Changeset 5c4f2c2


Ignore:
Timestamp:
Jan 5, 2018, 3:21:19 PM (7 years ago)
Author:
Thierry Delisle <tdelisle@…>
Branches:
ADT, aaron-thesis, arm-eh, ast-experimental, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
5b51f5e
Parents:
3eb4541
Message:

Updated thesis with most of Gregor's comments

Location:
doc/proposals/concurrency
Files:
11 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/annex/glossary.tex

    r3eb4541 r5c4f2c2  
    9898\newacronym{tls}{TLS}{Thread Local Storage}
    9999\newacronym{api}{API}{Application Program Interface}
    100 \newacronym{raii}{RAII}{Ressource Acquisition Is Initialization}
     100\newacronym{raii}{RAII}{Resource Acquisition Is Initialization}
    101101\newacronym{numa}{NUMA}{Non-Uniform Memory Access}
  • doc/proposals/concurrency/text/basics.tex

    r3eb4541 r5c4f2c2  
    99At its core, concurrency is based on having multiple call-stacks and scheduling among threads of execution executing on these stacks. Concurrency without parallelism only requires having multiple call stacks (or contexts) for a single thread of execution.
    1010
    11 Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread perspective) across the stacks is called concurrency.
    12 
    13 Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller?s stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (aka non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
     11Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread\textquotesingle s perspective) across the stacks is called concurrency.
     12
     13Therefore, a minimal concurrency system can be achieved by creating coroutines, which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller\textquotesingle s stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a. non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption.
    1414
    1515A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows.
    1616
    1717\section{\protect\CFA's Thread Building Blocks}
    18 One of the important features that are missing in C is threading. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
     18One of the important features that are missing in C is threading\footnote{While the C11 standard defines a ``threads.h'' header, it is fairly minimal and defined as optional. As such library support for threading is far from widespread. At the time of writing neither gcc nor clang support ``threads.h'' in their respective standard libraries.}. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay.
    1919
    2020\section{Coroutines: A Stepping Stone}\label{coroutine}
    21 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines need to deal with context switches and other context-management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}.
     21While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. Coroutines are generalized routines which have predefined points where execution is suspended and can be resumed at a later time. Therefore, they need to deal with context switches and other context-management operations. This proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \acrshort{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}.
    2222
    2323\begin{table}
     
    133133\end{table}
    134134
    135 A good example of a problem made easier with coroutines is generators, like the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Table \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
     135A good example of a problem made easier with coroutines is generators, e.g., generating the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Listing \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed.
    136136
    137137Listing \ref{lst:fibonacci-cfa} is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. Indeed, this version is as easy to use as the \code{fibonacci_state} solution, while the implementation is very similar to the \code{fibonacci_func} example.
     
    233233One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. However, the underlying challenge remains the same for coroutines and threads.
    234234
    235 The runtime system needs to create the coroutine?s stack and more importantly prepare it for the first resumption. The timing of the creation is non-trivial since users both expect to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine.
     235The runtime system needs to create the coroutine\textquotesingle s stack and, more importantly, prepare it for the first resumption. The timing of the creation is non-trivial since users expect both to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine.
    236236
    237237Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks:
     
    329329\subsection{Alternative: Trait-Based Coroutines}
    330330
    331 Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} and is used as a coroutine.
     331Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} (as defined below) and is used as a coroutine.
    332332
    333333\begin{cfacode}
     
    340340forall( dtype T | is_coroutine(T) ) void resume (T&);
    341341\end{cfacode}
    342 This ensures an object is not a coroutine until \code{resume} is called on the object. Correspondingly, any object that is passed to \code{resume} is a coroutine since it must satisfy the \code{is_coroutine} trait to compile. The advantage of this approach is that users can easily create different types of coroutines, for example, changing the memory layout of a coroutine is trivial when implementing the \code{get_coroutine} routine. The \CFA keyword \code{coroutine} only has the effect of implementing the getter and forward declarations required for users to implement the main routine.
     342This ensures that an object is not a coroutine until \code{resume} is called on the object. Correspondingly, any object that is passed to \code{resume} is a coroutine since it must satisfy the \code{is_coroutine} trait to compile. The advantage of this approach is that users can easily create different types of coroutines, for example, changing the memory layout of a coroutine is trivial when implementing the \code{get_coroutine} routine. The \CFA keyword \code{coroutine} simply has the effect of implementing the getter and forward declarations required for users to implement the main routine.
    343343
    344344\begin{center}
     
    385385\end{cfacode}
    386386
    387 Obviously, for this thread implementation to be useful it must run some user code. Several other threading interfaces use a function-pointer representation as the interface of threads (for example \Csharp~\cite{Csharp} and Scala~\cite{Scala}). However, this proposal considers that statically tying a \code{main} routine to a thread supersedes this approach. Since the \code{main} routine is already a special routine in \CFA (where the program begins), it is a natural extension of the semantics using overloading to declare mains for different threads (the normal main being the main of the initial thread). As such the \code{main} routine of a thread can be defined as
     387Obviously, for this thread implementation to be useful it must run some user code. Several other threading interfaces use a function-pointer representation as the interface of threads (for example \Csharp~\cite{Csharp} and Scala~\cite{Scala}). However, this proposal considers that statically tying a \code{main} routine to a thread supersedes this approach. Since the \code{main} routine is already a special routine in \CFA (where the program begins), it is a natural extension of the semantics to use overloading to declare mains for different threads (the normal main being the main of the initial thread). As such the \code{main} routine of a thread can be defined as
    388388\begin{cfacode}
    389389thread foo {};
     
    425425A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \acrshort{api}.
    426426
    427 Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs.
     427Of course, for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs.
    428428\begin{cfacode}
    429429thread World;
     
