Changeset 8b1dc66 for doc


Ignore:
Timestamp:
Mar 5, 2019, 3:10:06 PM (3 years ago)
Author:
Aaron Moss <a3moss@…>
Branches:
aaron-thesis, arm-eh, cleanup-dtors, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr
Children:
3fad907
Parents:
6a787f8
Message:

thesis: second draft of ch.4

Location:
doc/theses/aaron_moss_PhD/phd
Files:
3 edited

Legend:

Unmodified
Added
Removed
  • doc/theses/aaron_moss_PhD/phd/resolution-heuristics.tex

    r6a787f8 r8b1dc66  
    1 \chapter{Resolution Heuristics}
     1\chapter{Resolution Algorithms}
    22\label{resolution-chap}
    33
     
    77The main task of the \CFACC{} type-checker is \emph{expression resolution}, determining which declarations the identifiers in each expression correspond to.
    88Resolution is a straightforward task in C, as no declarations share identifiers, but in \CFA{} the name overloading features discussed in Section~\ref{overloading-sec} generate multiple candidate declarations for each identifier.
    9 I refer to a given matching between identifiers and declarations in an expression as an \emph{interpretation}; an interpretation also includes information about polymorphic type bindings and implicit casts to support the \CFA{} features discussed in Sections~\ref{poly-func-sec} and~\ref{implicit-conv-sec}, each of which increase the proportion of feasible candidate interpretations.
    10 To choose between feasible interpretations, \CFA{} defines a \emph{conversion cost} to rank interpretations; the expression resolution problem is thus to find the unique minimal-cost interpretation for an expression, reporting an error if no such interpretation exists.
     9A given matching between identifiers and declarations in an expression is an \emph{interpretation}; an interpretation also includes information about polymorphic type bindings and implicit casts to support the \CFA{} features discussed in Sections~\ref{poly-func-sec} and~\ref{implicit-conv-sec}, each of which increase the number of valid candidate interpretations.
     10To choose among valid interpretations, a \emph{conversion cost} is used to rank interpretations.
     11Hence, the expression resolution problem is to find the unique minimal-cost interpretation for an expression, reporting an error if no such interpretation exists.
    1112
    1213\section{Expression Resolution}
     
    1718Briefly, \CFACC{} keeps a mapping from type variables to the concrete types they are bound to as an auxiliary data structure during expression resolution; Chapter~\ref{env-chap} describes this \emph{environment} data structure in more detail.
    1819A \emph{unification} algorithm is used to simultaneously check two types for equivalence with respect to the substitutions in an environment and update that environment.
    19 Essentially, unification recursively traverses the structure of both types, checking them for equivalence, and when it encounters a type variable it replaces it with the concrete type it is bound to; if the type variable has not yet been bound, the unification algorithm assigns the equivalent type as the bound type of the variable, after performing various consistency checks.
    20 Ditchfield\cite{Ditchfield92} and Bilson\cite{Bilson03} describe the semantics of \CFA{} unification in more detail.
     20Essentially, unification recursively traverses the structure of both types, checking them for equivalence, and when it encounters a type variable, it replaces it with the concrete type it is bound to; if the type variable has not yet been bound, the unification algorithm assigns the equivalent type as the bound type of the variable, after performing various consistency checks.
     21Ditchfield~\cite{Ditchfield92} and Bilson~\cite{Bilson03} describe the semantics of \CFA{} unification in more detail.
    2122
    2223\subsection{Conversion Cost} \label{conv-cost-sec}
     
    2829\begin{itemize}
    2930\item If either operand is a floating-point type, the common type is the size of the largest floating-point type. If either operand is !_Complex!, the common type is also !_Complex!.
    30 \item If both operands are of integral type, the common type has the same size\footnote{Technically, the C standard defines a notion of \emph{rank} in \cite[\S{}6.3.1.1]{C11}, a distinct value for each \lstinline{signed} and \lstinline{unsigned} pair; integral types of the same size thus may have distinct ranks. For instance, if \lstinline{int} and \lstinline{long} are the same size, \lstinline{long} will have greater rank. The standard-defined types are declared to have greater rank than any types of the same size added as compiler extensions.} as the larger type.
     31\item If both operands are of integral type, the common type has the same size\footnote{Technically, the C standard defines a notion of \emph{rank} in \cite[\S{}6.3.1.1]{C11}, a distinct value for each \lstinline{signed} and \lstinline{unsigned} pair; integral types of the same size thus may have distinct ranks. For instance, though \lstinline{int} and \lstinline{long} may have the same size, \lstinline{long} always has greater rank. The standard-defined types are declared to have greater rank than any types of the same size added as compiler extensions.} as the larger type.
    3132\item If the operands have opposite signedness, the common type is !signed! if the !signed! operand is strictly larger, or !unsigned! otherwise. If the operands have the same signedness, the common type shares it.
    3233\end{itemize}
    3334
    34 Beginning with the work of Bilson\cite{Bilson03}, \CFA{} defines a \emph{conversion cost} for each function call in a way that generalizes C's conversion rules.
     35Beginning with the work of Bilson~\cite{Bilson03}, \CFA{} defines a \emph{conversion cost} for each function call in a way that generalizes C's conversion rules.
    3536Loosely defined, the conversion cost counts the implicit conversions utilized by an interpretation.
    3637With more specificity, the cost is a lexicographically-ordered tuple, where each element corresponds to a particular kind of conversion.
     
