Changeset 365c8dcb


Ignore:
Timestamp:
Apr 14, 2022, 3:00:28 PM (2 years ago)
Author:
JiadaL <j82liang@…>
Branches:
ADT, ast-experimental, enum, master, pthread-emulation, qualifiedEnum
Children:
bfd5512
Parents:
30d91e4 (diff), 4ec9513 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' into enum

Files:
12 added
1 deleted
29 edited
2 moved

Legend:

Unmodified
Added
Removed
  • doc/theses/mike_brooks_MMath/.gitignore

    r30d91e4 r365c8dcb  
    11!Makefile
    22build
    3 uw-thesis.pdf
     3uw-ethesis.pdf
  • doc/theses/mike_brooks_MMath/array.tex

    r30d91e4 r365c8dcb  
    156156enq( N, S, arpk(N', S', E_i', E_b), E_b ) & = & arpk( N', S', enq(N, S, E_i', E_b), E_b )
    157157\end{eqnarray*}
    158  
     158
     159
     160\section{Bound checks, added and removed}
     161
     162\CFA array subscripting is protected with runtime bound checks.  Having dependent typing causes the opimizer to remove more of these bound checks than it would without them.  This section provides a demonstration of the effect.
     163
     164The experiment compares the \CFA array system with the padded-room system [todo:xref] most typically exemplified by Java arrays, but also reflected in the C++ pattern where restricted vector usage models a checked array.  The essential feature of this padded-room system is the one-to-one correspondence between array instances and the symbolic bounds on which dynamic checks are based.  The experiment compares with the C++ version to keep access to generated assembly code simple.
     165
     166As a control case, a simple loop (with no reused dimension sizes) is seen to get the same optimization treatment in both the \CFA and C++ versions.  When the programmer treats the array's bound correctly (making the subscript ``obviously fine''), no dynamic bound check is observed in the program's optimized assembly code.  But when the bounds are adjusted, such that the subscript is possibly invalid, the bound check appears in the optimized assemly, ready to catch an occurrence the mistake.
     167
     168TODO: paste source and assemby codes
     169
     170Incorporating reuse among dimension sizes is seen to give \CFA an advantage at being optimized.  The case is naive matrix multiplication over a row-major encoding.
     171
     172TODO: paste source codes
     173
     174
     175
     176
     177
     178\section{Comparison with other arrays}
     179
     180\CFA's array is the first lightweight application of dependently-typed bound tracking to an extension of C.  Other extensions of C that apply dependently-typed bound tracking are heavyweight, in that the bound tracking is part of a linearly typed ownership system that further helps guarantee statically the validity of every pointer deference.  These systems, therefore, ask the programmer to convince the typechecker that every pointer dereference is valid.  \CFA imposes the lighter-weight obligation, with the more limited guarantee, that initially-declared bounds are respected thereafter.
     181
     182\CFA's array is also the first extension of C to use its tracked bounds to generate the pointer arithmetic implied by advanced allocation patterns.  Other bound-tracked extensions of C either forbid certain C patterns entirely, or address the problem of \emph{verifying} that the user's provided pointer arithmetic is self-consistent.  The \CFA array, applied to accordion structures [TOD: cross-reference] \emph{implies} the necessary pointer arithmetic, generated automatically, and not appearing at all in a user's program.
     183
     184\subsction{Safety in a padded room}
     185
     186Java's array [todo:cite] is a straightforward example of assuring safety against undefined behaviour, at a cost of expressiveness for more applied properties.  Consider the array parameter declarations in:
     187
     188\begin{tabular}{rl}
     189    C      &  @void f( size_t n, size_t m, float a[n][m] );@ \\
     190    Java   &  @void f( float[][] a );@
     191\end{tabular}
     192
     193Java's safety against undefined behaviour assures the callee that, if @a@ is non-null, then @a.length@ is a valid access (say, evaluating to the number $\ell$) and if @i@ is in $[0, \ell)$ then @a[i]@ is a valid access.  If a value of @i@ outside this range is used, a runtime error is guaranteed.  In these respects, C offers no guarantess at all.  Notably, the suggestion that @n@ is the intended size of the first dimension of @a@ is documentation only.  Indeed, many might prefer the technically equivalent declarations @float a[][m]@ or @float (*a)[m]@ as emphasizing the ``no guarantees'' nature of an infrequently used language feature, over using the opportunity to explain a programmer intention.  Moreover, even if @a[0][0]@ is valid for the purpose intended, C's basic infamous feature is the possibility of an @i@, such that @a[i][0]@ is not valid for the same purpose, and yet, its evaluation does not produce an error.
     194
     195Java's lack of expressiveness for more applied properties means these outcomes are possible:
     196\begin{itemize}
     197    \item @a[0][17]@ and @a[2][17]@ are valid accesses, yet @a[1][17]@ is a runtime error, because @a[1]@ is a null pointer
     198    \item the same observation, now because @a[1]@ refers to an array of length 5
     199    \item execution times vary, because the @float@ values within @a@ are sometimes stored nearly contiguously, and other times, not at all
     200\end{itemize}
     201C's array has none of these limitations, nor do any of the ``array language'' comparators discussed in this section.
     202
     203This Java level of safety and expressiveness is also exemplified in the C family, with the commonly given advice [todo:cite example], for C++ programmers to use @std::vector@ in place of the C++ language's array, which is essentially the C array.  The advice is that, while a vector is also more powerful (and quirky) than an arry, its capabilities include options to preallocate with an upfront size, to use an available bound-checked accessor (@a.at(i)@ in place of @a[i]@), to avoid using @push_back@, and to use a vector of vectors.  Used with these restrictions, out-of-bound accesses are stopped, and in-bound accesses never exercise the vector's ability to grow, which is to say, they never make the program slow to reallocate and copy, and they never invalidate the program's other references to the contained values.  Allowing this scheme the same referential integrity assumption that \CFA enjoys [todo:xref], this scheme matches Java's safety and expressiveness exactly.  [TODO: decide about going deeper; some of the Java expressiveness concerns have mitigations, up to even more tradeoffs.]
     204
     205\subsection{Levels of dependently typed arrays}
     206
     207The \CFA array and the field of ``array language'' comparators all leverage dependent types to improve on the expressiveness over C and Java, accommodating examples such as:
     208\begin{itemize}
     209    \item a \emph{zip}-style operation that consumes two arrays of equal length
     210    \item a \emph{map}-style operation whose produced length matches the consumed length
     211    \item a formulation of matrix multiplication, where the two operands must agree on a middle dimension, and where the result dimensions match the operands' outer dimensions
     212\end{itemize}
     213Across this field, this expressiveness is not just an avaiable place to document such assumption, but these requirements are strongly guaranteed by default, with varying levels of statically/dynamically checked and ability to opt out.  Along the way, the \CFA array also closes the safety gap (with respect to bounds) that Java has over C.
     214
     215
     216
     217Dependent type systems, considered for the purpose of bound-tracking, can be full-strength or restricted.  In a full-strength dependent type system, a type can encode an arbitrarily complex predicate, with bound-tracking being an easy example.  The tradeoff of this expressiveness is complexity in the checker, even typically, a potential for its nontermination.  In a restricted dependent type system (purposed for bound tracking), the goal is to check helpful properties, while keeping the checker well-behaved; the other restricted checkers surveyed here, including \CFA's, always terminate.  [TODO: clarify how even Idris type checking terminates]
     218
     219Idris is a current, general-purpose dependently typed programming language.  Length checking is a common benchmark for full dependent type stystems.  Here, the capability being considered is to track lengths that adjust during the execution of a program, such as when an \emph{add} operation produces a collection one element longer than the one on which it started.  [todo: finish explaining what Data.Vect is and then the essence of the comparison]
     220
     221POINTS:
     222here is how our basic checks look (on a system that deosn't have to compromise);
     223it can also do these other cool checks, but watch how I can mess with its conservativeness and termination
     224
     225Two current, state-of-the-art array languages, Dex\cite{arr:dex:long} and Futhark\cite{arr:futhark:tytheory}, offer offer novel contributions concerning similar, restricted dependent types for tracking array length.  Unlike \CFA, both are garbage-collected functional languages.  Because they are garbage-collected, referential integrity is built-in, meaning that the heavyweight analysis, that \CFA aims to avoid, is unnecessary.  So, like \CFA, the checking in question is a leightweight bounds-only analysis.  Like \CFA, their checks that are conservatively limited by forbidding arithmetic in the depended-upon expression.
     226
     227
     228
     229The Futhark work discusses the working language's connection to a lambda calculus, with typing rules and a safety theorem proven in reference to an operational semantics.  There is a particular emphasis on an existential type, enabling callee-determined return shapes. 
     230
     231Dex uses a novel conception of size, embedding its quantitative information completely into an ordinary type.
     232
     233Futhark and full-strength dependently typed lanaguages treat array sizes are ordinary values.  Futhark restricts these expressions syntactically to variables and constants, while a full-strength dependent system does not.
     234
     235CFA's hybrid presentation, @forall( [N] )@, has @N@ belonging to the type system, yet has no instances.  Belonging to the type system means it is inferred at a call site and communicated implicitly, like in Dex and unlike in Futhark.  Having no instances means there is no type for a variable @i@ that constrains @i@ to be in the range for @N@, unlike Dex, [TODO: verify], but like Futhark.
     236
     237\subsection{Static safety in C extensions}
     238
     239
     240\section{Future Work}
     241
     242\subsection{Declaration syntax}
     243
     244\subsection{Range slicing}
     245
     246\subsection{With a module system}
     247
     248\subsection{With described enumerations}
     249
     250A project in \CFA's current portfolio will improve enumerations.  In the incumbent state, \CFA has C's enumerations, unmodified.  I will not discuss the core of this project, which has a tall mission already, to improve type safety, maintain appropriate C compatibility and offer more flexibility about storage use.  It also has a candidate stretch goal, to adapt \CFA's @forall@ generic system to communicate generalized enumerations:
     251\begin{lstlisting}
     252    forall( T | is_enum(T) )
     253    void show_in_context( T val ) {
     254        for( T i ) {
     255            string decorator = "";
     256            if ( i == val-1 ) decorator = "< ready";
     257            if ( i == val   ) decorator = "< go"   ;
     258            sout | i | decorator;
     259        }
     260    }
     261    enum weekday { mon, tue, wed = 500, thu, fri };
     262    show_in_context( wed );
     263\end{lstlisting}
     264with output
     265\begin{lstlisting}
     266    mon
     267    tue < ready
     268    wed < go
     269    thu
     270    fri
     271\end{lstlisting}
     272The details in this presentation aren't meant to be taken too precisely as suggestions for how it should look in \CFA.  But the example shows these abilities:
     273\begin{itemize}
     274    \item a built-in way (the @is_enum@ trait) for a generic routine to require enumeration-like information about its instantiating type
     275    \item an implicit implementation of the trait whenever a user-written enum occurs (@weekday@'s declaration implies @is_enum@)
     276    \item a total order over the enumeration constants, with predecessor/successor (@val-1@) available, and valid across gaps in values (@tue == 1 && wed == 500 && tue == wed - 1@)
     277    \item a provision for looping (the @for@ form used) over the values of the type.
     278\end{itemize}
     279
     280If \CFA gets such a system for describing the list of values in a type, then \CFA arrays are poised to move from the Futhark level of expressiveness, up to the Dex level.
     281
     282[TODO: indroduce Ada in the comparators]
     283
     284In Ada and Dex, an array is conceived as a function whose domain must satisfy only certain structural assumptions, while in C, C++, Java, Futhark and \CFA today, the domain is a prefix of the natural numbers.  The generality has obvious aesthetic benefits for programmers working on scheduling resources to weekdays, and for programmers who prefer to count from an initial number of their own choosing.
     285
     286This change of perspective also lets us remove ubiquitous dynamic bound checks.  [TODO: xref] discusses how automatically inserted bound checks can often be otimized away.  But this approach is unsatisfying to a programmer who believes she has written code in which dynamic checks are unnecessary, but now seeks confirmation.  To remove the ubiquitious dynamic checking is to say that an ordinary subscript operation is only valid when it can be statically verified to be in-bound (and so the ordinary subscript is not dynamically checked), and an explicit dynamic check is available when the static criterion is impractical to meet.
     287
     288[TODO, fix confusion:  Idris has this arrangement of checks, but still the natural numbers as the domain.]
     289
     290The structural assumptions required for the domain of an array in Dex are given by the trait (there, ``interface'') @Ix@, which says that the parameter @n@ is a type (which could take an argument like @weekday@) that provides two-way conversion with the integers and a report on the number of values.  Dex's @Ix@ is analogous the @is_enum@ proposed for \CFA above.
     291\begin{lstlisting}
     292interface Ix n
     293  get_size n : Unit -> Int
     294  ordinal : n -> Int
     295  unsafe_from_ordinal n : Int -> n
     296\end{lstlisting}
     297
     298Dex uses this foundation of a trait (as an array type's domain) to achieve polymorphism over shapes.  This flavour of polymorphism lets a function be generic over how many (and the order of) dimensions a caller uses when interacting with arrays communicated with this funciton.  Dex's example is a routine that calculates pointwise differences between two samples.  Done with shape polymorphism, one function body is equally applicable to a pair of single-dimensional audio clips (giving a single-dimensional result) and a pair of two-dimensional photographs (giving a two-dimensional result).  In both cases, but with respectively dimensoned interpretations of ``size,'' this function requries the argument sizes to match, and it produces a result of the that size.
     299
     300The polymorphism plays out with the pointwise-difference routine advertizing a single-dimensional interface whose domain type is generic.  In the audio instantiation, the duration-of-clip type argument is used for the domain.  In the photograph instantiation, it's the tuple-type of $ \langle \mathrm{img\_wd}, \mathrm{img\_ht} \rangle $.  This use of a tuple-as-index is made possible by the built-in rule for implementing @Ix@ on a pair, given @Ix@ implementations for its elements
     301\begin{lstlisting}
     302instance {a b} [Ix a, Ix b] Ix (a & b)
     303  get_size = \(). size a * size b
     304  ordinal = \(i, j). (ordinal i * size b) + ordinal j
     305  unsafe_from_ordinal = \o.
     306    bs = size b
     307    (unsafe_from_ordinal a (idiv o bs), unsafe_from_ordinal b (rem o bs))
     308\end{lstlisting}
     309and by a user-provided adapter expression at the call site that shows how to indexing with a tuple is backed by indexing each dimension at a time
     310\begin{lstlisting}
     311    img_trans :: (img_wd,img_ht)=>Real
     312    img_trans.(i,j) = img.i.j
     313    result = pairwise img_trans
     314\end{lstlisting}
     315[TODO: cite as simplification of example from https://openreview.net/pdf?id=rJxd7vsWPS section 4]
     316
     317In the case of adapting this pattern to \CFA, my current work provides an adapter from ``successively subscripted'' to ``subscripted by tuple,'' so it is likely that generalizing my adapter beyond ``subscripted by @ptrdiff_t@'' is sufficient to make a user-provided adapter unnecessary.
     318
     319\subsection{Retire pointer arithmetic}
  • doc/theses/mike_brooks_MMath/uw-ethesis.bib

