Changeset bb7c77d for doc/theses/mubeen_zulfiqar_MMath
- Timestamp:
- Apr 19, 2022, 8:52:42 AM (3 years ago)
- Branches:
- ADT, ast-experimental, master, pthread-emulation, qualifiedEnum
- Children:
- 2e9b59b
- Parents:
- 75cd27b
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/theses/mubeen_zulfiqar_MMath/allocator.tex
r75cd27b rbb7c77d 175 175 More operating system support is required to make this model viable, but there is still the serially-reusable problem with user-level threading. 176 176 Leaving the 1:1 model with no atomic actions along the fastpath and no special operating-system support required. 177 The 1:1 model still has the serially-reusable problem with user-level threading, which is addressed in \VRef{ }, and the greatest potential for heap blowup for certain allocation patterns.177 The 1:1 model still has the serially-reusable problem with user-level threading, which is addressed in \VRef{s:UserlevelThreadingSupport}, and the greatest potential for heap blowup for certain allocation patterns. 178 178 179 179 … … 216 216 To obtain $O(1)$ external latency means obtaining one large storage area from the operating system and subdividing it across all program allocations, which requires a good guess at the program storage high-watermark and potential large external fragmentation. 217 217 Excluding real-time operating-systems, operating-system operations are unbounded, and hence some external latency is unavoidable. 218 The mitigating factor is that operating-system calls can often be reduced if a programmer has a sense of the storage high-watermark and the allocator is capable of using this information (see @malloc_expansion@ \V Ref{}).218 The mitigating factor is that operating-system calls can often be reduced if a programmer has a sense of the storage high-watermark and the allocator is capable of using this information (see @malloc_expansion@ \VPageref{p:malloc_expansion}). 219 219 Furthermore, while operating-system calls are unbounded, many are now reasonably fast, so their latency is tolerable and infrequent. 220 220 … … 504 504 505 505 506 \section{Statistics and Debugging Modes}506 \section{Statistics and Debugging} 507 507 508 508 llheap can be built to accumulate fast and largely contention-free allocation statistics to help understand allocation behaviour. … … 547 547 There is an unfortunate problem in detecting unfreed storage because some library routines assume their allocations have life-time duration, and hence, do not free their storage. 548 548 For example, @printf@ allocates a 1024 buffer on first call and never deletes this buffer. 549 To prevent a false positive for unfreed storage, it is possible to specify an amount of storage that is never freed (see \VRef{}), and it is subtracted from the total allocate/free difference.549 To prevent a false positive for unfreed storage, it is possible to specify an amount of storage that is never freed (see @malloc_unfreed@ \VPageref{p:malloc_unfreed}), and it is subtracted from the total allocate/free difference. 550 550 Determining the amount of never-freed storage is annoying, but once done, any warnings of unfreed storage are application related. 551 551 … … 554 554 555 555 \section{User-level Threading Support} 556 \label{s:UserlevelThreadingSupport} 556 557 557 558 The serially-reusable problem (see \VRef{s:AllocationFastpath}) occurs for kernel threads in the ``T:H model, H = number of CPUs'' model and for user threads in the ``1:1'' model, where llheap uses the ``1:1'' model. … … 670 671 It is possible to zero fill or align an allocation but not both. 671 672 \item 672 It is \emph{only} possible to zero fill an darray allocation.673 It is \emph{only} possible to zero fill an array allocation. 673 674 \item 674 675 It is not possible to resize a memory allocation without data copying. … … 687 688 void free( void * ptr ); 688 689 void * memalign( size_t alignment, size_t size ); 690 void * aligned_alloc( size_t alignment, size_t size ); 691 int posix_memalign( void ** memptr, size_t alignment, size_t size ); 689 692 void * valloc( size_t size ); 690 693 void * pvalloc( size_t size ); 694 691 695 struct mallinfo mallinfo( void ); 692 696 int mallopt( int param, int val ); … … 707 711 Most allocators use @nullptr@ to indicate an allocation failure, specifically out of memory; 708 712 hence the need to return an alternate value for a zero-sized allocation. 709 The alternative is to abort a program when out of memory. 710 In theory, notifying the programmer allows recovery; 711 in practice, it is almost impossible to gracefully recover when out of memory, so the cheaper approach of returning @nullptr@ for a zero-sized allocation is chosen for llheap. 713 A different approach allowed by the C API is to abort a program when out of memory and return @nullptr@ for a zero-sized allocation. 714 In theory, notifying the programmer of memory failure allows recovery; 715 in practice, it is almost impossible to gracefully recover when out of memory. 716 Hence, the cheaper approach of returning @nullptr@ for a zero-sized allocation is chosen because no pseudo allocation is necessary. 712 717 713 718 714 719 \subsection{C Interface} 715 720 716 Within the C type-system, it is still possible to increase orthogonality and functionality of the dynamic-memory API to make the allocator more usable for programmers. 721 For C, it is possible to increase functionality and orthogonality of the dynamic-memory API to make allocation better for programmers. 