Changeset 5ddb8bf for doc/proposals
- Timestamp:
- Dec 11, 2023, 4:17:57 AM (12 months ago)
- Branches:
- master
- Children:
- 81da3da4
- Parents:
- 2d373440
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/proposals/enum.tex
r2d373440 r5ddb8bf 135 135 \section{\CFA-Style Enum} 136 136 137 A \CFA enumeration is parameterized by a type , which specifies the type for each enumerator.137 A \CFA enumeration is parameterized by a type specifying each enumerator's type. 138 138 \CFA allows any object type for the enumerators, and values assigned to enumerators must be from the declared type. 139 139 \begin{lstlisting}[label=lst:color] … … 154 154 \end{lstlisting} 155 155 where the @'!'@ implies the enumerators are \emph{not} projected. 156 The enumerators of a scoped enumeration are accessed using qualification , like the fields of an aggregate.156 The enumerators of a scoped enumeration are accessed using qualifications, like the fields of an aggregate. 157 157 % The syntax of $qualified\_expression$ for \CFA-enum is the following: 158 158 % $$<qualified\_expression> := <enum\_type>.<enumerator>$$ … … 162 162 \end{lstlisting} 163 163 164 \section{Enumeration Pseudo-functions} 165 Pseudo-functions are function-like operators that do not result in any run-time computations, i.e., like @sizeof@. Instead, the call to functions will be substituted into other expressions in compilation time. 166 164 167 \subsection{Enumerator Attributes} 165 166 The attributes of an enumerator are accessed by pseudo-functions @position@, @value@, and @label@, i.e., like @sizeof@. 168 The attributes of an enumerator are accessed by pseudo-functions @position@, @value@, and @label@. 167 169 \begin{lstlisting} 168 170 int green_pos = @position@( Colour.Green ); // 1 169 char * green_value = @value@( Colour.Green ); // "G" 170 char * green_label = @label@( Colour.Green ); // "Green" 171 \end{lstlisting} 172 There are implicit conversions from an enumerator to its attributes. 173 \begin{lstlisting}[label=lst:enum_inst_assign_int] 174 int green_pos = Colour.Green; // 1 175 char * green_value = Colour.Green; // ambiguous 176 char * green_label = Colour.Green; // ambiguous 177 \end{lstlisting} 178 where a conversion is ambiguous, if the enumerator's type is same as an attribute's type. 179 For example, @value( Colour.Green )@ and @label( Colour.Green )@ both have type @char *@. 180 Further examples are: 181 \begin{cquote} 182 \begin{tabular}{ll} 183 \begin{lstlisting} 184 int monday_pos = Monday; // ambiguous 185 int monday_value = Monday; // ambiguous 186 char * monday_label = Monday; // "Monday" 187 188 \end{lstlisting} 189 & 190 \begin{lstlisting} 191 enum(double) Math { PI = 3.14159, E = 2.718 }; 192 int pi_pos = PI; // 0 193 double pi_value = PI; // 3.14159 194 char * pi_label = PI; // "PI" 195 \end{lstlisting} 196 \end{tabular} 197 \end{cquote} 198 Here, @position( Monday )@ and @value( Monday )@ both have type @int@, while all attribute types are unique for enumerator @PI@. 199 200 When a resolution is ambiguous, a \textit{resolution precedence} applies: $$value > position > label$$ 201 \CFA uses resolution distance to describe if one type can be used as another. While \CFA calculates the resolution distance between the expected type and types of all three attributes, it would not choose the attribute with the closest distance. Instead, when resolving an enumeration constant, \CFA always chooses value whenever it is a possible resolution (resolution distance is not infinite), followed by position, then label. 202 \begin{lstlisting}[label=lst:enum_inst_precedence] 203 enum(double) Foo { Bar }; 204 int tee = Foo.Bar; // value( Bar ); 205 \end{lstlisting} 206 In the example~\ref{lst:enum_inst_precedence}, while $position( Bar )$ has the closest resolution among the three attributes, $Foo.Bar$ is resolved as $value( Bar )$ because of the resolution precedence. 207 208 \PAB{Not sure this is going to work.} 171 char * green_value = @value@( Colour.Green ); / "G" 172 char * green_label = @label@( Colour.Green ); // "Green" 173 \end{lstlisting} 174 175 \subsection{enumerate()} 176 \begin{lstlisting}[label=lst:c_switch] 177 enum(int) C_ENUM { First, Second, Third = First, Fourth }; 178 int v(C_ENUM e) { 179 switch( e ) { 180 case First: return 0; break; 181 case Second: return 1; break; 182 // case Thrid: return 2; break; 183 // case Fourth: return 3; break; 184 }; 185 }; 186 \end{lstlisting} 187 In the @C_ENUM@ example, @Third@ is an alias of @First@ and @Fourth@ is an alias of @Second@. Programmers cannot make case branches for @Third@ and @Fourth@ because the switch statement matches cases by the enumerator's value. Case First and Third, or Second and Fourth, has duplicate case values. 