    r30d91e4 r365c8dcb  
    22% For use with BibTeX
    33
     4% --------------------------------------------------
     5% Cforall
     6@misc{cfa:frontpage,
     7  url = {https://cforall.uwaterloo.ca/}
     8}
     9@article{cfa:typesystem,
     10  author    = {Aaron Moss and Robert Schluntz and Peter A. Buhr},
     11  title     = {{\CFA} : Adding modern programming language features to {C}},
     12  journal   = {Softw. Pract. Exp.},
     13  volume    = {48},
     14  number    = {12},
     15  pages     = {2111--2146},
     16  year      = {2018},
     17  url       = {https://doi.org/10.1002/spe.2624},
     18  doi       = {10.1002/spe.2624},
     19  timestamp = {Thu, 09 Apr 2020 17:14:14 +0200},
     20  biburl    = {https://dblp.org/rec/journals/spe/MossSB18.bib},
     21  bibsource = {dblp computer science bibliography, https://dblp.org}
     22}
     23
     24
     25% --------------------------------------------------
     26% Array prior work
     27
     28@inproceedings{arr:futhark:tytheory,
     29    author = {Henriksen, Troels and Elsman, Martin},
     30    title = {Towards Size-Dependent Types for Array Programming},
     31    year = {2021},
     32    isbn = {9781450384667},
     33    publisher = {Association for Computing Machinery},
     34    address = {New York, NY, USA},
     35    url = {https://doi.org/10.1145/3460944.3464310},
     36    doi = {10.1145/3460944.3464310},
     37    abstract = {We present a type system for expressing size constraints on array types in an ML-style type system. The goal is to detect shape mismatches at compile-time, while being simpler than full dependent types. The main restrictions is that the only terms that can occur in types are array sizes, and syntactically they must be variables or constants. For those programs where this is not sufficient, we support a form of existential types, with the type system automatically managing the requisite book-keeping. We formalise a large subset of the type system in a small core language, which we prove sound. We also present an integration of the type system in the high-performance parallel functional language Futhark, and show on a collection of 44 representative programs that the restrictions in the type system are not too problematic in practice.},
     38    booktitle = {Proceedings of the 7th ACM SIGPLAN International Workshop on Libraries, Languages and Compilers for Array Programming},
     39    pages = {1–14},
     40    numpages = {14},
     41    keywords = {functional programming, parallel programming, type systems},
     42    location = {Virtual, Canada},
     43    series = {ARRAY 2021}
     44}
     45
     46@article{arr:dex:long,
     47  author    = {Adam Paszke and
     48               Daniel D. Johnson and
     49               David Duvenaud and
     50               Dimitrios Vytiniotis and
     51               Alexey Radul and
     52               Matthew J. Johnson and
     53               Jonathan Ragan{-}Kelley and
     54               Dougal Maclaurin},
     55  title     = {Getting to the Point. Index Sets and Parallelism-Preserving Autodiff
     56               for Pointful Array Programming},
     57  journal   = {CoRR},
     58  volume    = {abs/2104.05372},
     59  year      = {2021},
     60  url       = {https://arxiv.org/abs/2104.05372},
     61  eprinttype = {arXiv},
     62  eprint    = {2104.05372},
     63  timestamp = {Mon, 25 Oct 2021 07:55:47 +0200},
     64  biburl    = {https://dblp.org/rec/journals/corr/abs-2104-05372.bib},
     65  bibsource = {dblp computer science bibliography, https://dblp.org}
     66}
  • doc/theses/mubeen_zulfiqar_MMath/allocator.tex