    4142
    4243\begin{cfa}
    43 void f(char, long); $\C{// (1,0,1)}$
    44 void f(short, long); $\C{// (1,0,1)}$
    45 forall(otype T) void f(T, long); $\C{// (0,1,1)}$
    46 void f(long, long); $\C{// (0,0,2)}$
    47 void f(int, unsigned long); $\C{// (0,0,2)}$
    48 void f(int, long); $\C{// (0,0,1)}$
    49 \end{cfa}
    50 
    51 Note that safe and unsafe conversions are handled differently; \CFA{} counts distance of safe conversions (\eg{} !int! to !long! is cheaper than !int! to !unsigned long!), while only counting the number of unsafe conversions (\eg{} !int! to !char! and !int! to !short! both have unsafe cost 1, as in the first two declarations above).
    52 These costs are summed over the parameters in a call; in the example above, the cost of the two !int! to !long! conversions for the fourth declaration sum equal to the one !int! to !unsigned long! conversion in the fifth.
     44void f$\(_1\)$(char, long); $\C{// (1,0,1)}$
     45void f$\(_2\)$(short, long); $\C{// (1,0,1)}$
     46forall(otype T) void f$\(_3\)$(T, long); $\C{// (0,1,1)}$
     47void f$\(_4\)$(long, long); $\C{// (0,0,2)}$
     48void f$\(_5\)$(int, unsigned long); $\C{// (0,0,2)}$
     49void f$\(_6\)$(int, long); $\C{// (0,0,1)}$
     50\end{cfa}
     51
     52Note that safe and unsafe conversions are handled differently; \CFA{} counts distance of safe conversions (\eg{} !int! to !long! is cheaper than !int! to !unsigned long!), while only counting the number of unsafe conversions (\eg{} !int! to !char! and !int! to !short! both have unsafe cost 1, as in !f!$_1$ and !f!$_2$ above).
     53These costs are summed over the parameters in a call; in the example above, the cost of the two !int! to !long! conversions for !f!$_4$ sum equal to the one !int! to !unsigned long! conversion for !f!$_5$.
    5354
    5455\begin{figure}
     
    6869As part of adding reference types to \CFA{} (see Section~\ref{type-features-sec}), Schluntz added a new $reference$ element to the cost tuple, which counts the number of implicit reference-to-rvalue conversions performed so that candidate interpretations can be distinguished by how closely they match the nesting of reference types; since references are meant to act almost indistinguishably from lvalues, this $reference$ element is the least significant in the lexicographic comparison of cost tuples.
    6970
    70 I have also refined the \CFA{} cost model as part of this thesis work.
    71 Bilson's \CFA{} cost model includes the cost of polymorphic type bindings from a function's type assertions in the $poly$ element of the cost tuple; this has the effect of making more-constrained functions more expensive than less-constrained functions, as in the following example:
    72 
    73 \begin{cfa}
    74 forall(dtype T | { T& ++?(T&); }) T& advance(T&, int);
    75 forall(dtype T | { T& ++?(T&); T& ?+=?(T&, int)}) T& advance(T&, int);
     71I also refined the \CFA{} cost model as part of this thesis work.
     72Bilson's \CFA{} cost model includes the cost of polymorphic type bindings from a function's type assertions in the $poly$ element of the cost tuple; this has the effect of making more-constrained functions more expensive than less-constrained functions, as in the following example, based on differing iterator types:
     73
     74\begin{cfa}
     75forall(dtype T | { T& ++?(T&); }) T& advance$\(1\)$(T& i, int n);
     76forall(dtype T | { T& ++?(T&); T& ?+=?(T&, int)}) T& advance$\(2\)$(T& i, int n);
    7677\end{cfa}
    7778
    7879In resolving a call to !advance!, the binding to the !T&! parameter in the assertions is added to the $poly$ cost in Bilson's model.
    79 However, type assertions actually make a function \emph{less} polymorphic, and as such functions with more type assertions should be preferred in type resolution. 
    80 In the example above, the more-constrained second function can be implemented more efficiently, and as such should be chosen whenever its added constraint can be satisfied.
    81 As such, a $specialization$ element is now included in the \CFA{} cost tuple, the values of which are always negative.
     80However, type assertions actually make a function \emph{less} polymorphic, and as such functions with more type assertions should be preferred in type resolution.
     81In the example above, if the meaning of !advance! is ``increment !i! !n! times'', !advance!$_1$ requires an !n!-iteration loop, while !advance!$_2$ can be implemented more efficiently with the !?+=?! operator; as such, !advance!$_2$ should be chosen over !advance!$_1$ whenever its added constraint can be satisfied.
     82Accordingly, a $specialization$ element is now included in the \CFA{} cost tuple, the values of which are always negative.
    8283Each type assertion subtracts 1 from $specialization$, so that more-constrained functions cost less, and thus are chosen over less-constrained functions, all else being equal.
    8384A more sophisticated design would define a partial order over sets of type assertions by set inclusion (\ie{} one function would only cost less than another if it had a strict superset of assertions,  rather than just more total assertions), but I did not judge the added complexity of computing and testing this order to be worth the gain in specificity.
     
    8788
    8889\begin{cfa}
    89 forall(otype T, otype U) void f(T, U);  $\C[3.25in]{// polymorphic}$
    90 forall(otype T) void f(T, T);  $\C[3.25in]{// less polymorphic}$
    91 forall(otype T) void f(T, int);  $\C[3.25in]{// even less polymorphic}$
    92 forall(otype T) void f(T*, int); $\C[3.25in]{// least polymorphic}$
     90forall(otype T, otype U) void f$\(_1\)$(T, U);  $\C[3.25in]{// polymorphic}$
     91forall(otype T) void f$\(_2\)$(T, T);  $\C[3.25in]{// less polymorphic}$
     92forall(otype T) void f$\(_3\)$(T, int);  $\C[3.25in]{// even less polymorphic}$
     93forall(otype T) void f$\(_4\)$(T*, int); $\C[3.25in]{// least polymorphic}$
    9394\end{cfa}
    9495
    9596The new cost model accounts for the fact that functions with more polymorphic variables are less constrained by introducing a $var$ cost element that counts the number of type variables on a candidate function.
    96 In the example above, the first !f! has $var = 2$, while the remainder have $var = 1$.
    97 The new cost model also accounts for a nuance un-handled by Ditchfield or Bilson, in that it makes the more specific fourth function above cheaper than the more generic third function.
    98 The fourth function is presumably somewhat optimized for handling pointers, but the prior \CFA{} cost model could not account for the more specific binding, as it simply counted the number of polymorphic unifications.
     97In the example above, !f!$_1$ has $var = 2$, while the others have $var = 1$.
     98The new cost model also accounts for a nuance unhandled by Ditchfield or Bilson, in that it makes the more specific !f!$_4$ cheaper than the more generic !f!$_3$; !f!$_4$ is presumably somewhat optimized for handling pointers, but the prior \CFA{} cost model could not account for the more specific binding, as it simply counted the number of polymorphic unifications.
    9999
    100100In the modified model, each level of constraint on a polymorphic type in the parameter list results in a decrement of the $specialization$ cost element, which is shared with the count of assertions due to their common nature as constraints on polymorphic type bindings.
     
