Changeset 61accc5 for doc/papers


Ignore:
Timestamp:
Jun 11, 2018, 9:30:58 AM (8 years ago)
Author:
Rob Schluntz <rschlunt@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, with_gc
Children:
85b2300
Parents:
c2b10fa (diff), f184ca3 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg.uwaterloo.ca:/u/cforall/software/cfa/cfa-cc

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/papers/concurrency/Paper.tex

    rc2b10fa r61accc5  
    5656\newcommand{\Textbf}[2][red]{{\color{#1}{\textbf{#2}}}}
    5757\newcommand{\Emph}[2][red]{{\color{#1}\textbf{\emph{#2}}}}
    58 \newcommand{\R}[1]{\Textbf{#1}}
    59 \newcommand{\B}[1]{{\Textbf[blue]{#1}}}
    60 \newcommand{\G}[1]{{\Textbf[OliveGreen]{#1}}}
    6158\newcommand{\uC}{$\mu$\CC}
    62 \newcommand{\cit}{\textsuperscript{[Citation Needed]}\xspace}
    63 \newcommand{\TODO}{{\Textbf{TODO}}}
     59\newcommand{\TODO}[1]{{\Textbf{#1}}}
    6460
    6561%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
     
    258254\section{Introduction}
    259255
    260 This paper provides a minimal concurrency \newterm{Abstract Program Interface} (API) that is simple, efficient and can be used to build other concurrency features.
     256This paper provides a minimal concurrency \newterm{Application Program Interface} (API) that is simple, efficient and can be used to build other concurrency features.
    261257While the simplest concurrency system is a thread and a lock, this low-level approach is hard to master.
    262258An easier approach for programmers is to support higher-level constructs as the basis of concurrency.
     
    584580\subsection{\protect\CFA's Thread Building Blocks}
    585581
    586 An important missing feature in C is threading\footnote{While the C11 standard defines a ``threads.h'' header, it is minimal and defined as optional.
     582An important missing feature in C is threading\footnote{While the C11 standard defines a \protect\lstinline@threads.h@ header, it is minimal and defined as optional.
    587583As such, library support for threading is far from widespread.
    588 At the time of writing the paper, neither \protect\lstinline|gcc| nor \protect\lstinline|clang| support ``threads.h'' in their standard libraries.}.
    589 On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore existing and new programming languages must have tools for writing efficient concurrent programs to take advantage of parallelism.
     584At the time of writing the paper, neither \protect\lstinline@gcc@ nor \protect\lstinline@clang@ support \protect\lstinline@threads.h@ in their standard libraries.}.
     585In modern programming languages, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore existing and new programming languages must have tools for writing efficient concurrent programs to take advantage of parallelism.
    590586As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages.
    591587Furthermore, because C is a system-level language, programmers expect to choose precisely which features they need and which cost they are willing to pay.
     
    625621\newbox\myboxA
    626622\begin{lrbox}{\myboxA}
    627 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     623\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    628624`int f1, f2, state = 1;`   // single global variables
    629625int fib() {
     
    642638        }
    643639}
    644 \end{lstlisting}
     640\end{cfa}
    645641\end{lrbox}
    646642
    647643\newbox\myboxB
    648644\begin{lrbox}{\myboxB}
    649 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     645\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    650646#define FIB_INIT `{ 0, 1 }`
    651647typedef struct { int f2, f1; } Fib;
     
    664660        }
    665661}
    666 \end{lstlisting}
     662\end{cfa}
    667663\end{lrbox}
    668664
     
    677673\newbox\myboxA
    678674\begin{lrbox}{\myboxA}
    679 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     675\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    680676`coroutine` Fib { int fn; };
    681677void main( Fib & fib ) with( fib ) {
     
    697693        }
    698694}
    699 \end{lstlisting}
     695\end{cfa}
    700696\end{lrbox}
    701697\newbox\myboxB
    702698\begin{lrbox}{\myboxB}
    703 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     699\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    704700`coroutine` Fib { int ret; };
    705701void main( Fib & f ) with( fib ) {
     
    721717
    722718
    723 \end{lstlisting}
     719\end{cfa}
    724720\end{lrbox}
    725721\subfloat[3 States, internal variables]{\label{f:Coroutine3States}\usebox\myboxA}
     
    769765\newbox\myboxA
    770766\begin{lrbox}{\myboxA}
    771 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     767\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    772768`coroutine` Format {
    773769        char ch;   // used for communication
     
    801797        }
    802798}
    803 \end{lstlisting}
     799\end{cfa}
    804800\end{lrbox}
    805801
    806802\newbox\myboxB
    807803\begin{lrbox}{\myboxB}
    808 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     804\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    809805struct Format {
    810806        char ch;
     
    838834        format( &fmt );
    839835}
    840 \end{lstlisting}
     836\end{cfa}
    841837\end{lrbox}
    842838\subfloat[\CFA Coroutine]{\label{f:CFAFmt}\usebox\myboxA}
     
