Changes in / [4bf3b2b:891c3e3]
- Location:
- src
- Files:
-
- 17 edited
Legend:
- Unmodified
- Added
- Removed
-
src/CodeGen/GenType.cc
r4bf3b2b r891c3e3 26 26 27 27 namespace CodeGen { 28 class GenType : public Visitor { 29 public: 28 struct GenType : public WithVisitorRef<GenType>, public WithShortCircuiting { 30 29 GenType( const std::string &typeString, bool pretty = false, bool genC = false, bool lineMarks = false ); 31 30 std::string get_typeString() const { return typeString; } 32 31 void set_typeString( const std::string &newValue ) { typeString = newValue; } 33 32 34 virtual void visit( FunctionType *funcType ); 35 virtual void visit( VoidType *voidType ); 36 virtual void visit( BasicType *basicType ); 37 virtual void visit( PointerType *pointerType ); 38 virtual void visit( ArrayType *arrayType ); 39 virtual void visit( ReferenceType *refType ); 40 virtual void visit( StructInstType *structInst ); 41 virtual void visit( UnionInstType *unionInst ); 42 virtual void visit( EnumInstType *enumInst ); 43 virtual void visit( TypeInstType *typeInst ); 44 virtual void visit( TupleType * tupleType ); 45 virtual void visit( VarArgsType *varArgsType ); 46 virtual void visit( ZeroType *zeroType ); 47 virtual void visit( OneType *oneType ); 33 void previsit( BaseSyntaxNode * ); 34 void postvisit( BaseSyntaxNode * ); 35 36 void postvisit( FunctionType * funcType ); 37 void postvisit( VoidType * voidType ); 38 void postvisit( BasicType * basicType ); 39 void postvisit( PointerType * pointerType ); 40 void postvisit( ArrayType * arrayType ); 41 void postvisit( ReferenceType * refType ); 42 void postvisit( StructInstType * structInst ); 43 void postvisit( UnionInstType * unionInst ); 44 void postvisit( EnumInstType * enumInst ); 45 void postvisit( TypeInstType * typeInst ); 46 void postvisit( TupleType * tupleType ); 47 void postvisit( VarArgsType * varArgsType ); 48 void postvisit( ZeroType * zeroType ); 49 void postvisit( OneType * oneType ); 48 50 49 51 private: … … 59 61 60 62 std::string genType( Type *type, const std::string &baseString, bool pretty, bool genC , bool lineMarks ) { 61 GenTypegt( baseString, pretty, genC, lineMarks );63 PassVisitor<GenType> gt( baseString, pretty, genC, lineMarks ); 62 64 std::ostringstream os; 63 65 … … 68 70 69 71 type->accept( gt ); 70 return os.str() + gt. get_typeString();72 return os.str() + gt.pass.get_typeString(); 71 73 } 72 74 … … 77 79 GenType::GenType( const std::string &typeString, bool pretty, bool genC, bool lineMarks ) : typeString( typeString ), pretty( pretty ), genC( genC ), lineMarks( lineMarks ) {} 78 80 79 void GenType::visit( VoidType *voidType ) { 81 // *** BaseSyntaxNode 82 void GenType::previsit( BaseSyntaxNode * ) { 83 // turn off automatic recursion for all nodes, to allow each visitor to 84 // precisely control the order in which its children are visited. 85 visit_children = false; 86 } 87 88 void GenType::postvisit( BaseSyntaxNode * node ) { 89 std::stringstream ss; 90 node->print( ss ); 91 assertf( false, "Unhandled node reached in GenType: %s", ss.str().c_str() ); 92 } 93 94 void GenType::postvisit( VoidType * voidType ) { 80 95 typeString = "void " + typeString; 81 96 handleQualifiers( voidType ); 82 97 } 83 98 84 void GenType:: visit( BasicType *basicType ) {85 BasicType::Kind kind = basicType-> get_kind();99 void GenType::postvisit( BasicType * basicType ) { 100 BasicType::Kind kind = basicType->kind; 86 101 assert( 0 <= kind && kind < BasicType::NUMBER_OF_BASIC_TYPES ); 87 102 typeString = std::string( BasicType::typeNames[kind] ) + " " + typeString; … … 89 104 } 90 105 91 void GenType::genArray( const Type::Qualifiers & qualifiers, Type *base, Expression *dimension, bool isVarLen, bool isStatic ) {106 void GenType::genArray( const Type::Qualifiers & qualifiers, Type * base, Expression *dimension, bool isVarLen, bool isStatic ) { 92 107 std::ostringstream os; 93 108 if ( typeString != "" ) { … … 126 141 typeString = os.str(); 127 142 128 base->accept( * this);129 } 130 131 void GenType:: visit( PointerType *pointerType ) {132 assert( pointerType-> get_base()!= 0);133 if ( pointerType->get_isStatic() || pointerType->get_isVarLen() || pointerType-> get_dimension()) {134 genArray( pointerType->get_qualifiers(), pointerType-> get_base(), pointerType->get_dimension(), pointerType->get_isVarLen(), pointerType->get_isStatic() );143 base->accept( *visitor ); 144 } 145 146 void GenType::postvisit( PointerType * pointerType ) { 147 assert( pointerType->base != 0); 148 if ( pointerType->get_isStatic() || pointerType->get_isVarLen() || pointerType->dimension ) { 149 genArray( pointerType->get_qualifiers(), pointerType->base, pointerType->dimension, pointerType->get_isVarLen(), pointerType->get_isStatic() ); 135 150 } else { 136 151 handleQualifiers( pointerType ); … … 140 155 typeString = "*" + typeString; 141 156 } // if 142 pointerType-> get_base()->accept( *this);143 } // if 144 } 145 146 void GenType:: visit( ArrayType *arrayType ) {147 genArray( arrayType->get_qualifiers(), arrayType-> get_base(), arrayType->get_dimension(), arrayType->get_isVarLen(), arrayType->get_isStatic() );148 } 149 150 void GenType:: visit( ReferenceType *refType ) {151 assert( refType-> get_base()!= 0);157 pointerType->base->accept( *visitor ); 158 } // if 159 } 160 161 void GenType::postvisit( ArrayType * arrayType ) { 162 genArray( arrayType->get_qualifiers(), arrayType->base, arrayType->dimension, arrayType->get_isVarLen(), arrayType->get_isStatic() ); 163 } 164 165 void GenType::postvisit( ReferenceType * refType ) { 166 assert( refType->base != 0); 152 167 assertf( ! genC, "Reference types should not reach code generation." ); 153 168 handleQualifiers( refType ); 154 169 typeString = "&" + typeString; 155 refType-> get_base()->accept( *this);156 } 157 158 void GenType:: visit( FunctionType *funcType ) {170 refType->base->accept( *visitor ); 171 } 172 173 void GenType::postvisit( FunctionType * funcType ) { 159 174 std::ostringstream os; 160 175 … … 169 184 /************* parameters ***************/ 170 185 171 const std::list<DeclarationWithType *> &pars = funcType-> get_parameters();186 const std::list<DeclarationWithType *> &pars = funcType->parameters; 172 187 173 188 if ( pars.empty() ) { … … 191 206 typeString = os.str(); 192 207 193 if ( funcType-> get_returnVals().size() == 0 ) {208 if ( funcType->returnVals.size() == 0 ) { 194 209 typeString = "void " + typeString; 195 210 } else { 196 funcType-> get_returnVals().front()->get_type()->accept( *this);211 funcType->returnVals.front()->get_type()->accept( *visitor ); 197 212 } // if 198 213 199 214 // add forall 200 if( ! funcType-> get_forall().empty() && ! genC ) {215 if( ! funcType->forall.empty() && ! genC ) { 201 216 // assertf( ! genC, "Aggregate type parameters should not reach code generation." ); 202 217 std::ostringstream os; 203 218 PassVisitor<CodeGenerator> cg( os, pretty, genC, lineMarks ); 204 219 os << "forall("; 205 cg.pass.genCommaList( funcType-> get_forall().begin(), funcType->get_forall().end() );220 cg.pass.genCommaList( funcType->forall.begin(), funcType->forall.end() ); 206 221 os << ")" << std::endl; 207 222 typeString = os.str() + typeString; … … 221 236 } 222 237 223 void GenType:: visit( StructInstType *structInst ) {224 typeString = structInst-> get_name()+ handleGeneric( structInst ) + " " + typeString;238 void GenType::postvisit( StructInstType * structInst ) { 239 typeString = structInst->name + handleGeneric( structInst ) + " " + typeString; 225 240 if ( genC ) typeString = "struct " + typeString; 226 241 handleQualifiers( structInst ); 227 242 } 228 243 229 void GenType:: visit( UnionInstType *unionInst ) {230 typeString = unionInst-> get_name()+ handleGeneric( unionInst ) + " " + typeString;244 void GenType::postvisit( UnionInstType * unionInst ) { 245 typeString = unionInst->name + handleGeneric( unionInst ) + " " + typeString; 231 246 if ( genC ) typeString = "union " + typeString; 232 247 handleQualifiers( unionInst ); 233 248 } 234 249 235 void GenType:: visit( EnumInstType *enumInst ) {236 typeString = enumInst-> get_name()+ " " + typeString;250 void GenType::postvisit( EnumInstType * enumInst ) { 251 typeString = enumInst->name + " " + typeString; 237 252 if ( genC ) typeString = "enum " + typeString; 238 253 handleQualifiers( enumInst ); 239 254 } 240 255 241 void GenType:: visit( TypeInstType *typeInst ) {242 typeString = typeInst-> get_name()+ " " + typeString;256 void GenType::postvisit( TypeInstType * typeInst ) { 257 typeString = typeInst->name + " " + typeString; 243 258 handleQualifiers( typeInst ); 244 259 } 245 260 246 void GenType:: visit( TupleType * tupleType ) {261 void GenType::postvisit( TupleType * tupleType ) { 247 262 assertf( ! genC, "Tuple types should not reach code generation." ); 248 263 unsigned int i = 0; … … 257 272 } 258 273 259 void GenType:: visit( VarArgsType *varArgsType ) {274 void GenType::postvisit( VarArgsType * varArgsType ) { 260 275 typeString = "__builtin_va_list " + typeString; 261 276 handleQualifiers( varArgsType ); 262 277 } 263 278 264 void GenType:: visit( ZeroType *zeroType ) {279 void GenType::postvisit( ZeroType * zeroType ) { 265 280 // ideally these wouldn't hit codegen at all, but should be safe to make them ints 266 281 typeString = (pretty ? "zero_t " : "long int ") + typeString; … … 268 283 } 269 284 270 void GenType:: visit( OneType *oneType ) {285 void GenType::postvisit( OneType * oneType ) { 271 286 // ideally these wouldn't hit codegen at all, but should be safe to make them ints 272 287 typeString = (pretty ? "one_t " : "long int ") + typeString; … … 274 289 } 275 290 276 void GenType::handleQualifiers( Type * type ) {291 void GenType::handleQualifiers( Type * type ) { 277 292 if ( type->get_const() ) { 278 293 typeString = "const " + typeString; -
src/ControlStruct/ExceptTranslate.cc
r4bf3b2b r891c3e3 316 316 VarExprReplacer::DeclMap mapping; 317 317 mapping[ handler_decl ] = local_except; 318 VarExprReplacer mapper( mapping ); 319 handler->get_body()->accept( mapper ); 318 VarExprReplacer::replace( handler->body, mapping ); 320 319 } 321 320 -
src/ResolvExpr/AlternativeFinder.cc
r4bf3b2b r891c3e3 152 152 153 153 void renameTypes( Expression *expr ) { 154 expr->get_result()->accept( global_renamer);154 renameTyVars( expr->result ); 155 155 } 156 156 } // namespace … … 485 485 Type *adjType = candidate->get_type()->clone(); 486 486 adjustExprType( adjType, newEnv, indexer ); 487 adjType->accept( global_renamer);487 renameTyVars( adjType ); 488 488 PRINT( 489 489 std::cerr << "unifying "; … … 595 595 596 596 ArgPack() 597 : parent(0), expr(), cost(Cost::zero), env(), need(), have(), openVars(), nextArg(0), 597 : parent(0), expr(), cost(Cost::zero), env(), need(), have(), openVars(), nextArg(0), 598 598 tupleStart(0), nextExpl(0), explAlt(0) {} 599 599 … … 706 706 707 707 if ( nTuples > 0 || ! results[i].expr ) { 708 // first iteration or no expression to clone, 708 // first iteration or no expression to clone, 709 709 // push empty tuple expression 710 710 newResult.parent = i; -
src/ResolvExpr/CommonType.cc
r4bf3b2b r891c3e3 18 18 #include <utility> // for pair 19 19 20 #include "Common/PassVisitor.h" 20 21 #include "ResolvExpr/TypeEnvironment.h" // for OpenVarSet, AssertionSet 21 22 #include "SymTab/Indexer.h" // for Indexer … … 29 30 30 31 namespace ResolvExpr { 31 class CommonType : public Visitor { 32 public: 32 struct CommonType : public WithShortCircuiting { 33 33 CommonType( Type *type2, bool widenFirst, bool widenSecond, const SymTab::Indexer &indexer, TypeEnvironment &env, const OpenVarSet &openVars ); 34 34 Type *get_result() const { return result; } 35 36 void previsit( BaseSyntaxNode * ) { visit_children = false; } 37 38 void postvisit( VoidType * voidType ); 39 void postvisit( BasicType * basicType ); 40 void postvisit( PointerType * pointerType ); 41 void postvisit( ArrayType * arrayType ); 42 void postvisit( ReferenceType * refType ); 43 void postvisit( FunctionType * functionType ); 44 void postvisit( StructInstType * aggregateUseType ); 45 void postvisit( UnionInstType * aggregateUseType ); 46 void postvisit( EnumInstType * aggregateUseType ); 47 void postvisit( TraitInstType * aggregateUseType ); 48 void postvisit( TypeInstType * aggregateUseType ); 49 void postvisit( TupleType * tupleType ); 50 void postvisit( VarArgsType * varArgsType ); 51 void postvisit( ZeroType * zeroType ); 52 void postvisit( OneType * oneType ); 53 35 54 private: 36 virtual void visit( VoidType *voidType );37 virtual void visit( BasicType *basicType );38 virtual void visit( PointerType *pointerType );39 virtual void visit( ArrayType *arrayType );40 virtual void visit( ReferenceType *refType );41 virtual void visit( FunctionType *functionType );42 virtual void visit( StructInstType *aggregateUseType );43 virtual void visit( UnionInstType *aggregateUseType );44 virtual void visit( EnumInstType *aggregateUseType );45 virtual void visit( TraitInstType *aggregateUseType );46 virtual void visit( TypeInstType *aggregateUseType );47 virtual void visit( TupleType *tupleType );48 virtual void visit( VarArgsType *varArgsType );49 virtual void visit( ZeroType *zeroType );50 virtual void visit( OneType *oneType );51 52 55 template< typename Pointer > void getCommonWithVoidPointer( Pointer* voidPointer, Pointer* otherPointer ); 53 56 template< typename RefType > void handleRefType( RefType *inst, Type *other ); … … 80 83 81 84 Type *commonType( Type *type1, Type *type2, bool widenFirst, bool widenSecond, const SymTab::Indexer &indexer, TypeEnvironment &env, const OpenVarSet &openVars ) { 82 CommonTypevisitor( type2, widenFirst, widenSecond, indexer, env, openVars );85 PassVisitor<CommonType> visitor( type2, widenFirst, widenSecond, indexer, env, openVars ); 83 86 84 87 int depth1 = type1->referenceDepth(); … … 116 119 117 120 type1->accept( visitor ); 118 Type *result = visitor. get_result();121 Type *result = visitor.pass.get_result(); 119 122 if ( ! result ) { 120 123 // this appears to be handling for opaque type declarations … … 188 191 } 189 192 190 void CommonType:: visit( VoidType * ) {}191 192 void CommonType:: visit( BasicType *basicType ) {193 void CommonType::postvisit( VoidType * ) {} 194 195 void CommonType::postvisit( BasicType *basicType ) { 193 196 if ( BasicType *otherBasic = dynamic_cast< BasicType* >( type2 ) ) { 194 197 BasicType::Kind newType = combinedType[ basicType->get_kind() ][ otherBasic->get_kind() ]; … … 219 222 } 220 223 221 void CommonType:: visit( PointerType *pointerType ) {224 void CommonType::postvisit( PointerType *pointerType ) { 222 225 if ( PointerType *otherPointer = dynamic_cast< PointerType* >( type2 ) ) { 223 226 // std::cerr << "commonType: two pointers: " << pointerType << " / " << otherPointer << std::endl; … … 254 257 } 255 258 256 void CommonType:: visit( ArrayType * ) {}257 258 void CommonType:: visit( ReferenceType *refType ) {259 void CommonType::postvisit( ArrayType * ) {} 260 261 void CommonType::postvisit( ReferenceType *refType ) { 259 262 if ( ReferenceType *otherRef = dynamic_cast< ReferenceType* >( type2 ) ) { 260 263 // std::cerr << "commonType: both references: " << refType << " / " << otherRef << std::endl; … … 291 294 } 292 295 293 void CommonType:: visit( FunctionType * ) {}294 void CommonType:: visit( StructInstType * ) {}295 void CommonType:: visit( UnionInstType * ) {}296 297 void CommonType:: visit( EnumInstType *enumInstType ) {296 void CommonType::postvisit( FunctionType * ) {} 297 void CommonType::postvisit( StructInstType * ) {} 298 void CommonType::postvisit( UnionInstType * ) {} 299 300 void CommonType::postvisit( EnumInstType *enumInstType ) { 298 301 if ( dynamic_cast< BasicType * >( type2 ) || dynamic_cast< ZeroType* >( type2 ) || dynamic_cast< OneType* >( type2 ) ) { 299 302 // reuse BasicType, EnumInstType code by swapping type2 with enumInstType 300 ValueGuard< Type * > temp( type2 ); 301 type2 = enumInstType; 302 temp.old->accept( *this ); 303 } // if 304 } 305 306 void CommonType::visit( TraitInstType * ) { 307 } 308 309 void CommonType::visit( TypeInstType *inst ) { 303 result = commonType( type2, enumInstType, widenSecond, widenFirst, indexer, env, openVars ); 304 } // if 305 } 306 307 void CommonType::postvisit( TraitInstType * ) { 308 } 309 310 void CommonType::postvisit( TypeInstType *inst ) { 310 311 if ( widenFirst ) { 311 312 NamedTypeDecl *nt = indexer.lookupType( inst->get_name() ); … … 329 330 } 330 331 331 void CommonType:: visit( TupleType * ) {}332 void CommonType:: visit( VarArgsType * ) {}333 334 void CommonType:: visit( ZeroType *zeroType ) {332 void CommonType::postvisit( TupleType * ) {} 333 void CommonType::postvisit( VarArgsType * ) {} 334 335 void CommonType::postvisit( ZeroType *zeroType ) { 335 336 if ( widenFirst ) { 336 337 if ( dynamic_cast< BasicType* >( type2 ) || dynamic_cast< PointerType* >( type2 ) || dynamic_cast< EnumInstType* >( type2 ) ) { … … 346 347 } 347 348 348 void CommonType:: visit( OneType *oneType ) {349 void CommonType::postvisit( OneType *oneType ) { 349 350 if ( widenFirst ) { 350 351 if ( dynamic_cast< BasicType* >( type2 ) || dynamic_cast< EnumInstType* >( type2 ) ) { -