    104104For multi-argument generic types, the least-specialized polymorphic parameter sets the specialization cost, \eg{} the specialization cost of !pair(T, S*)! is $-1$ (from !T!) rather than $-2$ (from !S!).
    105105Specialization cost is not counted on the return type list; since $specialization$ is a property of the function declaration, a lower specialization cost prioritizes one declaration over another.
    106 User programmers can choose between functions with varying parameter lists by adjusting the arguments, but the same is not true of varying return types, so the return types are omitted from the $specialization$ element.
     106User programmers can choose between functions with varying parameter lists by adjusting the arguments, but the same is not true in general of varying return types\footnote{In particular, as described in Section~\ref{expr-cost-sec}, cast expressions take the cheapest valid and convertable interpretation of the argument expression, and expressions are resolved as a cast to \lstinline{void}. As a result of this, including return types in the $specialization$ cost means that a function with return type \lstinline{T*} for some polymorphic type \lstinline{T} would \emph{always} be chosen over a function with the same parameter types returning \lstinline{void}, even for \lstinline{void} contexts, an unacceptably counter-intuitive result.}, so the return types are omitted from the $specialization$ element.
    107107Since both $vars$ and $specialization$ are properties of the declaration rather than any particular interpretation, they are prioritized less than the interpretation-specific conversion costs from Bilson's original 3-tuple.
    108108
     
    112112However, Bilson's design results in inconsistent and somewhat surprising costs, with conversion to the next-larger same-sign type generally (but not always) double the cost of conversion to the !unsigned! type of the same size.
    113113In the redesign, for consistency with the approach of the usual arithmetic conversions, which select a common type primarily based on size, but secondarily on sign, arcs in the new graph are annotated with whether they represent a sign change, and such sign changes are summed in a new $sign$ cost element that lexicographically succeeds $safe$.
    114 This means that sign conversions are approximately the same cost as widening conversions, but slightly more expensive (as opposed to less expensive in Bilson's graph).
     114This means that sign conversions are approximately the same cost as widening conversions, but slightly more expensive (as opposed to less expensive in Bilson's graph), so maintaining the same signedness is consistently favoured.
    115115
    116116With these modifications, the current \CFA{} cost tuple is as follows:
     