    10441040};
    10451041\end{cfa}
    1046 & {\Large $\Rightarrow$} &
     1042&
     1043{\Large $\Rightarrow$}
     1044&
    10471045\begin{tabular}{@{}ccc@{}}
    10481046\begin{cfa}
     
    11421140}
    11431141\end{cfa}
    1144 A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \textbf{api}.
     1142A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \textbf{API}.
    11451143\end{comment}
    11461144
     
    14451443\label{s:InternalScheduling}
    14461444
    1447 While monitor mutual-exclusion provides safe access to shared data, the monitor data may indicate that a thread accessing it cannot proceed, \eg a bounded buffer, Figure~\ref{f:BoundedBuffer}, may be full/empty so produce/consumer threads must block.
     1445While monitor mutual-exclusion provides safe access to shared data, the monitor data may indicate that a thread accessing it cannot proceed.
     1446For example, Figure~\ref{f:GenericBoundedBuffer} shows a bounded buffer that may be full/empty so produce/consumer threads must block.
    14481447Leaving the monitor and trying again (busy waiting) is impractical for high-level programming.
    14491448Monitors eliminate busy waiting by providing internal synchronization to schedule threads needing access to the shared data, where the synchronization is blocking (threads are parked) versus spinning.
    1450 The synchronization is generally achieved with internal~\cite{Hoare74} or external~\cite[\S~2.9.2]{uC++} scheduling, where \newterm{scheduling} is defined as indicating which thread acquires the critical section next.
    1451 \newterm{Internal scheduling} is characterized by each thread entering the monitor and making an individual decision about proceeding or blocking, while \newterm{external scheduling} is characterized by an entering thread making a decision about proceeding for itself and behalf of other threads attempting entry.
     1449Synchronization is generally achieved with internal~\cite{Hoare74} or external~\cite[\S~2.9.2]{uC++} scheduling, where \newterm{scheduling} defines which thread acquires the critical section next.
     1450\newterm{Internal scheduling} is characterized by each thread entering the monitor and making an individual decision about proceeding or blocking, while \newterm{external scheduling} is characterized by an entering thread making a decision about proceeding for itself and on behalf of other threads attempting entry.
    14521451
    14531452Figure~\ref{f:BBInt} shows a \CFA bounded-buffer with internal scheduling, where producers/consumers enter the monitor, see the buffer is full/empty, and block on an appropriate condition lock, @full@/@empty@.
     
    14581457\begin{enumerate}
    14591458\item
    1460 The signalling thread leaves immediately, and the signalled thread continues.
     1459The signalling thread returns immediately, and the signalled thread continues.
    14611460\item
    1462 The signalling thread continues and the signalled thread is marked for urgent unblocking at subsequent scheduling points (exit/wait).
     1461The signalling thread continues and the signalled thread is marked for urgent unblocking at the next scheduling point (exit/wait).
    14631462\item
    1464 The signalling thread blocks but is marked for urgrent unblocking and the signalled thread continues.
     1463The signalling thread blocks but is marked for urgrent unblocking at the next scheduling point and the signalled thread continues.
    14651464\end{enumerate}
    14661465The first approach is too restrictive, as it precludes solving a reasonable class of problems (\eg dating service).
    14671466\CFA supports the next two semantics as both are useful.
    14681467Finally, while it is common to store a @condition@ as a field of the monitor, in \CFA, a @condition@ variable can be created/stored independently.
     1468Furthermore, a condition variable is tied to a \emph{group} of monitors on first use (called \newterm{branding}), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors.
    14691469
    14701470\begin{figure}
     
    14721472\newbox\myboxA
    14731473\begin{lrbox}{\myboxA}
    1474 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     1474\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    14751475forall( otype T ) { // distribute forall
    14761476        monitor Buffer {
     
    14961496        }
    14971497}
    1498 \end{lstlisting}
     1498\end{cfa}
    14991499\end{lrbox}
    15001500
    15011501\newbox\myboxB
    15021502\begin{lrbox}{\myboxB}
    1503 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt]
     1503\begin{cfa}[aboveskip=0pt,belowskip=0pt]
    15041504forall( otype T ) { // distribute forall
    15051505        monitor Buffer {
     
    15251525        }
    15261526}
    1527 \end{lstlisting}
     1527\end{cfa}
    15281528\end{lrbox}
    15291529
     
    15321532\subfloat[External Scheduling]{\label{f:BBExt}\usebox\myboxB}
    15331533\caption{Generic Bounded-Buffer}
    1534 \label{f:BoundedBuffer}
     1534\label{f:GenericBoundedBuffer}
    15351535\end{figure}
    15361536
     
