Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/papers/general/Paper.tex

    r5ff188f r43bbdf3  
    3939\newcommand{\TODO}[1]{\textbf{TODO}: {\itshape #1}} % TODO included
    4040%\newcommand{\TODO}[1]{} % TODO elided
     41
    4142% Default underscore is too low and wide. Cannot use lstlisting "literate" as replacing underscore
    42 % removes it as a variable-name character so keyworks in variables are highlighted
    43 \DeclareTextCommandDefault{\textunderscore}{\leavevmode\makebox[1.2ex][c]{\rule{1ex}{0.1ex}}}
     43% removes it as a variable-name character so keywords in variables are highlighted. MUST APPEAR
     44% AFTER HYPERREF.
     45%\DeclareTextCommandDefault{\textunderscore}{\leavevmode\makebox[1.2ex][c]{\rule{1ex}{0.1ex}}}
     46\renewcommand{\textunderscore}{\leavevmode\makebox[1.2ex][c]{\rule{1ex}{0.075ex}}}
    4447
    4548\makeatletter
     
    4952\setlength{\parindentlnth}{\parindent}
    5053
     54\newcommand{\LstKeywordStyle}[1]{{\lst@basicstyle{\lst@keywordstyle{#1}}}}
     55\newcommand{\LstCommentStyle}[1]{{\lst@basicstyle{\lst@commentstyle{#1}}}}
     56
    5157\newlength{\gcolumnposn}                                % temporary hack because lstlisting does not handle tabs correctly
    5258\newlength{\columnposn}
    5359\setlength{\gcolumnposn}{2.75in}
    5460\setlength{\columnposn}{\gcolumnposn}
    55 \newcommand{\C}[2][\@empty]{\ifx#1\@empty\else\global\setlength{\columnposn}{#1}\global\columnposn=\columnposn\fi\hfill\makebox[\textwidth-\columnposn][l]{\lst@commentstyle{#2}}}
     61\newcommand{\C}[2][\@empty]{\ifx#1\@empty\else\global\setlength{\columnposn}{#1}\global\columnposn=\columnposn\fi\hfill\makebox[\textwidth-\columnposn][l]{\lst@basicstyle{\LstCommentStyle{#2}}}}
    5662\newcommand{\CRT}{\global\columnposn=\gcolumnposn}
     63
     64% Denote newterms in particular font and index them without particular font and in lowercase, e.g., \newterm{abc}.
     65% The option parameter provides an index term different from the new term, e.g., \newterm[\texttt{abc}]{abc}
     66% The star version does not lowercase the index information, e.g., \newterm*{IBM}.
     67\newcommand{\newtermFontInline}{\emph}
     68\newcommand{\newterm}{\@ifstar\@snewterm\@newterm}
     69\newcommand{\@newterm}[2][\@empty]{\lowercase{\def\temp{#2}}{\newtermFontInline{#2}}\ifx#1\@empty\index{\temp}\else\index{#1@{\protect#2}}\fi}
     70\newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi}
    5771
    5872% Latin abbreviation
    5973\newcommand{\abbrevFont}{\textit}       % set empty for no italics
     74\newcommand{\EG}{\abbrevFont{e}.\abbrevFont{g}.}
    6075\newcommand*{\eg}{%
    61         \@ifnextchar{,}{\abbrevFont{e}.\abbrevFont{g}.}%
    62                 {\@ifnextchar{:}{\abbrevFont{e}.\abbrevFont{g}.}%
    63                         {\abbrevFont{e}.\abbrevFont{g}.,\xspace}}%
     76        \@ifnextchar{,}{\EG}%
     77                {\@ifnextchar{:}{\EG}%
     78                        {\EG,\xspace}}%
    6479}%
     80\newcommand{\IE}{\abbrevFont{i}.\abbrevFont{e}.}
    6581\newcommand*{\ie}{%
    66         \@ifnextchar{,}{\abbrevFont{i}.\abbrevFont{e}.}%
    67                 {\@ifnextchar{:}{\abbrevFont{i}.\abbrevFont{e}.}%
    68                         {\abbrevFont{i}.\abbrevFont{e}.,\xspace}}%
     82        \@ifnextchar{,}{\IE}%
     83                {\@ifnextchar{:}{\IE}%
     84                        {\IE,\xspace}}%
    6985}%
     86\newcommand{\ETC}{\abbrevFont{etc}}
    7087\newcommand*{\etc}{%
    71         \@ifnextchar{.}{\abbrevFont{etc}}%
    72         {\abbrevFont{etc}.\xspace}%
     88        \@ifnextchar{.}{\ETC}%
     89        {\ETC\xspace}%
    7390}%
    74 \newcommand{\etal}{%
    75         \@ifnextchar{.}{\abbrevFont{et~al}}%
    76                 {\abbrevFont{et al}.\xspace}%
     91\newcommand{\ETAL}{\abbrevFont{et}\hspace{2pt}\abbrevFont{al}}
     92\newcommand*{\etal}{%
     93        \@ifnextchar{.}{\protect\ETAL}%
     94                {\abbrevFont{\protect\ETAL}.\xspace}%
     95}%
     96\newcommand{\VIZ}{\abbrevFont{viz}}
     97\newcommand*{\viz}{%
     98        \@ifnextchar{.}{\VIZ}%
     99                {\abbrevFont{\VIZ}.\xspace}%
    77100}%
    78101\makeatother
     