    r30d91e4 r365c8dcb  
    11\chapter{Allocator}
    22
    3 \section{uHeap}
    4 uHeap is a lightweight memory allocator. The objective behind uHeap is to design a minimal concurrent memory allocator that has new features and also fulfills GNU C Library requirements (FIX ME: cite requirements).
    5 
    6 The objective of uHeap's new design was to fulfill following requirements:
    7 \begin{itemize}
    8 \item It should be concurrent and thread-safe for multi-threaded programs.
    9 \item It should avoid global locks, on resources shared across all threads, as much as possible.
    10 \item It's performance (FIX ME: cite performance benchmarks) should be comparable to the commonly used allocators (FIX ME: cite common allocators).
    11 \item It should be a lightweight memory allocator.
    12 \end{itemize}
     3This chapter presents a new stand-lone concurrent low-latency memory-allocator ($\approx$1,200 lines of code), called llheap (low-latency heap), for C/\CC programs using kernel threads (1:1 threading), and specialized versions of the allocator for the programming languages \uC and \CFA using user-level threads running over multiple kernel threads (M:N threading).
     4The new allocator fulfills the GNU C Library allocator API~\cite{GNUallocAPI}.
     5
     6
     7\section{llheap}
     8
     9The primary design objective for llheap is low-latency across all allocator calls independent of application access-patterns and/or number of threads, \ie very seldom does the allocator have a delay during an allocator call.
     10(Large allocations requiring initialization, \eg zero fill, and/or copying are not covered by the low-latency objective.)
     11A direct consequence of this objective is very simple or no storage coalescing;
     12hence, llheap's design is willing to use more storage to lower latency.
     13This objective is apropos because systems research and industrial applications are striving for low latency and computers have huge amounts of RAM memory.
     14Finally, llheap's performance should be comparable with the current best allocators (see performance comparison in \VRef[Chapter]{Performance}).
     15
     16% The objective of llheap's new design was to fulfill following requirements:
     17% \begin{itemize}
     18% \item It should be concurrent and thread-safe for multi-threaded programs.
     19% \item It should avoid global locks, on resources shared across all threads, as much as possible.
     20% \item It's performance (FIX ME: cite performance benchmarks) should be comparable to the commonly used allocators (FIX ME: cite common allocators).
     21% \item It should be a lightweight memory allocator.
     22% \end{itemize}
    1323
    1424%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    1525
    16 \section{Design choices for uHeap}
    17 uHeap's design was reviewed and changed to fulfill new requirements (FIX ME: cite allocator philosophy). For this purpose, following two designs of uHeapLmm were proposed:
    18 
    19 \paragraph{Design 1: Centralized}
    20 One heap, but lower bucket sizes are N-shared across KTs.
    21 This design leverages the fact that 95\% of allocation requests are less than 512 bytes and there are only 3--5 different request sizes.
    22 When KTs $\le$ N, the important bucket sizes are uncontented.
    23 When KTs $>$ N, the free buckets are contented.
    24 Therefore, threads are only contending for a small number of buckets, which are distributed among them to reduce contention.
    25 \begin{cquote}
     26\section{Design Choices}
     27
     28llheap's design was reviewed and changed multiple times throughout the thesis.
     29Some of the rejected designs are discussed because they show the path to the final design (see discussion in \VRef{s:MultipleHeaps}).
     30Note, a few simples tests for a design choice were compared with the current best allocators to determine the viability of a design.
     31
     32
     33\subsection{Allocation Fastpath}
     34
     35These designs look at the allocation/free \newterm{fastpath}, \ie when an allocation can immediately return free storage or returned storage is not coalesced.
     36\paragraph{T:1 model}
     37\VRef[Figure]{f:T1SharedBuckets} shows one heap accessed by multiple kernel threads (KTs) using a bucket array, where smaller bucket sizes are N-shared across KTs.
     38This design leverages the fact that 95\% of allocation requests are less than 1024 bytes and there are only 3--5 different request sizes.
     39When KTs $\le$ N, the common bucket sizes are uncontented;
     40when KTs $>$ N, the free buckets are contented and latency increases significantly.
     41In all cases, a KT must acquire/release a lock, contented or uncontented, along the fast allocation path because a bucket is shared.
     42Therefore, while threads are contending for a small number of buckets sizes, the buckets are distributed among them to reduce contention, which lowers latency;
     43however, picking N is workload specific.
     44
     45\begin{figure}
     46\centering
     47\input{AllocDS1}
     48\caption{T:1 with Shared Buckets}
     49\label{f:T1SharedBuckets}
     50\end{figure}
     51
     52Problems:
     53\begin{itemize}
     54\item
     55Need to know when a KT is created/destroyed to assign/unassign a shared bucket-number from the memory allocator.
     56\item
     57When no thread is assigned a bucket number, its free storage is unavailable.
     58\item
     59All KTs contend for the global-pool lock for initial allocations, before free-lists get populated.
     60\end{itemize}
     61Tests showed having locks along the allocation fast-path produced a significant increase in allocation costs and any contention among KTs produces a significant spike in latency.
     62
     63\paragraph{T:H model}
     64\VRef[Figure]{f:THSharedHeaps} shows a fixed number of heaps (N), each a local free pool, where the heaps are sharded across the KTs.
     65A KT can point directly to its assigned heap or indirectly through the corresponding heap bucket.
     66When KT $\le$ N, the heaps are uncontented;
     67when KTs $>$ N, the heaps are contented.
     68In all cases, a KT must acquire/release a lock, contented or uncontented along the fast allocation path because a heap is shared.
     69By adjusting N upwards, this approach reduces contention but increases storage (time versus space);
     70however, picking N is workload specific.
     71
     72\begin{figure}
    2673\centering
    2774\input{AllocDS2}
    28 \end{cquote}
    29 Problems: need to know when a kernel thread (KT) is created and destroyed to know when to assign a shared bucket-number.
    30 When no thread is assigned a bucket number, its free storage is unavailable. All KTs will be contended for one lock on sbrk for their initial allocations (before free-lists gets populated).
    31 
    32 \paragraph{Design 2: Decentralized N Heaps}
    33 Fixed number of heaps: shard the heap into N heaps each with a bump-area allocated from the @sbrk@ area.
    34 Kernel threads (KT) are assigned to the N heaps.
    35 When KTs $\le$ N, the heaps are uncontented.
    36 When KTs $>$ N, the heaps are contented.
    37 By adjusting N, this approach reduces storage at the cost of speed due to contention.
    38 In all cases, a thread acquires/releases a lock, contented or uncontented.
    39 \begin{cquote}
    40 \centering
    41 \input{AllocDS1}
    42 \end{cquote}
    43 Problems: need to know when a KT is created and destroyed to know when to assign/un-assign a heap to the KT.
    44 
    45 \paragraph{Design 3: Decentralized Per-thread Heaps}
    46 Design 3 is similar to design 2 but instead of having an M:N model, it uses a 1:1 model. So, instead of having N heaos and sharing them among M KTs, Design 3 has one heap for each KT.
    47 Dynamic number of heaps: create a thread-local heap for each kernel thread (KT) with a bump-area allocated from the @sbrk@ area.
    48 Each KT will have its own exclusive thread-local heap. Heap will be uncontended between KTs regardless how many KTs have been created.
    49 Operations on @sbrk@ area will still be protected by locks.
    50 %\begin{cquote}
    51 %\centering
    52 %\input{AllocDS3} FIXME add figs
    53 %\end{cquote}
    54 Problems: We cannot destroy the heap when a KT exits because our dynamic objects have ownership and they are returned to the heap that created them when the program frees a dynamic object. All dynamic objects point back to their owner heap. If a thread A creates an object O, passes it to another thread B, and A itself exits. When B will free object O, O should return to A's heap so A's heap should be preserved for the lifetime of the whole program as their might be objects in-use of other threads that were allocated by A. Also, we need to know when a KT is created and destroyed to know when to create/destroy a heap for the KT.
    55 
    56 \paragraph{Design 4: Decentralized Per-CPU Heaps}
    57 Design 4 is similar to Design 3 but instead of having a heap for each thread, it creates a heap for each CPU.
    58 Fixed number of heaps for a machine: create a heap for each CPU with a bump-area allocated from the @sbrk@ area.
    59 Each CPU will have its own CPU-local heap. When the program does a dynamic memory operation, it will be entertained by the heap of the CPU where the process is currently running on.
    60 Each CPU will have its own exclusive heap. Just like Design 3(FIXME cite), heap will be uncontended between KTs regardless how many KTs have been created.
    61 Operations on @sbrk@ area will still be protected by locks.
    62 To deal with preemtion during a dynamic memory operation, librseq(FIXME cite) will be used to make sure that the whole dynamic memory operation completes on one CPU. librseq's restartable sequences can make it possible to re-run a critical section and undo the current writes if a preemption happened during the critical section's execution.
    63 %\begin{cquote}
    64 %\centering
    65 %\input{AllocDS4} FIXME add figs
    66 %\end{cquote}
    67 
    68 Problems: This approach was slower than the per-thread model. Also, librseq does not provide such restartable sequences to detect preemtions in user-level threading system which is important to us as CFA(FIXME cite) has its own threading system that we want to support.
    69 
    70 Out of the four designs, Design 3 was chosen because of the following reasons.
    71 \begin{itemize}
    72 \item
    73 Decentralized designes are better in general as compared to centralized design because their concurrency is better across all bucket-sizes as design 1 shards a few buckets of selected sizes while other designs shards all the buckets. Decentralized designes shard the whole heap which has all the buckets with the addition of sharding sbrk area. So Design 1 was eliminated.
    74 \item