    15381538External scheduling is controlled by the @waitfor@ statement, which atomically blocks the calling thread, releases the monitor lock, and restricts the routine calls that can next acquire mutual exclusion.
    15391539If the buffer is full, only calls to @remove@ can acquire the buffer, and if the buffer is empty, only calls to @insert@ can acquire the buffer.
    1540 Threads making calls to routines that are currently excluded wait outside (externally) of the monitor on a calling queue.
    1541 
    1542 An important aspect of monitor implementation is barging, \ie can calling threads barge ahead of signalled threads?
     1540Threads making calls to routines that are currently excluded block outside (external) of the monitor on a calling queue, versus blocking on condition queues inside (internal) of the monitor.
     1541
     1542For internal scheduling, non-blocking signalling (as in the producer/consumer example) is used when the signaller is providing the cooperation for a waiting thread;
     1543the signaller enters the monitor and changes state, detects a waiting threads that can use the state, performs a non-blocking signal on the condition queue for the waiting thread, and exits the monitor to run concurrently.
     1544The waiter unblocks next, takes the state, and exits the monitor.
     1545Blocking signalling is the reverse, where the waiter is providing the cooperation for the signalling thread;
     1546the signaller enters the monitor, detects a waiting thread providing the necessary state, performs a blocking signal to place it on the urgent queue and unblock the waiter.
     1547The waiter changes state and exits the monitor, and the signaller unblocks next from the urgent queue to take the state.
     1548
     1549Figure~\ref{f:DatingService} shows a dating service demonstrating the two forms of signalling: non-blocking and blocking.
     1550The dating service matches girl and boy threads with matching compatibility codes so they can exchange phone numbers.
     1551A thread blocks until an appropriate partner arrives.
     1552The complexity is exchanging phone number in the monitor,
     1553While the non-barging monitor prevents a caller from stealing a phone number, the monitor mutual-exclusion property
     1554
     1555The dating service is an example of a monitor that cannot be written using external scheduling because:
     1556
     1557The example in table \ref{tbl:datingservice} highlights the difference in behaviour.
     1558As mentioned, @signal@ only transfers ownership once the current critical section exits; this behaviour requires additional synchronization when a two-way handshake is needed.
     1559To avoid this explicit synchronization, the @condition@ type offers the @signal_block@ routine, which handles the two-way handshake as shown in the example.
     1560This feature removes the need for a second condition variables and simplifies programming.
     1561Like every other monitor semantic, @signal_block@ uses barging prevention, which means mutual-exclusion is baton-passed both on the front end and the back end of the call to @signal_block@, meaning no other thread can acquire the monitor either before or after the call.
     1562
     1563\begin{figure}
     1564\centering
     1565\newbox\myboxA
     1566\begin{lrbox}{\myboxA}
     1567\begin{cfa}[aboveskip=0pt,belowskip=0pt]
     1568enum { CCodes = 20 };
     1569monitor DS {
     1570        int GirlPhNo, BoyPhNo;
     1571        condition Girls[CCodes], Boys[CCodes];
     1572        condition exchange;
     1573};
     1574int girl( DS & mutex ds, int phNo, int ccode ) {
     1575        if ( is_empty( Boys[ccode] ) ) {
     1576                wait( Girls[ccode] );
     1577                GirlPhNo = phNo;
     1578                exchange.signal();
     1579        } else {
     1580                GirlPhNo = phNo;
     1581                signal( Boys[ccode] );
     1582                exchange.wait();
     1583        } // if
     1584        return BoyPhNo;
     1585}
     1586int boy( DS & mutex ds, int phNo, int ccode ) {
     1587        // as above with boy/girl interchanged
     1588}
     1589\end{cfa}
     1590\end{lrbox}
     1591
     1592\newbox\myboxB
     1593\begin{lrbox}{\myboxB}
     1594\begin{cfa}[aboveskip=0pt,belowskip=0pt]
     1595
     1596monitor DS {
     1597        int GirlPhNo, BoyPhNo;
     1598        condition Girls[CCodes], Boys[CCodes];
     1599
     1600};
     1601int girl( DS & mutex ds, int phNo, int ccode ) {
     1602        if ( is_empty( Boys[ccode] ) ) { // no compatible
     1603                wait( Girls[ccode] ); // wait for boy
     1604                GirlPhNo = phNo; // make phone number available
     1605
     1606        } else {
     1607                GirlPhNo = phNo; // make phone number available
     1608                signal_block( Boys[ccode] ); // restart boy
     1609
     1610        } // if
     1611        return BoyPhNo;
     1612}
