Ignore:
Timestamp:
Aug 6, 2024, 4:01:50 AM (6 months ago)
Author:
JiadaL <j82liang@…>
Branches:
master
Children:
1c957a11
Parents:
0e6cf54c
Message:
  1. Update contribution; 2. update loop subsection; 3. rangeLoops.cfa are the code example used in loop section
Location:
doc/theses/jiada_liang_MMath
Files:
1 added
2 edited

Legend:

Unmodified
Added
Removed
  • doc/theses/jiada_liang_MMath/intro.tex

    r0e6cf54c r96de72b  
    299299\begin{enumerate}
    300300\item
    301 overloading:
    302 \item
    303 scoping
    304 \item
    305 typing
    306 \item
    307 subseting
    308 \item
    309 inheritance
     301overloading: provides a general pattern to overload functions, literal, and variable for polymorphic enumerations.
     302\item
     303scoping: implement name spacing scheme for enumerations.
     304\item
     305safety: define a safe enumeration conversion scheme.
     306\item
     307harmonization: allows enumeration to carry data.
     308\item
     309inheritance: define containment inheritance for enumerations.
    310310\end{enumerate}
    311311
  • doc/theses/jiada_liang_MMath/trait.tex

    r0e6cf54c r96de72b  
    185185\begin{cfa}
    186186enum RGB {Red, Green, Blue};
    187 countof( RGB ); // (1)
    188 countof( Red ); // (2)
     187countof( RGB );
     188countof( Red );
    189189\end{cfa}
    190190Both expressions from the previous example are converted to constant expression @3@ with no function call at runtime.
     
    201201\end{enumerate}
    202202
    203 With the @Bounded@ and @Serial@, a loop over enumeration can be implemented in the following ways:
    204 \begin{cfa}
    205 enum() E { ... }
    206 for( unsigned i = 0; i < countof(E); i++ ) { ... }
    207 for( E e = lowerBound(); ; e = succ(e) ) { ...; if (e == upperBound()) break; }
    208 
    209 forall( T ) {
    210         for( unsigned i = 0; i < countof(T); i++ ) { ... }
    211         for( T e = lowerBound(); ; e = succ(e) ) { ...; if (e == upperBound()) break; }
    212 }
    213 \end{cfa}
    214 
    215 Finally, there is an associated trait defining comparison operators among enumerators.
    216 \begin{cfa}
    217 forall( E, T | CfaEnum( E, T ) ) {
     203\section{Iterating Over An Enumeration}
     204An fundamental aspect of an enumerated type is to be able to enumerate over its enumerators. \CFA supports \newterm{for} loops,
     205\newterm{while} loop, and \newterm{range} loop. This section covers @for@ loops and @range@ loops for
     206enumeration, but the concept transition to @while@ loop.
     207
     208\subsection{For Loop}
     209A for loop is constitued by a loop control and a loop body.
     210A loop control is often a 3-tuple, separated by semicolons: initializers, condition, and an expression. It is a common practice to declare
     211a variable, often in initializers, that be used in the condition and updated in the expression or loop body. Such variable is called \newterm{index}.
     212
     213% With implemented @Bounded@ and @Serial@ interface for \CFA enumeration, a @for@ loop that iterates over \CFA enumeration can be implemented as the following:
     214A @for@ loop iterates an enumeration can be written with functions from @Bounded@ and @Serial@ interfaces:
     215\begin{cfa}
     216enum() Chars { A, B, C, D };
     217for( unsigned i = 0; i < countof(E); i++ ) { sout | label(e); }         $\C{// (1) A B C D}$
     218for( Chars e = lowerBound(); ; e = succ(e) ) { $\C{// (2)}$
     219        sout |label((Chars)fromInt(i)) |' ';
     220        if (e == upperBound()) break;
     221}
     222\end{cfa}
     223
     224A caveat in writing loop using finite number as index is that the number can unintentionally be out the range:
     225\begin{cfa}
     226for( unsigned i = countof(Chars) - 1; i >= 0; i-- ) {}                          $\C{// 3}$
     227for( Chars e = lowerBound(); e <= upperBound(); e = succ(e) ) {}        $\C{// 4}$
     228for( Chars e = upperBound(); e >= lowerBound(); e = pred(e) ) {}        $\C{// 5}$
     229\end{cfa}
     230Loop (3) is a value underflow: when @i@ reaches to @0@, decrement statement will still execute and cause
     231the @unsigned int@ value @i@ wraps to @UINT_MAX@, which fails to loop test and the loop cannot terminate.
