Changeset 367725d


Ignore:
Timestamp:
Jan 22, 2024, 3:23:12 AM (12 months ago)
Author:
JiadaL <j82liang@…>
Branches:
master
Children:
544deb9
Parents:
ac939461
Message:

Update enum.tex

Files:
2 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/enum.tex

    rac939461 r367725d  
    245245
    246246
    247 \subsection{Aggressive Inline}
    248 To avoid allocating memory for enumeration data structures, \CFA inline the result of enumeration attribute pseudo-function whenever it is possible.
    249 \begin{lstlisting}[label=lst:enumeration_inline]
    250 enum(int) OddNumber { A=1, B=3 };
    251 sout | "A: " | OddNumber.A | "B: " | OddNumber.B | "A+B: " | OddNumber.A + OddNumber.B
    252 \end{lstlisting}
    253 Instead of calling pseudo-function @value@ on expression $OddNumber.A$ and $OddNumber.B$, because the result is known statistically, \CFA will inline the constant expression 1 and 3, respectively. Because no runtime lookup for enumeration value is necessary, \CFA will not generate data structure for enumeration OddNumber.
    254 
    255 \subsection{Weak Reference}
    256 \begin{lstlisting}[label=lst:week_ref]
    257 enum(int) OddNumber { A=1, B=3 };
    258 enum OddNumber i = ...;
    259 ...
    260 sout | OddNumber;
    261 \end{lstlisting}
    262 In this example, \CFA cannot determine the static value of the enum variable i, and Runtime lookup is necessary. The OddNumber can be referenced in multiple compilations, and allocating the arrays in all compilation units is not desirable. \CFA addresses this by declaring the value array as a weak reference. All compilation units reference OddNumber have weak references to the same enumeration data structure. No extra memory is allocated if more compilation units reference OddNumber, and the OddNumber is initialized once.
    263 
     247\
    264248\section{Unification}
    265249
     
    638622\section{Implementation}
    639623
    640 \subsection{Compiler Representation (Reworking)}
     624\subsection{Static Attribute Expression}
     625\begin{lstlisting}[label=lst:static_attr]
     626enum( char * ) Colour {
     627    Red = "red", Blue = "blue", Green = "green" 
     628};
     629\end{lstlisting}
     630An enumerator expression returns its enumerator value as a constant expression with no runtime cost. For example, @Colour.Red@ is equivalent to the constant expression "red", and \CFA finishes the expression evaluation before generating the corresponding C code. Applying a pseudo-function to a constant enumerator expression results in a constant expression as well. @value( Colour.Red )@, @position( Colour. Red )@, and @label( Colour.Red )@ are equivalent to constant expression with char * value "red", int value 0, and char * value "Red", respectively.
     631
     632\subsection{Runtime Attribute Expression and Weak Referenced Data}
     633\begin{lstlisting}[label=lst:dynamic_attr]
     634Colour c;
     635...
     636value( c ); // or c
     637\end{lstlisting}
     638An enumeration variable c is equivalent to an integer variable with the value of @position( c )@ In Example~\ref{lst:dynamic_attr}, the value of enumeration variable c is unknown at compile time. In this case, the pseudo-function calls are reduced to expression that returns the enumerator values at runtime.
     639
     640\CFA stores the variables and labels in const arrays to provide runtime lookup for enumeration information.
     641
     642\begin{lstlisting}[label=lst:attr_array]
     643const char * Colour_labels [3] = { "Red", "Blue", "Green" };
     644const char * Colour_values [3] = { "red", "blue", "green" };
     645\end{lstlisting}
     646The \CFA compiles transforms the attribute expressions into array access.
     647\begin{lstlisting}[label=lst:attr_array_access]
     648position( c ) // c; an integer
     649value( c ); // Colour_values[c]
     650label( c ); // Colour_labels[c]
     651\end{lstlisting}
     652
     653To avoid unnecessary memory usage, the labels and values array are only generated as needed, and only generate once across all compilation units. By default, \CFA defers the declaration of the label and value arrays until an call to attribute function with a dynamic value. If an attribute function is never called on a dynamic value of an enumerator, the array will never be allocated. Once the arrays are created, all compilation units share a weak reference to the allocation array.
     654
     655\subsection{Enum Prelude}
     656
     657\begin{lstlisting}[label=lst:enum_func_dec]
     658forall( T ) {
     659    unsigned position( unsigned );
     660    T value( unsigned );
     661    char * label( unsigned );
     662}
     663\end{lstlisting}
     664\CFA loads the declaration of enumeration function from the enum.hfa.
     665
     666\subsection{Internal Representation}
     667
    641668The definition of an enumeration is represented by an internal type called @EnumDecl@. At the minimum, it stores all the information needed to construct the companion object. Therefore, an @EnumDecl@ can be represented as the following:
    642669\begin{lstlisting}[label=lst:EnumDecl]
     
