemberExpr, new PointerType( Type::Qualifiers(), memberType->clone() ) );2130 UntypedExpr *derefExpr = new UntypedExpr( new NameExpr( "*?" ) );2131 derefExpr->get_args().push_back( ptrCastExpr );2132 newMemberExpr = derefExpr;2133 }2134 2135 delete memberExpr;2136 return newMemberExpr;2137 }2138 2139 ObjectDecl *PolyGenericCalculator::makeVar( const std::string &name, Type *type, Initializer *init ) {2140 ObjectDecl *newObj = new ObjectDecl( name, DeclarationNode::NoStorageClass, LinkageSpec::C, 0, type, init );2141 stmtsToAdd.push_back( new DeclStmt( noLabels, newObj ) );2142 return newObj;2143 }2144 2145 void PolyGenericCalculator::addOtypeParamsToLayoutCall( UntypedExpr *layoutCall, const std::list< Type* > &otypeParams ) {2146 for ( std::list< Type* >::const_iterator param = otypeParams.begin(); param != otypeParams.end(); ++param ) {2147 if ( findGeneric( *param ) ) {2148 // push size/align vars for a generic parameter back2149 std::string paramName = mangleType( *param );2150 layoutCall->get_args().push_back( new NameExpr( sizeofName( paramName ) ) );2151 layoutCall->get_args().push_back( new NameExpr( alignofName( paramName ) ) );2152 } else {2153 layoutCall->get_args().push_back( new SizeofExpr( (*param)->clone() ) );2154 layoutCall->get_args().push_back( new AlignofExpr( (*param)->clone() ) );2155 }2156 }2157 }2158 2159 /// returns true if any of the otype parameters have a dynamic layout and puts all otype parameters in the output list2160 bool findGenericParams( std::list< TypeDecl* > &baseParams, std::list< Expression* > &typeParams, std::list< Type* > &out ) {2161 bool hasDynamicLayout = false;2162 2163 std::list< TypeDecl* >::const_iterator baseParam = baseParams.begin();2164 std::list< Expression* >::const_iterator typeParam = typeParams.begin();2165 for ( ; baseParam != baseParams.end() && typeParam != typeParams.end(); ++baseParam, ++typeParam ) {2166 // skip non-otype parameters2167 if ( (*baseParam)->get_kind() != TypeDecl::Any ) continue;2168 TypeExpr *typeExpr = dynamic_cast< TypeExpr* >( *typeParam );2169 assert( typeExpr && "all otype parameters should be type expressions" );2170 2171 Type *type = typeExpr->get_type();2172 out.push_back( type );2173 if ( isPolyType( type ) ) hasDynamicLayout = true;2174 }2175 assert( baseParam == baseParams.end() && typeParam == typeParams.end() );2176 2177 return hasDynamicLayout;2178 }2179 2180 bool PolyGenericCalculator::findGeneric( Type *ty ) {2181 ty = replaceTypeInst( ty, env );2182 2183 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) {2184 if ( scopeTyVars.find( typeInst->get_name() ) != scopeTyVars.end() ) {2185 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set2186 return true;2187 }2188 return false;2189 } else if ( StructInstType *structTy = dynamic_cast< StructInstType* >( ty ) ) {2190 // check if this type already has a layout generated for it2191 std::string typeName = mangleType( ty );2192 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;2193 2194 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized2195 std::list< Type* > otypeParams;2196 if ( ! findGenericParams( *structTy->get_baseParameters(), structTy->get_parameters(), otypeParams ) ) return false;2197 2198 // insert local variables for layout and generate call to layout function2199 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call2200 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );2201 2202 int n_members = structTy->get_baseStruct()->get_members().size();2203 if ( n_members == 0 ) {2204 // all empty structs have the same layout - size 1, align 12205 makeVar( sizeofName( typeName ), layoutType, new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );2206 makeVar( alignofName( typeName ), layoutType->clone(), new SingleInit( new ConstantExpr( Constant::from_ulong( (unsigned long)1 ) ) ) );2207 // NOTE zero-length arrays are forbidden in C, so empty structs have no offsetof array2208 } else {2209 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );2210 