    125125Nonetheless, some salient details are repeated here for the sake of completeness.
    126126
    127 On a theoretical level, the resolver algorithm treats most expressions as if they were function calls.
     127On a theoretical level, the resolver treats most expressions as if they were function calls.
    128128Operators in \CFA{} (both those existing in C and added features like constructors) are all modelled as function calls.
    129 In terms of the core argument-parameter matching algorithm, the overloaded variables of \CFA{} are not handled differently from zero-argument function calls, aside from a different pool of candidate declarations and setup for different code generation.
     129In terms of the core argument-parameter matching algorithm, overloaded variables are handled the same as zero-argument function calls, aside from a different pool of candidate declarations and setup for different code generation.
    130130Similarly, an aggregate member expression !a.m! can be modelled as a unary function !m! that takes one argument of the aggregate type.
    131 Literals do not require sophisticated resolution, as the syntactic form of each implies their result types (!42! is !int!, !"hello"! is !char*!, \etc{}), though struct literals require resolution of the implied constructor call.
    132 
    133 Since most expressions can be treated as function calls, nested function calls are the primary component of expression resolution problem instances.
    134 Each function call has an \emph{identifier} which must match the name of the corresponding declaration, and a possibly-empty list of \emph{arguments}.
     131Literals do not require sophisticated resolution, as in C the syntactic form of each implies their result types (!42! is !int!, !"hello"! is !char*!, \etc{}), though struct literals (\eg{} !(S){ 1, 2, 3 }! for some struct !S!) require resolution of the implied constructor call.
     132
     133Since most expressions can be treated as function calls, nested function calls are the primary component of complexity in expression resolution.
     134Each function call has an \emph{identifier} that must match the name of the corresponding declaration, and a possibly-empty list of \emph{arguments}.
    135135These arguments may be function call expressions themselves, producing a tree of function-call expressions to resolve, where the leaf expressions are generally nullary functions, variable expressions, or literals.
    136136A single instance of expression resolution consists of matching declarations to all the identifiers in the expression tree of a top-level expression, along with inserting any conversions and satisfying all assertions necessary for that matching.
    137137The cost of a function-call expression is the sum of the conversion costs of each argument type to the corresponding parameter and the total cost of each subexpression, recursively calculated.
    138 \CFA{} expression resolution must produce either the unique lowest-cost interpretation of the top-level expression, or an appropriate error message if none such exists.
     138\CFA{} expression resolution must produce either the unique lowest-cost interpretation of the top-level expression, or an appropriate error message if none exists.
    139139The cost model of \CFA{} precludes a greedy bottom-up resolution pass, as constraints and costs introduced by calls higher in the expression tree can change the interpretation of those lower in the tree, as in the following example:
    140140
    141141\begin{cfa}
    142142void f(int);
    143 double g(int); $\C[4.5in]{// g1}$
    144 int g(double); $\C[4.5in]{// g2}$
     143double g$\(_1\)$(int);
     144int g$\(_2\)$(long);
    145145
    146146f( g(42) );
    147147\end{cfa}
    148148
    149 !g1! is the cheapest interpretation of !g(42)!, with cost $(0,0,0,0,0,0)$ since the argument type is an exact match, but to downcast the return type of !g1! to an !int! suitable for !f! requires an unsafe conversion for a total cost of $(1,0,0,0,0,0)$.
    150 If !g2! is chosen, on the other hand, there is a safe upcast from the !int! type of !42! to !double!, but no cast on the return of !g!, for a total cost of $(0,0,1,0,0,0)$; as this is cheaper, !g2! is chosen.
    151 Due to this design, all feasible interpretations of subexpressions must in general be propagated to the top of the expression tree before any can be eliminated, a lazy form of expression resolution, as opposed to the eager expression resolution allowed by C, where each expression can be resolved given only the resolution of its immediate subexpressions.
    152 
    153 If there are no feasible interpretations of the top-level expression, expression resolution fails and must produce an appropriate error message.
    154 If any subexpression has no feasible interpretations, the process can be short-circuited and the error produced at that time.
    155 If there are multiple feasible interpretations of a top-level expression, ties are broken based on the conversion cost, calculated as above.
    156 If there are multiple minimal-cost feasible interpretations of a top-level expression, that expression is said to be \emph{ambiguous}, and an error must be produced.
     149Considered independently, !g!$_1$!(42)! is the cheapest interpretation of !g(42)!, with cost $(0,0,0,0,0,0)$ since the argument type is an exact match.
     150However, in context, an unsafe conversion is required to downcast the return type of !g!$_1$ to an !int! suitable for !f!, for a total cost of $(1,0,0,0,0,0)$ for !f( g!$_1$!(42) )!.
     151If !g!$_2$ is chosen, on the other hand, there is a safe upcast from the !int! type of !42! to !long!, but no cast on the return of !g!$_2$, for a total cost of $(0,0,1,0,0,0)$ for !f( g!$_2$!(42) )!; as this is cheaper, !g!$_2$ is chosen.
     152Due to this design, all valid interpretations of subexpressions must in general be propagated to the top of the expression tree before any can be eliminated, a lazy form of expression resolution, as opposed to the eager expression resolution allowed by C, where each expression can be resolved given only the resolution of its immediate subexpressions.
     153
     154If there are no valid interpretations of the top-level expression, expression resolution fails and must produce an appropriate error message.
     155If any subexpression has no valid interpretations, the process can be short-circuited and the error produced at that time.
     156If there are multiple valid interpretations of a top-level expression, ties are broken based on the conversion cost, calculated as above.
     157If there are multiple minimal-cost valid interpretations of a top-level expression, that expression is said to be \emph{ambiguous}, and an error must be produced.
    157158Multiple minimal-cost interpretations of a subexpression do not necessarily imply an ambiguous top-level expression, however, as the subexpression interpretations may be disambiguated based on their return type or by selecting a more-expensive interpretation of that subexpression to reduce the overall expression cost, as in the example above.
    158159
     
    160161An interpretation can only be selected if all the type assertions in the !forall! clause on the corresponding declaration can be satisfied with a unique minimal-cost set of satisfying declarations.
    161162Type assertion satisfaction is tested by performing type unification on the type of the assertion and the type of the declaration satisfying the assertion.
    162 That is, a declaration which satisfies a type assertion must have the same name and type as the assertion after applying the substitutions in the type environment.
     163That is, a declaration that satisfies a type assertion must have the same name and type as the assertion after applying the substitutions in the type environment.
    163164Assertion-satisfying declarations may be polymorphic functions with assertions of their own that must be satisfied recursively.
    164165This recursive assertion satisfaction has the potential to introduce infinite loops into the type resolution algorithm, a situation which \CFACC{} avoids by imposing a hard limit on the depth of recursive assertion satisfaction (currently 4); this approach is also taken by \CC{} to prevent infinite recursion in template expansion, and has proven to be effective and not unduly restrictive of the expressive power of \CFA{}.
     
    167168In C, cast expressions can serve two purposes, \emph{conversion} (\eg{} !(int)3.14!), which semantically converts a value to another value in a different type with a different bit representation, or \emph{coercion} (\eg{} !void* p; (int*)p;!), which assigns a different type to the same bit value.
    168169C provides a set of built-in conversions and coercions, and user programmers are able to force a coercion over a conversion if desired by casting pointers.
    169 The overloading features in \CFA{} introduce a third cast semantic, \emph{ascription} (\eg{} !int x; double x; (int)x;!), which selects the overload which most-closely matches the cast type.
     170The overloading features in \CFA{} introduce a third cast semantic, \emph{ascription} (\eg{} !int x; double x; (int)x;!), which selects the overload that most-closely matches the cast type.
    170171However, since ascription does not exist in C due to the lack of overloadable identifiers, if a cast argument has an unambiguous interpretation as a conversion argument then it must be interpreted as such, even if the ascription interpretation would have a lower overall cost.
    171172This is demonstrated in the following example, adapted from the C standard library:
     