722 723 For existing C allocation routines: 724 \begin{itemize} 725 \item 726 @calloc@ sets the sticky zero-fill property. 727 \item 728 @memalign@, @aligned_alloc@, @posix_memalign@, @valloc@ and @pvalloc@ set the sticky alignment property. 729 \item 730 @realloc@ and @reallocarray@ preserve sticky properties. 731 \end{itemize} 732 733 The C dynamic-memory API is extended with the following routines: 717 734 718 735 \paragraph{\lstinline{void * aalloc( size_t dim, size_t elemSize )}} 719 @aalloc@ is an extension of malloc.720 It allows programmer to allocate a dynamic array of objects without calculating the total size of array explicitly.721 The only alternate of this routine in the other allocators is @calloc@ but @calloc@ also fills the dynamic memory with 0 which makes it slower for a programmer who only wants to dynamically allocate an array of objects without filling it with 0. 722 \ paragraph{Usage}736 extends @calloc@ for allocating a dynamic array of objects without calculating the total size of array explicitly but \emph{without} zero-filling the memory. 737 @aalloc@ is significantly faster than @calloc@, which is the only alternative. 738 739 \noindent\textbf{Usage} 723 740 @aalloc@ takes two parameters. 724 725 \begin{itemize} 726 \item 727 @dim@: number of objects in the array 728 \item 729 @elemSize@: size of the object in the array. 730 \end{itemize} 731 It returns address of dynamic object allocated on heap that can contain dim number of objects of the size elemSize. 732 On failure, it returns a @NULL@ pointer. 741 \begin{itemize} 742 \item 743 @dim@: number of array objects 744 \item 745 @elemSize@: size of array object 746 \end{itemize} 747 It returns the address of the dynamic array or @NULL@ if either @dim@ or @elemSize@ are zero. 733 748 734 749 \paragraph{\lstinline{void * resize( void * oaddr, size_t size )}} 735 @resize@ is an extension of relloc.736 It allows programmer to reuse a currently allocated dynamic object with a new size requirement.737 Its alternate in the other allocators is @realloc@ but relloc also copy the data in old object to the new object which makes it slower for the programmer who only wants to reuse an old dynamic object for a new size requirement but does not want to preserve the data in the old object to the new object. 738 \ paragraph{Usage}750 extends @realloc@ for resizing an existing allocation \emph{without} copying previous data into the new allocation or preserving sticky properties. 751 @resize@ is significantly faster than @realloc@, which is the only alternative. 752 753 \noindent\textbf{Usage} 739 754 @resize@ takes two parameters. 740 741 \begin{itemize} 742 \item 743 @oaddr@: the address of the old object that needs to be resized. 744 \item 745 @size@: the new size requirement of the to which the old object needs to be resized. 746 \end{itemize} 747 It returns an object that is of the size given but it does not preserve the data in the old object. 748 On failure, it returns a @NULL@ pointer. 755 \begin{itemize} 756 \item 757 @oaddr@: address to be resized 758 \item 759 @size@: new allocation size (smaller or larger than previous) 760 \end{itemize} 761 It returns the address of the old or new storage with the specified new size or @NULL@ if @size@ is zero. 762 763 \paragraph{\lstinline{void * amemalign( size_t alignment, size_t dim, size_t elemSize )}} 764 extends @aalloc@ and @memalign@ for allocating an aligned dynamic array of objects. 765 Sets sticky alignment property. 766 767 \noindent\textbf{Usage} 768 @amemalign@ takes three parameters. 769 \begin{itemize} 770 \item 771 @alignment@: alignment requirement 772 \item 773 @dim@: number of array objects 774 \item 775 @elemSize@: size of array object 776 \end{itemize} 777 It returns the address of the aligned dynamic-array or @NULL@ if either @dim@ or @elemSize@ are zero. 778 779 \paragraph{\lstinline{void * cmemalign( size_t alignment, size_t dim, size_t elemSize )}} 780 extends @amemalign@ with zero fill and has the same usage as @amemalign@. 781 Sets sticky zero-fill and alignment property. 782 It returns the address of the aligned, zero-filled dynamic-array or @NULL@ if either @dim@ or @elemSize@ are zero. 783 784 \paragraph{\lstinline{size_t malloc_alignment( void * addr )}} 785 returns the alignment of the dynamic object for use in aligning similar allocations. 786 787 \noindent\textbf{Usage} 788 @malloc_alignment@ takes one parameter. 789 \begin{itemize} 790 \item 791 @addr@: address of an allocated object. 792 \end{itemize} 793 It returns the alignment of the given object, where objects not allocated with alignment return the minimal allocation alignment. 794 795 \paragraph{\lstinline{bool malloc_zero_fill( void * addr )}} 796 returns true if the object has the zero-fill sticky property for use in zero filling similar allocations. 797 798 \noindent\textbf{Usage} 799 @malloc_zero_fill@ takes one parameters. 800 801 \begin{itemize} 802 \item 803 @addr@: address of an allocated object. 804 \end{itemize} 805 It returns true if the zero-fill sticky property is set and false otherwise. 806 807 \paragraph{\lstinline{size_t malloc_size( void * addr )}} 808 returns the request size of the dynamic object (updated when an object is resized) for use in similar allocations. 809 See also @malloc_usable_size@. 810 811 \noindent\textbf{Usage} 812 @malloc_size@ takes one parameters. 813 \begin{itemize} 814 \item 815 @addr@: address of an allocated object. 816 \end{itemize} 817 It returns the request size or zero if @addr@ is @NULL@. 