    75 Design 2 was eliminated because it has a possibility of contention in-case of KT > N while Design 3 and 4 have no contention in any scenerio.
    76 \item
    77 Design 4 was eliminated because it was slower than Design 3 and it provided no way to achieve user-threading safety using librseq. We had to use CFA interruption handling to achive user-threading safety which has some cost to it. Desing 4 was already slower than Design 3, adding cost of interruption handling on top of that would have made it even slower.
    78 \end{itemize}
    79 
    80 
    81 \subsection{Advantages of distributed design}
    82 
    83 The distributed design of uHeap is concurrent to work in multi-threaded applications.
    84 
    85 Some key benefits of the distributed design of uHeap are as follows:
    86 
    87 \begin{itemize}
    88 \item
    89 The bump allocation is concurrent as memory taken from sbrk is sharded across all heaps as bump allocation reserve. The call to sbrk will be protected using locks but bump allocation (on memory taken from sbrk) will not be contended once the sbrk call has returned.
    90 \item
    91 Low or almost no contention on heap resources.
    92 \item
    93 It is possible to use sharing and stealing techniques to share/find unused storage, when a free list is unused or empty.
    94 \item
    95 Distributed design avoids unnecassry locks on resources shared across all KTs.
    96 \end{itemize}
     75\caption{T:H with Shared Heaps}
     76\label{f:THSharedHeaps}
     77\end{figure}
     78
     79Problems:
     80\begin{itemize}
     81\item
     82Need to know when a KT is created/destroyed to assign/unassign a heap from the memory allocator.
     83\item
     84When no thread is assigned to a heap, its free storage is unavailable.
     85\item
     86Ownership issues arise (see \VRef{s:Ownership}).
     87\item
     88All KTs contend for the local/global-pool lock for initial allocations, before free-lists get populated.
     89\end{itemize}
     90Tests showed having locks along the allocation fast-path produced a significant increase in allocation costs and any contention among KTs produces a significant spike in latency.
     91
     92\paragraph{T:H model, H = number of CPUs}
     93This design is the T:H model but H is set to the number of CPUs on the computer or the number restricted to an application, \eg via @taskset@.
     94(See \VRef[Figure]{f:THSharedHeaps} but with a heap bucket per CPU.)
     95Hence, each CPU logically has its own private heap and local pool.
     96A memory operation is serviced from the heap associated with the CPU executing the operation.
     97This approach removes fastpath locking and contention, regardless of the number of KTs mapped across the CPUs, because only one KT is running on each CPU at a time (modulo operations on the global pool and ownership).
     98This approach is essentially an M:N approach where M is the number if KTs and N is the number of CPUs.
     99
     100Problems:
     101\begin{itemize}
     102\item
     103Need to know when a CPU is added/removed from the @taskset@.
     104\item
     105Need a fast way to determine the CPU a KT is executing on to access the appropriate heap.
     106\item
     107Need to prevent preemption during a dynamic memory operation because of the \newterm{serially-reusable problem}.
     108\begin{quote}
     109A sequence of code that is guaranteed to run to completion before being invoked to accept another input is called serially-reusable code.~\cite{SeriallyReusable}
     110\end{quote}
     111If a KT is preempted during an allocation operation, the operating system can schedule another KT on the same CPU, which can begin an allocation operation before the previous operation associated with this CPU has completed, invalidating heap correctness.
     112Note, the serially-reusable problem can occur in sequential programs with preemption, if the signal handler calls the preempted function, unless the function is serially reusable.
     113Essentially, the serially-reusable problem is a race condition on an unprotected critical section, where the operating system is providing the second thread via the signal handler.
     114
     115\noindent
     116Library @librseq@~\cite{librseq} was used to perform a fast determination of the CPU and to ensure all memory operations complete on one CPU using @librseq@'s restartable sequences, which restart the critical section after undoing its writes, if the critical section is preempted.
     117\end{itemize}
     118Tests showed that @librseq@ can determine the particular CPU quickly but setting up the restartable critical-section along the allocation fast-path produced a significant increase in allocation costs.
     119Also, the number of undoable writes in @librseq@ is limited and restartable sequences cannot deal with user-level thread (UT) migration across KTs.
     120For example, UT$_1$ is executing a memory operation by KT$_1$ on CPU$_1$ and a time-slice preemption occurs.
     121The signal handler context switches UT$_1$ onto the user-level ready-queue and starts running UT$_2$ on KT$_1$, which immediately calls a memory operation.
     122Since KT$_1$ is still executing on CPU$_1$, @librseq@ takes no action because it assumes KT$_1$ is still executing the same critical section.
     123Then UT$_1$ is scheduled onto KT$_2$ by the user-level scheduler, and its memory operation continues in parallel with UT$_2$ using references into the heap associated with CPU$_1$, which corrupts CPU$_1$'s heap.
     124A significant effort was made to make this approach work but its complexity, lack of robustness, and performance costs resulted in its rejection.
     125
     126
     127\paragraph{1:1 model}
     128This design is the T:H model with T = H, where there is one thread-local heap for each KT.
     129(See \VRef[Figure]{f:THSharedHeaps} but with a heap bucket per KT and no bucket or local-pool lock.)
     130Hence, immediately after a KT starts, its heap is created and just before a KT terminates, its heap is (logically) deleted.
     131Heaps are uncontended for a KTs memory operations to its heap (modulo operations on the global pool and ownership).
     132
     133Problems:
     134\begin{itemize}
     135\item
     136Need to know when a KT is starts/terminates to create/delete its heap.
     137
     138\noindent
     139It is possible to leverage constructors/destructors for thread-local objects to get a general handle on when a KT starts/terminates.
     140\item
     141There is a classic \newterm{memory-reclamation} problem for ownership because storage passed to another thread can be returned to a terminated heap.
     142
     143\noindent
     144The classic solution only deletes a heap after all referents are returned, which is complex.
     145The cheap alternative is for heaps to persist for program duration to handle outstanding referent frees.
     146If old referents return storage to a terminated heap, it is handled in the same way as an active heap.
     147To prevent heap blowup, terminated heaps can be reused by new KTs, where a reused heap may be populated with free storage from a prior KT (external fragmentation).
     148In most cases, heap blowup is not a problem because programs have a small allocation set-size, so the free storage from a prior KT is apropos for a new KT.
     149\item
     150There can be significant external fragmentation as the number of KTs increases.
     151
     152\noindent
     153In many concurrent applications, good performance is achieved with the number of KTs proportional to the number of CPUs.
     154Since the number of CPUs is relatively small, >~1024, and a heap relatively small, $\approx$10K bytes (not including any associated freed storage), the worst-case external fragmentation is still small compared to the RAM available on large servers with many CPUs.
     155\item
     156There is the same serially-reusable problem with UTs migrating across KTs.
     157\end{itemize}
     158Tests showed this design produced the closest performance match with the best current allocators, and code inspection showed most of these allocators use different variations of this approach.
     159
     160
     161\vspace{5pt}
     162\noindent
     163The conclusion from this design exercise is: any atomic fence, instruction (lock free), or lock along the allocation fastpath produces significant slowdown.
     164For the T:1 and T:H models, locking must exist along the allocation fastpath because the buckets or heaps maybe shared by multiple threads, even when KTs $\le$ N.
     165For the T:H=CPU and 1:1 models, locking is eliminated along the allocation fastpath.
     166However, T:H=CPU has poor operating-system support to determine the CPU id (heap id) and prevent the serially-reusable problem for KTs.
     167More operating system support is required to make this model viable, but there is still the serially-reusable problem with user-level threading.
     168Leaving the 1:1 model with no atomic actions along the fastpath and no special operating-system support required.
     169The 1:1 model still has the serially-reusable problem with user-level threading, which is address in \VRef{}, and the greatest potential for heap blowup for certain allocation patterns.
     170
     171
     172% \begin{itemize}
     173% \item
     174% A decentralized design is better to centralized design because their concurrency is better across all bucket-sizes as design 1 shards a few buckets of selected sizes while other designs shards all the buckets. Decentralized designs shard the whole heap which has all the buckets with the addition of sharding @sbrk@ area. So Design 1 was eliminated.
     175% \item
     176% Design 2 was eliminated because it has a possibility of contention in-case of KT > N while Design 3 and 4 have no contention in any scenario.
     177% \item
     178% Design 3 was eliminated because it was slower than Design 4 and it provided no way to achieve user-threading safety using librseq. We had to use CFA interruption handling to achieve user-threading safety which has some cost to it.
     179% that  because of 4 was already slower than Design 3, adding cost of interruption handling on top of that would have made it even slower.
     180% \end{itemize}
     181% Of the four designs for a low-latency memory allocator, the 1:1 model was chosen for the following reasons:
     182
     183% \subsection{Advantages of distributed design}
     184%
     185% The distributed design of llheap is concurrent to work in multi-threaded applications.
     186% Some key benefits of the distributed design of llheap are as follows:
     187% \begin{itemize}
     188% \item
     189% The bump allocation is concurrent as memory taken from @sbrk@ is sharded across all heaps as bump allocation reserve. The call to @sbrk@ will be protected using locks but bump allocation (on memory taken from @sbrk@) will not be contended once the @sbrk@ call has returned.