    466466\end{cfacode}
    467467
    468 However, one of the drawbacks of this approach is that threads always form a lattice, i.e., they are always destroyed in the opposite order of construction because of block structure. This restriction is relaxed by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating memory lets objects outlive the scope in which they are created.
     468However, one of the drawbacks of this approach is that threads always form a tree where nodes must always outlive their children, i.e., they are always destroyed in the opposite order of construction because of C scoping rules. This restriction is relaxed by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating memory lets objects outlive the scope in which they are created.
    469469
    470470\begin{cfacode}
  • doc/proposals/concurrency/text/cforall.tex

    r3eb4541 r5c4f2c2  
    5252% ======================================================================
    5353\section{Operators}
    54 Overloading also extends to operators. The syntax for denoting operator-overloading is to name a routine with the symbol of the operator and question marks where the arguments of the operation occur, e.g.:
     54Overloading also extends to operators. The syntax for denoting operator-overloading is to name a routine with the symbol of the operator and question marks where the arguments of the operation appear, e.g.:
    5555\begin{cfacode}
    5656int ++? (int op);                       //unary prefix increment
     
    107107% ======================================================================
    108108\section{Parametric Polymorphism}
    109 Routines in \CFA can also be reused for multiple types. This capability is done using the \code{forall} clause, which gives \CFA its name. \code{forall} clauses allow separately compiled routines to support generic usage over multiple types. For example, the following sum function works for any type that supports construction from 0 and addition :
     109Routines in \CFA can also be reused for multiple types. This capability is done using the \code{forall} clauses, which allow separately compiled routines to support generic usage over multiple types. For example, the following sum function works for any type that supports construction from 0 and addition :
    110110\begin{cfacode}
    111111//constraint type, 0 and +
     
    124124Since writing constraints on types can become cumbersome for more constrained functions, \CFA also has the concept of traits. Traits are named collection of constraints that can be used both instead and in addition to regular constraints:
    125125\begin{cfacode}
    126 trait sumable( otype T ) {
     126trait summable( otype T ) {
    127127        void ?{}(T *, zero_t);          //constructor from 0 literal
    128128        T ?+?(T, T);                            //assortment of additions
     
    131131        T ?++(T *);
    132132};
    133 forall( otype T | sumable(T) )  //use trait
     133forall( otype T | summable(T) ) //use trait
    134134T sum(T a[], size_t size);
    135135\end{cfacode}
     
    139139% ======================================================================
    140140\section{with Clause/Statement}
    141 Since \CFA lacks the concept of a receiver, certain functions end-up needing to repeat variable names often. To remove this inconvenience, \CFA provides the \code{with} statement, which opens an aggregate scope making its fields directly accessible (like Pascal).
     141Since \CFA lacks the concept of a receiver, certain functions end up needing to repeat variable names often. To remove this inconvenience, \CFA provides the \code{with} statement, which opens an aggregate scope making its fields directly accessible (like Pascal).
    142142\begin{cfacode}
    143143struct S { int i, j; };
  • doc/proposals/concurrency/text/concurrency.tex

    r3eb4541 r5c4f2c2  
    1616
    1717\subsection{Mutual-Exclusion}
    18 As mentioned above, mutual-exclusion is the guarantee that only a fix number of threads can enter a critical section at once. However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. Methods range from low-level locks, which are fast and flexible but require significant attention to be correct, to  higher-level mutual-exclusion methods, which sacrifice some performance in order to improve ease of use. Ease of use comes by either guaranteeing some problems cannot occur (e.g., being deadlock free) or by offering a more explicit coupling between data and corresponding critical section. For example, the \CC \code{std::atomic<T>} offers an easy way to express mutual-exclusion on a restricted set of operations (e.g.: reading/writing large types atomically). Another challenge with low-level locks is composability. Locks have restricted composability because it takes careful organizing for multiple locks to be used while preventing deadlocks. Easing composability is another feature higher-level mutual-exclusion mechanisms often offer.
     18As mentioned above, mutual-exclusion is the guarantee that only a fix number of threads can enter a critical section at once. However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. Methods range from low-level locks, which are fast and flexible but require significant attention to be correct, to  higher-level concurrency techniques, which sacrifice some performance in order to improve ease of use. Ease of use comes by either guaranteeing some problems cannot occur (e.g., being deadlock free) or by offering a more explicit coupling between data and corresponding critical section. For example, the \CC \code{std::atomic<T>} offers an easy way to express mutual-exclusion on a restricted set of operations (e.g.: reading/writing large types atomically). Another challenge with low-level locks is composability. Locks have restricted composability because it takes careful organizing for multiple locks to be used while preventing deadlocks. Easing composability is another feature higher-level mutual-exclusion mechanisms often offer.
    1919
    2020\subsection{Synchronization}
    21 As for mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by adding better coupling between synchronization and data, e.g.: message passing, or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called barging. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete again to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention.
     21As with mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by adding either better coupling between synchronization and data (e.g.: message passing) or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Y2} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called barging. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Y2} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention.
    2222
    2323% ======================================================================
     
    2626% ======================================================================
    2727% ======================================================================
    28 A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it :
     28A monitor is a set of routines that ensure mutual-exclusion when accessing shared state. More precisely, a monitor is a programming technique that strongly associates syntactically mutual-exclusion to routine scopes, as opposed to standard mutex locks, where mutual-exclusion is defined by lock/release calls independently of any scoping of the calling routine. This strong association eases readability and maintainability, at the cost of flexibility. Note that both monitors and mutex locks, require an abstract handle to identify them. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it :
    2929\begin{cfacode}
    3030typedef /*some monitor type*/ monitor;
     