818 819 \paragraph{\lstinline{int malloc_stats_fd( int fd )}} 820 changes the file descriptor where @malloc_stats@ writes statistics (default @stdout@). 821 822 \noindent\textbf{Usage} 823 @malloc_stats_fd@ takes one parameters. 824 \begin{itemize} 825 \item 826 @fd@: files description. 827 \end{itemize} 828 It returns the previous file descriptor. 829 830 \paragraph{\lstinline{size_t malloc_expansion()}} 831 \label{p:malloc_expansion} 832 set the amount (bytes) to extend the heap when there is insufficient free storage to service an allocation request. 833 It returns the heap extension size used throughout a program, \ie called once at heap initialization. 834 835 \paragraph{\lstinline{size_t malloc_mmap_start()}} 836 set the crossover between allocations occurring in the @sbrk@ area or separately mapped. 837 It returns the crossover point used throughout a program, \ie called once at heap initialization. 838 839 \paragraph{\lstinline{size_t malloc_unfreed()}} 840 \label{p:malloc_unfreed} 841 amount subtracted to adjust for unfreed program storage (debug only). 842 It returns the new subtraction amount and called by @malloc_stats@. 843 844 845 \subsection{\CC Interface} 846 847 The following extensions take advantage of overload polymorphism in the \CC type-system. 749 848 750 849 \paragraph{\lstinline{void * resize( void * oaddr, size_t nalign, size_t size )}} 751 This @resize@ is an extension of the above @resize@ (FIX ME: cite above resize). 752 In addition to resizing the size of of an old object, it can also realign the old object to a new alignment requirement. 753 \paragraph{Usage} 754 This resize takes three parameters. 755 It takes an additional parameter of nalign as compared to the above resize (FIX ME: cite above resize). 756 757 \begin{itemize} 758 \item 759 @oaddr@: the address of the old object that needs to be resized. 760 \item 761 @nalign@: the new alignment to which the old object needs to be realigned. 762 \item 763 @size@: the new size requirement of the to which the old object needs to be resized. 764 \end{itemize} 765 It returns an object with the size and alignment given in the parameters. 766 On failure, it returns a @NULL@ pointer. 767 768 \paragraph{\lstinline{void * amemalign( size_t alignment, size_t dim, size_t elemSize )}} 769 amemalign is a hybrid of memalign and aalloc. 770 It allows programmer to allocate an aligned dynamic array of objects without calculating the total size of the array explicitly. 771 It frees the programmer from calculating the total size of the array. 772 \paragraph{Usage} 773 amemalign takes three parameters. 774 775 \begin{itemize} 776 \item 777 @alignment@: the alignment to which the dynamic array needs to be aligned. 778 \item 779 @dim@: number of objects in the array 780 \item 781 @elemSize@: size of the object in the array. 782 \end{itemize} 783 It returns a dynamic array of objects that has the capacity to contain dim number of objects of the size of elemSize. 784 The returned dynamic array is aligned to the given alignment. 785 On failure, it returns a @NULL@ pointer. 786 787 \paragraph{\lstinline{void * cmemalign( size_t alignment, size_t dim, size_t elemSize )}} 788 cmemalign is a hybrid of amemalign and calloc. 789 It allows programmer to allocate an aligned dynamic array of objects that is 0 filled. 790 The current way to do this in other allocators is to allocate an aligned object with memalign and then fill it with 0 explicitly. 791 This routine provides both features of aligning and 0 filling, implicitly. 792 \paragraph{Usage} 793 cmemalign takes three parameters. 794 795 \begin{itemize} 796 \item 797 @alignment@: the alignment to which the dynamic array needs to be aligned. 798 \item 799 @dim@: number of objects in the array 800 \item 801 @elemSize@: size of the object in the array. 802 \end{itemize} 803 It returns a dynamic array of objects that has the capacity to contain dim number of objects of the size of elemSize. 804 The returned dynamic array is aligned to the given alignment and is 0 filled. 805 On failure, it returns a @NULL@ pointer. 806 807 \paragraph{\lstinline{size_t malloc_alignment( void * addr )}} 808 @malloc_alignment@ returns the alignment of a currently allocated dynamic object. 809 It allows the programmer in memory management and personal bookkeeping. 810 It helps the programmer in verifying the alignment of a dynamic object especially in a scenario similar to producer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was allocated with the required alignment. 811 \paragraph{Usage} 812 @malloc_alignment@ takes one parameters. 813 814 \begin{itemize} 815 \item 816 @addr@: the address of the currently allocated dynamic object. 817 \end{itemize} 818 @malloc_alignment@ returns the alignment of the given dynamic object. 819 On failure, it return the value of default alignment of the llheap allocator. 820 821 \paragraph{\lstinline{bool malloc_zero_fill( void * addr )}} 822 @malloc_zero_fill@ returns whether a currently allocated dynamic object was initially zero filled at the time of allocation. 823 It allows the programmer in memory management and personal bookkeeping. 824 It helps the programmer in verifying the zero filled property of a dynamic object especially in a scenario similar to producer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was zero filled at the time of allocation. 825 \paragraph{Usage} 826 @malloc_zero_fill@ takes one parameters. 