src/ResolvExpr/CurrentObject.cc
r4bf3b2b r891c3e3 443 443 return new UnionIterator( uit ); 444 444 } else { 445 assertf( dynamic_cast< TypeInstType * >( type ), "some other reftotype");445 assertf( dynamic_cast< EnumInstType * >( type ) || dynamic_cast< TypeInstType * >( type ), "Encountered unhandled ReferenceToType in createMemberIterator: %s", toString( type ).c_str() ); 446 446 return new SimpleIterator( type ); 447 447 } -
src/ResolvExpr/PtrsAssignable.cc
r4bf3b2b r891c3e3 14 14 // 15 15 16 #include "Common/PassVisitor.h" 16 17 #include "ResolvExpr/TypeEnvironment.h" // for EqvClass, TypeEnvironment 17 18 #include "SynTree/Type.h" // for TypeInstType, Type, BasicType … … 20 21 21 22 namespace ResolvExpr { 22 class PtrsAssignable : public Visitor { 23 public: 23 struct PtrsAssignable : public WithShortCircuiting { 24 24 PtrsAssignable( Type *dest, const TypeEnvironment &env ); 25 25 26 26 int get_result() const { return result; } 27 27 28 virtual void visit( VoidType *voidType ); 29 virtual void visit( BasicType *basicType ); 30 virtual void visit( PointerType *pointerType ); 31 virtual void visit( ArrayType *arrayType ); 32 virtual void visit( FunctionType *functionType ); 33 virtual void visit( StructInstType *inst ); 34 virtual void visit( UnionInstType *inst ); 35 virtual void visit( EnumInstType *inst ); 36 virtual void visit( TraitInstType *inst ); 37 virtual void visit( TypeInstType *inst ); 38 virtual void visit( TupleType *tupleType ); 39 virtual void visit( VarArgsType *varArgsType ); 40 virtual void visit( ZeroType *zeroType ); 41 virtual void visit( OneType *oneType ); 28 void previsit( Type * ) { visit_children = false; } 29 30 void postvisit( VoidType * voidType ); 31 void postvisit( BasicType * basicType ); 32 void postvisit( PointerType * pointerType ); 33 void postvisit( ArrayType * arrayType ); 34 void postvisit( FunctionType * functionType ); 35 void postvisit( StructInstType * inst ); 36 void postvisit( UnionInstType * inst ); 37 void postvisit( EnumInstType * inst ); 38 void postvisit( TraitInstType * inst ); 39 void postvisit( TypeInstType * inst ); 40 void postvisit( TupleType * tupleType ); 41 void postvisit( VarArgsType * varArgsType ); 42 void postvisit( ZeroType * zeroType ); 43 void postvisit( OneType * oneType ); 42 44 private: 43 45 Type *dest; … … 59 61 return -1; 60 62 } else { 61 P trsAssignableptrs( dest, env );63 PassVisitor<PtrsAssignable> ptrs( dest, env ); 62 64 src->accept( ptrs ); 63 return ptrs. get_result();65 return ptrs.pass.get_result(); 64 66 } // if 65 67 } … … 67 69 PtrsAssignable::PtrsAssignable( Type *dest, const TypeEnvironment &env ) : dest( dest ), result( 0 ), env( env ) {} 68 70 69 void PtrsAssignable:: visit( VoidType * ) {71 void PtrsAssignable::postvisit( VoidType * ) { 70 72 // T * = void * is disallowed - this is a change from C, where any 71 73 // void * can be assigned or passed to a non-void pointer without a cast. 72 74 } 73 75 74 void PtrsAssignable:: visit( __attribute__((unused)) BasicType *basicType ) {}75 void PtrsAssignable:: visit( __attribute__((unused)) PointerType *pointerType ) {}76 void PtrsAssignable:: visit( __attribute__((unused)) ArrayType *arrayType ) {}77 void PtrsAssignable:: visit( __attribute__((unused)) FunctionType *functionType ) {}76 void PtrsAssignable::postvisit( __attribute__((unused)) BasicType *basicType ) {} 77 void PtrsAssignable::postvisit( __attribute__((unused)) PointerType *pointerType ) {} 78 void PtrsAssignable::postvisit( __attribute__((unused)) ArrayType *arrayType ) {} 79 void PtrsAssignable::postvisit( __attribute__((unused)) FunctionType *functionType ) {} 78 80 79 void PtrsAssignable:: visit( __attribute__((unused)) StructInstType *inst ) {}80 void PtrsAssignable:: visit( __attribute__((unused)) UnionInstType *inst ) {}81 void PtrsAssignable::postvisit( __attribute__((unused)) StructInstType *inst ) {} 82 void PtrsAssignable::postvisit( __attribute__((unused)) UnionInstType *inst ) {} 81 83 82 void PtrsAssignable:: visit( EnumInstType * ) {84 void PtrsAssignable::postvisit( EnumInstType * ) { 83 85 if ( dynamic_cast< BasicType* >( dest ) ) { 84 86 // int * = E *, etc. is safe. This isn't technically correct, as each … … 91 93 } 92 94 93 void PtrsAssignable:: visit( __attribute__((unused)) TraitInstType *inst ) {}94 void PtrsAssignable:: visit( TypeInstType *inst ) {95 void PtrsAssignable::postvisit( __attribute__((unused)) TraitInstType *inst ) {} 96 void PtrsAssignable::postvisit( TypeInstType *inst ) { 95 97 EqvClass eqvClass; 96 98 if ( env.lookup( inst->get_name(), eqvClass ) && eqvClass.type ) { … … 100 102 } 101 103 102 void PtrsAssignable:: visit( __attribute__((unused)) TupleType *tupleType ) {}103 void PtrsAssignable:: visit( __attribute__((unused)) VarArgsType *varArgsType ) {}104 void PtrsAssignable:: visit( __attribute__((unused)) ZeroType *zeroType ) {}105 void PtrsAssignable:: visit( __attribute__((unused)) OneType *oneType ) {}104 void PtrsAssignable::postvisit( __attribute__((unused)) TupleType *tupleType ) {} 105 void PtrsAssignable::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) {} 106 void PtrsAssignable::postvisit( __attribute__((unused)) ZeroType *zeroType ) {} 107 void PtrsAssignable::postvisit( __attribute__((unused)) OneType *oneType ) {} 106 108 107 109 } // namespace ResolvExpr -
src/ResolvExpr/PtrsCastable.cc
r4bf3b2b r891c3e3 14 14 // 15 15 16 #include "Common/PassVisitor.h" 16 17 #include "ResolvExpr/TypeEnvironment.h" // for EqvClass, TypeEnvironment 17 18 #include "SymTab/Indexer.h" // for Indexer … … 21 22 #include "typeops.h" // for ptrsAssignable 22 23 23 24 24 namespace ResolvExpr { 25 class PtrsCastable : public Visitor{25 struct PtrsCastable : public WithShortCircuiting { 26 26 public: 27 27 PtrsCastable( Type *dest, const TypeEnvironment &env, const SymTab::Indexer &indexer ); … … 29 29 int get_result() const { return result; } 30 30 31 virtual void visit(VoidType *voidType); 32 virtual void visit(BasicType *basicType); 33 virtual void visit(PointerType *pointerType); 34 virtual void visit(ArrayType *arrayType); 35 virtual void visit(FunctionType *functionType); 36 virtual void visit(StructInstType *inst); 37 virtual void visit(UnionInstType *inst); 38 virtual void visit(EnumInstType *inst); 39 virtual void visit(TraitInstType *inst); 40 virtual void visit(TypeInstType *inst); 41 virtual void visit(TupleType *tupleType); 42 virtual void visit(VarArgsType *varArgsType); 43 virtual void visit(ZeroType *zeroType); 44 virtual void visit(OneType *oneType); 31 void previsit( Type * ) { visit_children = false; } 32 33 void postvisit( VoidType * voidType ); 34 void postvisit( BasicType * basicType ); 35 void postvisit( PointerType * pointerType ); 36 void postvisit( ArrayType * arrayType ); 37 void postvisit( FunctionType * functionType ); 38 void postvisit( StructInstType * inst ); 39 void postvisit( UnionInstType * inst ); 40 void postvisit( EnumInstType * inst ); 41 void postvisit( TraitInstType * inst ); 42 void postvisit( TypeInstType * inst ); 43 void postvisit( TupleType * tupleType ); 44 void postvisit( VarArgsType * varArgsType ); 45 void postvisit( ZeroType * zeroType ); 46 void postvisit( OneType * oneType ); 45 47 private: 46 48 Type *dest; … … 79 81 EqvClass eqvClass; 80 82 if ( env.lookup( destAsTypeInst->get_name(), eqvClass ) ) { 83 // xxx - should this be ptrsCastable? 