     1613int boy( DS & mutex ds, int phNo, int ccode ) {
     1614        // as above with boy/girl interchanged
     1615}
     1616\end{cfa}
     1617\end{lrbox}
     1618
     1619\subfloat[\lstinline@signal@]{\label{f:DatingSignal}\usebox\myboxA}
     1620\qquad
     1621\subfloat[\lstinline@signal_block@]{\label{f:DatingSignalBlock}\usebox\myboxB}
     1622\caption{Dating service. }
     1623\label{f:DatingService}
     1624\end{figure}
     1625
     1626Both internal and external scheduling extend to multiple monitors in a natural way.
     1627\begin{cquote}
     1628\begin{tabular}{@{}l@{\hspace{3\parindentlnth}}l@{}}
     1629\begin{cfa}
     1630monitor M { `condition e`; ... };
     1631void foo( M & mutex m1, M & mutex m2 ) {
     1632        ... wait( `e` ); ...   // wait( e, m1, m2 )
     1633        ... wait( `e, m1` ); ...
     1634        ... wait( `e, m2` ); ...
     1635}
     1636\end{cfa}
     1637&
     1638\begin{cfa}
     1639void rtn$\(_1\)$( M & mutex m1, M & mutex m2 );
     1640void rtn$\(_2\)$( M & mutex m1 );
     1641void bar( M & mutex m1, M & mutex m2 ) {
     1642        ... waitfor( `rtn` ); ...       // $\LstCommentStyle{waitfor( rtn\(_1\), m1, m2 )}$
     1643        ... waitfor( `rtn, m1` ); ... // $\LstCommentStyle{waitfor( rtn\(_2\), m1 )}$
     1644}
     1645\end{cfa}
     1646\end{tabular}
     1647\end{cquote}
     1648For @wait( e )@, the default semantics is to atomically block the signaller and release all acquired mutex types in the parameter list, \ie @wait( e, m1, m2 )@.
     1649To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @wait( e, m1 )@.
     1650Wait statically verifies the released monitors are the acquired mutex-parameters so unconditional release is safe.
     1651Finally, a signaller,
     1652\begin{cfa}
     1653void baz( M & mutex m1, M & mutex m2 ) {
     1654        ... signal( e ); ...
     1655}
     1656\end{cfa}
     1657must have acquired monitor locks that are greater than or equal to the number of locks for the waiting thread signalled from the front of the condition queue.
     1658In general, the signaller does not know the order of waiting threads, so in general, it must acquire the maximum number of mutex locks for the worst-case waiting thread.
     1659
     1660Similarly, for @waitfor( rtn )@, the default semantics is to atomically block the acceptor and release all acquired mutex types in the parameter list, \ie @waitfor( rtn, m1, m2 )@.
     1661To override the implicit multi-monitor wait, specific mutex parameter(s) can be specified, \eg @waitfor( rtn, m1 )@.
     1662Waitfor statically verifies the released monitors are the same as the acquired mutex-parameters of the given routine or routine pointer.
     1663To statically verify the released monitors match with the accepted routine's mutex parameters, the routine (pointer) prototype must be accessible.
     1664
     1665Given the ability to release a subset of acquired monitors can result in a \newterm{nested monitor}~\cite{Lister77} deadlock.
     1666\begin{cfa}
     1667void foo( M & mutex m1, M & mutex m2 ) {
     1668        ... wait( `e, m1` ); ...                                $\C{// release m1, keeping m2 acquired )}$
     1669void baz( M & mutex m1, M & mutex m2 ) {        $\C{// must acquire m1 and m2 )}$
     1670        ... signal( `e` ); ...
     1671\end{cfa}
     1672The @wait@ only releases @m1@ so the signalling thread cannot acquire both @m1@ and @m2@ to  enter @baz@ to get to the @signal@.
     1673While deadlock issues can occur with multiple/nesting acquisition, this issue results from the fact that locks, and by extension monitors, are not perfectly composable.
     1674
     1675Finally, an important aspect of monitor implementation is barging, \ie can calling threads barge ahead of signalled threads?
    15431676If barging is allowed, synchronization between a singller and signallee is difficult, often requiring multiple unblock/block cycles (looping around a wait rechecking if a condition is met).
    1544 \CFA scheduling does \emph{not} have barging, which simplifies synchronization among threads in the monitor.
     1677\begin{quote}
     1678However, we decree that a signal operation be followed immediately by resumption of a waiting program, without possibility of an intervening procedure call from yet a third program.
     1679It is only in this way that a waiting program has an absolute guarantee that it can acquire the resource just released by the signalling program without any danger that a third program will interpose a monitor entry and seize the resource instead.~\cite[p.~550]{Hoare74}
     1680\end{quote}
     1681\CFA scheduling \emph{precludes} barging, which simplifies synchronization among threads in the monitor and increases correctness.
     1682For example, there are no loops in either bounded buffer solution in Figure~\ref{f:GenericBoundedBuffer}.
    15451683Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency.
    15461684
    1547 Indeed, like the bulk acquire semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side.