    80103% CFA programming language, based on ANSI C (with some gcc additions)
    81104\lstdefinelanguage{CFA}[ANSI]{C}{
    82         morekeywords={_Alignas,_Alignof,__alignof,__alignof__,asm,__asm,__asm__,_At,_Atomic,__attribute,__attribute__,auto,
    83                 _Bool,catch,catchResume,choose,_Complex,__complex,__complex__,__const,__const__,disable,dtype,enable,__extension__,
    84                 fallthrough,fallthru,finally,forall,ftype,_Generic,_Imaginary,inline,__label__,lvalue,_Noreturn,one_t,otype,restrict,_Static_assert,
    85                 _Thread_local,throw,throwResume,trait,try,ttype,typeof,__typeof,__typeof__,zero_t},
     105        morekeywords={
     106                _Alignas, _Alignof, __alignof, __alignof__, asm, __asm, __asm__, _At, __attribute,
     107                __attribute__, auto, _Bool, catch, catchResume, choose, _Complex, __complex, __complex__,
     108                __const, __const__, disable, dtype, enable, __extension__, fallthrough, fallthru,
     109                finally, forall, ftype, _Generic, _Imaginary, inline, __label__, lvalue, _Noreturn, one_t,
     110                otype, restrict, _Static_assert, throw, throwResume, trait, try, ttype, typeof, __typeof,
     111                __typeof__, virtual, with, zero_t},
     112        moredirectives={defined,include_next}%
    86113}%
    87114
     
    91118basicstyle=\linespread{0.9}\sf,                                                 % reduce line spacing and use sanserif font
    92119stringstyle=\tt,                                                                                % use typewriter font
    93 tabsize=4,                                                                                              % 4 space tabbing
     120tabsize=5,                                                                                              % N space tabbing
    94121xleftmargin=\parindentlnth,                                                             % indent code to paragraph indentation
    95122%mathescape=true,                                                                               % LaTeX math escape in CFA code $...$
     
    101128belowskip=3pt,
    102129% replace/adjust listing characters that look bad in sanserif
    103 literate={-}{\makebox[1.4ex][c]{\raisebox{0.5ex}{\rule{1.2ex}{0.06ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptscriptstyle\land\,$}}1
     130literate={-}{\makebox[1ex][c]{\raisebox{0.4ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptscriptstyle\land\,$}}1
    104131        {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 % {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1
    105         {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{\makebox[1.4ex][c]{\raisebox{0.5ex}{\rule{1.2ex}{0.06ex}}}\kern-0.3ex\textgreater}2,
     132        {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{\makebox[1ex][c]{\raisebox{0.4ex}{\rule{0.8ex}{0.075ex}}}\kern-0.2ex\textgreater}2,
    106133moredelim=**[is][\color{red}]{`}{`},
    107134}% lstset
     
    109136% inline code @...@
    110137\lstMakeShortInline@%
     138
     139\lstnewenvironment{cfa}[1][]
     140{\lstset{#1}}
     141{}
     142\lstnewenvironment{C++}[1][]                            % use C++ style
     143{\lstset{language=C++,moredelim=**[is][\protect\color{red}]{`}{`},#1}\lstset{#1}}
     144{}
     145
    111146
    112147\title{Generic and Tuple Types with Efficient Dynamic Layout in \protect\CFA}
     
    148183The C programming language is a foundational technology for modern computing with millions of lines of code implementing everything from commercial operating-systems to hobby projects.
    149184This installation base and the programmers producing it represent a massive software-engineering investment spanning decades and likely to continue for decades more.
    150 The \cite{TIOBE} ranks the top 5 most popular programming languages as: Java 16\%, \Textbf{C 7\%}, \Textbf{\CC 5\%}, \Csharp 4\%, Python 4\% = 36\%, where the next 50 languages are less than 3\% each with a long tail.
     185The TIOBE~\cite{TIOBE} ranks the top 5 most popular programming languages as: Java 16\%, \Textbf{C 7\%}, \Textbf{\CC 5\%}, \Csharp 4\%, Python 4\% = 36\%, where the next 50 languages are less than 3\% each with a long tail.
    151186The top 3 rankings over the past 30 years are:
    152187\lstDeleteShortInline@%
     