    4242% ======================================================================
    4343% ======================================================================
    44 The above monitor example displays some of the intrinsic characteristics. First, it is necessary to use pass-by-reference over pass-by-value for monitor routines. This semantics is important, because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects cannot be copied. Therefore, monitors are implicitly non-copy-able objects (\code{dtype}).
     44The above monitor example displays some of the intrinsic characteristics. First, it is necessary to use pass-by-reference over pass-by-value for monitor routines. This semantics is important, because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects cannot be copied. Therefore, monitors are non-copy-able objects (\code{dtype}).
    4545
    4646Another aspect to consider is when a monitor acquires its mutual exclusion. For example, a monitor may need to be passed through multiple helper routines that do not acquire the monitor mutual-exclusion on entry. Pass through can occur for generic helper routines (\code{swap}, \code{sort}, etc.) or specific helper routines like the following to implement an atomic counter :
     
    7171\end{tabular}
    7272\end{center}
    73 Notice how the counter is used without any explicit synchronization and yet supports thread-safe semantics for both reading and writing, which is similar in usage to \CC \code{atomic} template.
     73Notice how the counter is used without any explicit synchronization and yet supports thread-safe semantics for both reading and writing, which is similar in usage to the \CC template \code{std::atomic}.
    7474
    7575Here, the constructor (\code{?\{\}}) uses the \code{nomutex} keyword to signify that it does not acquire the monitor mutual-exclusion when constructing. This semantics is because an object not yet con\-structed should never be shared and therefore does not require mutual exclusion. Furthermore, it allows the implementation greater freedom when it initializes the monitor locking. The prefix increment operator uses \code{mutex} to protect the incrementing process from race conditions. Finally, there is a conversion operator from \code{counter_t} to \code{size_t}. This conversion may or may not require the \code{mutex} keyword depending on whether or not reading a \code{size_t} is an atomic operation.
     
    9393\end{figure}
    9494
    95 Having both \code{mutex} and \code{nomutex} keywords is redundant based on the meaning of a routine having neither of these keywords. For example, it is reasonable that it should default to the safest option (\code{mutex}) when given a routine without qualifiers \code{void foo(counter_t & this)}, whereas assuming \code{nomutex} is unsafe and may cause subtle errors. On the other hand, \code{nomutex} is the ``normal'' parameter behaviour, it effectively states explicitly that ``this routine is not special''. Another alternative is making exactly one of these keywords mandatory, which provides the same semantics but without the ambiguity of supporting routines with neither keyword. Mandatory keywords would also have the added benefit of being self-documented but at the cost of extra typing. While there are several benefits to mandatory keywords, they do bring a few challenges. Mandatory keywords in \CFA would imply that the compiler must know without doubt whether or not a parameter is a monitor or not. Since \CFA relies heavily on traits as an abstraction mechanism, the distinction between a type that is a monitor and a type that looks like a monitor can become blurred. For this reason, \CFA only has the \code{mutex} keyword and uses no keyword to mean \code{nomutex}.
     95Having both \code{mutex} and \code{nomutex} keywords can be redundant depending on the meaning of a routine having neither of these keywords. For example, it is reasonable that it should default to the safest option (\code{mutex}) when given a routine without qualifiers \code{void foo(counter_t & this)}, whereas assuming \code{nomutex} is unsafe and may cause subtle errors. On the other hand, \code{nomutex} is the ``normal'' parameter behaviour, it effectively states explicitly that ``this routine is not special''. Another alternative is making exactly one of these keywords mandatory, which provides the same semantics but without the ambiguity of supporting routines with neither keyword. Mandatory keywords would also have the added benefit of being self-documented but at the cost of extra typing. While there are several benefits to mandatory keywords, they do bring a few challenges. Mandatory keywords in \CFA would imply that the compiler must know without doubt whether or not a parameter is a monitor or not. Since \CFA relies heavily on traits as an abstraction mechanism, the distinction between a type that is a monitor and a type that looks like a monitor can become blurred. For this reason, \CFA only has the \code{mutex} keyword and uses no keyword to mean \code{nomutex}.
    9696
    9797The next semantic decision is to establish when \code{mutex} may be used as a type qualifier. Consider the following declarations:
     
    105105The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is acquired, passing an array to this routine would be type-safe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed:
    106106\begin{cfacode}
    107 int f1(monitor& mutex m);   //Okay : recommended case
    108 int f2(monitor* mutex m);   //Okay : could be an array but probably not
     107int f1(monitor& mutex m);    //Okay : recommended case
     108int f2(monitor* mutex m);    //Not Okay : Could be an array
    109109int f3(monitor mutex m []);  //Not Okay : Array of unknown length
    110 int f4(monitor** mutex m);  //Not Okay : Could be an array
     110int f4(monitor** mutex m);   //Not Okay : Could be an array
    111111int f5(monitor* mutex m []); //Not Okay : Array of unknown length
    112112\end{cfacode}
     
    137137The \gls{multi-acq} monitor lock allows a monitor lock to be acquired by both \code{bar} or \code{baz} and acquired again in \code{foo}. In the calls to \code{bar} and \code{baz} the monitors are acquired in opposite order.
    138138
    139 However, such use leads to the lock acquiring order problems. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore Undefined Behaviour. As shown~\cite{Lister77}, solving this problem requires:
     139However, such use leads to lock acquiring order problems. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore Undefined Behaviour. As shown~\cite{Lister77}, solving this problem requires:
    140140\begin{enumerate}
    141         \item Dynamically tracking of the monitor-call order.
     141        \item Dynamically tracking the monitor-call order.
    142142        \item Implement rollback semantics.
    143143\end{enumerate}
     
    159159\subsection{\code{mutex} statement} \label{mutex-stmt}
    160160
    161 The call semantics discussed above have one software engineering issue, only a named routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters.
     161The call semantics discussed above have one software engineering issue: only a named routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters.
    162162
    163163\begin{table}
     