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );2211 ObjectDecl *offsetVar = makeVar( offsetofName( typeName ), new ArrayType( Type::Qualifiers(), layoutType->clone(), new ConstantExpr( Constant::from_int( n_members ) ), false, false ) );2212 2213 // generate call to layout function2214 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( structTy->get_baseStruct() ) ) );2215 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );2216 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );2217 layoutCall->get_args().push_back( new VariableExpr( offsetVar ) );2218 addOtypeParamsToLayoutCall( layoutCall, otypeParams );2219 2220 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );2221 }2222 2223 return true;2224 } else if ( UnionInstType *unionTy = dynamic_cast< UnionInstType* >( ty ) ) {2225 // check if this type already has a layout generated for it2226 std::string typeName = mangleType( ty );2227 if ( knownLayouts.find( typeName ) != knownLayouts.end() ) return true;2228 2229 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized2230 std::list< Type* > otypeParams;2231 if ( ! findGenericParams( *unionTy->get_baseParameters(), unionTy->get_parameters(), otypeParams ) ) return false;2232 2233 // insert local variables for layout and generate call to layout function2234 knownLayouts.insert( typeName ); // done early so as not to interfere with the later addition of parameters to the layout call2235 Type *layoutType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );2236 2237 ObjectDecl *sizeVar = makeVar( sizeofName( typeName ), layoutType );2238 ObjectDecl *alignVar = makeVar( alignofName( typeName ), layoutType->clone() );2239 2240 // generate call to layout function2241 UntypedExpr *layoutCall = new UntypedExpr( new NameExpr( layoutofName( unionTy->get_baseUnion() ) ) );2242 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( sizeVar ) ) );2243 layoutCall->get_args().push_back( new AddressExpr( new VariableExpr( alignVar ) ) );2244 addOtypeParamsToLayoutCall( layoutCall, otypeParams );2245 2246 stmtsToAdd.push_back( new ExprStmt( noLabels, layoutCall ) );2247 2248 return true;2249 }2250 2251 return false;2252 }2253 2254 Expression *PolyGenericCalculator::mutate( SizeofExpr *sizeofExpr ) {2255 Type *ty = sizeofExpr->get_type();2256 if ( findGeneric( ty ) ) {2257 Expression *ret = new NameExpr( sizeofName( mangleType( ty ) ) );2258 delete sizeofExpr;2259 return ret;2260 }2261 return sizeofExpr;2262 }2263 2264 Expression *PolyGenericCalculator::mutate( AlignofExpr *alignofExpr ) {2265 Type *ty = alignofExpr->get_type();2266 if ( findGeneric( ty ) ) {2267 Expression *ret = new NameExpr( alignofName( mangleType( ty ) ) );2268 delete alignofExpr;2269 return ret;2270 }2271 return alignofExpr;2272 }2273 2274 Expression *PolyGenericCalculator::mutate( OffsetofExpr *offsetofExpr ) {2275 // mutate, exiting early if no longer OffsetofExpr2276 Expression *expr = Mutator::mutate( offsetofExpr );2277 offsetofExpr = dynamic_cast< OffsetofExpr* >( expr );2278 if ( ! offsetofExpr ) return expr;2279 2280 // only mutate expressions for polymorphic structs/unions2281 Type *ty = offsetofExpr->get_type();2282 if ( ! findGeneric( ty ) ) return offsetofExpr;2283 2284 if ( StructInstType *structType = dynamic_cast< StructInstType* >( ty ) ) {2285 // replace offsetof expression by index into offset array2286 long i = findMember( offsetofExpr->get_member(), structType->get_baseStruct()->get_members() );2287 if ( i == -1 ) return offsetofExpr;2288 2289 Expression *offsetInd = makeOffsetIndex( ty, i );2290 delete offsetofExpr;2291 return offsetInd;2292 } else if ( dynamic_cast< UnionInstType* >( ty ) ) {2293 // all union members are at offset zero2294 delete offsetofExpr;2295 return new ConstantExpr( Constant( new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ), "0" ) );2296 } else return offsetofExpr;2297 }2298 2299 Expression *PolyGenericCalculator::mutate( OffsetPackExpr *offsetPackExpr ) {2300 StructInstType *ty = offsetPackExpr->get_type();2301 2302 