81 84 return ptrsAssignable( src, eqvClass.type, env ); 82 85 } // if … … 85 88 return objectCast( src, env, indexer ); 86 89 } else { 87 P trsCastableptrs( dest, env, indexer );90 PassVisitor<PtrsCastable> ptrs( dest, env, indexer ); 88 91 src->accept( ptrs ); 89 return ptrs. get_result();92 return ptrs.pass.get_result(); 90 93 } // if 91 94 } … … 95 98 } 96 99 97 void PtrsCastable:: visit( VoidType * ) {100 void PtrsCastable::postvisit( VoidType * ) { 98 101 result = objectCast( dest, env, indexer ); 99 102 } 100 103 101 void PtrsCastable:: visit( BasicType * ) {104 void PtrsCastable::postvisit( BasicType * ) { 102 105 result = objectCast( dest, env, indexer ); 103 106 } 104 107 105 void PtrsCastable:: visit( PointerType * ) {108 void PtrsCastable::postvisit( PointerType * ) { 106 109 result = objectCast( dest, env, indexer ); 107 110 } 108 111 109 void PtrsCastable:: visit( ArrayType * ) {112 void PtrsCastable::postvisit( ArrayType * ) { 110 113 result = objectCast( dest, env, indexer ); 111 114 } 112 115 113 void PtrsCastable:: visit( FunctionType * ) {116 void PtrsCastable::postvisit( FunctionType * ) { 114 117 // result = -1; 115 118 result = functionCast( dest, env, indexer ); 116 119 } 117 120 118 void PtrsCastable:: visit( StructInstType * ) {121 void PtrsCastable::postvisit( StructInstType * ) { 119 122 result = objectCast( dest, env, indexer ); 120 123 } 121 124 122 void PtrsCastable:: visit( UnionInstType * ) {125 void PtrsCastable::postvisit( UnionInstType * ) { 123 126 result = objectCast( dest, env, indexer ); 124 127 } 125 128 126 void PtrsCastable:: visit( EnumInstType * ) {129 void PtrsCastable::postvisit( EnumInstType * ) { 127 130 if ( dynamic_cast< EnumInstType* >( dest ) ) { 128 131 result = 1; … … 138 141 } 139 142 140 void PtrsCastable:: visit( TraitInstType * ) {}143 void PtrsCastable::postvisit( TraitInstType * ) {} 141 144 142 void PtrsCastable:: visit(TypeInstType *inst) {145 void PtrsCastable::postvisit(TypeInstType *inst) { 143 146 //result = objectCast( inst, env, indexer ) > 0 && objectCast( dest, env, indexer ) > 0 ? 1 : -1; 144 147 result = objectCast( inst, env, indexer ) == objectCast( dest, env, indexer ) ? 1 : -1; 145 148 } 146 149 147 void PtrsCastable:: visit( TupleType * ) {150 void PtrsCastable::postvisit( TupleType * ) { 148 151 result = objectCast( dest, env, indexer ); 149 152 } 150 153 151 void PtrsCastable:: visit( VarArgsType * ) {154 void PtrsCastable::postvisit( VarArgsType * ) { 152 155 result = objectCast( dest, env, indexer ); 153 156 } 154 157 155 void PtrsCastable:: visit( ZeroType * ) {158 void PtrsCastable::postvisit( ZeroType * ) { 156 159 result = objectCast( dest, env, indexer ); 157 160 } 158 161 159 void PtrsCastable:: visit( OneType * ) {162 void PtrsCastable::postvisit( OneType * ) { 160 163 result = objectCast( dest, env, indexer ); 161 164 } -
src/ResolvExpr/RenameVars.cc
r4bf3b2b r891c3e3 19 19 #include <utility> // for pair 20 20 21 #include "Common/PassVisitor.h" 21 22 #include "Common/SemanticError.h" // for SemanticError 22 23 #include "RenameVars.h" … … 27 28 28 29 namespace ResolvExpr { 29 RenameVars global_renamer; 30 namespace { 31 struct RenameVars { 32 RenameVars(); 33 void reset(); 30 34 31 RenameVars::RenameVars() : level( 0 ), resetCount( 0 ) { 32 mapStack.push_front( std::map< std::string, std::string >() ); 35 void previsit( TypeInstType * instType ); 36 void previsit( Type * ); 37 void postvisit( Type * ); 38 39 private: 40 int level, resetCount; 41 std::list< std::map< std::string, std::string > > mapStack; 42 }; 43 44 PassVisitor<RenameVars> global_renamer; 45 } // namespace 46 47 void renameTyVars( Type * t ) { 48 t->accept( global_renamer ); 33 49 } 34 50 35 void RenameVars::reset() { 36 level = 0; 37 resetCount++; 51 void resetTyVarRenaming() { 52 global_renamer.pass.reset(); 38 53 } 39 54 40 void RenameVars::visit( VoidType *voidType ){41 typeBefore( voidType );42 typeAfter( voidType);43 }55 namespace { 56 RenameVars::RenameVars() : level( 0 ), resetCount( 0 ) { 57 mapStack.push_front( std::map< std::string, std::string >() ); 58 } 44 59 45 void RenameVars::visit( BasicType *basicType) {46 typeBefore( basicType );47 typeAfter( basicType );48 }60 void RenameVars::reset() { 61 level = 0; 62 resetCount++; 63 } 49 64 50 void RenameVars::visit( PointerType *pointerType ) { 51 typeBefore( pointerType ); 52 maybeAccept( pointerType->get_base(), *this ); 53 typeAfter( pointerType ); 54 } 65 void RenameVars::previsit( TypeInstType * instType ) { 66 previsit( (Type *)instType ); 67 std::map< std::string, std::string >::const_iterator i = mapStack.front().find( instType->name ); 68 if ( i != mapStack.front().end() ) { 69 instType->name = i->second; 70 } // if 71 } 55 72 56 void RenameVars::visit( ArrayType *arrayType ) { 57 typeBefore( arrayType ); 58 maybeAccept( arrayType->get_dimension(), *this ); 59 maybeAccept( arrayType->get_base(), *this ); 60 typeAfter( arrayType ); 61 } 73 void RenameVars::previsit( Type * type ) { 74 if ( ! type->forall.empty() ) { 75 // copies current name mapping into new mapping 76 mapStack.push_front( mapStack.front() ); 77 // renames all "forall" type names to `_${level}_${name}' 78 for ( auto td : type->forall ) { 79 std::ostringstream output; 80 output << "_" << resetCount << "_" << level << "_" << td->name; 81 std::string newname( output.str() ); 82 mapStack.front()[ td->get_name() ] = newname; 83 td->name = newname; 84 // ditto for assertion names, the next level in 85 level++; 86 // acceptAll( td->assertions, *this ); 87 } // for 88 } // if 89 } 62 90 63 void RenameVars::visit( FunctionType *functionType ) { 64 typeBefore( functionType ); 65 acceptAll( functionType->get_returnVals(), *this ); 66 acceptAll( functionType->get_parameters(), *this ); 67 typeAfter( functionType ); 68 } 69 70 void RenameVars::visit( StructInstType *aggregateUseType ) { 71 typeBefore( aggregateUseType ); 72 acceptAll( aggregateUseType->get_parameters(), *this ); 73 typeAfter( aggregateUseType ); 74 } 75 76 void RenameVars::visit( UnionInstType *aggregateUseType ) { 77 typeBefore( aggregateUseType ); 78 acceptAll( aggregateUseType->get_parameters(), *this ); 79 typeAfter( aggregateUseType ); 80 } 81 82 void RenameVars::visit( EnumInstType *aggregateUseType ) { 83 typeBefore( aggregateUseType ); 84 acceptAll( aggregateUseType->get_parameters(), *this ); 85 typeAfter( aggregateUseType ); 86 } 87 88 void RenameVars::visit( TraitInstType *aggregateUseType ) { 89 typeBefore( aggregateUseType ); 90 acceptAll( aggregateUseType->get_parameters(), *this ); 91 typeAfter( aggregateUseType ); 92 } 93 94 void RenameVars::visit( TypeInstType *instType ) { 95 typeBefore( instType ); 96 std::map< std::string, std::string >::const_iterator i = mapStack.front().find( instType->get_name() ); 97 if ( i != mapStack.front().end() ) { 98 instType->set_name( i->second ); 99 } else { 100 } // if 101 acceptAll( instType->get_parameters(), *this ); 102 typeAfter( instType ); 103 } 104 105 void RenameVars::visit( TupleType *tupleType ) { 106 typeBefore( tupleType ); 107 acceptAll( tupleType->get_types(), *this ); 108 typeAfter( tupleType ); 109 } 110 111 void RenameVars::visit( VarArgsType *varArgsType ) { 112 typeBefore( varArgsType ); 113 typeAfter( varArgsType ); 114 } 115 116 void RenameVars::visit( ZeroType *zeroType ) { 117 typeBefore( zeroType ); 118 typeAfter( zeroType ); 119 } 120 121 void RenameVars::visit( OneType *oneType ) { 122 typeBefore( oneType ); 123 typeAfter( oneType ); 124 } 125 126 void RenameVars::typeBefore( Type *type ) { 127 if ( ! type->get_forall().empty() ) { 128 // copies current name mapping into new mapping 129 mapStack.push_front( mapStack.front() ); 130 // renames all "forall" type names to `_${level}_${name}' 131 for ( Type::ForallList::iterator i = type->get_forall().begin(); i != type->get_forall().end(); ++i ) { 132 std::ostringstream output; 133 output << "_" << resetCount << "_" << level << "_" << (*i)->get_name(); 134 std::string newname( output.str() ); 135 mapStack.front()[ (*i)->get_name() ] = newname; 136 (*i)->set_name( newname ); 137 // ditto for assertion names, the next level in 138 level++; 139 acceptAll( (*i)->get_assertions(), *this ); 140 } // for 141 } // if 142 } 143 144 void RenameVars::typeAfter( Type *type ) { 145 // clears name mapping added by typeBefore() 146 if ( ! type->get_forall().empty() ) { 147 mapStack.pop_front(); 148 } // if 149 } 150 91 void RenameVars::postvisit( Type * type ) { 92 // clears name mapping added by typeBefore() 93 if ( ! type->forall.empty() ) { 94 mapStack.pop_front(); 95 } // if 96 } 97 } // namespace 151 98 } // namespace ResolvExpr 152 99 -
src/ResolvExpr/RenameVars.h
r4bf3b2b r891c3e3 24 24 25 25 namespace ResolvExpr { 26 /// Provides a consistent renaming of forall type names in a hierarchy by prefixing them with a unique "level" ID 27 void renameTyVars( Type * ); 26 28 27 /// Provides a consistent renaming of forall type names in a hierarchy by prefixing them with a unique "level" ID 28 class RenameVars : public Visitor { 29 public: 30 RenameVars(); 31 void reset(); 32 private: 33 virtual void visit( VoidType *basicType ); 34 virtual void visit( BasicType *basicType ); 35 virtual void visit( PointerType *pointerType ); 36 virtual void visit( ArrayType *arrayType ); 37 virtual void visit( FunctionType *functionType ); 38 virtual void visit( StructInstType *aggregateUseType ); 39 virtual void visit( UnionInstType *aggregateUseType ); 40 virtual void visit( EnumInstType *aggregateUseType ); 41 virtual void visit( TraitInstType *aggregateUseType ); 42 virtual void visit( TypeInstType *aggregateUseType ); 43 virtual void visit( TupleType *tupleType ); 44 virtual void visit( VarArgsType *varArgsType ); 45 virtual void visit( ZeroType *zeroType ); 46 virtual void visit( OneType *oneType ); 47 48 void typeBefore( Type *type ); 49 void typeAfter( Type *type ); 50 int level, resetCount; 51 std::list< std::map< std::string, std::string > > mapStack; 52 }; 53 54 extern RenameVars global_renamer; 29 /// resets internal state of renamer to avoid overflow 30 void resetTyVarRenaming(); 55 31 } // namespace ResolvExpr 56 32 -