    185220\label{sec:poly-fns}
    186221
    187 \CFA{}\hspace{1pt}'s polymorphism was originally formalized by \cite{Ditchfield92}, and first implemented by \cite{Bilson03}.
     222\CFA{}\hspace{1pt}'s polymorphism was originally formalized by Ditchfield~\cite{Ditchfield92}, and first implemented by Bilson~\cite{Bilson03}.
    188223The signature feature of \CFA is parametric-polymorphic functions~\cite{forceone:impl,Cormack90,Duggan96} with functions generalized using a @forall@ clause (giving the language its name):
    189224\begin{lstlisting}
     
    258293}
    259294\end{lstlisting}
    260 Within the block, the nested version of @<@ performs @>@ and this local version overrides the built-in @<@ so it is passed to @qsort@.
     295Within the block, the nested version of @?<?@ performs @?>?@ and this local version overrides the built-in @?<?@ so it is passed to @qsort@.
    261296Hence, programmers can easily form local environments, adding and modifying appropriate functions, to maximize reuse of other existing functions and types.
    262297
     
    544579p`->0` = 5;                                                                     $\C{// change quotient}$
    545580bar( qr`.1`, qr );                                                      $\C{// pass remainder and quotient/remainder}$
    546 rem = [42, div( 13, 5 )]`.0.1`;                         $\C{// access 2nd component of 1st component of tuple expression}$
     581rem = [div( 13, 5 ), 42]`.0.1`;                         $\C{// access 2nd component of 1st component of tuple expression}$
    547582\end{lstlisting}
    548583
     
    730765\end{lstlisting}
    731766Hence, function parameter and return lists are flattened for the purposes of type unification allowing the example to pass expression resolution.
    732 This relaxation is possible by extending the thunk scheme described by~\cite{Bilson03}.
     767This relaxation is possible by extending the thunk scheme described by Bilson~\cite{Bilson03}.
    733768Whenever a candidate's parameter structure does not exactly match the formal parameter's structure, a thunk is generated to specialize calls to the actual function:
    734769\begin{lstlisting}
     