     190% \item
     191% Low or almost no contention on heap resources.
     192% \item
     193% It is possible to use sharing and stealing techniques to share/find unused storage, when a free list is unused or empty.
     194% \item
     195% Distributed design avoids unnecessary locks on resources shared across all KTs.
     196% \end{itemize}
     197
     198\subsection{Allocation Latency}
     199
     200A primary goal of llheap is low latency.
     201Two forms of latency are internal and external.
     202Internal latency is the time to perform an allocation, while external latency is time to obtain/return storage from/to the operating system.
     203Ideally latency is $O(1)$ with a small constant.
     204
     205To obtain $O(1)$ internal latency means no searching on the allocation fastpath, largely prohibits coalescing, which leads to external fragmentation.
     206The mitigating factor is that most programs have well behaved allocation patterns, where the majority of allocation operations can be $O(1)$, and heap blowup does not occur without coalescing (although the allocation footprint may be slightly larger).
     207
     208To obtain $O(1)$ external latency means obtaining one large storage area from the operating system and subdividing it across all program allocations, which requires a good guess at the program storage high-watermark and potential large external fragmentation.
     209Excluding real-time operating-systems, operating-system operations are unbounded, and hence some external latency is unavoidable.
     210The mitigating factor is that operating-system calls can often be reduced if a programmer has a sense of the storage high-watermark and the allocator is capable of using this information (see @malloc_expansion@ \VRef{}).
     211Furthermore, while operating-system calls are unbounded, many are now reasonably fast, so their latency is tolerable and infrequent.
     212
    97213
    98214%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    99215
    100 \section{uHeap Structure}
    101 
    102 As described in (FIXME cite 2.4) uHeap uses following features of multi-threaded memory allocators.
    103 \begin{itemize}
    104 \item
    105 uHeap has multiple heaps without a global heap and uses 1:1 model. (FIXME cite 2.5 1:1 model)
    106 \item
    107 uHeap uses object ownership. (FIXME cite 2.5.2)
    108 \item
    109 uHeap does not use object containers (FIXME cite 2.6) or any coalescing technique. Instead each dynamic object allocated by uHeap has a header than contains bookkeeping information.
    110 \item
    111 Each thread-local heap in uHeap has its own allocation buffer that is taken from the system using sbrk() call. (FIXME cite 2.7)
    112 \item
    113 Unless a heap is freeing an object that is owned by another thread's heap or heap is using sbrk() system call, uHeap is mostly lock-free which eliminates most of the contention on shared resources. (FIXME cite 2.8)
    114 \end{itemize}
    115 
    116 As uHeap uses a heap per-thread model to reduce contention on heap resources, we manage a list of heaps (heap-list) that can be used by threads. The list is empty at the start of the program. When a kernel thread (KT) is created, we check if heap-list is empty. If no then a heap is removed from the heap-list and is given to this new KT to use exclusively. If yes then a new heap object is created in dynamic memory and is given to this new KT to use exclusively. When a KT exits, its heap is not destroyed but instead its heap is put on the heap-list and is ready to be reused by new KTs.
    117 
    118 This reduces the memory footprint as the objects on free-lists of a KT that has exited can be reused by a new KT. Also, we preserve all the heaps that were created during the lifetime of the program till the end of the program. uHeap uses object ownership where an object is freed to the free-buckets of the heap that allocated it. Even after a KT A has exited, its heap has to be preserved as there might be objects in-use of other threads that were initially allocated by A and the passed to other threads.
     216\section{llheap Structure}
     217
     218\VRef[Figure]{f:llheapStructure} shows the design of llheap, which uses the following features:
     219\begin{itemize}
     220\item
     2211:1 multiple-heap model to minimize the fastpath,
     222\item
     223can be built with or without heap ownership,
     224\item
     225headers per allocation versus containers,
     226\item
     227no coalescing to minimize latency,
     228\item
     229local reserved memory (pool) obtained from the operating system using @sbrk@ call,
     230\item
     231global reserved memory (pool) obtained from the operating system using @mmap@ call to create and reuse heaps needed by threads.
     232\end{itemize}
    119233
    120234\begin{figure}
    121235\centering
    122 \includegraphics[width=0.65\textwidth]{figures/NewHeapStructure.eps}
    123 \caption{HeapStructure}
    124 \label{fig:heapStructureFig}
     236% \includegraphics[width=0.65\textwidth]{figures/NewHeapStructure.eps}
     237\input{llheap}
     238\caption{llheap Structure}
     239\label{f:llheapStructure}
    125240\end{figure}
    126241
    127 Each heap uses seggregated free-buckets that have free objects of a specific size. Each free-bucket of a specific size has following 2 lists in it:
    128 \begin{itemize}
    129 \item
    130 Free list is used when a thread is freeing an object that is owned by its own heap so free list does not use any locks/atomic-operations as it is only used by the owner KT.
    131 \item
    132 Away list is used when a thread A is freeing an object that is owned by another KT B's heap. This object should be freed to the owner heap (B's heap) so A will place the object on the away list of B. Away list is lock protected as it is shared by all other threads.
    133 \end{itemize}
    134 
    135 When a dynamic object of a size S is requested. The thread-local heap will check if S is greater than or equal to the mmap threshhold. Any request larger than the mmap threshhold is fulfilled by allocating an mmap area of that size and such requests are not allocated on sbrk area. The value of this threshhold can be changed using mallopt routine but the new value should not be larger than our biggest free-bucket size.
    136 
    137 Algorithm~\ref{alg:heapObjectAlloc} briefly shows how an allocation request is fulfilled.
     242llheap starts by creating an array of $N$ global heaps from storage obtained by @mmap@, where $N$ is the number of computer cores.
     243There is a global bump-pointer to the next free heap in the array.
     244When this array is exhausted, another array is allocated.
     245There is a global top pointer to a heap intrusive link that chain free heaps from terminated threads, where these heaps are reused by new threads.
     246When statistics are turned on, there is a global top pointer to a heap intrusive link that chain \emph{all} the heaps, which is traversed to accumulate statistics counters across heaps (see @malloc_stats@ \VRef{}).
     247
     248When a KT starts, a heap is allocated from the current array for exclusive used by the KT.
     249When a KT terminates, its heap is chained onto the heap free-list for reuse by a new KT, which prevents unbounded growth of heaps.
     250The free heaps is a stack so hot storage is reused first.
     251Preserving all heaps created during the program lifetime, solves the storage lifetime problem.
     252This approach wastes storage if a large number of KTs are created/terminated at program start and then the program continues sequentially.
     253llheap can be configured with object ownership, where an object is freed to the heap from which it is allocated, or object no-ownership, where an object is freed to the KT's current heap.
     254
     255Each heap uses segregated free-buckets that have free objects distributed across 91 different sizes from 16 to 4M.
     256The number of buckets used is determined dynamically depending on the crossover point from @sbrk@ to @mmap@ allocation (see @mallopt@ \VRef{}), \ie small objects managed by the program and large objects managed by the operating system.
     257Each free bucket of a specific size has following two lists:
     258\begin{itemize}
     259\item
     260A free stack used solely by the KT heap-owner, so push/pop operations do not require locking.
     261The free objects is a stack so hot storage is reused first.
     262\item
     263For ownership, a shared away-stack for KTs to return storage allocated by other KTs, so push/pop operation require locking.
     264The entire ownership stack be removed and become the head of the corresponding free stack, when the free stack is empty.
     265\end{itemize}
     266
     267Algorithm~\ref{alg:heapObjectAlloc} shows the allocation outline for an object of size $S$.
     268First, the allocation is divided into small (@sbrk@) or large (@mmap@).
     269For small allocations, $S$ is quantized into a bucket size.
     270Quantizing is performed using a binary search, using the ordered bucket array.
     271An optional optimization is fast lookup $O(1)$ for sizes < 64K from a 64K array of type @char@, where each element has an index to the corresponding bucket.
     272(Type @char@ restricts the number of bucket sizes to 256.)
     273For $S$ > 64K, the binary search is used.
     274Then, the allocation storage is obtained from the following locations (in order), with increasing latency.
     275\begin{enumerate}[topsep=0pt,itemsep=0pt,parsep=0pt]
     276\item
     277bucket's free stack,
     278\item
     279bucket's away stack,
     280\item
     281heap's local pool
     282\item
     283global pool
     284\item
     285operating system (@sbrk@)
     286\end{enumerate}
    138287
    139288\begin{algorithm}
    140 \caption{Dynamic object allocation of size S}\label{alg:heapObjectAlloc}
     289\caption{Dynamic object allocation of size $S$}\label{alg:heapObjectAlloc}
    141290\begin{algorithmic}[1]
    142291\State $\textit{O} \gets \text{NULL}$
    143292\If {$S < \textit{mmap-threshhold}$}
    144         \State $\textit{B} \gets (\text{smallest free-bucket} \geq S)$
     293        \State $\textit{B} \gets \text{smallest free-bucket} \geq S$
    145294        \If {$\textit{B's free-list is empty}$}
    146295                \If {$\textit{B's away-list is empty}$}
    147296                        \If {$\textit{heap's allocation buffer} < S$}
    148                                 \State $\text{get allocation buffer using system call sbrk()}$
     297                                \State $\text{get allocation from global pool (which might call \lstinline{sbrk})}$
    149298                        \EndIf
    150299                        \State $\textit{O} \gets \text{bump allocate an object of size S from allocation buffer}$
     