    1548 
    1549 First, here is a simple example of internal scheduling:
    1550 
    1551 \begin{cfa}
    1552 monitor A {
    1553         condition e;
    1554 }
    1555 
    1556 void foo(A& mutex a1, A& mutex a2) {
     1685
     1686\subsection{Barging Prevention}
     1687
     1688Figure~\ref{f:BargingPrevention} shows \CFA code where bulk acquire adds complexity to the internal-signalling semantics.
     1689The complexity begins at the end of the inner @mutex@ statement, where the semantics of internal scheduling need to be extended for multiple monitors.
     1690The problem is that bulk acquire is used in the inner @mutex@ statement where one of the monitors is already acquired.
     1691When the signalling thread reaches the end of the inner @mutex@ statement, it should transfer ownership of @m1@ and @m2@ to the waiting threads to prevent barging into the outer @mutex@ statement by another thread.
     1692However, both the signalling and waiting thread W1 still need monitor @m1@.
     1693
     1694\begin{figure}
     1695\newbox\myboxA
     1696\begin{lrbox}{\myboxA}
     1697\begin{cfa}[aboveskip=0pt,belowskip=0pt]
     1698monitor M m1, m2;
     1699condition c;
     1700mutex( m1 ) { // $\LstCommentStyle{\color{red}outer}$
    15571701        ...
    1558         // Wait for cooperation from bar()
    1559         wait(a1.e);
     1702        mutex( m1, m2 ) { // $\LstCommentStyle{\color{red}inner}$
     1703                ... `signal( c )`; ...
     1704                // m1, m2 acquired
     1705        } // $\LstCommentStyle{\color{red}release m2}$
     1706        // m1 acquired
     1707} // release m1
     1708\end{cfa}
     1709\end{lrbox}
     1710
     1711\newbox\myboxB
     1712\begin{lrbox}{\myboxB}
     1713\begin{cfa}[aboveskip=0pt,belowskip=0pt]
     1714
     1715
     1716mutex( m1 ) {
    15601717        ...
    1561 }
    1562 
    1563 void bar(A& mutex a1, A& mutex a2) {
    1564         // Provide cooperation for foo()
    1565         ...
    1566         // Unblock foo
    1567         signal(a1.e);
    1568 }
    1569 \end{cfa}
    1570 
    1571 % ======================================================================
    1572 % ======================================================================
    1573 \subsection{Internal Scheduling - Multi-Monitor}
    1574 % ======================================================================
    1575 % ======================================================================
    1576 It is easy to understand the problem of multi-monitor scheduling using a series of pseudo-code examples.
    1577 Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors.
    1578 Indeed, @wait@ statements always use the implicit condition variable as parameters and explicitly name the monitors (A and B) associated with the condition.
    1579 Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors.
    1580 The example below shows the simple case of having two threads (one for each column) and a single monitor A.
    1581 
    1582 \begin{multicols}{2}
    1583 thread 1
    1584 \begin{cfa}
    1585 acquire A
    1586         wait A
    1587 release A
    1588 \end{cfa}
    1589 
    1590 \columnbreak
    1591 
    1592 thread 2
    1593 \begin{cfa}
    1594 acquire A
    1595         signal A
    1596 release A
    1597 \end{cfa}
    1598 \end{multicols}
    1599 One thread acquires before waiting (atomically blocking and releasing A) and the other acquires before signalling.
    1600 It is important to note here that both @wait@ and @signal@ must be called with the proper monitor(s) already acquired.
    1601 This semantic is a logical requirement for barging prevention.
    1602 
    1603 A direct extension of the previous example is a bulk acquire version:
    1604 \begin{multicols}{2}
    1605 \begin{cfa}
    1606 acquire A & B
    1607         wait A & B
    1608 release A & B
    1609 \end{cfa}
    1610 \columnbreak
    1611 \begin{cfa}
    1612 acquire A & B
    1613         signal A & B
    1614 release A & B
    1615 \end{cfa}
    1616 \end{multicols}
    1617 \noindent This version uses bulk acquire (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning.
    1618 Synchronization happens between the two threads in exactly the same way and order.
    1619 The only difference is that mutual exclusion covers a group of monitors.
    1620 On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate.
    1621 
    1622 While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable.
    1623 For monitors, a well-known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a @wait@ is made by a thread that holds more than one monitor.
    1624 For example, the following cfa-code runs into the nested-monitor problem:
    1625 \begin{multicols}{2}
    1626 \begin{cfa}
    1627 acquire A
    1628         acquire B
    1629                 wait B
    1630         release B
    1631 release A
    1632 \end{cfa}
    1633 