188 189 @enumerate()@ is a pseudo-function that makes the switch statement match by an enumerator instead. 190 \begin{lstlisting}[label=lst:c_switch_enumerate] 191 enum(double) C_ENUM { First, Second, Third = First, Fourth }; 192 C_ENUM variable_a = First, variable_b = Second, variable_c = Thrid, variable_d = Fourth; 193 int v(C_ENUM e) { 194 switch( enumeratate( e ) ) { 195 case First: return e; break; 196 case Second: return value( e ); break; 197 case Thrid: return label( e ); break; 198 case Fourth: return position( e ); break; 199 }; 200 }; 201 p(variable_a); // 0 202 p(variable_b); // 1 203 p(variable_c); // "Third" 204 p(variable_d); // 3 205 \end{lstlisting} 206 207 \section{Enumeration Characteristic} 209 208 210 209 \subsection{Enumerator Storage} … … 217 216 a \CFA enumeration is always statically typed; 218 217 \item 219 it is always resolved as one of its attributes in terms ofreal usage.218 it is always resolved as one of its attributes regarding real usage. 220 219 \end{enumerate} 221 220 When creating an enumeration instance @colour@ and assigning it with the enumerator @Color.Green@, the compiler allocates an integer variable and stores the position 1. … … 232 231 These generated functions are $Companion Functions$, they take an $companion$ object and the position as parameters. 233 232 234 \subsection{Companion Object and Companion Function} 235 236 \begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_functions] 237 forall( T ) 238 struct Companion { 239 const T * const values; 240 const char ** const labels; 241 int length; 242 }; 243 \end{lstlisting} 244 \CFA creates a @Companion@ object for every \CFA enumeration. 245 A companion object has the same name as the enumeration is defined for. 246 A companion object stores values and labels of enumeration constants, in the order of the constants defined in the enumeration. 247 248 \CFA generates the definition of companion functions. 249 Because \CFA implicitly stores enumeration instance as its position, the companion function @position@ does nothing but return the position it is passed. 250 Companions function @value@ and @label@ return the array item at the given position of @values@ and @labels@, respectively. 251 \begin{lstlisting}[label=lst:companion_definition] 252 int position( Companion o, int pos ) { return pos; } 253 T value( Companion o, int pos ) { return o.values[ pos ]; } 254 char * label( Companion o, int pos ) { return o.labels[ pos ]; } 255 \end{lstlisting} 256 Notably, the @Companion@ structure definition, and all companion objects, are visible to users. 257 A user can retrieve values and labels defined in an enumeration by accessing the values and labels directly, or indirectly by calling @Companion@ functions @values@ and @labels@ 258 \begin{lstlisting}[label=lst:companion_definition_values_labels] 259 Colour.values; // read the Companion's values 260 values( Colour ); // same as Colour.values 261 \end{lstlisting} 262 263 \subsection{User Define Enumeration Functions} 264 265 Companion objects make extending features for \CFA enumeration easy. 266 \begin{lstlisting}[label=lst:companion_user_definition] 267 char * charastic_string( Companion o, int position ) { 268 return sprintf( "Label: %s; Value: %s", label( o, position ), value( o, position) ); 269 } 270 printf( charactic_string ( Color, 1 ) ); 271 >>> Label: Green; Value: G 272 \end{lstlisting} 273 Defining a function takes a Companion object effectively defines functions for all \CFA enumeration. 274 275 The \CFA compiler turns a function call that takes an enumeration instance as a parameter into a function call with a companion object plus a position. 276 Therefore, a user can use the syntax with a user-defined enumeration function call: 277 \begin{lstlisting}[label=lst:companion_user_definition] 278 charactic_string( Color.Green ); // equivalent to charactic_string( Color, 1 ) 279 >>> Label: Green; Value: G 280 \end{lstlisting} 281 Similarly, the user can work with the enumeration type itself: (see section ref...) 282 \begin{lstlisting}[ label=lst:companion_user_definition] 283 void print_enumerators ( Companion o ) { 284 for ( c : Companion o ) { 285 sout | label (c) | value( c ) ; 286 } 287 } 288 print_enumerators( Colour ); 289 \end{lstlisting} 290 291 % \subsection{Runtime Enumeration} 292 293 % The companion structure definition is visible to users, and users can create an instance of companion object themselves, which effectively constructs a \textit{Runtime Enumeration}. 294 % \begin{lstlisting}[ label=lst:runtime_enum ] 295 % const char values[$\,$] = { "Hello", "World" }; 296 % const char labels[$\,$] = { "First", "Second" }; 297 % Companion(char *) MyEnum = { .values: values, .labels: labels, .length: 2 }; 298 % \end{lstlisting} 299 % A runtime enumeration can be used to call enumeration functions. 