    230230% ======================================================================
    231231% ======================================================================
    232 In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. Since internal scheduling within a single monitor is mostly a solved problem, this thesis concentrates on extending internal scheduling to multiple monitors. Indeed, like the \gls{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side.
     232In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. With scheduling loosely defined as deciding which thread acquires the critical section next, internal scheduling means making the decision from inside the critical section (i.e., with access to the shared state) while external scheduling means making the decision when entering the critical section (i.e., without access to the shared state). Since internal scheduling within a single monitor is mostly a solved problem, this thesis concentrates on extending internal scheduling to multiple monitors. Indeed, like the \gls{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side.
    233233
    234234First, here is a simple example of internal scheduling :
     
    253253}
    254254\end{cfacode}
    255 There are two details to note here. First, the \code{signal} is a delayed operation, it only unblocks the waiting thread when it reaches the end of the critical section. This semantic is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, ensuring a basic ordering.
     255There are two details to note here. First, \code{signal} is a delayed operation; it only unblocks the waiting thread when it reaches the end of the critical section. This semantics is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, ensuring a basic ordering.
    256256
    257257An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to resume immediately after (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency.
     
    262262% ======================================================================
    263263% ======================================================================
    264 It is easier to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameters and explicitly names the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A.
     264It is easier to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameters and explicitly name the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A.
    265265
    266266\begin{multicols}{2}
     
    446446\end{figure}
    447447
    448 The complexity begins at code sections 4 and 8 in listing \ref{lst:int-bulk-pseudo}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired and is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options.
     448The complexity begins at code sections 4 and 8 in listing \ref{lst:int-bulk-pseudo}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. The root of the problem is that \gls{bulk-acq} is used in a context where one of the monitors is already acquired, which is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options:
    449449
    450450\subsubsection{Delaying Signals}
    451 The obvious solution to solve the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. This solution releases the monitors once every monitor in a group can be released. However, since some monitors are never released (i.e., the monitor of a thread), this interpretation means a group might never be released. A more interesting interpretation is to transfer the group until it can be disbanded, which means the group is not passed further and a thread can retain its locks.
     451The obvious solution to solve the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed, because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. This solution releases the monitors once every monitor in a group can be released. However, since some monitors are never released (e.g., the monitor of a thread), this interpretation means a group might never be released. A more interesting interpretation is to transfer the group until it can be disbanded, which means the group is not passed further and a thread can retain its locks.
    452452
    453453However, listing \ref{lst:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors. Listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal  becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen :
     
    459459Note that ordering is not determined by a race condition but by whether signalled threads are enqueued in FIFO or FILO order. However, regardless of the answer, users can move line \ref{line:signal-a} before line \ref{line:signal-ab} and get the reverse effect for listing \ref{lst:dependency}.
    460460
    461 In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to dispand a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach.
     461In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to disband a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach.
    462462
    463463\subsubsection{Dependency graphs}
     
    530530\end{figure}
    531531
    532 Given the three threads example in listing \ref{lst:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependency unfolds. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one.
     532Given the three threads example in listing \ref{lst:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependencies unfold. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one.
    533533
    534534\subsubsection{Partial Signalling} \label{partial-sig}
    535 Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions, passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.
     535Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides.
    536536
    537537Using partial signalling, listing \ref{lst:dependency} can be solved easily :
     
    652652An important note is that, until now, signalling a monitor was a delayed operation. The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the \code{signal} statement. However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the \code{signal_block} routine.
    653653
    654 The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits, this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the frond end and the back end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call.
     654The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits; this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the frond end and the back end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call.
    655655
    656656% ======================================================================
     
    721721\end{tabular}
    722722\end{center}
    723 This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project control-flow semantics was chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.
     723This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrate, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project, control-flow semantics was chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \acrshort{api}s.
    724724
    725725For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no other routine than \code{V} can acquire the monitor.
     
    840840Note that the set of monitors passed to the \code{waitfor} statement must be entirely contained in the set of monitors already acquired in the routine. \code{waitfor} used in any other context is Undefined Behaviour.
    841841
    842 An important behaviour to note is when a set of monitors only match partially :
     842An important behaviour to note is when a set of monitors only match partially:
    843843
    844844\begin{cfacode}
     
    862862}
    863863\end{cfacode}
    864 While the equivalent can happen when using internal scheduling, the fact that conditions are specific to a set of monitors means that users have to use two different condition variables. In both cases, partially matching monitor sets does not wake-up the waiting thread. It is also important to note that in the case of external scheduling the order of parameters is irrelevant; \code{waitfor(f,a,b)} and \code{waitfor(f,b,a)} are indistinguishable waiting condition.
     864While the equivalent can happen when using internal scheduling, the fact that conditions are specific to a set of monitors means that users have to use two different condition variables. In both cases, partially matching monitor sets does not wakeup the waiting thread. It is also important to note that in the case of external scheduling the order of parameters is irrelevant; \code{waitfor(f,a,b)} and \code{waitfor(f,b,a)} are indistinguishable waiting condition.
    865865
    866866% ======================================================================
     
    870870% ======================================================================
    871871
    872 Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usages of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading but overloading is possible.
     872Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usages of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading, but overloading is possible.
    873873\begin{figure}
    874874\begin{cfacode}[caption={Various correct and incorrect uses of the waitfor statement},label={lst:waitfor}]
     
    904904\end{figure}
    905905
    906 Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2}, demonstrates several complex masks and some incorrect ones.
     906Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2} demonstrates several complex masks and some incorrect ones.
    907907
    908908\begin{figure}
     