827 828 \begin{itemize} 829 \item 830 @addr@: the address of the currently allocated dynamic object. 831 \end{itemize} 832 @malloc_zero_fill@ returns true if the dynamic object was initially zero filled and return false otherwise. 833 On failure, it returns false. 834 835 \paragraph{\lstinline{size_t malloc_size( void * addr )}} 836 @malloc_size@ returns the request size of a currently allocated dynamic object. 837 It allows the programmer in memory management and personal bookkeeping. 838 It helps the programmer in verifying the alignment of a dynamic object especially in a scenario similar to producer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was allocated with the required size. 839 Its current alternate in the other allocators is @malloc_usable_size@. 840 But, @malloc_size@ is different from @malloc_usable_size@ as @malloc_usabe_size@ returns the total data capacity of dynamic object including the extra space at the end of the dynamic object. 841 On the other hand, @malloc_size@ returns the size that was given to the allocator at the allocation of the dynamic object. 842 This size is updated when an object is realloced, resized, or passed through a similar allocator routine. 843 \paragraph{Usage} 844 @malloc_size@ takes one parameters. 845 846 \begin{itemize} 847 \item 848 @addr@: the address of the currently allocated dynamic object. 849 \end{itemize} 850 @malloc_size@ returns the request size of the given dynamic object. 851 On failure, it return zero. 852 853 854 \subsection{\CC Interface} 850 extends @resize@ with an alignment re\-quirement. 851 852 \noindent\textbf{Usage} 853 takes three parameters. 854 \begin{itemize} 855 \item 856 @oaddr@: address to be resized 857 \item 858 @nalign@: alignment requirement 859 \item 860 @size@: new allocation size (smaller or larger than previous) 861 \end{itemize} 862 It returns the address of the old or new storage with the specified new size and alignment, or @NULL@ if @size@ is zero. 855 863 856 864 \paragraph{\lstinline{void * realloc( void * oaddr, size_t nalign, size_t size )}} 857 This @realloc@ is an extension of the default @realloc@ (FIX ME: cite default @realloc@). 858 In addition to reallocating an old object and preserving the data in old object, it can also realign the old object to a new alignment requirement. 859 \paragraph{Usage} 860 This @realloc@ takes three parameters. 861 It takes an additional parameter of nalign as compared to the default @realloc@. 862 863 \begin{itemize} 864 \item 865 @oaddr@: the address of the old object that needs to be reallocated. 866 \item 867 @nalign@: the new alignment to which the old object needs to be realigned. 868 \item 869 @size@: the new size requirement of the to which the old object needs to be resized. 870 \end{itemize} 871 It returns an object with the size and alignment given in the parameters that preserves the data in the old object. 872 On failure, it returns a @NULL@ pointer. 865 extends @realloc@ with an alignment re\-quirement and has the same usage as aligned @resize@. 873 866 874 867 875 868 \subsection{\CFA Interface} 876 We added some routines to the @malloc@ interface of \CFA. 877 These routines can only be used in \CFA and not in our stand-alone llheap allocator as these routines use some features that are only provided by \CFA and not by C. 878 It makes the allocator even more usable to the programmers. 879 \CFA provides the liberty to know the returned type of a call to the allocator. 880 So, mainly in these added routines, we removed the object size parameter from the routine as allocator can calculate the size of the object from the returned type. 881 882 \subsection{\lstinline{T * malloc( void )}} 883 This @malloc@ is a simplified polymorphic form of default @malloc@ (FIX ME: cite malloc). 884 It does not take any parameter as compared to default @malloc@ that takes one parameter. 885 \paragraph{Usage} 886 This @malloc@ takes no parameters. 887 It returns a dynamic object of the size of type @T@. 888 On failure, it returns a @NULL@ pointer. 889 890 \subsection{\lstinline{T * aalloc( size_t dim )}} 891 This @aalloc@ is a simplified polymorphic form of above @aalloc@ (FIX ME: cite aalloc). 892 It takes one parameter as compared to the above @aalloc@ that takes two parameters. 893 \paragraph{Usage} 894 aalloc takes one parameters. 895 896 \begin{itemize} 897 \item 898 @dim@: required number of objects in the array. 899 \end{itemize} 900 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. 901 On failure, it returns a @NULL@ pointer. 902 903 \subsection{\lstinline{T * calloc( size_t dim )}} 904 This @calloc@ is a simplified polymorphic form of default @calloc@ (FIX ME: cite calloc). 905 It takes one parameter as compared to the default @calloc@ that takes two parameters. 906 \paragraph{Usage} 907 This @calloc@ takes one parameter. 908 909 \begin{itemize} 910 \item 911 @dim@: required number of objects in the array. 912 \end{itemize} 913 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. 914 On failure, it returns a @NULL@ pointer. 915 916 \subsection{\lstinline{T * resize( T * ptr, size_t size )}} 917 This resize is a simplified polymorphic form of above resize (FIX ME: cite resize with alignment). 918 It takes two parameters as compared to the above resize that takes three parameters. 919 It frees the programmer from explicitly mentioning the alignment of the allocation as \CFA provides gives allocator the liberty to get the alignment of the returned type. 920 \paragraph{Usage} 921 This resize takes two parameters. 