src/ResolvExpr/Resolver.cc
r4bf3b2b r891c3e3 132 132 133 133 void findVoidExpression( Expression *& untyped, const SymTab::Indexer &indexer ) { 134 global_renamer.reset();134 resetTyVarRenaming(); 135 135 TypeEnvironment env; 136 136 Expression *newExpr = resolveInVoidContext( untyped, indexer, env ); -
src/ResolvExpr/Unify.cc
r4bf3b2b r891c3e3 44 44 namespace ResolvExpr { 45 45 46 class Unify : public Visitor { 47 public: 46 struct Unify : public WithShortCircuiting { 48 47 Unify( Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widenMode, const SymTab::Indexer &indexer ); 49 48 50 49 bool get_result() const { return result; } 50 51 void previsit( BaseSyntaxNode * ) { visit_children = false; } 52 53 void postvisit( VoidType * voidType ); 54 void postvisit( BasicType * basicType ); 55 void postvisit( PointerType * pointerType ); 56 void postvisit( ArrayType * arrayType ); 57 void postvisit( ReferenceType * refType ); 58 void postvisit( FunctionType * functionType ); 59 void postvisit( StructInstType * aggregateUseType ); 60 void postvisit( UnionInstType * aggregateUseType ); 61 void postvisit( EnumInstType * aggregateUseType ); 62 void postvisit( TraitInstType * aggregateUseType ); 63 void postvisit( TypeInstType * aggregateUseType ); 64 void postvisit( TupleType * tupleType ); 65 void postvisit( VarArgsType * varArgsType ); 66 void postvisit( ZeroType * zeroType ); 67 void postvisit( OneType * oneType ); 68 51 69 private: 52 virtual void visit(VoidType *voidType);53 virtual void visit(BasicType *basicType);54 virtual void visit(PointerType *pointerType);55 virtual void visit(ArrayType *arrayType);56 virtual void visit(ReferenceType *refType);57 virtual void visit(FunctionType *functionType);58 virtual void visit(StructInstType *aggregateUseType);59 virtual void visit(UnionInstType *aggregateUseType);60 virtual void visit(EnumInstType *aggregateUseType);61 virtual void visit(TraitInstType *aggregateUseType);62 virtual void visit(TypeInstType *aggregateUseType);63 virtual void visit(TupleType *tupleType);64 virtual void visit(VarArgsType *varArgsType);65 virtual void visit(ZeroType *zeroType);66 virtual void visit(OneType *oneType);67 68 70 template< typename RefType > void handleRefType( RefType *inst, Type *other ); 69 71 template< typename RefType > void handleGenericRefType( RefType *inst, Type *other ); … … 325 327 result = bindVar( var2, type1, entry2->second, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); 326 328 } else { 327 Unifycomparator( type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer );329 PassVisitor<Unify> comparator( type2, env, needAssertions, haveAssertions, openVars, widenMode, indexer ); 328 330 type1->accept( comparator ); 329 result = comparator. get_result();331 result = comparator.pass.get_result(); 330 332 } // if 331 333 #ifdef DEBUG … … 404 406 } 405 407 406 void Unify:: visit( __attribute__((unused)) VoidType *voidType) {408 void Unify::postvisit( __attribute__((unused)) VoidType *voidType) { 407 409 result = dynamic_cast< VoidType* >( type2 ); 408 410 } 409 411 410 void Unify:: visit(BasicType *basicType) {412 void Unify::postvisit(BasicType *basicType) { 411 413 if ( BasicType *otherBasic = dynamic_cast< BasicType* >( type2 ) ) { 412 414 result = basicType->get_kind() == otherBasic->get_kind(); … … 436 438 } 437 439 438 void Unify:: visit(PointerType *pointerType) {440 void Unify::postvisit(PointerType *pointerType) { 439 441 if ( PointerType *otherPointer = dynamic_cast< PointerType* >( type2 ) ) { 440 442 result = unifyExact( pointerType->get_base(), otherPointer->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); … … 444 446 } 445 447 446 void Unify:: visit(ReferenceType *refType) {448 void Unify::postvisit(ReferenceType *refType) { 447 449 if ( ReferenceType *otherRef = dynamic_cast< ReferenceType* >( type2 ) ) { 448 450 result = unifyExact( refType->get_base(), otherRef->get_base(), env, needAssertions, haveAssertions, openVars, WidenMode( false, false ), indexer ); … … 452 454 } 453 455 454 void Unify:: visit(ArrayType *arrayType) {456 void Unify::postvisit(ArrayType *arrayType) { 455 457 ArrayType *otherArray = dynamic_cast< ArrayType* >( type2 ); 456 458 // to unify, array types must both be VLA or both not VLA … … 567 569 } 568 570 569 void Unify:: visit(FunctionType *functionType) {571 void Unify::postvisit(FunctionType *functionType) { 570 572 FunctionType *otherFunction = dynamic_cast< FunctionType* >( type2 ); 571 573 if ( otherFunction && functionType->get_isVarArgs() == otherFunction->get_isVarArgs() ) { … … 669 671 } 670 672 671 void Unify:: visit(StructInstType *structInst) {673 void Unify::postvisit(StructInstType *structInst) { 672 674 handleGenericRefType( structInst, type2 ); 673 675 } 674 676 675 void Unify:: visit(UnionInstType *unionInst) {677 void Unify::postvisit(UnionInstType *unionInst) { 676 678 handleGenericRefType( unionInst, type2 ); 677 679 } 678 680 679 void Unify:: visit(EnumInstType *enumInst) {681 void Unify::postvisit(EnumInstType *enumInst) { 680 682 handleRefType( enumInst, type2 ); 681 683 } 682 684 683 void Unify:: visit(TraitInstType *contextInst) {685 void Unify::postvisit(TraitInstType *contextInst) { 684 686 handleRefType( contextInst, type2 ); 685 687 } 686 688 687 void Unify:: visit(TypeInstType *typeInst) {689 void Unify::postvisit(TypeInstType *typeInst) { 688 690 assert( openVars.find( typeInst->get_name() ) == openVars.end() ); 689 691 TypeInstType *otherInst = dynamic_cast< TypeInstType* >( type2 ); … … 740 742 } 741 743 742 void Unify:: visit(TupleType *tupleType) {744 void Unify::postvisit(TupleType *tupleType) { 743 745 if ( TupleType *otherTuple = dynamic_cast< TupleType* >( type2 ) ) { 744 746 std::unique_ptr<TupleType> flat1( tupleType->clone() ); … … 757 759 } 758 760 759 void Unify:: visit( __attribute__((unused)) VarArgsType *varArgsType ) {761 void Unify::postvisit( __attribute__((unused)) VarArgsType *varArgsType ) { 760 762 result = dynamic_cast< VarArgsType* >( type2 ); 761 763 } 762 764 763 void Unify:: visit( __attribute__((unused)) ZeroType *zeroType ) {765 void Unify::postvisit( __attribute__((unused)) ZeroType *zeroType ) { 764 766 result = dynamic_cast< ZeroType* >( type2 ); 765 767 } 766 768 767 void Unify:: visit( __attribute__((unused)) OneType *oneType ) {769 void Unify::postvisit( __attribute__((unused)) OneType *oneType ) { 768 770 result = dynamic_cast< OneType* >( type2 ); 769 771 } -
src/SymTab/Mangler.cc
r4bf3b2b r891c3e3 23 23 24 24 #include "CodeGen/OperatorTable.h" // for OperatorInfo, operatorLookup 25 #include "Common/PassVisitor.h" 25 26 #include "Common/SemanticError.h" // for SemanticError 26 27 #include "Common/utility.h" // for toString … … 31 32 32 33 namespace SymTab { 33 std::string Mangler::mangleType( Type * ty ){34 Mangler mangler( false, true, true );35 maybeAccept( ty, mangler );36 return mangler.get_mangleName();37 }38 39 std::string Mangler::mangleConcrete( Type* ty ) { 40 Mangler mangler( false, false, false );41 maybeAccept( ty, mangler ); 42 return mangler.get_mangleName();43 }44 45 Mangler::Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ) 46 : nextVarNum( 0 ), isTopLevel( true ), mangleOverridable( mangleOverridable ), typeMode( typeMode ), mangleGenericParams( mangleGenericParams ) {}47 48 Mangler::Mangler( const Mangler &rhs ) : mangleName() {49 varNums = rhs.varNums;50 nextVarNum = rhs.nextVarNum;51 isTopLevel = rhs.isTopLevel;52 mangleOverridable = rhs.mangleOverridable;53 typeMode = rhs.typeMode;54 }55 56 void Mangler::mangleDecl( DeclarationWithType * declaration ) {57 bool wasTopLevel = isTopLevel;58 if ( isTopLevel ) {59 varNums.clear();60 nextVarNum = 0; 61 isTopLevel = false;62 } // if63 mangleName << "__";64 CodeGen::OperatorInfo opInfo;65 if ( operatorLookup( declaration->get_name(), opInfo ) ) {66 mangleName << opInfo.outputName;67 } else {68 mangleName << declaration->get_name();69 } // if70 mangleName << "__";71 maybeAccept( declaration->get_type(), *this ); 72 if ( mangleOverridable && LinkageSpec::isOverridable( declaration->get_linkage() ) ) {73 // want to be able to override autogenerated and intrinsic routines,74 // so they need a different name mangling 75 if ( declaration->get_linkage() == LinkageSpec::AutoGen ) {76 mangleName << "autogen__";77 } else if ( declaration->get_linkage() == LinkageSpec::Intrinsic ) {78 mangleName << "intrinsic__"; 79 } else{80 // if we add another kind of overridable function, this has to change81 assert( false && "unknown overrideable linkage");82 } // if34 namespace Mangler { 35 namespace { 36 /// Mangles names to a unique C identifier 37 struct Mangler : public WithShortCircuiting, public WithVisitorRef<Mangler> { 38 Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ); 39 Mangler( const Mangler & ); 40 41 void previsit( BaseSyntaxNode * ) { visit_children = false; } 42 43 void postvisit( ObjectDecl * declaration ); 44 void postvisit( FunctionDecl * declaration ); 45 void postvisit( TypeDecl * declaration ); 46 47 void postvisit( VoidType * voidType ); 48 void postvisit( BasicType * basicType ); 49 void postvisit( PointerType * pointerType ); 50 void postvisit( ArrayType * arrayType ); 51 void postvisit( ReferenceType * refType ); 52 void postvisit( FunctionType * functionType ); 53 void postvisit( StructInstType * aggregateUseType ); 54 void postvisit( UnionInstType * aggregateUseType ); 55 void postvisit( EnumInstType * aggregateUseType ); 56 void postvisit( TypeInstType * aggregateUseType ); 57 void postvisit( TupleType * tupleType ); 58 void postvisit( VarArgsType * varArgsType ); 59 void postvisit( ZeroType * zeroType ); 60 void postvisit( OneType * oneType ); 61 62 std::string get_mangleName() { return mangleName.str(); } 63 private: 64 std::ostringstream mangleName; ///< Mangled name being constructed 65 typedef std::map< std::string, std::pair< int, int > > VarMapType; 66 VarMapType varNums; ///< Map of type variables to indices 67 int nextVarNum; ///< Next type variable index 68 bool isTopLevel; ///< Is the Mangler at the top level 69 bool mangleOverridable; ///< Specially mangle overridable built-in methods 70 bool typeMode; ///< Produce a unique mangled name for a type 71 bool mangleGenericParams; ///< Include generic parameters in name mangling if true 72 73 void mangleDecl( DeclarationWithType *declaration ); 74 void mangleRef( ReferenceToType *refType, std::string prefix ); 75 76 void printQualifiers( Type *type ); 77 }; // Mangler 78 } // namespace 79 80 std::string mangle( BaseSyntaxNode * decl, bool mangleOverridable, bool typeMode, bool mangleGenericParams ) { 81 PassVisitor<Mangler> mangler( mangleOverridable, typeMode, mangleGenericParams ); 82 maybeAccept( decl, mangler ); 83 return mangler.pass.get_mangleName(); 83 84 } 84 isTopLevel = wasTopLevel; 85 } 86 87 void Mangler::visit( ObjectDecl * declaration ) { 88 mangleDecl( declaration ); 89 } 90 91 void Mangler::visit( FunctionDecl * declaration ) { 92 mangleDecl( declaration ); 93 } 94 95 void Mangler::visit( VoidType * voidType ) { 96 printQualifiers( voidType ); 97 mangleName << "v"; 98 } 99 100 void Mangler::visit( BasicType * basicType ) { 101 static const char *btLetter[] = { 102 "b", // Bool 103 "c", // Char 104 "Sc", // SignedChar 105 "Uc", // UnsignedChar 106 "s", // ShortSignedInt 107 "Us", // ShortUnsignedInt 108 "i", // SignedInt 109 "Ui", // UnsignedInt 110 "l", // LongSignedInt 111 "Ul", // LongUnsignedInt 112 "q", // LongLongSignedInt 113 "Uq", // LongLongUnsignedInt 114 "f", // Float 115 "d", // Double 116 "r", // LongDouble 117 "Xf", // FloatComplex 118 "Xd", // DoubleComplex 119 "Xr", // LongDoubleComplex 120 "If", // FloatImaginary 121 "Id", // DoubleImaginary 122 "Ir", // LongDoubleImaginary 123 "w", // SignedInt128 124 "Uw", // UnsignedInt128 125 }; 126 127 printQualifiers( basicType ); 128 mangleName << btLetter[ basicType->get_kind() ]; 129 } 130 131 void Mangler::visit( PointerType * pointerType ) { 132 printQualifiers( pointerType ); 133 mangleName << "P"; 134 maybeAccept( pointerType->get_base(), *this ); 135 } 136 137 void Mangler::visit( ArrayType * arrayType ) { 138 // TODO: encode dimension 139 printQualifiers( arrayType ); 140 mangleName << "A0"; 141 maybeAccept( arrayType->get_base(), *this ); 142 } 143 144 void Mangler::visit( ReferenceType * refType ) { 145 printQualifiers( refType ); 146 mangleName << "R"; 147 maybeAccept( refType->get_base(), *this ); 148 } 149 150 namespace { 151 inline std::list< Type* > getTypes( const std::list< DeclarationWithType* > decls ) { 152 std::list< Type* > ret; 153 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ), 154 std::mem_fun( &DeclarationWithType::get_type ) ); 155 return ret; 85 86 std::string mangleType( Type * ty ) { 87 PassVisitor<Mangler> mangler( false, true, true ); 88 maybeAccept( ty, mangler ); 89 return mangler.pass.get_mangleName(); 156 90 } 157 } 158 159 void Mangler::visit( FunctionType * functionType ) { 160 printQualifiers( functionType ); 161 mangleName << "F"; 162 std::list< Type* > returnTypes = getTypes( functionType->get_returnVals() ); 163 acceptAll( returnTypes, *this ); 164 mangleName << "_"; 165 std::list< Type* > paramTypes = getTypes( functionType->get_parameters() ); 166 acceptAll( paramTypes, *this ); 167 mangleName << "_"; 168 } 169 170 void Mangler::mangleRef( ReferenceToType * refType, std::string prefix ) { 171 printQualifiers( refType ); 172 173 mangleName << ( refType->get_name().length() + prefix.length() ) << prefix << refType->get_name(); 174 175 if ( mangleGenericParams ) { 176 std::list< Expression* >& params = refType->get_parameters(); 177 if ( ! params.empty() ) { 91 92 std::string mangleConcrete( Type * ty ) { 93 PassVisitor<Mangler> mangler( false, false, false ); 94 maybeAccept( ty, mangler ); 95 return mangler.pass.get_mangleName(); 96 } 97 98 namespace { 99 Mangler::Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ) 100 : nextVarNum( 0 ), isTopLevel( true ), mangleOverridable( mangleOverridable ), typeMode( typeMode ), mangleGenericParams( mangleGenericParams ) {} 101 102 Mangler::Mangler( const Mangler &rhs ) : mangleName() { 103 varNums = rhs.varNums; 104 nextVarNum = rhs.nextVarNum; 105 isTopLevel = rhs.isTopLevel; 106 mangleOverridable = rhs.mangleOverridable; 107 typeMode = rhs.typeMode; 108 } 109 110 void Mangler::mangleDecl( DeclarationWithType * declaration ) { 111 bool wasTopLevel = isTopLevel; 112 if ( isTopLevel ) { 113 varNums.clear(); 114 nextVarNum = 0; 115 isTopLevel = false; 116 } // if 117 mangleName << "__"; 118 CodeGen::OperatorInfo opInfo; 119 if ( operatorLookup( declaration->get_name(), opInfo ) ) { 120 mangleName << opInfo.outputName; 121 } else { 122 mangleName << declaration->get_name(); 123 } // if 124 mangleName << "__"; 125 maybeAccept( declaration->get_type(), *visitor ); 126 if ( mangleOverridable && LinkageSpec::isOverridable( declaration->get_linkage() ) ) { 127 // want to be able to override autogenerated and intrinsic routines, 128 // so they need a different name mangling 129 if ( declaration->get_linkage() == LinkageSpec::AutoGen ) { 130 mangleName << "autogen__"; 131 } else if ( declaration->get_linkage() == LinkageSpec::Intrinsic ) { 132 mangleName << "intrinsic__"; 133 } else { 134 // if we add another kind of overridable function, this has to change 135 assert( false && "unknown overrideable linkage" ); 136 } // if 137 } 138 isTopLevel = wasTopLevel; 139 } 140 141 void Mangler::postvisit( ObjectDecl * declaration ) { 142 mangleDecl( declaration ); 143 } 144 145 void Mangler::postvisit( FunctionDecl * declaration ) { 146 mangleDecl( declaration ); 147 } 148 149 void Mangler::postvisit( VoidType * voidType ) { 150 printQualifiers( voidType ); 151 mangleName << "v"; 152 } 153 154 void Mangler::postvisit( BasicType * basicType ) { 155 static const char *btLetter[] = { 156 "b", // Bool 157 "c", // Char 158 "Sc", // SignedChar 159 "Uc", // UnsignedChar 160 "s", // ShortSignedInt 161 "Us", // ShortUnsignedInt 162 "i", // SignedInt 163 "Ui", // UnsignedInt 164 "l", // LongSignedInt 165 "Ul", // LongUnsignedInt 166 "q", // LongLongSignedInt 167 "Uq", // LongLongUnsignedInt 168 "f", // Float 169 "d", // Double 170 "r", // LongDouble 171 "Xf", // FloatComplex 172 "Xd", // DoubleComplex 173 "Xr", // LongDoubleComplex 174 "If", // FloatImaginary 175 "Id", // DoubleImaginary 176 "Ir", // LongDoubleImaginary 177 "w", // SignedInt128 178 "Uw", // UnsignedInt128 179 }; 180 181 printQualifiers( basicType ); 182 mangleName << btLetter[ basicType->get_kind() ]; 183 } 184 185 void Mangler::postvisit( PointerType * pointerType ) { 186 printQualifiers( pointerType ); 187 mangleName << "P"; 188 maybeAccept( pointerType->get_base(), *visitor ); 189 } 190 191 void Mangler::postvisit( ArrayType * arrayType ) { 192 // TODO: encode dimension 193 printQualifiers( arrayType ); 194 mangleName << "A0"; 195 maybeAccept( arrayType->get_base(), *visitor ); 196 } 197 198 void Mangler::postvisit( ReferenceType * refType ) { 199 printQualifiers( refType ); 200 mangleName << "R"; 201 maybeAccept( refType->get_base(), *visitor ); 202 } 203 204 namespace { 205 inline std::list< Type* > getTypes( const std::list< DeclarationWithType* > decls ) { 206 std::list< Type* > ret; 207 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ), 208 std::mem_fun( &DeclarationWithType::get_type ) ); 209 return ret; 210 } 211 } 212 213 void Mangler::postvisit( FunctionType * functionType ) { 214 printQualifiers( functionType ); 215 mangleName << "F"; 216 std::list< Type* > returnTypes = getTypes( functionType->get_returnVals() ); 217 acceptAll( returnTypes, *visitor ); 178 218 mangleName << "_"; 179 for ( std::list< Expression* >::const_iterator param = params.begin(); param != params.end(); ++param ) { 180 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 181 assertf(paramType, "Aggregate parameters should be type expressions: %s", toString(*param).c_str()); 182 maybeAccept( paramType->get_type(), *this ); 219 std::list< Type* > paramTypes = getTypes( functionType->get_parameters() ); 220 acceptAll( paramTypes, *visitor ); 221 mangleName << "_"; 222 } 223 224 void Mangler::mangleRef( ReferenceToType * refType, std::string prefix ) { 225 printQualifiers( refType ); 226 227 mangleName << ( refType->get_name().length() + prefix.length() ) << prefix << refType->get_name(); 228 229 if ( mangleGenericParams ) { 230 std::list< Expression* >& params = refType->get_parameters(); 231 if ( ! params.empty() ) { 232 mangleName << "_"; 233 for ( std::list< Expression* >::const_iterator param = params.begin(); param != params.end(); ++param ) { 234 TypeExpr *paramType = dynamic_cast< TypeExpr* >( *param ); 235 assertf(paramType, "Aggregate parameters should be type expressions: %s", toString(*param).c_str()); 236 maybeAccept( paramType->get_type(), *visitor ); 237 } 238 mangleName << "_"; 239 } 183 240 } 241 } 242 243 void Mangler::postvisit( StructInstType * aggregateUseType ) { 244 mangleRef( aggregateUseType, "s" ); 245 } 246 247 void Mangler::postvisit( UnionInstType * aggregateUseType ) { 248 mangleRef( aggregateUseType, "u" ); 249 } 250 251 void Mangler::postvisit( EnumInstType * aggregateUseType ) { 252 mangleRef( aggregateUseType, "e" ); 253 } 254 255 void Mangler::postvisit( TypeInstType * typeInst ) { 256 VarMapType::iterator varNum = varNums.find( typeInst->get_name() ); 257 if ( varNum == varNums.end() ) { 258 mangleRef( typeInst, "t" ); 259 } else { 260 printQualifiers( typeInst ); 261 std::ostringstream numStream; 262 numStream << varNum->second.first; 263 switch ( (TypeDecl::Kind )varNum->second.second ) { 264 case TypeDecl::Dtype: 265 mangleName << "d"; 266 break; 267 case TypeDecl::Ftype: 268 mangleName << "f"; 269 break; 270 case TypeDecl::Ttype: 271 mangleName << "tVARGS"; 272 break; 273 default: 274 assert( false ); 275 } // switch 276 mangleName << numStream.str(); 277 } // if 278 } 279 280 void Mangler::postvisit( TupleType * tupleType ) { 281 printQualifiers( tupleType ); 282 mangleName << "T"; 283 acceptAll( tupleType->types, *visitor ); 184 284 mangleName << "_"; 185 285 } 186 } 187 } 188 189 void Mangler::visit( StructInstType * aggregateUseType ) { 190 mangleRef( aggregateUseType, "s" ); 191 } 192 193 void Mangler::visit( UnionInstType * aggregateUseType ) { 194 mangleRef( aggregateUseType, "u" ); 195 } 196 197 void Mangler::visit( EnumInstType * aggregateUseType ) { 198 mangleRef( aggregateUseType, "e" ); 199 } 200 201 void Mangler::visit( TypeInstType * typeInst ) { 202 VarMapType::iterator varNum = varNums.find( typeInst->get_name() ); 203 if ( varNum == varNums.end() ) { 204 mangleRef( typeInst, "t" ); 205 } else { 206 printQualifiers( typeInst ); 207 std::ostringstream numStream; 208 numStream << varNum->second.first; 209 switch ( (TypeDecl::Kind )varNum->second.second ) { 210 case TypeDecl::Dtype: 211 mangleName << "d"; 212 break; 213 case TypeDecl::Ftype: 214 mangleName << "f"; 215 break; 216 case TypeDecl::Ttype: 217 mangleName << "tVARGS"; 218 break; 219 default: 220 assert( false ); 221 } // switch 222 mangleName << numStream.str(); 223 } // if 224 } 225 226 void Mangler::visit( TupleType * tupleType ) { 227 printQualifiers( tupleType ); 228 mangleName << "T"; 229 acceptAll( tupleType->types, *this ); 230 mangleName << "_"; 231 } 232 233 void Mangler::visit( VarArgsType * varArgsType ) { 234 printQualifiers( varArgsType ); 235 mangleName << "VARGS"; 236 } 237 238 void Mangler::visit( ZeroType * ) { 239 mangleName << "Z"; 240 } 241 242 void Mangler::visit( OneType * ) { 243 mangleName << "O"; 244 } 245 246 void Mangler::visit( TypeDecl * decl ) { 247 static const char *typePrefix[] = { "BT", "BD", "BF" }; 248 mangleName << typePrefix[ decl->get_kind() ] << ( decl->name.length() + 1 ) << decl->name; 249 } 250 251 void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) { 252 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) { 253 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl; 254 } // for 255 } 256 257 void Mangler::printQualifiers( Type * type ) { 258 // skip if not including qualifiers 259 if ( typeMode ) return; 260 261 if ( ! type->get_forall().empty() ) { 262 std::list< std::string > assertionNames; 263 int tcount = 0, dcount = 0, fcount = 0, vcount = 0; 264 mangleName << "A"; 265 for ( Type::ForallList::iterator i = type->forall.begin(); i != type->forall.end(); ++i ) { 266 switch ( (*i)->get_kind() ) { 267 case TypeDecl::Dtype: 268 dcount++; 269 break; 270 case TypeDecl::Ftype: 271 fcount++; 272 break; 273 case TypeDecl::Ttype: 274 vcount++; 275 break; 276 default: 277 assert( false ); 278 } // switch 279 varNums[ (*i)->name ] = std::pair< int, int >( nextVarNum++, (int)(*i)->get_kind() ); 280 for ( std::list< DeclarationWithType* >::iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) { 281 Mangler sub_mangler( mangleOverridable, typeMode, mangleGenericParams ); 282 sub_mangler.nextVarNum = nextVarNum; 283 sub_mangler.isTopLevel = false; 284 sub_mangler.varNums = varNums; 285 (*assert)->accept( sub_mangler ); 286 assertionNames.push_back( sub_mangler.mangleName.str() ); 286 287 void Mangler::postvisit( VarArgsType * varArgsType ) { 288 printQualifiers( varArgsType ); 289 mangleName << "VARGS"; 290 } 291 292 void Mangler::postvisit( ZeroType * ) { 293 mangleName << "Z"; 294 } 295 296 void Mangler::postvisit( OneType * ) { 297 mangleName << "O"; 298 } 299 300 void Mangler::postvisit( TypeDecl * decl ) { 301 static const char *typePrefix[] = { "BT", "BD", "BF" }; 302 mangleName << typePrefix[ decl->get_kind() ] << ( decl->name.length() + 1 ) << decl->name; 303 } 304 305 __attribute__((unused)) void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) { 306 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) { 307 os << i->first << "(" << i->second.first << "/" << i->second.second << ")" << std::endl; 287 308 } // for 288 } // for 289 mangleName << tcount << "_" << dcount << "_" << fcount << "_" << vcount << "_"; 290 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) ); 291 mangleName << "_"; 292 } // if 293 if ( type->get_const() ) { 294 mangleName << "C"; 295 } // if 296 if ( type->get_volatile() ) { 297 mangleName << "V"; 298 } // if 299 if ( type->get_mutex() ) { 300 mangleName << "M"; 301 } // if 302 // Removed due to restrict not affecting function compatibility in GCC 303 // if ( type->get_isRestrict() ) { 304 // mangleName << "E"; 305 // } // if 306 if ( type->get_lvalue() ) { 307 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues 308 mangleName << "L"; 309 } 310 if ( type->get_atomic() ) { 311 mangleName << "A"; 312 } // if 313 } 309 } 310 311 void Mangler::printQualifiers( Type * type ) { 312 // skip if not including qualifiers 313 if ( typeMode ) return; 314 315 if ( ! type->get_forall().empty() ) { 316 std::list< std::string > assertionNames; 317 int tcount = 0, dcount = 0, fcount = 0, vcount = 0; 318 mangleName << "A"; 319 for ( Type::ForallList::iterator i = type->forall.begin(); i != type->forall.end(); ++i ) { 320 switch ( (*i)->get_kind() ) { 321 case TypeDecl::Dtype: 322 dcount++; 323 break; 324 case TypeDecl::Ftype: 325 fcount++; 326 break; 327 case TypeDecl::Ttype: 328 vcount++; 329 break; 330 default: 331 assert( false ); 332 } // switch 333 varNums[ (*i)->name ] = std::pair< int, int >( nextVarNum++, (int)(*i)->get_kind() ); 334 for ( std::list< DeclarationWithType* >::iterator assert = (*i)->assertions.begin(); assert != (*i)->assertions.end(); ++assert ) { 335 PassVisitor<Mangler> sub_mangler( mangleOverridable, typeMode, mangleGenericParams ); 336 sub_mangler.pass.nextVarNum = nextVarNum; 337 sub_mangler.pass.isTopLevel = false; 338 sub_mangler.pass.varNums = varNums; 339 (*assert)->accept( sub_mangler ); 340 assertionNames.push_back( sub_mangler.pass.mangleName.str() ); 341 } // for 342 } // for 343 mangleName << tcount << "_" << dcount << "_" << fcount << "_" << vcount << "_"; 344 std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) ); 345 mangleName << "_"; 346 } // if 347 if ( type->get_const() ) { 348 mangleName << "C"; 349 } // if 350 if ( type->get_volatile() ) { 351 mangleName << "V"; 352 } // if 353 if ( type->get_mutex() ) { 354 mangleName << "M"; 355 } // if 356 // Removed due to restrict not affecting function compatibility in GCC 357 // if ( type->get_isRestrict() ) { 358 // mangleName << "E"; 359 // } // if 360 if ( type->get_lvalue() ) { 361 // mangle based on whether the type is lvalue, so that the resolver can differentiate lvalues and rvalues 362 mangleName << "L"; 363 } 364 if ( type->get_atomic() ) { 365 mangleName << "A"; 366 } // if 367 } 368 } // namespace 369 } // namespace Mangler 314 370 } // namespace SymTab 315 371 -
src/SymTab/Mangler.h
r4bf3b2b r891c3e3 25 25 26 26 namespace SymTab { 27 /// Mangles names to a unique C identifier 28 class Mangler : public Visitor { 29 public: 27 namespace Mangler { 30 28 /// Mangle syntax tree object; primary interface to clients 31 template< typename SynTreeClass >32 static std::string mangle( SynTreeClass *decl, bool mangleOverridable = true, bool typeMode = false, bool mangleGenericParams = true ); 29 std::string mangle( BaseSyntaxNode * decl, bool mangleOverridable = true, bool typeMode = false, bool mangleGenericParams = true ); 30 33 31 /// Mangle a type name; secondary interface 34 st atic std::string mangleType( Type* ty );32 std::string mangleType( Type* ty ); 35 33 /// Mangle ignoring generic type parameters 36 static std::string mangleConcrete( Type* ty ); 37 38 39 virtual void visit( ObjectDecl *declaration ); 40 virtual void visit( FunctionDecl *declaration ); 41 virtual void visit( TypeDecl *declaration ); 42 43 virtual void visit( VoidType *voidType ); 44 virtual void visit( BasicType *basicType ); 45 virtual void visit( PointerType *pointerType ); 46 virtual void visit( ArrayType *arrayType ); 47 virtual void visit( ReferenceType *refType ); 48 virtual void visit( FunctionType *functionType ); 49 virtual void visit( StructInstType *aggregateUseType ); 50 virtual void visit( UnionInstType *aggregateUseType ); 51 virtual void visit( EnumInstType *aggregateUseType ); 52 virtual void visit( TypeInstType *aggregateUseType ); 53 virtual void visit( TupleType *tupleType ); 54 virtual void visit( VarArgsType *varArgsType ); 55 virtual void visit( ZeroType *zeroType ); 56 virtual void visit( OneType *oneType ); 57 58 std::string get_mangleName() { return mangleName.str(); } 59 private: 60 std::ostringstream mangleName; ///< Mangled name being constructed 61 typedef std::map< std::string, std::pair< int, int > > VarMapType; 62 VarMapType varNums; ///< Map of type variables to indices 63 int nextVarNum; ///< Next type variable index 64 bool isTopLevel; ///< Is the Mangler at the top level 65 bool mangleOverridable; ///< Specially mangle overridable built-in methods 66 bool typeMode; ///< Produce a unique mangled name for a type 67 bool mangleGenericParams; ///< Include generic parameters in name mangling if true 68 69 Mangler( bool mangleOverridable, bool typeMode, bool mangleGenericParams ); 70 Mangler( const Mangler & ); 71 72 void mangleDecl( DeclarationWithType *declaration ); 73 void mangleRef( ReferenceToType *refType, std::string prefix ); 74 75 void printQualifiers( Type *type ); 76 }; // Mangler 77 78 template< typename SynTreeClass > 79 std::string Mangler::mangle( SynTreeClass *decl, bool mangleOverridable, bool typeMode, bool mangleGenericParams ) { 80 Mangler mangler( mangleOverridable, typeMode, mangleGenericParams ); 81 maybeAccept( decl, mangler ); 82 return mangler.get_mangleName(); 83 } 34 std::string mangleConcrete( Type* ty ); 35 } // Mangler 84 36 } // SymTab 85 37 -
src/SynTree/CompoundStmt.cc
r4bf3b2b r891c3e3 64 64 } 65 65 if ( ! declMap.empty() ) { 66 VarExprReplacer replacer( declMap ); 67 accept( replacer ); 66 VarExprReplacer::replace( this, declMap ); 68 67 } 69 68 } -
src/SynTree/FunctionDecl.cc
r4bf3b2b r891c3e3 49 49 } 50 50 if ( ! declMap.empty() ) { 51 VarExprReplacer replacer( declMap ); 52 accept( replacer ); 51 VarExprReplacer::replace( this, declMap ); 53 52 } 54 53 } -
src/SynTree/VarExprReplacer.cc
r4bf3b2b r891c3e3 16 16 #include <iostream> // for operator<<, basic_ostream, ostream, basic_o... 17 17 18 #include "Common/PassVisitor.h" 18 19 #include "Declaration.h" // for operator<<, DeclarationWithType 19 20 #include "Expression.h" // for VariableExpr 20 21 #include "VarExprReplacer.h" 21 22 22 VarExprReplacer::VarExprReplacer( const DeclMap & declMap, bool debug ) : declMap( declMap ), debug( debug ) {} 23 namespace VarExprReplacer { 24 namespace { 25 /// Visitor that replaces the declarations that VariableExprs refer to, according to the supplied mapping 26 struct VarExprReplacer { 27 private: 28 const DeclMap & declMap; 29 bool debug; 30 public: 31 VarExprReplacer( const DeclMap & declMap, bool debug = false ); 23 32 24 // replace variable with new node from decl map 25 void VarExprReplacer::visit( VariableExpr * varExpr ) { 26 // xxx - assertions and parameters aren't accounted for in this... (i.e. they aren't inserted into the map when it's made, only DeclStmts are) 27 if ( declMap.count( varExpr->get_var() ) ) { 28 if ( debug ) { 29 std::cerr << "replacing variable reference: " << (void*)varExpr->get_var() << " " << varExpr->get_var() << " with " << (void*)declMap.at( varExpr->get_var() ) << " " << declMap.at( varExpr->get_var() ) << std::endl; 33 // replace variable with new node from decl map 34 void previsit( VariableExpr * varExpr ); 35 }; 36 } 37 38 void replace( BaseSyntaxNode * node, const DeclMap & declMap, bool debug ) { 39 PassVisitor<VarExprReplacer> replacer( declMap, debug ); 40 maybeAccept( node, replacer ); 41 } 42 43 namespace { 44 VarExprReplacer::VarExprReplacer( const DeclMap & declMap, bool debug ) : declMap( declMap ), debug( debug ) {} 45 46 // replace variable with new node from decl map 47 void VarExprReplacer::previsit( VariableExpr * varExpr ) { 48 // xxx - assertions and parameters aren't accounted for in this... (i.e. they aren't inserted into the map when it's made, only DeclStmts are) 49 if ( declMap.count( varExpr->var ) ) { 50 if ( debug ) { 51 std::cerr << "replacing variable reference: " << (void*)varExpr->var << " " << varExpr->var << " with " << (void*)declMap.at( varExpr->var ) << " " << declMap.at( varExpr->var ) << std::endl; 52 } 53 varExpr->var = declMap.at( varExpr->var ); 54 } 30 55 } 31 varExpr->set_var( declMap.at( varExpr->get_var() ) );32 56 } 33 } 57 } // namespace VarExprReplacer 58 59 60 61 62 63 64 -
src/SynTree/VarExprReplacer.h
r4bf3b2b r891c3e3 23 23 class VariableExpr; 24 24 25 /// Visitor that replaces the declarations that VariableExprs refer to, according to the supplied mapping 26 class VarExprReplacer : public Visitor { 27 public: 25 namespace VarExprReplacer { 28 26 typedef std::map< DeclarationWithType *, DeclarationWithType * > DeclMap; 29 private:30 const DeclMap & declMap;31 bool debug;32 public:33 VarExprReplacer( const DeclMap & declMap, bool debug = false );34 27 35 // replace variable with new node from decl map 36 virtual void visit( VariableExpr * varExpr ); 37 38 static void replace( BaseSyntaxNode * node, const DeclMap & declMap, bool debug = false ) { 39 VarExprReplacer replacer( declMap, debug ); 40 maybeAccept( node, replacer ); 41 } 42 }; 28 void replace( BaseSyntaxNode * node, const DeclMap & declMap, bool debug = false ); 29 } 43 30 44 31 // Local Variables: //
Note:
See TracChangeset
for help on using the changeset viewer.