    972972% ======================================================================
    973973% ======================================================================
    974 An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled.
     974An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense, since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled.
    975975\begin{figure}
    976976\begin{cfacode}[caption={Example of an executor which executes action in series until the destructor is called.},label={lst:dtor-order}]
  • doc/proposals/concurrency/text/future.tex

    r3eb4541 r5c4f2c2  
    1111
    1212\subsection{Performance} \label{futur:perf}
    13 This thesis presents a first implementation of the \CFA runtime. Therefore, there is still significant work to improve performance. Many of the data structures and algorithms may change in the future to more efficient versions. For example, the number of monitors in a single \gls{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number helps increase performance. However, it is not obvious that the benefit would be significant.
     13This thesis presents a first implementation of the \CFA concurrency runtime. Therefore, there is still significant work to improve performance. Many of the data structures and algorithms may change in the future to more efficient versions. For example, the number of monitors in a single \gls{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number helps increase performance. However, it is not obvious that the benefit would be significant.
    1414
    1515\subsection{Flexible Scheduling} \label{futur:sched}
  • doc/proposals/concurrency/text/internals.tex

    r3eb4541 r5c4f2c2  
    33There are several challenges specific to \CFA when implementing concurrency. These challenges are a direct result of \gls{bulk-acq} and loose object definitions. These two constraints are the root cause of most design decisions in the implementation. Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal means that memory management is a constant concern in the design of the system.
    44
    5 The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each node has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \gls{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the call stack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based on scopes, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while mute routines and blocking calls allow for an unbound amount, within the stack size.
     5The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each node has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \gls{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the call stack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based on scopes, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while \code{mutex} routines and blocking calls allow for an unbound amount, within the stack size.
    66
    77Note that since the major contributions of this thesis are extending monitor semantics to \gls{bulk-acq} and loose object definitions, any challenges that are not resulting of these characteristics of \CFA are considered as solved problems and therefore not discussed.
     
    1313% ======================================================================
    1414
    15 The first step towards the monitor implementation is simple mute routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is Undefined Behaviour. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively.
     15The first step towards the monitor implementation is simple \code{mutex} routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is Undefined Behaviour. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively.
    1616\begin{figure}
    1717\begin{multicols}{2}
     
    4242Depending on the choice of semantics for when monitor locks are acquired, interaction between monitors and \CFA's concept of polymorphism can be more complex to support. However, it is shown that entry-point locking solves most of the issues.
    4343
    44 First of all, interaction between \code{otype} polymorphism and monitors is impossible since monitors do not support copying. Therefore, the main question is how to support \code{dtype} polymorphism. It is important to present the difference between the two acquiring options : \glspl{callsite-locking} and entry-point locking, i.e., acquiring the monitors before making a mutex routine-call or as the first operation of the mutex routine-call. For example:
     44First of all, interaction between \code{otype} polymorphism and monitors is impossible since monitors do not support copying. Therefore, the main question is how to support \code{dtype} polymorphism. It is important to present the difference between the two acquiring options: \glspl{callsite-locking} and entry-point locking, i.e., acquiring the monitors before making a mutex routine-call or as the first operation of the mutex routine-call. For example:
    4545\begin{table}[H]
    4646\begin{center}
     
    109109\end{cfacode}
    110110
    111 Both entry point and \gls{callsite-locking} are feasible implementations. The current \CFA implementation uses entry-point locking because it requires less work when using \gls{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \gls{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e.: the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine multiple times, but there is only one entry point for many call sites.
     111Both entry point and \gls{callsite-locking} are feasible implementations. The current \CFA implementation uses entry-point locking because it requires less work when using \gls{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \gls{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e., the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine is called multiple times but there is only one entry point for many call sites.
    112112
    113113% ======================================================================
     
    128128
    129129\subsection{Context Switching}
    130 As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads, however, do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operations happen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA but the changes required to add it are strictly additive.
     130As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads, however, do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operations happen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA, but the changes required to add it are strictly additive.
    131131
    132132\subsection{Processors}
     
    134134
    135135\subsection{Stack Management}
    136 One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all pthreads created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create there own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \gls{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e. the initial \gls{kthread} that is given to any program. In order to respect C user expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large.
     136One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all pthreads created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create their own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \gls{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e., the initial \gls{kthread} that is given to any program. In order to respect C user expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large.
    137137
    138138\subsection{Preemption} \label{preemption}
    139139Finally, an important aspect for any complete threading system is preemption. As mentioned in chapter \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isolation among threads. In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. Obviously, preemption is not optimal for every workload. However any preemptive system can become a cooperative system by making the time slices extremely large. Therefore, \CFA uses a preemptive threading system.
    140140
    141 Preemption in \CFA is based on kernel timers, which are used to run a discrete-event simulation. Every processor keeps track of the current time and registers an expiration time with the preemption system. When the preemption system receives a change in preemption, it inserts the time in a sorted order and sets a kernel timer for the closest one, effectively stepping through preemption events on each signal sent by the timer. These timers use the Linux signal {\tt SIGALRM}, which is delivered to the process rather than the kernel-thread. This results in an implementation problem, because when delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the signal is not blocked, i.e. :
     141Preemption in \CFA\footnote{Note that the implementation of preemption is strongly tied with the underlying threading system. For this reason, only the Linux implementation is cover, \CFA does not run on Windows at the time of writting} is based on kernel timers, which are used to run a discrete-event simulation. Every processor keeps track of the current time and registers an expiration time with the preemption system. When the preemption system receives a change in preemption, it inserts the time in a sorted order and sets a kernel timer for the closest one, effectively stepping through preemption events on each signal sent by the timer. These timers use the Linux signal {\tt SIGALRM}, which is delivered to the process rather than the kernel-thread. This results in an implementation problem, because when delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the signal is not blocked, i.e.:
    142142\begin{quote}
    143143A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. If more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which to deliver the signal.
    144144SIGNAL(7) - Linux Programmer's Manual
    145145\end{quote}
    146 For the sake of simplicity and in order to prevent the case of having two threads receiving alarms simultaneously, \CFA programs block the {\tt SIGALRM} signal on every kernel thread except one. Now because of how involuntary context-switches are handled, the kernel thread handling {\tt SIGALRM} cannot also be a processor thread.
    147 
    148 Involuntary context-switching is done by sending signal {\tt SIGUSER1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal handler back to the kernel and the signal-handler frame is eventually unwound when the thread is scheduled again. As a result, a signal-handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal-handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel.
     146For the sake of simplicity, and in order to prevent the case of having two threads receiving alarms simultaneously, \CFA programs block the {\tt SIGALRM} signal on every kernel thread except one. Now because of how involuntary context-switches are handled, the kernel thread handling {\tt SIGALRM} cannot also be a processor thread.
     147
     148Involuntary context-switching is done by sending signal {\tt SIGUSR1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal handler back to the kernel and the signal handler frame is eventually unwound when the thread is scheduled again. As a result, a signal handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel.
    149149
    150150\subsection{Scheduler}
     