    1634 \columnbreak
    1635 
    1636 \begin{cfa}
    1637 acquire A
    1638         acquire B
    1639                 signal B
    1640         release B
    1641 release A
    1642 \end{cfa}
    1643 \end{multicols}
    1644 \noindent The @wait@ only releases monitor @B@ so the signalling thread cannot acquire monitor @A@ to get to the @signal@.
    1645 Attempting release of all acquired monitors at the @wait@ introduces a different set of problems, such as releasing monitor @C@, which has nothing to do with the @signal@.
    1646 
    1647 However, for monitors as for locks, it is possible to write a program using nesting without encountering any problems if nesting is done correctly.
    1648 For example, the next cfa-code snippet acquires monitors {\sf A} then {\sf B} before waiting, while only acquiring {\sf B} when signalling, effectively avoiding the Nested Monitor Problem~\cite{Lister77}.
    1649 
    1650 \begin{multicols}{2}
    1651 \begin{cfa}
    1652 acquire A
    1653         acquire B
    1654                 wait B
    1655         release B
    1656 release A
    1657 \end{cfa}
    1658 
    1659 \columnbreak
    1660 
    1661 \begin{cfa}
    1662 
    1663 acquire B
    1664         signal B
    1665 release B
    1666 
    1667 \end{cfa}
    1668 \end{multicols}
    1669 
    1670 \noindent However, this simple refactoring may not be possible, forcing more complex restructuring.
    1671 
    1672 % ======================================================================
    1673 % ======================================================================
    1674 \subsection{Internal Scheduling - In Depth}
    1675 % ======================================================================
    1676 % ======================================================================
    1677 
    1678 A larger example is presented to show complex issues for bulk acquire and its implementation options are analyzed.
    1679 Figure~\ref{f:int-bulk-cfa} shows an example where bulk acquire adds a significant layer of complexity to the internal signalling semantics, and listing \ref{f:int-bulk-cfa} shows the corresponding \CFA code to implement the cfa-code in listing \ref{f:int-bulk-cfa}.
    1680 For the purpose of translating the given cfa-code into \CFA-code, any method of introducing a monitor is acceptable, \eg @mutex@ parameters, global variables, pointer parameters, or using locals with the @mutex@ statement.
    1681 
    1682 \begin{figure}
    1683 \begin{multicols}{2}
    1684 Waiting thread
    1685 \begin{cfa}[numbers=left]
    1686 acquire A
    1687         // Code Section 1
    1688         acquire A & B
    1689                 // Code Section 2
    1690                 wait A & B
    1691                 // Code Section 3
    1692         release A & B
    1693         // Code Section 4
    1694 release A
    1695 \end{cfa}
    1696 \columnbreak
    1697 Signalling thread
    1698 \begin{cfa}[numbers=left, firstnumber=10,escapechar=|]
    1699 acquire A
    1700         // Code Section 5
    1701         acquire A & B
    1702                 // Code Section 6
    1703                 |\label{line:signal1}|signal A & B
    1704                 // Code Section 7
    1705         |\label{line:releaseFirst}|release A & B
    1706         // Code Section 8
    1707 |\label{line:lastRelease}|release A
    1708 \end{cfa}
    1709 \end{multicols}
    1710 \begin{cfa}[caption={Internal scheduling with bulk acquire},label={f:int-bulk-cfa}]
    1711 \end{cfa}
    1712 \begin{center}
    1713 \begin{cfa}[xleftmargin=.4\textwidth]
    1714 monitor A a;
    1715 monitor B b;
    1716 condition c;
    1717 \end{cfa}
    1718 \end{center}
    1719 \begin{multicols}{2}
    1720 Waiting thread
    1721 \begin{cfa}
    1722 mutex(a) {
    1723         // Code Section 1
    1724         mutex(a, b) {
    1725                 // Code Section 2
    1726                 wait(c);
    1727                 // Code Section 3
    1728         }
    1729         // Code Section 4
    1730 }
    1731 \end{cfa}
    1732 \columnbreak
    1733 Signalling thread
    1734 \begin{cfa}
    1735 mutex(a) {
    1736         // Code Section 5
    1737         mutex(a, b) {
    1738                 // Code Section 6
    1739                 signal(c);
    1740                 // Code Section 7
    1741         }
    1742         // Code Section 8
    1743 }
    1744 \end{cfa}
    1745 \end{multicols}
    1746 \begin{cfa}[caption={Equivalent \CFA code for listing \ref{f:int-bulk-cfa}},label={f:int-bulk-cfa}]
    1747 \end{cfa}
    1748 \begin{multicols}{2}
    1749 Waiter
    1750 \begin{cfa}[numbers=left]
    1751 acquire A
    1752         acquire A & B
    1753                 wait A & B
    1754         release A & B
    1755 release A
    1756 \end{cfa}
    1757 
    1758 \columnbreak
    1759 
    1760 Signaller
    1761 \begin{cfa}[numbers=left, firstnumber=6,escapechar=|]
    1762 acquire A
    1763         acquire A & B
    1764                 signal A & B