     232
     233In loop (4) and (5), when @e@ is at the @Bound@ (@upperBound@/@lowerBound@) and @succ@/@pred@ will result in @out of bounded@, \CFA
     234aborts its execution. Therefore, it is necessary to implement the condtional break within the loop body.
     235
     236
     237\subsection{Range Loop}
     238Instead of specifying condition, \CFA supports @range loops@, for which a user specifies a range of values.
     239\begin{cfa}[label=lst:range_functions_2]
     240for ( Chars e; A ~= D ) { sout | label(e); }            $\C{// (6)}$
     241for ( e; A ~= D ) { sout | label(e); }                          $\C{// (7)}$
     242for ( Chars e; A -~= D ) { sout | label(e); }           $\C{// (8) D C B A}$
     243for ( e; A -~=D ~ 2 ) { sout | label(e); }              $\C{// (9) D B }$
     244\end{cfa}
     245Every range loop above has an index declaration, and a @range@ bounded by \newterm{left bound} @A@ and \newterm{right bound} @D@.
     246An index declaration can have an optional type declaration, without which \CFA
     247implicitly declares index variable to be the type of the bounds (@typeof(A)@).
     248If a range is joined by @~=@ (range up equal) operator, the index variable will be initialized by
     249the @left bound@, and change incrementally until its position exceeds @right bound@.
     250On the other hand, if a range is defined with @-~=@ (range down equal) operation, the index variable will
     251have the value of the @right bound@. It change decrementally until its position is less than the @left bound@.
     252A range can be suffixed by an positive integal \newterm{step}, joined by @~@. The loop @(9)@ declares a step size of 2 so that
     253e updates @pred(pred(e))@ in every iteration.
     254
     255\CFA manipulates the position of the index variable and breaks the loop if an index update can result in @out of range@.
     256
     257\CFA provides a shorthand for range loop over a \CFA enumeration or a @Serial@:
     258\begin{cfa}[label=lst:range_functions_2]
     259for ( e; Chars ) { sout | label(e); }           $\C{// (10) A B C D}$
     260for ( e; E ) {                                                          $\C{// forall(E | CfaEnum(E) | Serial(E)) }$
     261    sout | label(e);
     262}
     263\end{cfa}
     264The shorthand syntax has a type name expression (@Char@ and @E@) as its range. If the range expression does not name
     265a \CFA enumeration or a @Serial@, \CFA reports a compile time error. When type name as range is a \CFA enumeration,
     266it turns into a loop that iterates all enumerators of the type. If the type name is a @Serial@, the index variable
     267will be initialized as the @lowerBound@. The loop control checks the index's position against the position of @upperBound@,
     268and terminate the loop when the index has a position greater than the @upperBound@. \CFA does not update the index with
     269@succ@ but manipulate its position directly to avoid @out of bound@.
     270
     271\section{Overload Operators}
     272% Finally, there is an associated trait defining comparison operators among enumerators.
     273\CFA preemptively overloads comparison operators for \CFA enumeration with @Serial@ and @CfaEnum@.
     274They defines that two enumerators are equal only if the are the same enumerator, and compartors are
     275define for order comparison.