    164313\end{algorithm}
    165314
     315Algorithm~\ref{alg:heapObjectFree} shows the de-allocation (free) outline for an object at address $A$.
     316
     317\begin{algorithm}[h]
     318\caption{Dynamic object free at address $A$}\label{alg:heapObjectFree}
     319%\begin{algorithmic}[1]
     320%\State write this algorithm
     321%\end{algorithmic}
     322\end{algorithm}
     323
    166324
    167325%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    168326
    169327\section{Added Features and Methods}
    170 To improve the uHeap allocator (FIX ME: cite uHeap) interface and make it more user friendly, we added a few more routines to the C allocator. Also, we built a \CFA (FIX ME: cite cforall) interface on top of C interface to increase the usability of the allocator.
     328To improve the llheap allocator (FIX ME: cite llheap) interface and make it more user friendly, we added a few more routines to the C allocator.
     329Also, we built a \CFA (FIX ME: cite cforall) interface on top of C interface to increase the usability of the allocator.
    171330
    172331\subsection{C Interface}
    173 We added a few more features and routines to the allocator's C interface that can make the allocator more usable to the programmers. THese features will programmer more control on the dynamic memory allocation.
     332We added a few more features and routines to the allocator's C interface that can make the allocator more usable to the programmers.
     333These features will programmer more control on the dynamic memory allocation.
    174334
    175335\subsection{Out of Memory}
     