    902937
    903938
     939\section{Control Structures}
     940
     941
     942\subsection{\texorpdfstring{Labelled \LstKeywordStyle{continue} / \LstKeywordStyle{break}}{Labelled continue / break}}
     943
     944While C provides @continue@ and @break@ statements for altering control flow, both are restricted to one level of nesting for a particular control structure.
     945Unfortunately, this restriction forces programmers to use @goto@ to achieve the equivalent control-flow for more than one level of nesting.
     946To prevent having to switch to the @goto@, \CFA extends the @continue@ and @break@ with a target label to support static multi-level exit~\cite{Buhr85}, as in Java.
     947For both @continue@ and @break@, the target label must be directly associated with a @for@, @while@ or @do@ statement;
     948for @break@, the target label can also be associated with a @switch@, @if@ or compound (@{}@) statement.
     949Figure~\ref{f:MultiLevelExit} shows @continue@ and @break@ indicating the specific control structure, and the corresponding C program using only @goto@ and labels.
     950The innermost loop has 7 exit points, which cause continuation or termination of one or more of the 7 nested control-structures.
     951
     952\begin{figure}
     953\lstDeleteShortInline@%
     954\begin{tabular}{@{\hspace{\parindentlnth}}l@{\hspace{\parindentlnth}}l@{\hspace{\parindentlnth}}l@{}}
     955\multicolumn{1}{@{\hspace{\parindentlnth}}c@{\hspace{\parindentlnth}}}{\textbf{\CFA}}   & \multicolumn{1}{@{\hspace{\parindentlnth}}c}{\textbf{C}}      \\
     956\begin{cfa}
     957`LC:` {
     958        ... $declarations$ ...
     959        `LS:` switch ( ... ) {
     960          case 3:
     961                `LIF:` if ( ... ) {
     962                        `LF:` for ( ... ) {
     963                                `LW:` while ( ... ) {
     964                                        ... break `LC`; ...
     965                                        ... break `LS`; ...
     966                                        ... break `LIF`; ...
     967                                        ... continue `LF;` ...
     968                                        ... break `LF`; ...
     969                                        ... continue `LW`; ...
     970                                        ... break `LW`; ...
     971                                } // while
     972                        } // for
     973                } else {
     974                        ... break `LIF`; ...
     975                } // if
     976        } // switch
     977} // compound
     978\end{cfa}
     979&
     980\begin{cfa}
     981{
     982        ... $declarations$ ...
     983        switch ( ... ) {
     984          case 3:
     985                if ( ... ) {
     986                        for ( ... ) {
     987                                while ( ... ) {
     988                                        ... goto `LC`; ...
     989                                        ... goto `LS`; ...
     990                                        ... goto `LIF`; ...
     991                                        ... goto `LFC`; ...
     992                                        ... goto `LFB`; ...
     993                                        ... goto `LWC`; ...
     994                                        ... goto `LWB`; ...
     995                                  `LWC`: ; } `LWB:` ;
     996                          `LFC:` ; } `LFB:` ;
     997                } else {
     998                        ... goto `LIF`; ...
     999                } `L3:` ;
     1000        } `LS:` ;
     1001} `LC:` ;
     1002\end{cfa}
     1003&
     1004\begin{cfa}
     1005
     1006
     1007
     1008
     1009
     1010
     1011
     1012// terminate compound
     1013// terminate switch
     1014// terminate if
     1015// continue loop
     1016// terminate loop
     1017// continue loop
     1018// terminate loop
     1019
     1020
     1021
     1022// terminate if
     1023
     1024
     1025
     1026\end{cfa}
     1027\end{tabular}
     1028\lstMakeShortInline@%
     1029\caption{Multi-level Exit}
     1030\label{f:MultiLevelExit}
     1031\end{figure}
     1032
     1033Both labelled @continue@ and @break@ are a @goto@ restricted in the following ways:
     1034\begin{itemize}
     1035\item
     1036They cannot create a loop, which means only the looping constructs cause looping.
     1037This restriction means all situations resulting in repeated execution are clearly delineated.
     1038\item
     1039They cannot branch into a control structure.
     1040This restriction prevents missing declarations and/or initializations at the start of a control structure resulting in undefined behaviour.
     1041\end{itemize}
     1042The advantage of the labelled @continue@/@break@ is allowing static multi-level exits without having to use the @goto@ statement, and tying control flow to the target control structure rather than an arbitrary point in a program.
     1043Furthermore, the location of the label at the \emph{beginning} of the target control structure informs the reader (eye candy) that complex control-flow is occurring in the body of the control structure.
     1044With @goto@, the label is at the end of the control structure, which fails to convey this important clue early enough to the reader.
     1045Finally, using an explicit target for the transfer instead of an implicit target allows new constructs to be added or removed without affecting existing constructs.
     1046The implicit targets of the current @continue@ and @break@, \ie the closest enclosing loop or @switch@, change as certain constructs are added or removed.
     1047
     1048\TODO{choose and fallthrough here as well?}
     1049
     1050
     1051\subsection{\texorpdfstring{\LstKeywordStyle{with} Clause / Statement}{with Clause / Statement}}
     1052\label{s:WithClauseStatement}
     1053
     1054Grouping heterogenous data into \newterm{aggregate}s is a common programming practice, and an aggregate can be further organized into more complex structures, such as arrays and containers:
     1055\begin{cfa}
     1056struct S {                                                              $\C{// aggregate}$
     1057        char c;                                                         $\C{// fields}$
     1058        int i;
     1059        double d;
     1060};
     1061S s, as[10];
     1062\end{cfa}
     1063However, routines manipulating aggregates have repeition of the aggregate name to access its containing fields:
     1064\begin{cfa}
     1065void f( S s ) {
     1066        `s.`c; `s.`i; `s.`d;                            $\C{// access containing fields}$
     1067}
     1068\end{cfa}
     1069A similar situation occurs in object-oriented programming, \eg \CC:
     1070\begin{C++}
     1071class C {
     1072        char c;                                                         $\C{// fields}$
     1073        int i;
     1074        double d;
     1075        int mem() {                                                     $\C{// implicit "this" parameter}$
     1076                `this->`c; `this->`i; `this->`d;$\C{// access containing fields}$
     1077        }
     1078}
     1079\end{C++}
     1080Nesting of member routines in a \lstinline[language=C++]@class@ allows eliding \lstinline[language=C++]@this->@ because of nested lexical-scoping.
     1081
     1082% In object-oriented programming, there is an implicit first parameter, often names @self@ or @this@, which is elided.
     1083% In any programming language, some functions have a naturally close relationship with a particular data type.
     1084% Object-oriented programming allows this close relationship to be codified in the language by making such functions \emph{class methods} of their related data type.
     1085% Class methods have certain privileges with respect to their associated data type, notably un-prefixed access to the fields of that data type.
     1086% When writing C functions in an object-oriented style, this un-prefixed access is swiftly missed, as access to fields of a @Foo* f@ requires an extra three characters @f->@ every time, which disrupts coding flow and clutters the produced code.