     276\begin{cfa}
     277forall( E | CfaEnum( E ) | Serial( E ) ) {
    218278        // comparison
    219279        int ?==?( E l, E r );           $\C{// true if l and r are same enumerators}$
    220280        int ?!=?( E l, E r );           $\C{// true if l and r are different enumerators}$
    221         int ?!=?( E l, zero_t );        $\C{// true if l is not the first enumerator}$
    222281        int ?<?( E l, E r );            $\C{// true if l is an enumerator before r}$
    223282        int ?<=?( E l, E r );           $\C{// true if l before or the same as r}$
    224283        int ?>?( E l, E r );            $\C{// true if l is an enumerator after r}$
    225         int ?>=?( E l, E r );           $\C{// true if l after or the same as r}$         
    226 }
    227 \end{cfa}
    228 
    229 As an alternative, users can define the boolean conversion for CfaEnum:
    230 
     284        int ?>=?( E l, E r );           $\C{// true if l after or the same as r}$
     285}
     286\end{cfa}
     287
     288\CFA implements few arithmetic operators for @CfaEnum@. Unlike update functions in @Serial@, these
     289operator does not have bound checks, which rely on @upperBound@ and @lowerBound@. These operators directly manipulate
     290position, the underlying representation of a \CFA enumeration.
     291\begin{cfa}
     292forall( E | CfaEnum( E ) | Serial( E ) ) {
     293        // comparison
     294        E ++?( E & l );
     295        E --?( E & l );
     296        E ?+=? ( E & l, one_t );
     297        E ?-=? ( E & l, one_t );
     298        E ?+=? ( E & l, int i );
     299        E ?-=? ( E & l, int i );
     300        E ?++( E & l );
     301        E ?--( E & l );
     302}
     303\end{cfa}
     304
     305Lastly, \CFA does not define @zero_t@ for \CFA enumeration. Users can define the boolean false for
     306\CFA enumerations on their own. Here is an example:
    231307\begin{cfa}
    232308forall(E | CfaEnum(E))
     
    235311}
    236312\end{cfa}
    237 which effectively turns the first enumeration as a logical zero and non-zero for others.
    238 
    239 \begin{cfa}
    240 Count variable_a = First, variable_b = Second, variable_c = Third, variable_d = Fourth;
    241 p(variable_a); // 0
    242 p(variable_b); // 1
    243 p(variable_c); // "Third"
    244 p(variable_d); // 3
    245 \end{cfa}
    246 
    247 
    248 \section{Iteration and Range}
    249 
    250 It is convenient to iterate over a \CFA enumeration value, \eg:
    251 \begin{cfa}[label=lst:range_functions]
    252 for ( Alphabet alph; Alphabet ) { sout | alph; }
    253 >>> A B C ... D
    254 \end{cfa}
    255 The for-loop uses the enumeration type @Alphabet@ its range, and iterates through all enumerators in the order defined in the enumeration.
    256 @alph@ is the iterating enumeration object, which returns the value of an @Alphabet@ in this context according to the precedence rule.
    257 
    258 \textbullet\ \CFA offers a shorthand for iterating all enumeration constants:
    259 \begin{cfa}[label=lst:range_functions]
    260 for ( Alphabet alph ) { sout | alph; }
    261 >>> A B C ... D
    262 \end{cfa}
    263 
    264 The following are examples for constructing for-control using an enumeration. Note that the type declaration of the iterating variable is optional, because \CFA can infer the type as EnumInstType based on the range expression, and possibly convert it to one of its attribute types.
    265 
    266 \textbullet\ H is implicit up-to exclusive range [0, H).
    267 \begin{cfa}[label=lst:range_function_1]
    268 for ( alph; Alphabet.D ) { sout | alph; }
    269 >>> A B C
    270 \end{cfa}
    271 
    272 \textbullet\ ~= H is implicit up-to inclusive range [0,H].
    273 \begin{cfa}[label=lst:range_function_2]
    274 for ( alph; ~= Alphabet.D ) { sout | alph; }
    275 >>> A B C D
    276 \end{cfa}
    277 
    278 \textbullet\ L ~ H is explicit up-to exclusive range [L,H).
    279 \begin{cfa}[label=lst:range_function_3]
    280 for ( alph; Alphabet.B ~ Alphabet.D  ) { sout | alph; }
    281 // for ( Alphabet alph = Alphabet.B; alph < Alphabet.D; alph += 1  ); 1 is one_t
    282 >>> B C
    283 \end{cfa}
    284 
    285 \textbullet\ L ~= H is explicit up-to inclusive range [L,H].