    183343
    184344\subsection{\lstinline{void * aalloc( size_t dim, size_t elemSize )}}
    185 @aalloc@ is an extension of malloc. It allows programmer to allocate a dynamic array of objects without calculating the total size of array explicitly. The only alternate of this routine in the other allocators is calloc but calloc also fills the dynamic memory with 0 which makes it slower for a programmer who only wants to dynamically allocate an array of objects without filling it with 0.
     345@aalloc@ is an extension of malloc.
     346It allows programmer to allocate a dynamic array of objects without calculating the total size of array explicitly.
     347The only alternate of this routine in the other allocators is @calloc@ but @calloc@ also fills the dynamic memory with 0 which makes it slower for a programmer who only wants to dynamically allocate an array of objects without filling it with 0.
    186348\paragraph{Usage}
    187349@aalloc@ takes two parameters.
     
    193355@elemSize@: size of the object in the array.
    194356\end{itemize}
    195 It returns address of dynamic object allocatoed on heap that can contain dim number of objects of the size elemSize. On failure, it returns a @NULL@ pointer.
     357It returns address of dynamic object allocated on heap that can contain dim number of objects of the size elemSize.
     358On failure, it returns a @NULL@ pointer.
    196359
    197360\subsection{\lstinline{void * resize( void * oaddr, size_t size )}}
    198 @resize@ is an extension of relloc. It allows programmer to reuse a cuurently allocated dynamic object with a new size requirement. Its alternate in the other allocators is @realloc@ but relloc also copy the data in old object to the new object which makes it slower for the programmer who only wants to reuse an old dynamic object for a new size requirement but does not want to preserve the data in the old object to the new object.
     361@resize@ is an extension of relloc.
     362It allows programmer to reuse a currently allocated dynamic object with a new size requirement.
     363Its alternate in the other allocators is @realloc@ but relloc also copy the data in old object to the new object which makes it slower for the programmer who only wants to reuse an old dynamic object for a new size requirement but does not want to preserve the data in the old object to the new object.
    199364\paragraph{Usage}
    200365@resize@ takes two parameters.
     
    206371@size@: the new size requirement of the to which the old object needs to be resized.
    207372\end{itemize}
    208 It returns an object that is of the size given but it does not preserve the data in the old object. On failure, it returns a @NULL@ pointer.
     373It returns an object that is of the size given but it does not preserve the data in the old object.
     374On failure, it returns a @NULL@ pointer.
    209375
    210376\subsection{\lstinline{void * resize( void * oaddr, size_t nalign, size_t size )}}
    211 This @resize@ is an extension of the above @resize@ (FIX ME: cite above resize). In addition to resizing the size of of an old object, it can also realign the old object to a new alignment requirement.
    212 \paragraph{Usage}
    213 This resize takes three parameters. It takes an additional parameter of nalign as compared to the above resize (FIX ME: cite above resize).
     377This @resize@ is an extension of the above @resize@ (FIX ME: cite above resize).
     378In addition to resizing the size of of an old object, it can also realign the old object to a new alignment requirement.
     379\paragraph{Usage}
     380This resize takes three parameters.
     381It takes an additional parameter of nalign as compared to the above resize (FIX ME: cite above resize).
    214382
    215383\begin{itemize}
     
    221389@size@: the new size requirement of the to which the old object needs to be resized.
    222390\end{itemize}
    223 It returns an object with the size and alignment given in the parameters. On failure, it returns a @NULL@ pointer.
     391It returns an object with the size and alignment given in the parameters.
     392On failure, it returns a @NULL@ pointer.
    224393
    225394\subsection{\lstinline{void * amemalign( size_t alignment, size_t dim, size_t elemSize )}}
    226 amemalign is a hybrid of memalign and aalloc. It allows programmer to allocate an aligned dynamic array of objects without calculating the total size of the array explicitly. It frees the programmer from calculating the total size of the array.
     395amemalign is a hybrid of memalign and aalloc.
     396It allows programmer to allocate an aligned dynamic array of objects without calculating the total size of the array explicitly.
     397It frees the programmer from calculating the total size of the array.
    227398\paragraph{Usage}
    228399amemalign takes three parameters.
     
    236407@elemSize@: size of the object in the array.
    237408\end{itemize}
    238 It returns a dynamic array of objects that has the capacity to contain dim number of objects of the size of elemSize. The returned dynamic array is aligned to the given alignment. On failure, it returns a @NULL@ pointer.
     409It returns a dynamic array of objects that has the capacity to contain dim number of objects of the size of elemSize.
     410The returned dynamic array is aligned to the given alignment.
     411On failure, it returns a @NULL@ pointer.
    239412
    240413\subsection{\lstinline{void * cmemalign( size_t alignment, size_t dim, size_t elemSize )}}
    241 cmemalign is a hybrid of amemalign and calloc. It allows programmer to allocate an aligned dynamic array of objects that is 0 filled. The current way to do this in other allocators is to allocate an aligned object with memalign and then fill it with 0 explicitly. This routine provides both features of aligning and 0 filling, implicitly.
     414cmemalign is a hybrid of amemalign and calloc.
     415It allows programmer to allocate an aligned dynamic array of objects that is 0 filled.
     416The current way to do this in other allocators is to allocate an aligned object with memalign and then fill it with 0 explicitly.
     417This routine provides both features of aligning and 0 filling, implicitly.
    242418\paragraph{Usage}
    243419cmemalign takes three parameters.
     
    251427@elemSize@: size of the object in the array.
    252428\end{itemize}
    253 It returns a dynamic array of objects that has the capacity to contain dim number of objects of the size of elemSize. The returned dynamic array is aligned to the given alignment and is 0 filled. On failure, it returns a @NULL@ pointer.
     429It returns a dynamic array of objects that has the capacity to contain dim number of objects of the size of elemSize.
     430The returned dynamic array is aligned to the given alignment and is 0 filled.
     431On failure, it returns a @NULL@ pointer.
    254432
    255433\subsection{\lstinline{size_t malloc_alignment( void * addr )}}
    256 @malloc_alignment@ returns the alignment of a currently allocated dynamic object. It allows the programmer in memory management and personal bookkeeping. It helps the programmer in verofying the alignment of a dynamic object especially in a scenerio similar to prudcer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was allocated with the required alignment.
     434@malloc_alignment@ returns the alignment of a currently allocated dynamic object.
     435It allows the programmer in memory management and personal bookkeeping.
     436It helps the programmer in verifying the alignment of a dynamic object especially in a scenario similar to producer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was allocated with the required alignment.
    257437\paragraph{Usage}
    258438@malloc_alignment@ takes one parameters.
     
    262442@addr@: the address of the currently allocated dynamic object.
    263443\end{itemize}
    264 @malloc_alignment@ returns the alignment of the given dynamic object. On failure, it return the value of default alignment of the uHeap allocator.
     444@malloc_alignment@ returns the alignment of the given dynamic object.
     445On failure, it return the value of default alignment of the llheap allocator.
    265446
    266447\subsection{\lstinline{bool malloc_zero_fill( void * addr )}}
    267 @malloc_zero_fill@ returns whether a currently allocated dynamic object was initially zero filled at the time of allocation. It allows the programmer in memory management and personal bookkeeping. It helps the programmer in verifying the zero filled property of a dynamic object especially in a scenerio similar to prudcer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was zero filled at the time of allocation.
     448@malloc_zero_fill@ returns whether a currently allocated dynamic object was initially zero filled at the time of allocation.
     449It allows the programmer in memory management and personal bookkeeping.
     450It helps the programmer in verifying the zero filled property of a dynamic object especially in a scenario similar to producer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was zero filled at the time of allocation.
    268451\paragraph{Usage}
    269452@malloc_zero_fill@ takes one parameters.
     