     1087%
     1088% \TODO{Fill out section. Be sure to mention arbitrary expressions in with-blocks, recent change driven by Thierry to prioritize field name over parameters.}
     1089
     1090\CFA provides a @with@ clause/statement (see Pascal~\cite[\S~4.F]{Pascal}) to elided aggregate qualification to fields by opening a scope containing field identifiers.
     1091Hence, the qualified fields become variables, and making it easier to optimizing field references in a block.
     1092\begin{cfa}
     1093void f( S s ) `with s` {                                $\C{// with clause}$
     1094        c; i; d;                                                        $\C{\color{red}// s.c, s.i, s.d}$
     1095}
     1096\end{cfa}
     1097and the equivalence for object-style programming is:
     1098\begin{cfa}
     1099int mem( S & this ) `with this` {               $\C{// with clause}$
     1100        c; i; d;                                                        $\C{\color{red}// this.c, this.i, this.d}$
     1101}
     1102\end{cfa}
     1103The key generality over the object-oriented approach is that one aggregate parameter \lstinline[language=C++]@this@ is not treated specially over other aggregate parameters:
     1104\begin{cfa}
     1105struct T { double m, n; };
     1106int mem( S & s, T & t ) `with s, t` {   $\C{// multiple aggregate parameters}$
     1107        c; i; d;                                                        $\C{\color{red}// s.c, s.i, s.d}$
     1108        m; n;                                                           $\C{\color{red}// t.m, t.n}$
     1109}
     1110\end{cfa}
     1111The equivalent object-oriented style is:
     1112\begin{cfa}
     1113int S::mem( T & t ) {                                   $\C{// multiple aggregate parameters}$
     1114        c; i; d;                                                        $\C{\color{red}// this-\textgreater.c, this-\textgreater.i, this-\textgreater.d}$
     1115        `t.`m; `t.`n;
     1116}
     1117\end{cfa}
     1118
     1119The statement form is used within a block:
     1120\begin{cfa}
     1121int foo() {
     1122        struct S1 { ... } s1;
     1123        struct S2 { ... } s2;
     1124        `with s1` {                                             $\C{// with statement}$
     1125                // access fields of s1 without qualification
     1126                `with s2` {                                     $\C{// nesting}$
     1127                        // access fields of s1 and s2 without qualification
     1128                }
     1129        }
     1130        `with s1, s2` {
     1131                // access unambiguous fields of s1 and s2 without qualification
     1132        }
     1133}
     1134\end{cfa}
     1135
     1136When opening multiple structures, fields with the same name and type are ambiguous and must be fully qualified.
     1137For fields with the same name but different type, context/cast can be used to disambiguate.
     1138\begin{cfa}
     1139struct S { int i; int j; double m; } a, c;
     1140struct T { int i; int k; int m } b, c;
     1141`with a, b` {
     1142        j + k;                                                  $\C{// unambiguous, unique names define unique types}$
     1143        i;                                                              $\C{// ambiguous, same name and type}$
     1144        a.i + b.i;                                              $\C{// unambiguous, qualification defines unique names}$
     1145        m;                                                              $\C{// ambiguous, same name and no context to define unique type}$
     1146        m = 5.0;                                                $\C{// unambiguous, same name and context defines unique type}$
     1147        m = 1;                                                  $\C{// unambiguous, same name and context defines unique type}$
     1148}
     1149`with c` { ... }                                        $\C{// ambiguous, same name and no context}$
     1150`with (S)c` { ... }                                     $\C{// unambiguous, same name and cast defines unique type}$
     1151\end{cfa}
     1152
     1153The components in the "with" clause
     1154
     1155  with a, b, c { ... }
     1156
     1157serve 2 purposes: each component provides a type and object. The type must be a
     1158structure type. Enumerations are already opened, and I think a union is opened
     1159to some extent, too. (Or is that just unnamed unions?) The object is the target
     1160that the naked structure-fields apply to. The components are open in "parallel"
     1161at the scope of the "with" clause/statement, so opening "a" does not affect
     1162opening "b", etc. This semantic is different from Pascal, which nests the
     1163openings.
     1164
     1165Having said the above, it seems reasonable to allow a "with" component to be an
     1166expression. The type is the static expression-type and the object is the result
     1167of the expression. Again, the type must be an aggregate. Expressions require
     1168parenthesis around the components.
     1169
     1170  with( a, b, c ) { ... }
     1171
     1172Does this now make sense?
     1173
     1174Having written more CFA code, it is becoming clear to me that I *really* want
     1175the "with" to be implemented because I hate having to type all those object
     1176names for fields. It's a great way to drive people away from the language.
     1177
     1178
     1179\subsection{Exception Handling ???}
     1180
     1181
     1182\section{Declarations}
     1183
     1184It is important to the design team that \CFA subjectively ``feel like'' C to user programmers.
     1185An important part of this subjective feel is maintaining C's procedural programming paradigm, as opposed to the object-oriented paradigm of other systems languages such as \CC and Rust.
     1186Maintaining this procedural paradigm means that coding patterns that work in C will remain not only functional but idiomatic in \CFA, reducing the mental burden of retraining C programmers and switching between C and \CFA development.
     1187Nonetheless, some features of object-oriented languages are undeniably convienient, and the \CFA design team has attempted to adapt them to a procedural paradigm so as to incorporate their benefits into \CFA; two of these features are resource management and name scoping.
     1188
     1189
     1190\subsection{Alternative Declaration Syntax}
     1191
     1192
     1193\subsection{References}
     1194
     1195All variables in C have an \emph{address}, a \emph{value}, and a \emph{type}; at the position in the program's memory denoted by the address, there exists a sequence of bits (the value), with the length and semantic meaning of this bit sequence defined by the type.
     1196The C type system does not always track the relationship between a value and its address; a value that does not have a corresponding address is called a \emph{rvalue} (for ``right-hand value''), while a value that does have an address is called a \emph{lvalue} (for ``left-hand value''); in @int x; x = 42;@ the variable expression @x@ on the left-hand-side of the assignment is a lvalue, while the constant expression @42@ on the right-hand-side of the assignment is a rvalue.
     1197Which address a value is located at is sometimes significant; the imperative programming paradigm of C relies on the mutation of values at specific addresses.
     1198Within a lexical scope, lvalue exressions can be used in either their \emph{address interpretation} to determine where a mutated value should be stored or in their \emph{value interpretation} to refer to their stored value; in @x = y;@ in @{ int x, y = 7; x = y; }@, @x@ is used in its address interpretation, while y is used in its value interpretation.
     1199Though this duality of interpretation is useful, C lacks a direct mechanism to pass lvalues between contexts, instead relying on \emph{pointer types} to serve a similar purpose.