    178179In C semantics, this example is unambiguously upcasting !32! to !unsigned long long!, performing the shift, then downcasting the result to !unsigned!, at total cost $(1,0,3,1,0,0,0)$.
    179180If ascription were allowed to be a first-class interpretation of a cast expression, it would be cheaper to select the !unsigned! interpretation of !?>>?! by downcasting !x! to !unsigned! and upcasting !32! to !unsigned!, at a total cost of $(1,0,1,1,0,0,0)$.
    180 However, this break from C semantics introduces a backwards compatibility break, so to maintain C compatibility the \CFA{} resolver selects the lowest-cost interpretation of the cast argument for which a conversion or coercion to the target type exists (upcasting to !unsigned long long! in the example above, due to the lack of unsafe downcasts), using the cost of the conversion itself only as a tie-breaker.
     181However, this break from C semantics is not backwards compatibile, so to maintain C compatibility, the \CFA{} resolver selects the lowest-cost interpretation of the cast argument for which a conversion or coercion to the target type exists (upcasting to !unsigned long long! in the example above, due to the lack of unsafe downcasts), using the cost of the conversion itself only as a tie-breaker.
    181182For example, in !int x; double x; (int)x;!, both declarations have zero-cost interpretations as !x!, but the !int x! interpretation is cheaper to cast to !int!, and is thus selected.
    182183Thus, in contrast to the lazy resolution of nested function-call expressions discussed above, where final interpretations for each subexpression are not chosen until the top-level expression is reached, cast expressions introduce eager resolution of their argument subexpressions, as if that argument was itself a top-level expression.
     
    187188While this theoretical result is daunting, its implications can be mitigated in practice.
    188189\CFACC{} does not solve one instance of expression resolution in the course of compiling a program, but rather thousands; therefore, if the worst case of expression resolution is sufficiently rare, worst-case instances can be amortized by more-common easy instances for an acceptable overall runtime, as shown in Section~\ref{instance-expr-sec}.
    189 Secondly, while a programmer \emph{can} deliberately generate a program designed for inefficient compilation\footnote{see for instance \cite{Haberman16}, which generates arbitrarily large \CC{} template expansions from a fixed-size source file.}, source code tends to follow common patterns.
     190Secondly, while a programmer \emph{can} deliberately generate a program designed for inefficient compilation\footnote{See for instance \cite{Haberman16}, which generates arbitrarily large \CC{} template expansions from a fixed-size source file.}, source code tends to follow common patterns.
    190191Programmers generally do not want to run the full compiler algorithm in their heads, and as such keep mental shortcuts in the form of language idioms.
    191192If the compiler can be tuned to handle idiomatic code more efficiently, then the reduction in runtime for idiomatic (but otherwise difficult) resolution instances can make a significant difference in total compiler runtime.
     
    193194\subsection{Worst-case Analysis} \label{resn-analysis-sec}
    194195
    195 Expression resolution has a number of components which contribute to its runtime, including argument-parameter type unification, recursive traversal of the expression tree, and satisfaction of type assertions.
     196Expression resolution has a number of components that contribute to its runtime, including argument-parameter type unification, recursive traversal of the expression tree, and satisfaction of type assertions.
    196197
    197198If the bound type for a type variable can be looked up or mutated in constant time (as asserted in Table~\ref{env-bounds-table}), then the runtime of the unification algorithm to match an argument to a parameter is usually proportional to the complexity of the types being unified.
     
    206207To resolve the outermost !wrap!, the resolver must check that !pair(pair(int))! unifies with itself, but at three levels of nesting, !pair(pair(int))! is more complex than either !pair(T)! or !T!, the types in the declaration of !wrap!.
    207208Accordingly, the cost of a single argument-parameter unification is $O(d)$, where $d$ is the depth of the expression tree, and the cost of argument-parameter unification for a single candidate for a given function call expression is $O(pd)$, where $p$ is the number of parameters.
    208 This does not, however, account for the higher costs of unifying two polymorphic type variables, which may in the worst case result in a recursive unification of all type variables in the expression (as discussed in Chapter~\ref{env-chap}).
     209This bound does not, however, account for the higher costs of unifying two polymorphic type variables, which may in the worst case result in a recursive unification of all type variables in the expression (as discussed in Chapter~\ref{env-chap}).
    209210Since this recursive unification reduces the number of type variables, it may happen at most once, for an added $O(p^d)$ cost for a top-level expression with $O(p^d)$ type variables.
    210211
    211212Implicit conversions are also checked in argument-parameter matching, but the cost of checking for the existence of an implicit conversion is again proportional to the complexity of the type, $O(d)$.
    212 Polymorphism also introduces a potential expense here; for a monomorphic function there is only one potential implicit conversion from argument type to parameter type, while if the parameter type is an unbound polymorphic type variable then any implicit conversion from the argument type could potentially be considered a valid binding for that type variable.
     213Polymorphism also introduces a potential expense here; for a monomorphic function there is only one potential implicit conversion from argument type to parameter type, while if the parameter type is an unbound polymorphic type-variable then any implicit conversion from the argument type could potentially be considered a valid binding for that type variable.
    213214\CFA{}, however, requires exact matches for the bound type of polymorphic parameters, removing this problem.
    214215An interesting question for future work is whether loosening this requirement incurs a significant compiler runtime cost in practice; preliminary results from the prototype system described in Chapter~\ref{expr-chap} suggest it does not.
    215216
    216217Considering the recursive traversal of the expression tree, polymorphism again greatly expands the worst-case runtime.
    217 Letting $i$ be the number of candidate declarations for each function call, if all of these candidates are monomorphic then there are no more than $i$ unambiguous interpretations of the subexpression rooted at that function call.
     218Let $i$ be the number of candidate declarations for each function call; if all of these candidates are monomorphic, then there are no more than $i$ unambiguous interpretations of the subexpression rooted at that function call.
    218219Ambiguous minimal-cost subexpression interpretations may also be collapsed into a single \emph{ambiguous interpretation}, as the presence of such a subexpression interpretation in the final solution is an error condition.
    219 One safe pruning operation during expression resolution is to discard all subexpression interpretations with greater-than-minimal cost for their return type, as such interpretations will never beat the minimal-cost interpretation with their return type for the overall optimal solution.
    220 As such, with no polymorphism each declaration will generate no more than one minimal-cost interpretation with its return type, so the number of possible subexpression interpretations is $O(i)$ (note that in C, which lacks overloading, $i \leq 1$).
     220One safe pruning operation during expression resolution is to discard all subexpression interpretations with greater-than-minimal cost for their return type, as such interpretations cannot beat the minimal-cost interpretation with their return type for the overall optimal solution.
     221As such, with no polymorphism, each declaration can generate no more than one minimal-cost interpretation with its return type, so the number of possible subexpression interpretations is $O(i)$ (note that in C, which lacks overloading, $i \leq 1$).
    221222With polymorphism, however, a single declaration (like !wrap! above) can have many concrete return types after type variable substitution, and could in principle have a different concrete return type for each combination of argument interpretations.
    222223Calculated recursively, the bound on the total number of candidate interpretations is $O(i^{p^d})$, each with a distinct type.
     