    1765         release A & B
    1766         |\label{line:secret}|// Secretly keep B here
    1767 release A
    1768 // Wakeup waiter and transfer A & B
    1769 \end{cfa}
    1770 \end{multicols}
    1771 \begin{cfa}[caption={Figure~\ref{f:int-bulk-cfa}, with delayed signalling comments},label={f:int-secret}]
    1772 \end{cfa}
     1718        mutex( m1, m2 ) {
     1719                ... `wait( c )`; // block and release m1, m2
     1720                // m1, m2 acquired
     1721        } // $\LstCommentStyle{\color{red}release m2}$
     1722        // m1 acquired
     1723} // release m1
     1724\end{cfa}
     1725\end{lrbox}
     1726
     1727\newbox\myboxC
     1728\begin{lrbox}{\myboxC}
     1729\begin{cfa}[aboveskip=0pt,belowskip=0pt]
     1730
     1731
     1732mutex( m2 ) {
     1733        ... `wait( c )`; ...
     1734        // m2 acquired
     1735} // $\LstCommentStyle{\color{red}release m2}$
     1736
     1737
     1738
     1739
     1740\end{cfa}
     1741\end{lrbox}
     1742
     1743\begin{cquote}
     1744\subfloat[Signalling Thread]{\label{f:SignallingThread}\usebox\myboxA}
     1745\hspace{2\parindentlnth}
     1746\subfloat[Waiting Thread (W1)]{\label{f:WaitingThread}\usebox\myboxB}
     1747\hspace{2\parindentlnth}
     1748\subfloat[Waiting Thread (W2)]{\label{f:OtherWaitingThread}\usebox\myboxC}
     1749\end{cquote}
     1750\caption{Barging Prevention}
     1751\label{f:BargingPrevention}
    17731752\end{figure}
    17741753
    1775 The complexity begins at code sections 4 and 8 in listing \ref{f:int-bulk-cfa}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors.
    1776 The root of the problem is that bulk acquire is used in a context where one of the monitors is already acquired, which is why it is important to define the behaviour of the previous cfa-code.
    1777 When the signaller thread reaches the location where it should ``release @A & B@'' (listing \ref{f:int-bulk-cfa} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor @B@ to the waiting thread.
    1778 This ownership transfer is required in order to prevent barging into @B@ by another thread, since both the signalling and signalled threads still need monitor @A@.
    1779 There are three options:
    1780 
    1781 \subsubsection{Delaying Signals}
    1782 The obvious solution to the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred.
    1783 It can be argued that that moment is when the last lock is no longer needed, because this semantics fits most closely to the behaviour of single-monitor scheduling.
    1784 This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups.
    1785 This solution releases the monitors once every monitor in a group can be released.
    1786 However, since some monitors are never released (\eg the monitor of a thread), this interpretation means a group might never be released.
    1787 A more interesting interpretation is to transfer the group until all its monitors are released, which means the group is not passed further and a thread can retain its locks.
    1788 
    1789 However, listing \ref{f:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors.
     1754One scheduling solution is for the signaller to keep ownership of all locks until the last lock is ready to be transferred, because this semantics fits most closely to the behaviour of single-monitor scheduling.
     1755However, Figure~\ref{f:OtherWaitingThread} shows this solution is complex depending on other waiters, resulting is choices when the signaller finishes the inner mutex-statement.
     1756The singaller can retain @m2@ until completion of the outer mutex statement and pass the locks to waiter W1, or it can pass @m2@ to waiter W2 after completing the inner mutex-statement, while continuing to hold @m1@.
     1757In the latter case, waiter W2 must eventually pass @m2@ to waiter W1, which is complex because W2 may have waited before W1 so it is unaware of W1.
     1758Furthermore, there is an execution sequence where the signaller always finds waiter W2, and hence, waiter W1 starves.
     1759
     1760While a number of approaches were examined~\cite[\S~4.3]{Delisle18}, the solution chosen for \CFA is a novel techique called \newterm{partial signalling}.
     1761Signalled threads are moved to an urgent queue and the waiter at the front defines the set of monitors necessary for it to unblock.
     1762Partial signalling transfers ownership of monitors to the front waiter.
     1763When the signaller thread exits or waits in the monitor the front waiter is unblocked if all its monitors are released.
     1764This solution has the benefit that complexity is encapsulated into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met.
     1765
     1766\begin{comment}
    17901767Figure~\ref{f:dependency} shows a slightly different example where a third thread is waiting on monitor @A@, using a different condition variable.
    17911768Because the third thread is signalled when secretly holding @B@, the goal  becomes unreachable.
     