    667694
    668695
    669 \subsection{(Rework) Companion Object and Companion Function}
    670 
    671 \begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_functions]
    672 forall( T )
    673 struct Companion {
    674         const T * const values;
    675         const char * label;
    676         int length;
    677 };
    678 \end{lstlisting}
    679 \CFA generates companion objects, an instance of structure that encloses @necessary@ data to represent an enumeration. The size of the companion is unknown at the compilation time, and it "grows" in size to compensate for the @usage@.
    680 
    681 The companion object is singleton across the compilation (investigation). 
    682 
    683 \CFA generates the definition of companion functions.
    684 Because \CFA implicitly stores an enumeration instance as its position, the companion function @position@ does nothing but return the position it is passed.
    685 Companions function @value@ and @label@ return the array item at the given position of @values@ and @labels@, respectively.
    686 \begin{lstlisting}[label=lst:companion_definition]
    687 int position( Companion o, int pos ) { return pos; }
    688 T value( Companion o, int pos ) { return o.values[ pos ]; }
    689 char * label( Companion o, int pos ) { return o.labels[ pos ]; }
    690 \end{lstlisting}
    691 Notably, the @Companion@ structure definition, and all companion objects, are visible to users.
    692 A user can retrieve values and labels defined in an enumeration by accessing the values and labels directly, or indirectly by calling @Companion@ functions @values@ and @labels@
    693 \begin{lstlisting}[label=lst:companion_definition_values_labels]
    694 Colour.values; // read the Companion's values
    695 values( Colour ); // same as Colour.values
    696 \end{lstlisting}
     696% \subsection{(Rework) Companion Object and Companion Function}
     697
     698% \begin{lstlisting}[caption={Enum Type Functions}, label=lst:cforall_enum_functions]
     699% forall( T )
     700% struct Companion {
     701%       const T * const values;
     702%         const char * label;
     703%       int length;
     704% };
     705% \end{lstlisting}
     706% \CFA generates companion objects, an instance of structure that encloses @necessary@ data to represent an enumeration. The size of the companion is unknown at the compilation time, and it "grows" in size to compensate for the @usage@.
     707
     708% The companion object is singleton across the compilation (investigation). 
     709
     710% \CFA generates the definition of companion functions.
     711% Because \CFA implicitly stores an enumeration instance as its position, the companion function @position@ does nothing but return the position it is passed.
     712% Companions function @value@ and @label@ return the array item at the given position of @values@ and @labels@, respectively.
     713% \begin{lstlisting}[label=lst:companion_definition]
     714% int position( Companion o, int pos ) { return pos; }
     715% T value( Companion o, int pos ) { return o.values[ pos ]; }
     716% char * label( Companion o, int pos ) { return o.labels[ pos ]; }
     717% \end{lstlisting}
     718% Notably, the @Companion@ structure definition, and all companion objects, are visible to users.
     719% A user can retrieve values and labels defined in an enumeration by accessing the values and labels directly, or indirectly by calling @Companion@ functions @values@ and @labels@
     720% \begin{lstlisting}[label=lst:companion_definition_values_labels]
     721% Colour.values; // read the Companion's values
     722% values( Colour ); // same as Colour.values
     723% \end{lstlisting}
    697724
    698725\subsection{Companion Traits (experimental)}
  • src/Validate/ReplacePseudoFunc.cpp

    rac939461 r367725d  
    1717ast::Expr const * ReplacePseudoFuncCore::postvisit( ast::ApplicationExpr const * expr) {
    1818    auto fname = ast::getFunctionName( expr );
    19     if ( fname == "posE" ) {
     19    if ( fname == "posE" || fname == "valueE" || fname == "labelE" ) {
    2020        // std::cerr << "Found App in ReplacePseudoFunc" << std::endl;
    2121        if ( expr->args.size() != 1 ) {
     
    3535        for ( size_t i = 0; i < base->members.size(); i++ ) {
    3636            if ( base->members[i]->name == referredName ) {
    37                 return ast::ConstantExpr::from_int( expr->location, i );
     37                if ( fname == "posE ")
     38                    return ast::ConstantExpr::from_int( expr->location, i );
     39                else if (fname == "labelE" )
     40                    return ast::ConstantExpr::from_string( expr->location, referredName );
     41                else
     42                    return new ast::TypeExpr( expr->location, argType );
    3843            }
    3944        }
Note: See TracChangeset for help on using the changeset viewer.