    226227Since the size of the expression is $O(p^d)$, letting $n = p^d$ this simplifies to $O(i^n \cdot n^2)$
    227228
    228 This already high bound does not yet account for the cost of assertion satisfaction, however.
     229This bound does not yet account for the cost of assertion satisfaction, however.
    229230\CFA{} uses type unification on the assertion type and the candidate declaration type to test assertion satisfaction; this unification calculation has cost proportional to the complexity of the declaration type after substitution of bound type variables; as discussed above, this cost is $O(d)$.
    230231If there are $O(a)$ type assertions on each declaration, there are $O(i)$ candidates to satisfy each assertion, for a total of $O(ai)$ candidates to check for each declaration.
     
    234235
    235236It is clear that assertion satisfaction costs can be very large, and in fact a method for heuristically reducing these costs is one of the key contributions of this thesis, but it should be noted that the worst-case analysis is a particularly poor match for actual code in the case of assertions.
    236 It is reasonable to assume that most code compiles without errors, as in an actively-developed project the code will be compiled many times, generally with relatively few new errors introduced between compiles.
     237It is reasonable to assume that most code compiles without errors, as an actively-developed project is compiled many times, generally with relatively few new errors introduced between compiles.
    237238However, the worst-case bound for assertion satisfaction is based on recursive assertion satisfaction calls exceeding the limit, which is an error case.
    238 In practice, then, the depth of recursive assertion satisfaction should be bounded by a small constant for error-free code, which will account for the vast majority of problem instances.
    239 
    240 Similarly, uses of polymorphism like those that generate the $O(d)$ bound on unification or the $O(i^{p^d})$ bound on number of candidates are particular enough to be rare, but not completely absent.
     239In practice, then, the depth of recursive assertion satisfaction should be bounded by a small constant for error-free code, which accounts for the vast majority of problem instances.
     240
     241Similarly, uses of polymorphism like those that generate the $O(d)$ bound on unification or the $O(i^{p^d})$ bound on number of candidates are rare, but not completely absent.
    241242This analysis points to type unification, argument-parameter matching, and assertion satisfaction as potentially costly elements of expression resolution, and thus profitable targets for algorithmic investigation.
    242243Type unification is discussed in Chapter~\ref{env-chap}, while the other aspects are covered below.
     
    251252\begin{figure}[h]
    252253        \centering
    253         \begin{subfigure}[h]{3.5in}
     254        \begin{subfigure}[h]{3in}
    254255        \begin{cfa}
    255         int *p; $\C[1in]{// pi}$
    256         char *p; $\C[1in]{// pc}$
     256        char *p$\(_1\)$;
     257        int *p$\(_2\)$;
    257258       
    258         double *f(int*, int*); $\C[1in]{// fd}$
    259         char *f(char*, int*); $\C[1in]{// fc}$
     259        char *f$\(_1\)$(char*, int*);
     260        double *f$\(_2\)$(int*, int*);
    260261       
    261         f( f( p, p ), p );
     262        f$\(_A\)$( f$\(_B\)$( p$\(_A\)$, p$\(_B\)$ ), p$\(_C\)$ );
    262263        \end{cfa}
    263         \end{subfigure}~\begin{subfigure}[h]{2in}
     264        \end{subfigure}~\begin{subfigure}[h]{2.5in}
    264265        \includegraphics{figures/resolution-dag}
    265266        \end{subfigure}
    266         \caption[Resolution DAG for a simple expression.]{Resolution DAG for a simple expression. Functions that do not have a valid argument matching are covered with an \textsf{X}.} \label{res-dag-fig}
     267        \caption[Resolution DAG for a simple expression.]{Resolution DAG for a simple expression, annotated with explanatory subscripts. Functions that do not have a valid argument matching are covered with an \textsf{X}.} \label{res-dag-fig}
    267268\end{figure}
    268269
    269 Note that some interpretations may be part of more than one super-interpretation, as with the second $pi$ in the bottom row, while some valid subexpression interpretations, like $fd$ in the middle row, are not used in any interpretation of their superexpression.
     270Note that some interpretations may be part of more than one super-interpretation, as with the !p!$_2$ interpretation of !p!$_B$, while some valid subexpression interpretations, like the !f!$_2$ interpretation of !f!$_B$, are not used in any interpretation of their superexpression.
    270271
    271272Overload resolution was first seriously considered in the development of compilers for the Ada programming language, with different algorithms making various numbers of passes over the expression DAG, these passes being either top-down or bottom-up.
     