Expression *ret = 0;2303 if ( findGeneric( ty ) ) {2304 // pull offset back from generated type information2305 ret = new NameExpr( offsetofName( mangleType( ty ) ) );2306 } else {2307 std::string offsetName = offsetofName( mangleType( ty ) );2308 if ( knownOffsets.find( offsetName ) != knownOffsets.end() ) {2309 // use the already-generated offsets for this type2310 ret = new NameExpr( offsetName );2311 } else {2312 knownOffsets.insert( offsetName );2313 2314 std::list< Declaration* > &baseMembers = ty->get_baseStruct()->get_members();2315 Type *offsetType = new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt );2316 2317 // build initializer list for offset array2318 std::list< Initializer* > inits;2319 for ( std::list< Declaration* >::const_iterator member = baseMembers.begin(); member != baseMembers.end(); ++member ) {2320 DeclarationWithType *memberDecl;2321 if ( DeclarationWithType *origMember = dynamic_cast< DeclarationWithType* >( *member ) ) {2322 memberDecl = origMember->clone();2323 } else {2324 memberDecl = new ObjectDecl( (*member)->get_name(), DeclarationNode::NoStorageClass, LinkageSpec::Cforall, 0, offsetType->clone(), 0 );2325 }2326 inits.push_back( new SingleInit( new OffsetofExpr( ty->clone(), memberDecl ) ) );2327 }2328 2329 // build the offset array and replace the pack with a reference to it2330 ObjectDecl *offsetArray = makeVar( offsetName, new ArrayType( Type::Qualifiers(), offsetType, new ConstantExpr( Constant::from_ulong( baseMembers.size() ) ), false, false ),2331 new ListInit( inits ) );2332 ret = new VariableExpr( offsetArray );2333 }2334 }2335 2336 delete offsetPackExpr;2337 return ret;2338 }2339 2340 void PolyGenericCalculator::doBeginScope() {2341 knownLayouts.beginScope();2342 knownOffsets.beginScope();2343 }2344 2345 void PolyGenericCalculator::doEndScope() {2346 knownLayouts.endScope();2347 knownOffsets.endScope();2348 }2349 2350 ////////////////////////////////////////// Pass3 ////////////////////////////////////////////////////2351 2352 template< typename DeclClass >2353 DeclClass * Pass3::handleDecl( DeclClass *decl, Type *type ) {2354 scopeTyVars.beginScope();2355 makeTyVarMap( type, scopeTyVars );2356 2357 DeclClass *ret = static_cast< DeclClass *>( Mutator::mutate( decl ) );2358 ScrubTyVars::scrub( decl, scopeTyVars );2359 2360 scopeTyVars.endScope();2361 return ret;2362 }2363 2364 ObjectDecl * Pass3::mutate( ObjectDecl *objectDecl ) {2365 return handleDecl( objectDecl, objectDecl->get_type() );2366 }2367 2368 DeclarationWithType * Pass3::mutate( FunctionDecl *functionDecl ) {2369 return handleDecl( functionDecl, functionDecl->get_functionType() );2370 }2371 2372 TypedefDecl * Pass3::mutate( TypedefDecl *typedefDecl ) {2373 return handleDecl( typedefDecl, typedefDecl->get_base() );2374 }2375 2376 TypeDecl * Pass3::mutate( TypeDecl *typeDecl ) {2377 // Initializer *init = 0;2378 // std::list< Expression *> designators;2379 // scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();2380 // if ( typeDecl->get_base() ) {2381 // init = new SimpleInit( new SizeofExpr( handleDecl( typeDecl, typeDecl->get_base() ) ), designators );2382 // }2383 // return new ObjectDecl( typeDecl->get_name(), Declaration::Extern, LinkageSpec::C, 0, new BasicType( Type::Qualifiers(), BasicType::UnsignedInt ), init );2384 2385 scopeTyVars[ typeDecl->get_name() ] = typeDecl->get_kind();2386 return Mutator::mutate( typeDecl );2387 }2388 2389 Type * Pass3::mutate( PointerType *pointerType ) {2390 scopeTyVars.beginScope();2391 makeTyVarMap( pointerType, scopeTyVars );2392 2393 Type *ret = Mutator::mutate( pointerType );2394 2395 scopeTyVars.endScope();2396 return ret;2397 }2398 2399 Type * Pass3::mutate( FunctionType *functionType ) {2400 scopeTyVars.beginScope();2401 makeTyVarMap( functionType, scopeTyVars );2402 2403 Type *ret = Mutator::mutate( functionType );2404 2405 scopeTyVars.endScope();2406 return ret;2407 1100 } 2408 1101 } // anonymous namespace
Note:
See TracChangeset
for help on using the changeset viewer.