    177177\end{figure}
    178178
    179 This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split the thread into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signalling operation every monitor needs a piece of thread on its AS-stack.
     179This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signalling operation every monitor needs a piece of thread on its AS-stack.
    180180
    181181\begin{figure}[b]
     
    210210\end{figure}
    211211
    212 Some important things to notice about the exit routine. The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structures used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call stack of the \code{wait} and \code{signal_block} routines.
     212The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structures used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call stack of the \code{wait} and \code{signal_block} routines.
    213213
    214214\begin{figure}[H]
     
    220220\end{figure}
    221221
    222 Figure \ref{fig:structs} shows a high-level representation of these data structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive stacks for linking onto monitor. The \code{condition node} is the data structure that is queued onto a condition variable and, when signalled, the condition queue is popped and each \code{condition criterion} is moved to the AS-stack. Once all the criteria have been popped from their respective AS-stacks, the thread is woken up, which is what is shown in listing \ref{lst:entry2}.
     222Figure \ref{fig:structs} shows a high-level representation of these data structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive ``next'' pointers for linking onto monitor. The \code{condition node} is the data structure that is queued onto a condition variable and, when signalled, the condition queue is popped and each \code{condition criterion} is moved to the AS-stack. Once all the criteria have been popped from their respective AS-stacks, the thread is woken up, which is what is shown in listing \ref{lst:entry2}.
    223223
    224224% ======================================================================
     
    227227% ======================================================================
    228228% ======================================================================
    229 Similarly to internal scheduling, external scheduling for multiple monitors relies on the idea that waiting-thread queues are no longer specific to a single monitor, as mentioned in section \ref{extsched}. For internal scheduling, these queues are part of condition variables, which are still unique for a given scheduling operation (e.g., no signal statement uses multiple conditions). However, in the case of external scheduling, there is no equivalent object which is associated with \code{waitfor} statements. This absence means the queues holding the waiting threads must be stored inside at least one of the monitors that is acquired. These monitors being the only objects that have sufficient lifetime and are available on both sides of the \code{waitfor} statement. This requires an algorithm to choose which monitor holds the relevant queue. It is also important that said algorithm be independent of the order in which users list parameters. The proposed algorithm is to fall back on monitor lock ordering (sorting by address) and specify that the monitor that is acquired first is the one with the relevant waiting queue. This assumes that the lock acquiring order is static for the lifetime of all concerned objects but that is a reasonable constraint.
     229Similarly to internal scheduling, external scheduling for multiple monitors relies on the idea that waiting-thread queues are no longer specific to a single monitor, as mentioned in section \ref{extsched}. For internal scheduling, these queues are part of condition variables, which are still unique for a given scheduling operation (i.e., no signal statement uses multiple conditions). However, in the case of external scheduling, there is no equivalent object which is associated with \code{waitfor} statements. This absence means the queues holding the waiting threads must be stored inside at least one of the monitors that is acquired. These monitors being the only objects that have sufficient lifetime and are available on both sides of the \code{waitfor} statement. This requires an algorithm to choose which monitor holds the relevant queue. It is also important that said algorithm be independent of the order in which users list parameters. The proposed algorithm is to fall back on monitor lock ordering (sorting by address) and specify that the monitor that is acquired first is the one with the relevant waiting queue. This assumes that the lock acquiring order is static for the lifetime of all concerned objects but that is a reasonable constraint.
    230230
    231231This algorithm choice has two consequences :
     
    236236Therefore, the following modifications need to be made to support external scheduling :
    237237\begin{itemize}
    238         \item The threads waiting on the entry-queue need to keep track of which routine it is trying to enter, and using which set of monitors. The \code{mutex} routine already has all the required information on its stack so the thread only needs to keep a pointer to that information.
     238        \item The threads waiting on the entry queue need to keep track of which routine they are trying to enter, and using which set of monitors. The \code{mutex} routine already has all the required information on its stack, so the thread only needs to keep a pointer to that information.
    239239        \item The monitors need to keep a mask of acceptable routines. This mask contains for each acceptable routine, a routine pointer and an array of monitors to go with it. It also needs storage to keep track of which routine was accepted. Since this information is not specific to any monitor, the monitors actually contain a pointer to an integer on the stack of the waiting thread. Note that if a thread has acquired two monitors but executes a \code{waitfor} with only one monitor as a parameter, setting the mask of acceptable routines to both monitors will not cause any problems since the extra monitor will not change ownership regardless. This becomes relevant when \code{when} clauses affect the number of monitors passed to a \code{waitfor} statement.
    240         \item The entry/exit routine need to be updated as shown in listing \ref{lst:entry3}.
     240        \item The entry/exit routines need to be updated as shown in listing \ref{lst:entry3}.
    241241\end{itemize}
    242242
    243243\subsection{External Scheduling - Destructors}
    244 Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is needed for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The waitfor semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor}
     244Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is needed for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The \code{waitfor} semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor}
    245245
    246246\begin{figure}
  • doc/proposals/concurrency/text/intro.tex