300 % \begin{lstlisting}[ label=lst:runtime_enum_usage ] 301 % sout | charatstic_string( MyEnum, 1 ); 302 % >>> Label: Second; Value: World 303 % \end{lstlisting} 304 % However, a runtime enumeration cannot create an enumeration instance, and it does not support enum-qualified syntax. 305 % \begin{lstlisting}[ label=lst:runtime_enum_usage ] 306 % MyEnum e = MyEnum.First; // Does not work: cannot create an enumeration instance e, 307 % // and MyEnum.First is not recognizable 308 % \end{lstlisting} 309 % During the compilation, \CFA adds enumeration declarations to an enumeration symbol table and creates specialized function definitions for \CFA enumeration. 310 % \CFA does not recognize runtime enumeration during compilation and would not add them to the enumeration symbol table, resulting in a lack of supports for runtime enumeration. 311 312 % \PAB{Not sure how useful this feature is.} 233 \subsection{Enumeration as Value} 234 An \CFA enumeration with base type T can be used seamlessly as T. 235 \begin{lstlisting}[label=lst:implicit_conversion] 236 char * green_value = Colour.Green; // "G" 237 // Is equivalent to 238 char * green_value = value( Color.Green ); "G" 239 \end{lstlisting} 240 \CFA recognizes @Colour.Green@ as an Expression with enumeration type. [reference to resolution distance] An enumeration type can be safely converted into its value type T, @char *@ in the example. When assigning @Colour.Green@ to a reference @green_value@, which has type @char *@, the compiler adds the distance between an enumeration and type T, and the distance between type T and @char *@. If the distance is safe, \CFA will replace the expression @Colour.Green@ with @value( Colour.Green )@. 241 242 \subsection{Variable Overloading} 243 \begin{lstlisting}[label=lst:variable_overload] 244 void foo(Colour c) { return value( c ); } 245 void bar(char * s) { return s; } 246 Colour green = Colour.Green; // "G" 247 char * green = "Green"; 248 foo( green ); // "G" 249 bar( green ); // "Green" 250 \end{lstlisting} 251 252 \subsection{Function Overloading} 253 \begin{lstlisting}[label=lst:function_overload] 254 void foo(Colour c) { return "It is an enum"; } 255 void foo(char * s) { return "It is a string"; } 256 foo( green ); // "It is an enum" 257 \end{lstlisting} 258 259 As a consequence, the semantics of using \CFA enumeration as a flag for selection is identical to C enumeration. 260 313 261 314 262 % \section{Enumeration Features} … … 335 283 trait AutoInitializable { 336 284 void ?()( T & t, zero_t ); 337 void ?()( T & t, one_t ); 338 S ?+?( T & t, one_t ); 285 S ?++( T & t); 339 286 }; 340 287 \end{lstlisting} … … 343 290 struct Odd { int i; }; 344 291 void ?()( Odd & t, zero_t ) { t.i = 1; }; 345 void ?()( Odd & t, one_t ) { t.i = 2; }; 346 Odd ?+?( Odd t1, Odd t2 ) { return Odd( t1.i + t2.i); }; 292 Odd ?++( Odd t1 ) { return Odd( t1.i + 2); }; 347 293 \end{lstlisting} 348 294 When the type of an enumeration is @AutoInitializable@, implicit initialization is available. … … 352 298 }; 353 299 \end{lstlisting} 354 In the example, there is no initializerspecified for the first enumeration constant @A@, so \CFA initializes it with the value of @zero_t@, which is 1.355 @B@ and @D@ have the values of their $predecessor + one_t$, where @one_t@ has the value 2.300 In the example, no initializer is specified for the first enumeration constant @A@, so \CFA initializes it with the value of @zero_t@, which is 1. 301 @B@ and @D@ have the values of their $predecessor++$, where @one_t@ has the value 2. 356 302 Therefore, the enumeration is initialized as follows: 357 303 \begin{lstlisting}[label=lst:sample_auto_Initializable_usage_gen] … … 510 456 In the later discussion, we will use @EnumDecl<T>@ to symbolize a @EnumDecl@ parameterized by type T, and @EnumInstType<T>@ is a declared instance of @EnumDecl<T>@. 511 457 512 % \subsection{Preluede} 513 % \CFA places the definition of Companion structure and non-parameterized Companion functions in the prelude, visible globally. 458 \begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_data] 459 const T * const values; 460 const char * label; 461 int length; 462 \end{lstlisting} 463 Companion data are necessary information to represent an enumeration. They are stored as standalone pieces, rather than a structure. Those data will be loaded "on demand". 464 Companion data are needed only if the according pseudo-functions are called. For example, the value of the enumeration Workday is loaded only if there is at least one compilation that has call $value(Workday)$. Once the values are loaded, all compilations share these values array to reduce memory usage. 