922 923 \begin{itemize} 924 \item 925 @ptr@: address of the old object. 926 \item 927 @size@: the required size of the new object. 928 \end{itemize} 929 It returns a dynamic object of the size given in parameters. 930 The returned object is aligned to the alignment of type @T@. 931 On failure, it returns a @NULL@ pointer. 932 933 \subsection{\lstinline{T * realloc( T * ptr, size_t size )}} 934 This @realloc@ is a simplified polymorphic form of default @realloc@ (FIX ME: cite @realloc@ with align). 935 It takes two parameters as compared to the above @realloc@ that takes three parameters. 936 It frees the programmer from explicitly mentioning the alignment of the allocation as \CFA provides gives allocator the liberty to get the alignment of the returned type. 937 \paragraph{Usage} 938 This @realloc@ takes two parameters. 939 940 \begin{itemize} 941 \item 942 @ptr@: address of the old object. 943 \item 944 @size@: the required size of the new object. 945 \end{itemize} 946 It returns a dynamic object of the size given in parameters that preserves the data in the given object. 947 The returned object is aligned to the alignment of type @T@. 948 On failure, it returns a @NULL@ pointer. 949 950 \subsection{\lstinline{T * memalign( size_t align )}} 951 This memalign is a simplified polymorphic form of default memalign (FIX ME: cite memalign). 952 It takes one parameters as compared to the default memalign that takes two parameters. 953 \paragraph{Usage} 954 memalign takes one parameters. 955 956 \begin{itemize} 957 \item 958 @align@: the required alignment of the dynamic object. 959 \end{itemize} 960 It returns a dynamic object of the size of type @T@ that is aligned to given parameter align. 961 On failure, it returns a @NULL@ pointer. 962 963 \subsection{\lstinline{T * amemalign( size_t align, size_t dim )}} 964 This amemalign is a simplified polymorphic form of above amemalign (FIX ME: cite amemalign). 965 It takes two parameter as compared to the above amemalign that takes three parameters. 966 \paragraph{Usage} 967 amemalign takes two parameters. 968 969 \begin{itemize} 970 \item 971 @align@: required alignment of the dynamic array. 972 \item 973 @dim@: required number of objects in the array. 974 \end{itemize} 975 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. 976 The returned object is aligned to the given parameter align. 977 On failure, it returns a @NULL@ pointer. 978 979 \subsection{\lstinline{T * cmemalign( size_t align, size_t dim )}} 980 This cmemalign is a simplified polymorphic form of above cmemalign (FIX ME: cite cmemalign). 981 It takes two parameter as compared to the above cmemalign that takes three parameters. 982 \paragraph{Usage} 983 cmemalign takes two parameters. 984 985 \begin{itemize} 986 \item 987 @align@: required alignment of the dynamic array. 988 \item 989 @dim@: required number of objects in the array. 990 \end{itemize} 991 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. 992 The returned object is aligned to the given parameter align and is zero filled. 993 On failure, it returns a @NULL@ pointer. 994 995 \subsection{\lstinline{T * aligned_alloc( size_t align )}} 996 This @aligned_alloc@ is a simplified polymorphic form of default @aligned_alloc@ (FIX ME: cite @aligned_alloc@). 997 It takes one parameter as compared to the default @aligned_alloc@ that takes two parameters. 998 \paragraph{Usage} 999 This @aligned_alloc@ takes one parameter. 1000 1001 \begin{itemize} 1002 \item 1003 @align@: required alignment of the dynamic object. 1004 \end{itemize} 1005 It returns a dynamic object of the size of type @T@ that is aligned to the given parameter. 1006 On failure, it returns a @NULL@ pointer. 1007 1008 \subsection{\lstinline{int posix_memalign( T ** ptr, size_t align )}} 1009 This @posix_memalign@ is a simplified polymorphic form of default @posix_memalign@ (FIX ME: cite @posix_memalign@). 1010 It takes two parameters as compared to the default @posix_memalign@ that takes three parameters. 1011 \paragraph{Usage} 1012 This @posix_memalign@ takes two parameter. 1013 1014 \begin{itemize} 1015 \item 1016 @ptr@: variable address to store the address of the allocated object. 1017 \item 1018 @align@: required alignment of the dynamic object. 1019 \end{itemize} 1020 1021 It stores address of the dynamic object of the size of type @T@ in given parameter ptr. 1022 This object is aligned to the given parameter. 1023 On failure, it returns a @NULL@ pointer. 1024 1025 \subsection{\lstinline{T * valloc( void )}} 1026 This @valloc@ is a simplified polymorphic form of default @valloc@ (FIX ME: cite @valloc@). 1027 It takes no parameters as compared to the default @valloc@ that takes one parameter. 1028 \paragraph{Usage} 1029 @valloc@ takes no parameters. 1030 It returns a dynamic object of the size of type @T@ that is aligned to the page size. 1031 On failure, it returns a @NULL@ pointer. 1032 1033 \subsection{\lstinline{T * pvalloc( void )}} 1034 \paragraph{Usage} 1035 @pvalloc@ takes no parameters. 1036 It returns a dynamic object of the size that is calculated by rounding the size of type @T@. 1037 The returned object is also aligned to the page size. 1038 On failure, it returns a @NULL@ pointer. 1039 1040 \subsection{Alloc Interface} 1041 In addition to improve allocator interface both for \CFA and our stand-alone allocator llheap in C. 1042 We also added a new alloc interface in \CFA that increases usability of dynamic memory allocation. 