     1200In C, for any type @T@ there is a pointer type @T*@, the value of which is the address of a value of type @T@; a pointer rvalue can be explicitly \emph{dereferenced} to the pointed-to lvalue with the dereference operator @*?@, while the rvalue representing the address of a lvalue can be obtained with the address-of operator @&?@.
     1201
     1202\begin{cfa}
     1203int x = 1, y = 2, * p1, * p2, ** p3;
     1204p1 = &x;  $\C{// p1 points to x}$
     1205p2 = &y;  $\C{// p2 points to y}$
     1206p3 = &p1;  $\C{// p3 points to p1}$
     1207\end{cfa}
     1208
     1209Unfortunately, the dereference and address-of operators introduce a great deal of syntactic noise when dealing with pointed-to values rather than pointers, as well as the potential for subtle bugs.
     1210It would be desirable to have the compiler figure out how to elide the dereference operators in a complex expression such as @*p2 = ((*p1 + *p2) * (**p3 - *p1)) / (**p3 - 15);@, for both brevity and clarity.
     1211However, since C defines a number of forms of \emph{pointer arithmetic}, two similar expressions involving pointers to arithmetic types (\eg @*p1 + x@ and @p1 + x@) may each have well-defined but distinct semantics, introducing the possibility that a user programmer may write one when they mean the other, and precluding any simple algorithm for elision of dereference operators.
     1212To solve these problems, \CFA introduces reference types @T&@; a @T&@ has exactly the same value as a @T*@, but where the @T*@ takes the address interpretation by default, a @T&@ takes the value interpretation by default, as below:
     1213
     1214\begin{cfa}
     1215inx x = 1, y = 2, & r1, & r2, && r3;
     1216&r1 = &x;  $\C{// r1 points to x}$
     1217&r2 = &y;  $\C{// r2 points to y}$
     1218&&r3 = &&r1;  $\C{// r3 points to r2}$
     1219r2 = ((r1 + r2) * (r3 - r1)) / (r3 - 15);  $\C{// implicit dereferencing}$
     1220\end{cfa}
     1221
     1222Except for auto-dereferencing by the compiler, this reference example is exactly the same as the previous pointer example.
     1223Hence, a reference behaves like a variable name -- an lvalue expression which is interpreted as a value, but also has the type system track the address of that value.
     1224One way to conceptualize a reference is via a rewrite rule, where the compiler inserts a dereference operator before the reference variable for each reference qualifier in the reference variable declaration, so the previous example implicitly acts like:
     1225
     1226\begin{cfa}
     1227`*`r2 = ((`*`r1 + `*`r2) * (`**`r3 - `*`r1)) / (`**`r3 - 15);
     1228\end{cfa}
     1229
     1230References in \CFA are similar to those in \CC, but with a couple important improvements, both of which can be seen in the example above.
     1231Firstly, \CFA does not forbid references to references, unlike \CC.
     1232This provides a much more orthogonal design for library implementors, obviating the need for workarounds such as @std::reference_wrapper@.
     1233
     1234Secondly, unlike the references in \CC which always point to a fixed address, \CFA references are rebindable.
     1235This allows \CFA references to be default-initialized (to a null pointer), and also to point to different addresses throughout their lifetime.
     1236This rebinding is accomplished without adding any new syntax to \CFA, but simply by extending the existing semantics of the address-of operator in C.
     1237In C, the address of a lvalue is always a rvalue, as in general that address is not stored anywhere in memory, and does not itself have an address.
     1238In \CFA, the address of a @T&@ is a lvalue @T*@, as the address of the underlying @T@ is stored in the reference, and can thus be mutated there.
     1239The result of this rule is that any reference can be rebound using the existing pointer assignment semantics by assigning a compatible pointer into the address of the reference, \eg @&r1 = &x;@ above.
     1240This rebinding can occur to an arbitrary depth of reference nesting; $n$ address-of operators applied to a reference nested $m$ times will produce an lvalue pointer nested $n$ times if $n \le m$ (note that $n = m+1$ is simply the usual C rvalue address-of operator applied to the $n = m$ case).
     1241The explicit address-of operators can be thought of as ``cancelling out'' the implicit dereference operators, \eg @(&`*`)r1 = &x;@ or @(&(&`*`)`*`)r3 = &(&`*`)r1;@ or even @(&`*`)r2 = (&`*`)`*`r3;@ for @&r2 = &r3;@.
     1242
     1243Since pointers and references share the same internal representation, code using either is equally performant; in fact the \CFA compiler converts references to pointers internally, and the choice between them in user code can be made based solely on convenience.
     1244By analogy to pointers, \CFA references also allow cv-qualifiers:
     1245
     1246\begin{cfa}
     1247const int cx = 5;               $\C{// cannot change cx}$
     1248const int & cr = cx;    $\C{// cannot change cr's referred value}$
     1249&cr = &cx;                              $\C{// rebinding cr allowed}$
     1250cr = 7;                                 $\C{// ERROR, cannot change cr}$
     1251int & const rc = x;             $\C{// must be initialized, like in \CC}$
     1252&rc = &x;                               $\C{// ERROR, cannot rebind rc}$
     1253rc = 7;                                 $\C{// x now equal to 7}$
     1254\end{cfa}
     1255
     1256\TODO{Pull more draft text from user manual; make sure to discuss initialization and reference conversions}
     1257
     1258
     1259\subsection{Constructors and Destructors}
     1260
     1261One of the strengths of C is the control over memory management it gives programmers, allowing resource release to be more consistent and precisely timed than is possible with garbage-collected memory management.
     1262However, this manual approach to memory management is often verbose, and it is useful to manage resources other than memory (\eg file handles) using the same mechanism as memory.
     1263\CC is well-known for an approach to manual memory management that addresses both these issues, Resource Allocation Is Initialization (RAII), implemented by means of special \emph{constructor} and \emph{destructor} functions; we have implemented a similar feature in \CFA.
     1264
     1265\TODO{Fill out section. Mention field-constructors and at-equal escape hatch to C-style initialization. Probably pull some text from Rob's thesis for first draft.}
     1266
     1267
     1268\subsection{Default Parameters}
     1269
     1270
     1271\section{Literals}
     1272
     1273
     1274\subsection{0/1}
     1275
     1276\TODO{Some text already at the end of Section~\ref{sec:poly-fns}}
     1277
     1278
     1279\subsection{Units}
     1280
     1281Alternative call syntax (literal argument before routine name) to convert basic literals into user literals.
     1282
     1283{\lstset{language=CFA,deletedelim=**[is][]{`}{`},moredelim=**[is][\color{red}]{@}{@}}
     1284\begin{cfa}
     1285struct Weight { double stones; };
     1286
     1287void ?{}( Weight & w ) { w.stones = 0; } $\C{// operations}$
     1288void ?{}( Weight & w, double w ) { w.stones = w; }
     1289Weight ?+?( Weight l, Weight r ) { return (Weight){ l.stones + r.stones }; }
     1290
     1291Weight @?`st@( double w ) { return (Weight){ w }; } $\C{// backquote for units}$
     1292Weight @?`lb@( double w ) { return (Weight){ w / 14.0 }; }
     1293Weight @?`kg@( double w ) { return (Weight) { w * 0.1575}; }
     1294
     1295int main() {
     1296        Weight w, hw = { 14 };                  $\C{// 14 stone}$
     1297        w = 11@`st@ + 1@`lb@;
     1298        w = 70.3@`kg@;
     1299        w = 155@`lb@;
     1300        w = 0x_9b_u@`lb@;                               $\C{// hexadecimal unsigned weight (155)}$
     1301        w = 0_233@`lb@;                                 $\C{// octal weight (155)}$
     1302        w = 5@`st@ + 8@`kg@ + 25@`lb@ + hw;
     1303}
     1304\end{cfa}
     1305}%
     1306
     1307
    9041308\section{Evaluation}
    9051309\label{sec:eval}
     