    281282Cormack's algorithm can be modified to request argument interpretations of \emph{any} type when provided an unbound parameter type, but this eliminates any pruning gains that could be provided by the algorithm.
    282283
    283 Ganzinger and Ripken~\cite{Ganzinger80} propose an approach (later refined by Pennello~\etal{}~\cite{Pennello80}) that uses a top-down filtering pass followed by a bottom-up filtering pass to reduce the number of candidate interpretations; they prove that for the Ada programming language a small number of such iterations is sufficient to converge to a solution for the overload resolution problem.
     284Ganzinger and Ripken~\cite{Ganzinger80} propose an approach (later refined by Pennello~\etal{}~\cite{Pennello80}) that uses a top-down filtering pass followed by a bottom-up filtering pass to reduce the number of candidate interpretations; they prove that a small number of such iterations is sufficient to converge to a solution for the overload resolution problem in the Ada programming language.
    284285Persch~\etal{}~\cite{PW:overload} developed a similar two-pass approach where the bottom-up pass is followed by the top-down pass.
    285286These approaches differ from Baker, Bilson, or Cormack in that they take multiple passes over the expression tree to yield a solution by applying filtering heuristics to all expression nodes.
     
    309310        List(Declaration) candidates = decls_matching( a.name );
    310311        List(List(Declaration)) alternatives = {}
    311         for ( Declaration c; candidates ) {
     312        for ( Declaration c : candidates ) {
    312313                Environment newEnv = env;
    313314                if ( unify( adjType, c.type, newEnv ) ) {
     
    323324One shortcoming of this approach is that if an earlier assertion has multiple valid candidates, later assertions may be checked many times due to the structure of the recursion.
    324325Satisfying declarations for assertions are not completely independent of each other, since the unification process may produce new type bindings in the environment, and these bindings may not be compatible between independently-checked assertions.
    325 Nonetheless, with the environment data structures discussed in Chapter~\ref{env-chap}, I have found it more efficient to produce a list of possibly-satisfying declarations for each assertion once, then check their respective environments for mutual compatibility when combining lists of assertions together.
     326Nonetheless, with the environment data-structures discussed in Chapter~\ref{env-chap}, I have found it more efficient to produce a list of possibly-satisfying declarations for each assertion once, then check their respective environments for mutual compatibility when combining lists of assertions together.
    326327
    327328Another improvement I have made to the assertion resolution scheme in \CFACC{} is to consider all assertion-satisfying combinations at one level of recursion before attempting to recursively satisfy any !newNeed! assertions.
    328329Monomorphic functions are cheaper than polymorphic functions for assertion satisfaction because they are an exact match for the environment-adjusted assertion type, whereas polymorphic functions require an extra type binding.
    329 Thus, if there is any mutually-compatible set of assertion-satisfying declarations which does not include any polymorphic functions (and associated recursive assertions), then the optimal set of assertions will not require any recursive !newNeed! satisfaction.
    330 More generally, due to the \CFA{} cost model changes I introduced in Section~\ref{conv-cost-sec}, the conversion cost of an assertion-satisfying declaration is no longer dependent on the conversion cost of its own assertions.
     330Thus, if there is any mutually-compatible set of assertion-satisfying declarations that does not include any polymorphic functions (and associated recursive assertions), then the optimal set of assertions does not require any recursive !newNeed! satisfaction.
     331More generally, due to the \CFA{} cost-model changes I introduced in Section~\ref{conv-cost-sec}, the conversion cost of an assertion-satisfying declaration is no longer dependent on the conversion cost of its own assertions.
    331332As such, all sets of mutually-compatible assertion-satisfying declarations can be sorted by their summed conversion costs, and the recursive !newNeed! satisfaction pass is required only to check the feasibility of the minimal-cost sets.
    332 This significantly reduces wasted work relative to Bilson's approach, as well as avoiding generation of deeply-recursive assertion sets for a significant performance improvement relative to Bilson's \CFACC{}.
     333This optimization significantly reduces wasted work relative to Bilson's approach, as well as avoiding generation of deeply-recursive assertion sets, for a significant performance improvement relative to Bilson's \CFACC{}.
    333334
    334335Making the conversion cost of an interpretation independent of the cost of satisfying its assertions has further benefits.
    335 Bilson's algorithm checks assertions for all subexpression interpretations immediately, including those which are not ultimately used; I have developed a \emph{deferred} variant of assertion checking which waits until a top-level interpretation has been generated to check any assertions.
     336Bilson's algorithm checks assertions for all subexpression interpretations immediately, including those that are not ultimately used; I have developed a \emph{deferred} variant of assertion checking that waits until a top-level interpretation has been generated to check any assertions.
    336337If the assertions of the minimal-cost top-level interpretation cannot be satisfied then the next-most-minimal-cost interpretation's assertions are checked, and so forth until a minimal-cost satisfiable interpretation (or ambiguous set thereof) is found, or no top-level interpretations are found to have satisfiable assertions.
    337 In the common case where the code actually does compile this saves the work of checking assertions for ultimately-rejected interpretations, though it does rule out some pruning opportunities for subinterpretations with unsatisfiable assertions or which are more expensive than a minimal-cost polymorphic function with the same return type.
     338In the common case where the code actually does compile, this saves the work of checking assertions for ultimately-rejected interpretations, though it does rule out some pruning opportunities for subinterpretations with unsatisfiable assertions or which are more expensive than a minimal-cost polymorphic function with the same return type.
    338339The experimental results in Chapter~\ref{expr-chap} indicate that this is a worthwhile trade-off.
    339340
     
    346347
    347348The first thing that makes this expression so difficult is that it is 23 levels deep; Section~\ref{resn-analysis-sec} indicates that the worst-case bounds on expression resolution are exponential in expression depth.
    348 Secondly, the !?|?! operator is significantly overloaded in \CFA{} --- there are 74 such operators in the \CFA{} standard library, and while 9 are arithmetic operators inherited from C, the rest are polymorphic I/O operators that look something like this:
     349Secondly, the !?|?! operator is significantly overloaded in \CFA{} --- there are 74 such operators in the \CFA{} standard library, and while 9 are arithmetic operators inherited from C, the rest are polymorphic I/O operators that look similar to:
    349350
    350351\begin{cfa}
     