1043 This interface helps programmers in three major ways. 1044 1045 \begin{itemize} 1046 \item 1047 Routine Name: alloc interface frees programmers from remembering different routine names for different kind of dynamic allocations. 1048 \item 1049 Parameter Positions: alloc interface frees programmers from remembering parameter positions in call to routines. 1050 \item 1051 Object Size: alloc interface does not require programmer to mention the object size as \CFA allows allocator to determine the object size from returned type of alloc call. 1052 \end{itemize} 1053 1054 Alloc interface uses polymorphism, backtick routines (FIX ME: cite backtick) and ttype parameters of \CFA (FIX ME: cite ttype) to provide a very simple dynamic memory allocation interface to the programmers. 1055 The new interface has just one routine name alloc that can be used to perform a wide range of dynamic allocations. 1056 The parameters use backtick functions to provide a similar-to named parameters feature for our alloc interface so that programmers do not have to remember parameter positions in alloc call except the position of dimension (dim) parameter. 1057 1058 \subsection{Routine: \lstinline{T * alloc( ... 1059 )}} 1060 Call to alloc without any parameter returns one object of size of type @T@ allocated dynamically. 1061 Only the dimension (dim) parameter for array allocation has the fixed position in the alloc routine. 1062 If programmer wants to allocate an array of objects that the required number of members in the array has to be given as the first parameter to the alloc routine. 1063 alloc routine accepts six kinds of arguments. 1064 Using different combinations of than parameters, different kind of allocations can be performed. 1065 Any combination of parameters can be used together except @`realloc@ and @`resize@ that should not be used simultaneously in one call to routine as it creates ambiguity about whether to reallocate or resize a currently allocated dynamic object. 1066 If both @`resize@ and @`realloc@ are used in a call to alloc then the latter one will take effect or unexpected resulted might be produced. 1067 1068 \paragraph{Dim} 1069 This is the only parameter in the alloc routine that has a fixed-position and it is also the only parameter that does not use a backtick function. 1070 It has to be passed at the first position to alloc call in-case of an array allocation of objects of type @T@. 1071 It represents the required number of members in the array allocation as in \CFA's @aalloc@ (FIX ME: cite aalloc). 1072 This parameter should be of type @size_t@. 1073 1074 Example: @int a = alloc( 5 )@ 1075 This call will return a dynamic array of five integers. 1076 1077 \paragraph{Align} 1078 This parameter is position-free and uses a backtick routine align (@`align@). 1079 The parameter passed with @`align@ should be of type @size_t@. 1080 If the alignment parameter is not a power of two or is less than the default alignment of the allocator (that can be found out using routine libAlign in \CFA) then the passed alignment parameter will be rejected and the default alignment will be used. 1081 1082 Example: @int b = alloc( 5 , 64`align )@ 1083 This call will return a dynamic array of five integers. 1084 It will align the allocated object to 64. 1085 1086 \paragraph{Fill} 1087 This parameter is position-free and uses a backtick routine fill (@`fill@). 1088 In case of @realloc@, only the extra space after copying the data in the old object will be filled with given parameter. 1089 Three types of parameters can be passed using `fill. 1090 1091 \begin{itemize} 1092 \item 1093 @char@: A char can be passed with @`fill@ to fill the whole dynamic allocation with the given char recursively till the end of required allocation. 1094 \item 1095 Object of returned type: An object of type of returned type can be passed with @`fill@ to fill the whole dynamic allocation with the given object recursively till the end of required allocation. 1096 \item 1097 Dynamic object of returned type: A dynamic object of type of returned type can be passed with @`fill@ to fill the dynamic allocation with the given dynamic object. 1098 In this case, the allocated memory is not filled recursively till the end of allocation. 1099 The filling happen until the end object passed to @`fill@ or the end of requested allocation reaches. 1100 \end{itemize} 1101 1102 Example: @int b = alloc( 5 , 'a'`fill )@ 1103 This call will return a dynamic array of five integers. 1104 It will fill the allocated object with character 'a' recursively till the end of requested allocation size. 1105 1106 Example: @int b = alloc( 5 , 4`fill )@ 1107 This call will return a dynamic array of five integers. 1108 It will fill the allocated object with integer 4 recursively till the end of requested allocation size. 1109 1110 Example: @int b = alloc( 5 , a`fill )@ where @a@ is a pointer of int type 1111 This call will return a dynamic array of five integers. 1112 It will copy data in a to the returned object non-recursively until end of a or the newly allocated object is reached. 1113 1114 \paragraph{Resize} 1115 This parameter is position-free and uses a backtick routine resize (@`resize@). 1116 It represents the old dynamic object (oaddr) that the programmer wants to 1117 \begin{itemize} 1118 \item 1119 resize to a new size. 1120 \item 1121 realign to a new alignment 1122 \item 1123 fill with something. 1124 \end{itemize} 1125 The data in old dynamic object will not be preserved in the new object. 