    10131417In contrast, \CFA has a single facility for polymorphic code supporting type-safe separate-compilation of polymorphic functions and generic (opaque) types, which uniformly leverage the C procedural paradigm.
    10141418The key mechanism to support separate compilation is \CFA's \emph{explicit} use of assumed properties for a type.
    1015 Until \CC~\cite{C++Concepts} are standardized (anticipated for \CCtwenty), \CC provides no way to specify the requirements of a generic function in code beyond compilation errors during template expansion;
     1419Until \CC concepts~\cite{C++Concepts} are standardized (anticipated for \CCtwenty), \CC provides no way to specify the requirements of a generic function in code beyond compilation errors during template expansion;
    10161420furthermore, \CC concepts are restricted to template polymorphism.
    10171421
     
    10211425In \CFA terms, all Cyclone polymorphism must be dtype-static.
    10221426While the Cyclone design provides the efficiency benefits discussed in Section~\ref{sec:generic-apps} for dtype-static polymorphism, it is more restrictive than \CFA's general model.
    1023 \cite{Smith98} present Polymorphic C, an ML dialect with polymorphic functions and C-like syntax and pointer types; it lacks many of C's features, however, most notably structure types, and so is not a practical C replacement.
    1024 
    1025 \cite{obj-c-book} is an industrially successful extension to C.
     1427Smith and Volpano~\cite{Smith98} present Polymorphic C, an ML dialect with polymorphic functions, C-like syntax, and pointer types; it lacks many of C's features, however, most notably structure types, and so is not a practical C replacement.
     1428
     1429Objective-C~\cite{obj-c-book} is an industrially successful extension to C.
    10261430However, Objective-C is a radical departure from C, using an object-oriented model with message-passing.
    10271431Objective-C did not support type-checked generics until recently \cite{xcode7}, historically using less-efficient runtime checking of object types.
    1028 The~\cite{GObject} framework also adds object-oriented programming with runtime type-checking and reference-counting garbage-collection to C;
     1432The GObject~\cite{GObject} framework also adds object-oriented programming with runtime type-checking and reference-counting garbage-collection to C;
    10291433these features are more intrusive additions than those provided by \CFA, in addition to the runtime overhead of reference-counting.
    1030 \cite{Vala} compiles to GObject-based C, adding the burden of learning a separate language syntax to the aforementioned demerits of GObject as a modernization path for existing C code-bases.
     1434Vala~\cite{Vala} compiles to GObject-based C, adding the burden of learning a separate language syntax to the aforementioned demerits of GObject as a modernization path for existing C code-bases.
    10311435Java~\cite{Java8} included generic types in Java~5, which are type-checked at compilation and type-erased at runtime, similar to \CFA's.
    10321436However, in Java, each object carries its own table of method pointers, while \CFA passes the method pointers separately to maintain a C-compatible layout.
    10331437Java is also a garbage-collected, object-oriented language, with the associated resource usage and C-interoperability burdens.
    10341438
    1035 D~\cite{D}, Go, and~\cite{Rust} are modern, compiled languages with abstraction features similar to \CFA traits, \emph{interfaces} in D and Go and \emph{traits} in Rust.
     1439D~\cite{D}, Go, and Rust~\cite{Rust} are modern, compiled languages with abstraction features similar to \CFA traits, \emph{interfaces} in D and Go and \emph{traits} in Rust.
    10361440However, each language represents a significant departure from C in terms of language model, and none has the same level of compatibility with C as \CFA.
    10371441D and Go are garbage-collected languages, imposing the associated runtime overhead.
     