    r3eb4541 r5c4f2c2  
    22\chapter{Introduction}
    33% ======================================================================
    4 
    5 This thesis provides a minimal concurrency \acrshort{api} that is simple, efficient and can be reused to build higher-level features. The simplest possible concurrency system is a thread and a lock but this low-level approach is hard to master. An easier approach for users is to support higher-level constructs as the basis of concurrency. Indeed, for highly productive concurrent programming, high-level approaches are much more popular~\cite{HPP:Study}. Examples are task based, message passing and implicit threading. The high-level approach and its minimal \acrshort{api} are tested in a dialect of C, call \CFA. Furthermore, the proposed \acrshort{api} doubles as an early definition of the \CFA language and library. This thesis also comes with an implementation of the concurrency library for \CFA as well as all the required language features added to the source-to-source translator.
     4This thesis provides a minimal concurrency \acrshort{api} that is simple, efficient and can be reused to build higher-level features. The simplest possible concurrency system is a thread and a lock but this low-level approach is hard to master. An easier approach for users is to support higher-level constructs as the basis of concurrency. Indeed, for highly productive concurrent programming, high-level approaches are much more popular~\cite{HPP:Study}. Examples are task based, message passing and implicit threading. The high-level approach and its minimal \acrshort{api} are tested in a dialect of C, called \CFA. Furthermore, the proposed \acrshort{api} doubles as an early definition of the \CFA language and library. This thesis also comes with an implementation of the concurrency library for \CFA as well as all the required language features added to the source-to-source translator.
    65
    76There are actually two problems that need to be solved in the design of concurrency for a programming language: which concurrency and which parallelism tools are available to the programmer. While these two concepts are often combined, they are in fact distinct, requiring different tools~\cite{Buhr05a}. Concurrency tools need to handle mutual exclusion and synchronization, while parallelism tools are about performance, cost and resource utilization.
     7
     8In the context of this thesis, a thread is a fondamental unit of execution which runs a sequence of code, generally on a program stack. Having multiple concurrent threads gives rise to concurrency and generally requires some kind of locking mechnism to ensure proper execution. Correspondingly, concurrency is defined as the concepts and challenges which occur when multiple independant (sharing memory, timing dependencies, etc.) concurrent threads are introduced. Accordingly, locking (and by extension locks) are defined as a mechanism which prevents the progress of certain threads in order to avoid problems due to concurrency. Finally, in this thesis parallelism is distinct from concurrency and is defined as running multiple threads simultaneously. More precisely, parallelism implies \emph{actual} simulataneous execution as oposed to concurrency which only requires \emph{apparent} simultaneous execution. As such, parallelism is only observable in the differences in performance or, more generally, differences in timing.
  • doc/proposals/concurrency/text/parallelism.tex

    r3eb4541 r5c4f2c2  
    77% #       #     # #     # #     # ####### ####### ####### ####### ###  #####  #     #
    88\chapter{Parallelism}
    9 Historically, computer performance was about processor speeds and instructions count. However, with heat dissipation being a direct consequence of speed increase, parallelism has become the new source for increased performance~\cite{Sutter05, Sutter05b}. In this decade, it is not longer reasonable to create a high-performance application without caring about parallelism. Indeed, parallelism is an important aspect of performance and more specifically throughput and hardware utilization. The lowest-level approach of parallelism is to use \glspl{kthread} in combination with semantics like \code{fork}, \code{join}, etc. However, since these have significant costs and limitations, \glspl{kthread} are now mostly used as an implementation tool rather than a user oriented one. There are several alternatives to solve these issues that all have strengths and weaknesses. While there are many variations of the presented paradigms, most of these variations do not actually change the guarantees or the semantics, they simply move costs in order to achieve better performance for certain workloads.
     9Historically, computer performance was about processor speeds and instruction counts. However, with heat dissipation being a direct consequence of speed increase, parallelism has become the new source for increased performance~\cite{Sutter05, Sutter05b}. In this decade, it is no longer reasonable to create a high-performance application without caring about parallelism. Indeed, parallelism is an important aspect of performance and more specifically throughput and hardware utilization. The lowest-level approach of parallelism is to use \glspl{kthread} in combination with semantics like \code{fork}, \code{join}, etc. However, since these have significant costs and limitations, \glspl{kthread} are now mostly used as an implementation tool rather than a user oriented one. There are several alternatives to solve these issues that all have strengths and weaknesses. While there are many variations of the presented paradigms, most of these variations do not actually change the guarantees or the semantics, they simply move costs in order to achieve better performance for certain workloads.
    1010
    1111\section{Paradigms}
    1212\subsection{User-Level Threads}
    13 A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provides but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multithreading, while removing several of the more expensive costs of kernel threads. The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees but the parallelism toolkit offers very little to reduce complexity in itself.
     13A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provides but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multithreading, while removing several of the more expensive costs of kernel threads. The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees, but the parallelism toolkit offers very little to reduce complexity in itself.
    1414
    1515Examples of languages that support \glspl{uthread} are Erlang~\cite{Erlang} and \uC~\cite{uC++book}.
    1616
    1717\subsection{Fibers : User-Level Threads Without Preemption} \label{fibers}
    18 A popular variant of \glspl{uthread} is what is often referred to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantic differences with \glspl{uthread}. The significant difference between \glspl{uthread} and \glspl{fiber} is the lack of \gls{preemption} in the latter. Advocates of \glspl{fiber} list their high performance and ease of implementation as major strengths but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers.
     18A popular variant of \glspl{uthread} is what is often referred to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantic differences with \glspl{uthread}. The significant difference between \glspl{uthread} and \glspl{fiber} is the lack of \gls{preemption} in the latter. Advocates of \glspl{fiber} list their high performance and ease of implementation as major strengths, but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers.
    1919
    2020An example of a language that uses fibers is Go~\cite{Go}
     