1126 The type of object passed to @`resize@ and the returned type of alloc call can be different. 1127 1128 Example: @int b = alloc( 5 , a`resize )@ 1129 This call will resize object a to a dynamic array that can contain 5 integers. 1130 1131 Example: @int b = alloc( 5 , a`resize , 32`align )@ 1132 This call will resize object a to a dynamic array that can contain 5 integers. 1133 The returned object will also be aligned to 32. 1134 1135 Example: @int b = alloc( 5 , a`resize , 32`align , 2`fill )@ 1136 This call will resize object a to a dynamic array that can contain 5 integers. 1137 The returned object will also be aligned to 32 and will be filled with 2. 1138 1139 \paragraph{Realloc} 1140 This parameter is position-free and uses a backtick routine @realloc@ (@`realloc@). 1141 It represents the old dynamic object (oaddr) that the programmer wants to 1142 \begin{itemize} 1143 \item 1144 realloc to a new size. 1145 \item 1146 realign to a new alignment 1147 \item 1148 fill with something. 1149 \end{itemize} 1150 The data in old dynamic object will be preserved in the new object. 1151 The type of object passed to @`realloc@ and the returned type of alloc call cannot be different. 1152 1153 Example: @int b = alloc( 5 , a`realloc )@ 1154 This call will realloc object a to a dynamic array that can contain 5 integers. 1155 1156 Example: @int b = alloc( 5 , a`realloc , 32`align )@ 1157 This call will realloc object a to a dynamic array that can contain 5 integers. 1158 The returned object will also be aligned to 32. 1159 1160 Example: @int b = alloc( 5 , a`realloc , 32`align , 2`fill )@ 1161 This call will resize object a to a dynamic array that can contain 5 integers. 1162 The returned object will also be aligned to 32. 1163 The extra space after copying data of a to the returned object will be filled with 2. 869 870 The following extensions take advantage of overload polymorphism in the \CFA type-system. 871 The key safety advantage of the \CFA type system is using the return type to select overloads; 872 hence, a polymorphic routine knows the returned type and its size. 873 This capability is used to remove the object size parameter and correctly cast the return storage to match the result type. 874 For example, the following is the \CFA wrapper for C @malloc@: 875 \begin{cfa} 876 forall( T & | sized(T) ) { 877 T * malloc( void ) { 878 if ( _Alignof(T) <= libAlign() ) return @(T *)@malloc( @sizeof(T)@ ); // C allocation 879 else return @(T *)@memalign( @_Alignof(T)@, @sizeof(T)@ ); // C allocation 880 } // malloc 881 \end{cfa} 882 and is used as follows: 883 \begin{lstlisting} 884 int * i = malloc(); 885 double * d = malloc(); 886 struct Spinlock { ... } __attribute__(( aligned(128) )); 887 Spinlock * sl = malloc(); 888 \end{lstlisting} 889 where each @malloc@ call provides the return type as @T@, which is used with @sizeof@, @_Alignof@, and casting the storage to the correct type. 890 This interface removes many of the common allocation errors in C programs. 891 \VRef[Figure]{f:CFADynamicAllocationAPI} show the \CFA wrappers for the equivalent C/\CC allocation routines with same semantic behaviour. 892 893 \begin{figure} 894 \begin{lstlisting} 895 T * malloc( void ); 896 T * aalloc( size_t dim ); 897 T * calloc( size_t dim ); 898 T * resize( T * ptr, size_t size ); 899 T * realloc( T * ptr, size_t size ); 900 T * memalign( size_t align ); 901 T * amemalign( size_t align, size_t dim ); 902 T * cmemalign( size_t align, size_t dim ); 903 T * aligned_alloc( size_t align ); 904 int posix_memalign( T ** ptr, size_t align ); 905 T * valloc( void ); 906 T * pvalloc( void ); 907 \end{lstlisting} 908 \caption{\CFA C-Style Dynamic-Allocation API} 909 \label{f:CFADynamicAllocationAPI} 910 \end{figure} 911 912 In addition to the \CFA C-style allocator interface, a new allocator interface is provided to further increase orthogonality and usability of dynamic-memory allocation. 913 This interface helps programmers in three ways. 914 \begin{itemize} 915 \item 916 naming: \CFA regular and @ttype@ polymorphism is used to encapsulate a wide range of allocation functionality into a single routine name, so programmers do not have to remember multiple routine names for different kinds of dynamic allocations. 917 \item 918 named arguments: individual allocation properties are specified using postfix function call, so programmers do have to remember parameter positions in allocation calls. 919 \item 920 object size: like the \CFA C-style interface, programmers do not have to specify object size or cast allocation results. 921 \end{itemize} 922 Note, postfix function call is an alternative call syntax, using backtick @`@, where the argument appears before the function name, \eg 923 \begin{cfa} 924 duration ?@`@h( int h ); // ? denote the position of the function operand 925 duration ?@`@m( int m ); 926 duration ?@`@s( int s ); 927 duration dur = 3@`@h + 42@`@m + 17@`@s; 928 \end{cfa} 929 @ttype@ polymorphism is similar to \CC variadic templates. 930 931 \paragraph{\lstinline{T * alloc( ... )} or \lstinline{T * alloc( size_t dim, ... )}} 932 is overloaded with a variable number of specific allocation routines, or an integer dimension parameter followed by a variable number specific allocation routines. 933 A call without parameters returns a dynamically allocated object of type @T@ (@malloc@). 934 A call with only the dimension (dim) parameter returns a dynamically allocated array of objects of type @T@ (@aalloc@). 935 The variable number of arguments consist of allocation properties, which can be combined to produce different kinds of allocations. 