465 466 <Investiage: how to implement this is huge> 467 468 \subsection{(Rework) Companion Object and Companion Function} 469 470 \begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_functions] 471 forall( T ) 472 struct Companion { 473 const T * const values; 474 const char * label; 475 int length; 476 }; 477 \end{lstlisting} 478 \CFA generates companion objects, an instance of structure that encloses @necessary@ data to represent an enumeration. The size of the companion is unknown at the compilation time, and it "grows" in size to compensate for the @usage@. 479 480 The companion object is singleton across the compilation (investigation). 481 482 \CFA generates the definition of companion functions. 483 Because \CFA implicitly stores an enumeration instance as its position, the companion function @position@ does nothing but return the position it is passed. 484 Companions function @value@ and @label@ return the array item at the given position of @values@ and @labels@, respectively. 485 \begin{lstlisting}[label=lst:companion_definition] 486 int position( Companion o, int pos ) { return pos; } 487 T value( Companion o, int pos ) { return o.values[ pos ]; } 488 char * label( Companion o, int pos ) { return o.labels[ pos ]; } 489 \end{lstlisting} 490 Notably, the @Companion@ structure definition, and all companion objects, are visible to users. 491 A user can retrieve values and labels defined in an enumeration by accessing the values and labels directly, or indirectly by calling @Companion@ functions @values@ and @labels@ 492 \begin{lstlisting}[label=lst:companion_definition_values_labels] 493 Colour.values; // read the Companion's values 494 values( Colour ); // same as Colour.values 495 \end{lstlisting} 496 497 \subsection{Companion Traits (experimental)} 498 Not sure its semantics yet, and it might replace a companion object. 499 \begin{lstlisting}[label=lst:companion_trait] 500 forall(T1) { 501 trait Companion(otype T2<otype T1>) { 502 T1 value((otype T2<otype T1> const &); 503 int position(otype T2<otype T1> const &); 504 char * label(otype T2<otype T1> const &); 505 } 506 } 507 \end{lstlisting} 508 All enumerations implicitly implement the Companion trait, an interface to access attributes. The Companion can be a data type because it fulfills to requirements to have concrete instances, which are: 509 510 \begin{enumerate} 511 \item The instance of enumeration has a single polymorphic type. 512 \item Each assertion should use the type once as a parameter. 513 \end{enumerate} 514 515 \begin{lstlisting} 516 enum(int) Weekday { 517 Monday=10, Tuesday, ... 518 }; 519 520 T value( enum Weekday<T> & this); 521 int position( enum Weekday<T> & this ) 522 char * label( enum Weekday<T> & this ) 523 524 trait Companion obj = (enum(int)) Workday.Weekday; 525 value(obj); // 10 526 \end{lstlisting} 527 The enumeration comes with default implementation to the Companion traits functions. The usage of Companion functions would make \CFA allocates and initializes the necessary companion arrays, and return the data at the position represented by the enumeration. 528 (...) 529 530 \subsection{User Define Enumeration Functions} 531 532 Companion objects make extending features for \CFA enumeration easy. 533 \begin{lstlisting}[label=lst:companion_user_definition] 534 char * charastic_string( Companion o, int position ) { 535 return sprintf( "Label: %s; Value: %s", label( o, position ), value( o, position) ); 536 } 537 printf( charactic_string ( Color, 1 ) ); 538 >>> Label: Green; Value: G 539 \end{lstlisting} 540 Defining a function takes a Companion object effectively defines functions for all \CFA enumeration. 541 542 The \CFA compiler turns a function call that takes an enumeration instance as a parameter into a function call with a companion object plus a position. 543 Therefore, a user can use the syntax with a user-defined enumeration function call: 544 \begin{lstlisting}[label=lst:companion_user_definition] 545 charactic_string( Color.Green ); // equivalent to charactic_string( Color, 1 ) 546 >>> Label: Green; Value: G 547 \end{lstlisting} 548 Similarly, the user can work with the enumeration type itself: (see section ref...) 549 \begin{lstlisting}[ label=lst:companion_user_definition] 550 void print_enumerators ( Companion o ) { 551 for ( c : Companion o ) { 552 sout | label (c) | value( c ) ; 553 } 554 } 555 print_enumerators( Colour ); 556 \end{lstlisting} 557 514 558 515 559 \subsection{Declaration} … … 729 773 \end{lstlisting} 730 774 775 731 776 \end{document} 732 777
Note: See TracChangeset
for help on using the changeset viewer.