    353354\end{cfa}
    354355
    355 Note that !ostream! is a trait with 25 type assertions, and that the output operators for the other arithmetic types are also feasible for the !int!-type parameters due to implicit conversions.
     356Note that !ostream! is a trait with 25 type assertions, and that the output operators for the other arithmetic types are also valid for the !int!-type parameters due to implicit conversions.
    356357On this instance, deferred assertion satisfaction saves wasted work checking assertions on the wrong output operators, but does nothing about the 23 repeated checks of the 25 assertions to determine that !ofstream! (the type of !sout!) satisfies !ostream!.
    357358
    358359To solve this problem, I have developed a \emph{cached} variant of assertion checking.
    359 During the course of checking the assertions of a single top-level expression, I cache the results of each assertion checked.
     360During the course of checking the assertions of a single top-level expression, the results are cached for each assertion checked.
    360361The search key for this cache is the assertion declaration with its type variables substituted according to the type environment to distinguish satisfaction of the same assertion for different types.
    361 This adjusted assertion declaration is then run through the \CFA{} name mangling algorithm to produce an equivalent string-type key.
     362This adjusted assertion declaration is then run through the \CFA{} name-mangling algorithm to produce an equivalent string-type key.
    362363
    363364The assertion satisfaction aspect of \CFA{} expression resolution bears some similarity to satisfiability problems from logic, and as such other languages with similar trait and assertion mechanisms make use of logic-program solvers in their compilers.
    364365For instance, Matsakis~\cite{Matsakis17} and the Rust team have developed a PROLOG-based engine to check satisfaction of Rust traits.
    365 The combination of the assertion satisfaction elements of the problem with the conversion cost model of \CFA{} makes this logic-solver approach difficult to apply in \CFACC{}, however.
    366 Expressing assertion resolution as a satisfiability problem ignores the cost optimization aspect, which is necessary to decide between what are often many possible satisfying assignments of declarations to assertions.
     366The combination of the assertion satisfaction elements of the problem with the conversion-cost model of \CFA{} makes this logic-solver approach difficult to apply in \CFACC{}, however.
     367Expressing assertion resolution as a satisfiability problem ignores the cost optimization aspect, which is necessary to decide among what are often many possible satisfying assignments of declarations to assertions.
    367368On the other hand, the deeply-recursive nature of the satisfiability problem makes it difficult to adapt to optimizing solver approaches such as linear programming.
    368369To maintain a well-defined programming language, any optimization algorithm used must provide an exact (rather than approximate) solution; this constraint also rules out a whole class of approximately-optimal generalized solvers.
     
    372373
    373374As the results in Chapter~\ref{expr-chap} show, the algorithmic approaches I have developed for \CFA{} expression resolution are sufficient to build a practically-performant \CFA{} compiler.
    374 This work may also be of use to other compiler construction projects, notably to members of the \CC{} community as they implement the new Concepts \cite{C++Concepts} standard, which includes type assertions similar to those used in \CFA{}, as well as a C-derived implicit conversion system.
     375This work may also be of use to other compiler construction projects, notably to members of the \CC{} community as they implement the new Concepts \cite{C++Concepts} standard, which includes type assertions similar to those used in \CFA{}, as well as the C-derived implicit conversion system already present in \CC{}.
    375376
    376377I have experimented with using expression resolution rather than type unification to check assertion satisfaction; this variant of the expression resolution problem should be investigated further in future work.
     
    378379Anecdotally, this flexibility matches user-programmer expectations better, as small type differences (\eg{} the presence or absence of a reference type, or the usual conversion from !int! to !long!) no longer break assertion satisfaction.
    379380Practically, the resolver prototype discussed in Chapter~\ref{expr-chap} uses this model of assertion satisfaction, with no apparent deficit in performance; the generated expressions that are resolved to satisfy the assertions are easier than the general case because they never have nested subexpressions, which eliminates much of the theoretical differences between unification and resolution.
    380 The main challenge to implement this approach in \CFACC{} would be applying the implicit conversions generated by the resolution process in the code-generation for the thunk functions that \CFACC{} uses to pass type assertions to their requesting functions with the proper signatures.
     381The main challenge to implement this approach in \CFACC{} is applying the implicit conversions generated by the resolution process in the code-generation for the thunk functions that \CFACC{} uses to pass type assertions to their requesting functions with the proper signatures.
    381382
    382383Though performance of the existing algorithms is promising, some further optimizations do present themselves.
    383 The refined cost model discussed in Section~\ref{conv-cost-sec} is more expressive, but also requires more than twice as many fields; it may be fruitful to investigate more tightly-packed in-memory representations of the cost-tuple, as well as comparison operations that require fewer instructions than a full lexicographic comparison.
     384The refined cost model discussed in Section~\ref{conv-cost-sec} is more expressive, but requires more than twice as many fields; it may be fruitful to investigate more tightly-packed in-memory representations of the cost-tuple, as well as comparison operations that require fewer instructions than a full lexicographic comparison.
    384385Integer or vector operations on a more-packed representation may prove effective, though dealing with the negative-valued $specialization$ field may require some effort.
    385386
     
    388389While the checks for mutual compatibility are naturally more serial, there may be some benefit to parallel resolution of the subproblem instances.
    389390
    390 The resolver prototype built for this project and described in Chapter~\ref{expr-chap} would be a suitable vehicle for many of these further experiments,and thus a technical contribution of continuing utility.
     391The resolver prototype built for this project and described in Chapter~\ref{expr-chap} would be a suitable vehicle for many of these further experiments, and thus a technical contribution of continuing utility.
Note: See TracChangeset for help on using the changeset viewer.