936 The only restriction is for properties @realloc@ and @resize@, which cannot be combined. 937 938 The allocation property functions are: 939 \subparagraph{\lstinline{T_align ?`align( size_t alignment )}} 940 to align the allocation. 941 The alignment parameter must be $\ge$ the default alignment (@libAlign()@ in \CFA) and a power of two, \eg: 942 \begin{cfa} 943 int * i0 = alloc( @4096`align@ ); sout | i0 | nl; 944 int * i1 = alloc( 3, @4096`align@ ); sout | i1; for (i; 3 ) sout | &i1[i]; sout | nl; 945 946 0x555555572000 947 0x555555574000 0x555555574000 0x555555574004 0x555555574008 948 \end{cfa} 949 returns a dynamic object and object array aligned on a 4096-byte boundary. 950 951 \subparagraph{\lstinline{S_fill(T) ?`fill ( /* various types */ )}} 952 to initialize storage. 953 There are three ways to fill storage: 954 \begin{enumerate} 955 \item 956 A char fills each byte of each object. 957 \item 958 An object of the returned type fills each object. 959 \item 960 An object array pointer fills some or all of the corresponding object array. 961 \end{enumerate} 962 For example: 963 \begin{cfa}[numbers=left] 964 int * i0 = alloc( @0n`fill@ ); sout | *i0 | nl; // disambiguate 0 965 int * i1 = alloc( @5`fill@ ); sout | *i1 | nl; 966 int * i2 = alloc( @'\xfe'`fill@ ); sout | hex( *i2 ) | nl; 967 int * i3 = alloc( 5, @5`fill@ ); for ( i; 5 ) sout | i3[i]; sout | nl; 968 int * i4 = alloc( 5, @0xdeadbeefN`fill@ ); for ( i; 5 ) sout | hex( i4[i] ); sout | nl; 969 int * i5 = alloc( 5, @i3`fill@ ); for ( i; 5 ) sout | i5[i]; sout | nl; 970 int * i6 = alloc( 5, @[i3, 3]`fill@ ); for ( i; 5 ) sout | i6[i]; sout | nl; 971 \end{cfa} 972 \begin{lstlisting}[numbers=left] 973 0 974 5 975 0xfefefefe 976 5 5 5 5 5 977 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 0xdeadbeef 978 5 5 5 5 5 979 5 5 5 -555819298 -555819298 // two undefined values 980 \end{lstlisting} 981 Examples 1 to 3, fill an object with a value or characters. 982 Examples 4 to 7, fill an array of objects with values, another array, or part of an array. 983 984 \subparagraph{\lstinline{S_resize(T) ?`resize( void * oaddr )}} 985 used to resize, realign, and fill, where the old object data is not copied to the new object. 986 The old object type may be different from the new object type, since the values are not used. 987 For example: 988 \begin{cfa}[numbers=left] 989 int * i = alloc( @5`fill@ ); sout | i | *i; 990 i = alloc( @i`resize@, @256`align@, @7`fill@ ); sout | i | *i; 991 double * d = alloc( @i`resize@, @4096`align@, @13.5`fill@ ); sout | d | *d; 992 \end{cfa} 993 \begin{lstlisting}[numbers=left] 994 0x55555556d5c0 5 995 0x555555570000 7 996 0x555555571000 13.5 997 \end{lstlisting} 998 Examples 2 to 3 change the alignment, fill, and size for the initial storage of @i@. 999 1000 \begin{cfa}[numbers=left] 1001 int * ia = alloc( 5, @5`fill@ ); for ( i; 5 ) sout | ia[i]; sout | nl; 1002 ia = alloc( 10, @ia`resize@, @7`fill@ ); for ( i; 10 ) sout | ia[i]; sout | nl; 1003 sout | ia; ia = alloc( 5, @ia`resize@, @512`align@, @13`fill@ ); sout | ia; for ( i; 5 ) sout | ia[i]; sout | nl;; 1004 ia = alloc( 3, @ia`resize@, @4096`align@, @2`fill@ ); sout | ia; for ( i; 3 ) sout | &ia[i] | ia[i]; sout | nl; 1005 \end{cfa} 1006 \begin{lstlisting}[numbers=left] 1007 5 5 5 5 5 1008 7 7 7 7 7 7 7 7 7 7 1009 0x55555556d560 0x555555571a00 13 13 13 13 13 1010 0x555555572000 0x555555572000 2 0x555555572004 2 0x555555572008 2 1011 \end{lstlisting} 1012 Examples 2 to 4 change the array size, alignment and fill for the initial storage of @ia@. 1013 1014 \subparagraph{\lstinline{S_realloc(T) ?`realloc( T * a ))}} 1015 used to resize, realign, and fill, where the old object data is copied to the new object. 1016 The old object type must be the same as the new object type, since the values used. 1017 Note, for @fill@, only the extra space after copying the data from the old object is filled with the given parameter. 1018 For example: 1019 \begin{cfa}[numbers=left] 1020 int * i = alloc( @5`fill@ ); sout | i | *i; 1021 i = alloc( @i`realloc@, @256`align@ ); sout | i | *i; 1022 i = alloc( @i`realloc@, @4096`align@, @13`fill@ ); sout | i | *i; 1023 \end{cfa} 1024 \begin{lstlisting}[numbers=left] 1025 0x55555556d5c0 5 1026 0x555555570000 5 1027 0x555555571000 5 1028 \end{lstlisting} 1029 Examples 2 to 3 change the alignment for the initial storage of @i@. 1030 The @13`fill@ for example 3 does nothing because no extra space is added. 1031 1032 \begin{cfa}[numbers=left] 1033 int * ia = alloc( 5, @5`fill@ ); for ( i; 5 ) sout | ia[i]; sout | nl; 1034 ia = alloc( 10, @ia`realloc@, @7`fill@ ); for ( i; 10 ) sout | ia[i]; sout | nl; 1035 sout | ia; ia = alloc( 1, @ia`realloc@, @512`align@, @13`fill@ ); sout | ia; for ( i; 1 ) sout | ia[i]; sout | nl;; 1036 ia = alloc( 3, @ia`realloc@, @4096`align@, @2`fill@ ); sout | ia; for ( i; 3 ) sout | &ia[i] | ia[i]; sout | nl; 1037 \end{cfa} 1038 \begin{lstlisting}[numbers=left] 1039 5 5 5 5 5 1040 5 5 5 5 5 7 7 7 7 7 1041 0x55555556c560 0x555555570a00 5 1042 0x555555571000 0x555555571000 5 0x555555571004 2 0x555555571008 2 1043 \end{lstlisting} 1044 Examples 2 to 4 change the array size, alignment and fill for the initial storage of @ia@. 1045 The @13`fill@ for example 3 does nothing because no extra space is added. 1046 1047 These \CFA allocation features are used extensively in the development of the \CFA runtime.
Note: See TracChangeset
for help on using the changeset viewer.