    18011778In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to release a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach.
    18021779
     1780
    18031781\subsubsection{Dependency graphs}
    1804 
    18051782
    18061783\begin{figure}
     
    18811858
    18821859\subsubsection{Partial Signalling} \label{partial-sig}
    1883 Finally, the solution that is chosen for \CFA is to use partial signalling.
    1884 Again using listing \ref{f:int-bulk-cfa}, the partial signalling solution transfers ownership of monitor @B@ at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor @A@.
    1885 Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread.
    1886 This solution has the benefit that complexity is encapsulated into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met.
    1887 This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen.
    1888 Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.
    1889 
    1890 Using partial signalling, listing \ref{f:dependency} can be solved easily:
    1891 \begin{itemize}
    1892         \item When thread $\gamma$ reaches line \ref{line:release-ab} it transfers monitor @B@ to thread $\alpha$ and continues to hold monitor @A@.
    1893         \item When thread $\gamma$ reaches line \ref{line:release-a}  it transfers monitor @A@ to thread $\beta$  and wakes it up.
    1894         \item When thread $\beta$  reaches line \ref{line:release-aa} it transfers monitor @A@ to thread $\alpha$ and wakes it up.
    1895 \end{itemize}
    1896 
    1897 % ======================================================================
    1898 % ======================================================================
    1899 \subsection{Signalling: Now or Later}
    1900 % ======================================================================
    1901 % ======================================================================
    1902 \begin{table}
    1903 \begin{tabular}{|c|c|}
    1904 @signal@ & @signal_block@ \\
    1905 \hline
    1906 \begin{cfa}[tabsize=3]
    1907 monitor DatingService {
    1908         // compatibility codes
    1909         enum{ CCodes = 20 };
    1910 
    1911         int girlPhoneNo
    1912         int boyPhoneNo;
    1913 };
    1914 
    1915 condition girls[CCodes];
    1916 condition boys [CCodes];
    1917 condition exchange;
    1918 
    1919 int girl(int phoneNo, int cfa) {
    1920         // no compatible boy ?
    1921         if(empty(boys[cfa])) {
    1922                 wait(girls[cfa]);               // wait for boy
    1923                 girlPhoneNo = phoneNo;          // make phone number available
    1924                 signal(exchange);               // wake boy from chair
    1925         } else {
    1926                 girlPhoneNo = phoneNo;          // make phone number available
    1927                 signal(boys[cfa]);              // wake boy
    1928                 wait(exchange);         // sit in chair
    1929         }
    1930         return boyPhoneNo;
    1931 }
    1932 int boy(int phoneNo, int cfa) {
    1933         // same as above
    1934         // with boy/girl interchanged
    1935 }
    1936 \end{cfa}&\begin{cfa}[tabsize=3]
    1937 monitor DatingService {
    1938 
    1939         enum{ CCodes = 20 };    // compatibility codes
    1940 
    1941         int girlPhoneNo;
    1942         int boyPhoneNo;
    1943 };
    1944 
    1945 condition girls[CCodes];
    1946 condition boys [CCodes];
    1947 // exchange is not needed
    1948 
    1949 int girl(int phoneNo, int cfa) {
    1950         // no compatible boy ?
    1951         if(empty(boys[cfa])) {
    1952                 wait(girls[cfa]);               // wait for boy
    1953                 girlPhoneNo = phoneNo;          // make phone number available
    1954                 signal(exchange);               // wake boy from chair
    1955         } else {
    1956                 girlPhoneNo = phoneNo;          // make phone number available
    1957                 signal_block(boys[cfa]);                // wake boy
    1958 
    1959                 // second handshake unnecessary
    1960 
    1961         }
    1962         return boyPhoneNo;
    1963 }
    1964 
    1965 int boy(int phoneNo, int cfa) {
    1966         // same as above
    1967         // with boy/girl interchanged
    1968 }
    1969 \end{cfa}
    1970 \end{tabular}
    1971 \caption{Dating service example using \protect\lstinline|signal| and \protect\lstinline|signal_block|. }
    1972 \label{tbl:datingservice}
    1973 \end{table}
    1974 An important note is that, until now, signalling a monitor was a delayed operation.
    1975 The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the @signal@ statement.
    1976 However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the @signal_block@ routine.
    1977 
    1978 The example in table \ref{tbl:datingservice} highlights the difference in behaviour.
    1979 As mentioned, @signal@ only transfers ownership once the current critical section exits; this behaviour requires additional synchronization when a two-way handshake is needed.
    1980 To avoid this explicit synchronization, the @condition@ type offers the @signal_block@ routine, which handles the two-way handshake as shown in the example.
    1981 This feature removes the need for a second condition variables and simplifies programming.
    1982 Like every other monitor semantic, @signal_block@ uses barging prevention, which means mutual-exclusion is baton-passed both on the front end and the back end of the call to @signal_block@, meaning no other thread can acquire the monitor either before or after the call.
    1983 
    1984 % ======================================================================
    1985 % ======================================================================
     1860\end{comment}
     1861
     1862
    19861863\section{External scheduling} \label{extsched}
    1987 % ======================================================================
    1988 % ======================================================================
     1864
    19891865An alternative to internal scheduling is external scheduling (see Table~\ref{tbl:sched}).
     1866
     1867\begin{comment}
    19901868\begin{table}
    19911869\begin{tabular}{|c|c|c|}
     
    20511929\label{tbl:sched}
    20521930\end{table}
     1931\end{comment}
     1932
    20531933This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency.
    20541934Indeed, as the following examples demonstrate, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring.
Note: See TracChangeset for help on using the changeset viewer.