    10541458\CCeleven introduced @std::tuple@ as a library variadic template structure.
    10551459Tuples are a generalization of @std::pair@, in that they allow for arbitrary length, fixed-size aggregation of heterogeneous values.
    1056 Operations include @std::get<N>@ to extract vales, @std::tie@ to create a tuple of references used for assignment, and lexicographic comparisons.
     1460Operations include @std::get<N>@ to extract values, @std::tie@ to create a tuple of references used for assignment, and lexicographic comparisons.
    10571461\CCseventeen proposes \emph{structured bindings}~\cite{Sutter15} to eliminate pre-declaring variables and use of @std::tie@ for binding the results.
    10581462This extension requires the use of @auto@ to infer the types of the new variables, so complicated expressions with a non-obvious type must be documented with some other mechanism.
     
    10681472The goal of \CFA is to provide an evolutionary pathway for large C development-environments to be more productive and safer, while respecting the talent and skill of C programmers.
    10691473While other programming languages purport to be a better C, they are in fact new and interesting languages in their own right, but not C extensions.
    1070 The purpose of this paper is to introduce \CFA, and showcase two language features that illustrate the \CFA type-system and approaches taken to achieve the goal of evolutionary C extension.
     1474The purpose of this paper is to introduce \CFA, and showcase language features that illustrate the \CFA type-system and approaches taken to achieve the goal of evolutionary C extension.
    10711475The contributions are a powerful type-system using parametric polymorphism and overloading, generic types, and tuples, which all have complex interactions.
    10721476The work is a challenging design, engineering, and implementation exercise.
Note: See TracChangeset for help on using the changeset viewer.