    286 \begin{cfa}[label=lst:range_function_4]
    287 for ( alph; Alphabet.B ~= Alphabet.D  ) { sout | alph; }
    288 >>> B C D
    289 \end{cfa}
    290 
    291 \textbullet\ L -~ H is explicit down-to exclusive range [H,L), where L and H are implicitly interchanged to make the range down-to.
    292 \begin{cfa}[label=lst:range_function_5]
    293 for ( alph; Alphabet.D -~ Alphabet.B  ) { sout | alph; }
    294 >>> D C
    295 \end{cfa}
    296 
    297 \textbullet\ L -~= H is explicit down-to exclusive range [H,L], where L and H are implicitly interchanged to make the range down-to.
    298 \begin{cfa}[label=lst:range_function_6]
    299 for ( alph; Alphabet.D -~= Alphabet.B  ) { sout | alph; }
    300 >>> D C B
    301 \end{cfa}
    302 
    303 A user can specify the ``step size'' of an iteration. There are two different stepping schemes of enumeration for-loop.
    304 \begin{cfa}[label=lst:range_function_stepping]
    305 enum(int) Sequence { A = 10, B = 12, C = 14, D = 16, D  = 18 };
    306 for ( s; Sequence.A ~= Sequence.D ~ 1  ) { sout | alph; }
    307 >>> 10 12 14 16 18
    308 for ( s; Sequence.A ~= Sequence.D; s+=1  ) { sout | alph; }
    309 >>> 10 11 12 13 14 15 16 17 18
    310 \end{cfa}
    311 The first syntax is stepping to the next enumeration constant, which is the default stepping scheme if not explicitly specified. The second syntax, on the other hand, is to call @operator+=@ @one_type@ on the @value( s )@. Therefore, the second syntax is equivalent to
    312 \begin{cfa}[label=lst:range_function_stepping_converted]
    313 for ( typeof( value(Sequence.A) ) s=value( Sequence.A ); s <= Sequence.D; s+=1  ) { sout | alph; }
    314 >>> 10 11 12 13 14 15 16 17 18
    315 \end{cfa}
    316 
    317 % \PAB{Explain what each loop does.}
    318 
    319 It is also possible to iterate over an enumeration's labels, implicitly or explicitly:
    320 \begin{cfa}[label=lst:range_functions_label_implicit]
    321 for ( char * alph; Alphabet )
    322 \end{cfa}
    323 This for-loop implicitly iterates every label of the enumeration, because a label is the only valid resolution to @ch@ with type @char *@ in this case.
    324 If the value can also be resolved as the @char *@, you might iterate the labels explicitly with the array iteration.
    325 \begin{cfa}[label=lst:range_functions_label_implicit]
    326 for ( char * ch; labels( Alphabet ) )
    327 \end{cfa}
     313which effectively turns the first enumeration as a logical false and true for others.
     314
     315% \begin{cfa}
     316% Count variable_a = First, variable_b = Second, variable_c = Third, variable_d = Fourth;
     317% p(variable_a); // 0
     318% p(variable_b); // 1
     319% p(variable_c); // "Third"
     320% p(variable_d); // 3
     321% \end{cfa}
     322
     323
     324% \section{Iteration and Range}
     325
     326
     327
     328% % It is convenient to iterate over a \CFA enumeration value, \eg:
     329% \CFA implements \newterm{range loop} for \CFA enumeration using the enumerated traits. The most basic form of @range loop@ is the follows:
     330% \begin{cfa}[label=lst:range_functions]
     331% for ( Alphabet alph; Alphabet ) { sout | alph; }
     332% >>> A B C ... D
     333% \end{cfa}
     334% % The @range loops@ iterates through all enumerators in the order defined in the enumeration.
     335% % @alph@ is the iterating enumeration object, which returns the value of an @Alphabet@ in this context according to the precedence rule.
     336% Enumerated @range loop@ extends the \CFA grammar as it allows a type name @Alphabet@
     337
     338% \textbullet\ \CFA offers a shorthand for iterating all enumeration constants:
     339% \begin{cfa}[label=lst:range_functions]
     340% for ( Alphabet alph ) { sout | alph; }
     341% >>> A B C ... D
     342% \end{cfa}
     343
     344% The following are examples for constructing for-control using an enumeration. Note that the type declaration of the iterating variable is optional, because \CFA can infer the type as EnumInstType based on the range expression, and possibly convert it to one of its attribute types.