    2626
    2727\subsection{Paradigm Performance}
    28 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pin down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees that the \gls{pool}-based system has the best performance thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large enough the paradigm choice is largely amortized by the actual work done.
     28While the choice between the three paradigms listed above may have significant performance implications, it is difficult to pin down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees that the \gls{pool}-based system has the best performance thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large, enough the paradigm choice is largely amortized by the actual work done.
    2929
    3030\section{The \protect\CFA\ Kernel : Processors, Clusters and Threads}\label{kernel}
    31 A \gls{cfacluster} is a group of \gls{kthread} executed in isolation. \Glspl{uthread} are scheduled on the \glspl{kthread} of a given \gls{cfacluster}, allowing organization between \glspl{uthread} and \glspl{kthread}. It is important that \glspl{kthread} belonging to a same \glspl{cfacluster} have homogeneous settings, otherwise migrating a \gls{uthread} from one \gls{kthread} to the other can cause issues. A \gls{cfacluster} also offers a plugable scheduler that can optimize the workload generated by the \glspl{uthread}.
     31A \gls{cfacluster} is a group of \glspl{kthread} executed in isolation. \Glspl{uthread} are scheduled on the \glspl{kthread} of a given \gls{cfacluster}, allowing organization between \glspl{uthread} and \glspl{kthread}. It is important that \glspl{kthread} belonging to a same \glspl{cfacluster} have homogeneous settings, otherwise migrating a \gls{uthread} from one \gls{kthread} to the other can cause issues. A \gls{cfacluster} also offers a pluggable scheduler that can optimize the workload generated by the \glspl{uthread}.
    3232
    33 \Glspl{cfacluster} have not been fully implemented in the context of this thesis, currently \CFA only supports one \gls{cfacluster}, the initial one.
     33\Glspl{cfacluster} have not been fully implemented in the context of this thesis. Currently \CFA only supports one \gls{cfacluster}, the initial one.
    3434
    3535\subsection{Future Work: Machine Setup}\label{machine}
    36 While this was not done in the context of this thesis, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heterogeneous setups. For example, a system using \acrshort{numa} configurations may benefit from users being able to tie clusters and\/or kernel threads to certain CPU cores. OS support for CPU affinity is now common~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx} which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity.
     36While this was not done in the context of this thesis, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heterogeneous setups. For example, a system using \acrshort{numa} configurations may benefit from users being able to tie clusters and/or kernel threads to certain CPU cores. OS support for CPU affinity is now common~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx} which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity.
    3737
    3838\subsection{Paradigms}\label{cfaparadigms}
  • doc/proposals/concurrency/text/results.tex

    r3eb4541 r5c4f2c2  
    4040All benchmarks are run using the same harness to produce the results, seen as the \code{BENCH()} macro in the following examples. This macro uses the following logic to benchmark the code :
    4141\begin{pseudo}
    42 #define BENCH(run, result)
     42#define BENCH(run, result) //Param: What to run, variable containing result
    4343        before = gettime();
    4444        run;
     
    4949
    5050\subsection{Context-Switching}
    51 The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. In order to make the comparison fair, coroutines also execute a 2-step context-switch (\gls{uthread} to \gls{kthread} then \gls{kthread} to \gls{uthread}), which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads with the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests.
     51The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread\footnote{Yielding causes the thread to context-switch to the scheduler and back, more precisely: from the \gls{uthread} to the \gls{kthread} then from the \gls{kthread} back to the same \gls{uthread} (or a different one in the general case).}, which executes a 2-step context switch. In order to make the comparison fair, coroutines also execute a 2-step context-switch by resuming another coroutine which does nothing but suspending in a tight loop, which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads with the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests. The difference between coroutines and threads can be attributed to the cost of scheduling.
    5252\begin{figure}
    5353\begin{multicols}{2}
     
    199199\multicolumn{1}{c |}{} & \multicolumn{1}{c |}{ Median } &\multicolumn{1}{c |}{ Average } & \multicolumn{1}{c |}{ Standard Deviation} \\
    200200\hline
     201Pthreads Condition Variable                     & 5902.5        & 6093.29       & 714.78 \\
    201202\uC \code{signal}                                       & 322           & 323   & 3.36   \\
    202203\CFA \code{signal}, 1 \code{monitor}    & 352.5 & 353.11        & 3.66   \\
  • doc/proposals/concurrency/text/together.tex

    r3eb4541 r5c4f2c2  
    77
    88\section{Threads As Monitors}
    9 As it was subtly alluded in section \ref{threads}, \code{thread}s in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine :
     9As it was subtly alluded in section \ref{threads}, \code{thread}s in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine:
    1010\begin{figure}[H]
    1111\begin{cfacode}[caption={Toy simulator using \code{thread}s and \code{monitor}s.},label={lst:engine-v1}]
     
    3838\end{cfacode}
    3939\end{figure}
    40 One of the obvious complaints of the previous code snippet (other than its toy-like simplicity) is that it does not handle exit conditions and just goes on forever. Luckily, the monitor semantics can also be used to clearly enforce a shutdown order in a concise manner :
     40One of the obvious complaints of the previous code snippet (other than its toy-like simplicity) is that it does not handle exit conditions and just goes on forever. Luckily, the monitor semantics can also be used to clearly enforce a shutdown order in a concise manner:
    4141\begin{figure}[H]
    4242\begin{cfacode}[caption={Same toy simulator with proper termination condition.},label={lst:engine-v2}]
  • doc/proposals/concurrency/version

    r3eb4541 r5c4f2c2  
    1 0.11.299
     10.11.327
Note: See TracChangeset for help on using the changeset viewer.