     345
     346% \textbullet\ H is implicit up-to exclusive range [0, H).
     347% \begin{cfa}[label=lst:range_function_1]
     348% for ( alph; Alphabet.D ) { sout | alph; }
     349% >>> A B C
     350% \end{cfa}
     351
     352% \textbullet\ ~= H is implicit up-to inclusive range [0,H].
     353% \begin{cfa}[label=lst:range_function_2]
     354% for ( alph; ~= Alphabet.D ) { sout | alph; }
     355% >>> A B C D
     356% \end{cfa}
     357
     358% \textbullet\ L ~ H is explicit up-to exclusive range [L,H).
     359% \begin{cfa}[label=lst:range_function_3]
     360% for ( alph; Alphabet.B ~ Alphabet.D  ) { sout | alph; }
     361% // for ( Alphabet alph = Alphabet.B; alph < Alphabet.D; alph += 1  ); 1 is one_t
     362% >>> B C
     363% \end{cfa}
     364
     365% \textbullet\ L ~= H is explicit up-to inclusive range [L,H].
     366% \begin{cfa}[label=lst:range_function_4]
     367% for ( alph; Alphabet.B ~= Alphabet.D  ) { sout | alph; }
     368% >>> B C D
     369% \end{cfa}
     370
     371% \textbullet\ L -~ H is explicit down-to exclusive range [H,L), where L and H are implicitly interchanged to make the range down-to.
     372% \begin{cfa}[label=lst:range_function_5]
     373% for ( alph; Alphabet.D -~ Alphabet.B  ) { sout | alph; }
     374% >>> D C
     375% \end{cfa}
     376
     377% \textbullet\ L -~= H is explicit down-to exclusive range [H,L], where L and H are implicitly interchanged to make the range down-to.
     378% \begin{cfa}[label=lst:range_function_6]
     379% for ( alph; Alphabet.D -~= Alphabet.B  ) { sout | alph; }
     380% >>> D C B
     381% \end{cfa}
     382
     383% A user can specify the ``step size'' of an iteration. There are two different stepping schemes of enumeration for-loop.
     384% \begin{cfa}[label=lst:range_function_stepping]
     385% enum(int) Sequence { A = 10, B = 12, C = 14, D = 16, D  = 18 };
     386% for ( s; Sequence.A ~= Sequence.D ~ 1  ) { sout | alph; }
     387% >>> 10 12 14 16 18
     388% for ( s; Sequence.A ~= Sequence.D; s+=1  ) { sout | alph; }
     389% >>> 10 11 12 13 14 15 16 17 18
     390% \end{cfa}
     391% The first syntax is stepping to the next enumeration constant, which is the default stepping scheme if not explicitly specified. The second syntax, on the other hand, is to call @operator+=@ @one_type@ on the @value( s )@. Therefore, the second syntax is equivalent to
     392% \begin{cfa}[label=lst:range_function_stepping_converted]
     393% for ( typeof( value(Sequence.A) ) s=value( Sequence.A ); s <= Sequence.D; s+=1  ) { sout | alph; }
     394% >>> 10 11 12 13 14 15 16 17 18
     395% \end{cfa}
     396
     397% % \PAB{Explain what each loop does.}
     398
     399% It is also possible to iterate over an enumeration's labels, implicitly or explicitly:
     400% \begin{cfa}[label=lst:range_functions_label_implicit]
     401% for ( char * alph; Alphabet )
     402% \end{cfa}
     403% This for-loop implicitly iterates every label of the enumeration, because a label is the only valid resolution to @ch@ with type @char *@ in this case.
     404% If the value can also be resolved as the @char *@, you might iterate the labels explicitly with the array iteration.
     405% \begin{cfa}[label=lst:range_functions_label_implicit]
     406% for ( char * ch; labels( Alphabet ) )
     407% \end{cfa}
Note: See TracChangeset for help on using the changeset viewer.