    273456@addr@: the address of the currently allocated dynamic object.
    274457\end{itemize}
    275 @malloc_zero_fill@ returns true if the dynamic object was initially zero filled and return false otherwise. On failure, it returns false.
     458@malloc_zero_fill@ returns true if the dynamic object was initially zero filled and return false otherwise.
     459On failure, it returns false.
    276460
    277461\subsection{\lstinline{size_t malloc_size( void * addr )}}
    278 @malloc_size@ returns the allocation size of a currently allocated dynamic object. It allows the programmer in memory management and personal bookkeeping. It helps the programmer in verofying the alignment of a dynamic object especially in a scenerio similar to prudcer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was allocated with the required size. Its current alternate in the other allocators is @malloc_usable_size@. But, @malloc_size@ is different from @malloc_usable_size@ as @malloc_usabe_size@ returns the total data capacity of dynamic object including the extra space at the end of the dynamic object. On the other hand, @malloc_size@ returns the size that was given to the allocator at the allocation of the dynamic object. This size is updated when an object is realloced, resized, or passed through a similar allocator routine.
     462@malloc_size@ returns the allocation size of a currently allocated dynamic object.
     463It allows the programmer in memory management and personal bookkeeping.
     464It helps the programmer in verifying the alignment of a dynamic object especially in a scenario similar to producer-consumer where a producer allocates a dynamic object and the consumer needs to assure that the dynamic object was allocated with the required size.
     465Its current alternate in the other allocators is @malloc_usable_size@.
     466But, @malloc_size@ is different from @malloc_usable_size@ as @malloc_usabe_size@ returns the total data capacity of dynamic object including the extra space at the end of the dynamic object.
     467On the other hand, @malloc_size@ returns the size that was given to the allocator at the allocation of the dynamic object.
     468This size is updated when an object is realloced, resized, or passed through a similar allocator routine.
    279469\paragraph{Usage}
    280470@malloc_size@ takes one parameters.
     
    284474@addr@: the address of the currently allocated dynamic object.
    285475\end{itemize}
    286 @malloc_size@ returns the allocation size of the given dynamic object. On failure, it return zero.
     476@malloc_size@ returns the allocation size of the given dynamic object.
     477On failure, it return zero.
    287478
    288479\subsection{\lstinline{void * realloc( void * oaddr, size_t nalign, size_t size )}}
    289 This @realloc@ is an extension of the default @realloc@ (FIX ME: cite default @realloc@). In addition to reallocating an old object and preserving the data in old object, it can also realign the old object to a new alignment requirement.
    290 \paragraph{Usage}
    291 This @realloc@ takes three parameters. It takes an additional parameter of nalign as compared to the default @realloc@.
     480This @realloc@ is an extension of the default @realloc@ (FIX ME: cite default @realloc@).
     481In addition to reallocating an old object and preserving the data in old object, it can also realign the old object to a new alignment requirement.
     482\paragraph{Usage}
     483This @realloc@ takes three parameters.
     484It takes an additional parameter of nalign as compared to the default @realloc@.
    292485
    293486\begin{itemize}
     
    299492@size@: the new size requirement of the to which the old object needs to be resized.
    300493\end{itemize}
    301 It returns an object with the size and alignment given in the parameters that preserves the data in the old object. On failure, it returns a @NULL@ pointer.
     494It returns an object with the size and alignment given in the parameters that preserves the data in the old object.
     495On failure, it returns a @NULL@ pointer.
    302496
    303497\subsection{\CFA Malloc Interface}
    304 We added some routines to the malloc interface of \CFA. These routines can only be used in \CFA and not in our standalone uHeap allocator as these routines use some features that are only provided by \CFA and not by C. It makes the allocator even more usable to the programmers.
    305 \CFA provides the liberty to know the returned type of a call to the allocator. So, mainly in these added routines, we removed the object size parameter from the routine as allocator can calculate the size of the object from the returned type.
     498We added some routines to the @malloc@ interface of \CFA.
     499These routines can only be used in \CFA and not in our stand-alone llheap allocator as these routines use some features that are only provided by \CFA and not by C.
     500It makes the allocator even more usable to the programmers.
     501\CFA provides the liberty to know the returned type of a call to the allocator.
     502So, mainly in these added routines, we removed the object size parameter from the routine as allocator can calculate the size of the object from the returned type.
    306503
    307504\subsection{\lstinline{T * malloc( void )}}
    308 This malloc is a simplified polymorphic form of defualt malloc (FIX ME: cite malloc). It does not take any parameter as compared to default malloc that takes one parameter.
    309 \paragraph{Usage}
    310 This malloc takes no parameters.
    311 It returns a dynamic object of the size of type @T@. On failure, it returns a @NULL@ pointer.
     505This @malloc@ is a simplified polymorphic form of default @malloc@ (FIX ME: cite malloc).
     506It does not take any parameter as compared to default @malloc@ that takes one parameter.
     507\paragraph{Usage}
     508This @malloc@ takes no parameters.
     509It returns a dynamic object of the size of type @T@.
     510On failure, it returns a @NULL@ pointer.
    312511
    313512\subsection{\lstinline{T * aalloc( size_t dim )}}
    314 This aalloc is a simplified polymorphic form of above aalloc (FIX ME: cite aalloc). It takes one parameter as compared to the above aalloc that takes two parameters.
     513This @aalloc@ is a simplified polymorphic form of above @aalloc@ (FIX ME: cite aalloc).
     514It takes one parameter as compared to the above @aalloc@ that takes two parameters.
    315515\paragraph{Usage}
    316516aalloc takes one parameters.
     
    320520@dim@: required number of objects in the array.
    321521\end{itemize}
    322 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. On failure, it returns a @NULL@ pointer.
     522It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@.
     523On failure, it returns a @NULL@ pointer.
    323524
    324525\subsection{\lstinline{T * calloc( size_t dim )}}
    325 This calloc is a simplified polymorphic form of defualt calloc (FIX ME: cite calloc). It takes one parameter as compared to the default calloc that takes two parameters.
    326 \paragraph{Usage}
    327 This calloc takes one parameter.
     526This @calloc@ is a simplified polymorphic form of default @calloc@ (FIX ME: cite calloc).
     527It takes one parameter as compared to the default @calloc@ that takes two parameters.
     528\paragraph{Usage}
     529This @calloc@ takes one parameter.
    328530
    329531\begin{itemize}
     
    331533@dim@: required number of objects in the array.
    332534\end{itemize}
    333 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. On failure, it returns a @NULL@ pointer.
     535It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@.
     536On failure, it returns a @NULL@ pointer.
    334537
    335538\subsection{\lstinline{T * resize( T * ptr, size_t size )}}
    336 This resize is a simplified polymorphic form of above resize (FIX ME: cite resize with alignment). It takes two parameters as compared to the above resize that takes three parameters. It frees the programmer from explicitly mentioning the alignment of the allocation as \CFA provides gives allocator the liberty to get the alignment of the returned type.
     539This resize is a simplified polymorphic form of above resize (FIX ME: cite resize with alignment).
     540It takes two parameters as compared to the above resize that takes three parameters.
     541It frees the programmer from explicitly mentioning the alignment of the allocation as \CFA provides gives allocator the liberty to get the alignment of the returned type.
    337542\paragraph{Usage}
    338543This resize takes two parameters.
     
    344549@size@: the required size of the new object.
    345550\end{itemize}
    346 It returns a dynamic object of the size given in paramters. The returned object is aligned to the alignemtn of type @T@. On failure, it returns a @NULL@ pointer.
     551It returns a dynamic object of the size given in parameters.
     552The returned object is aligned to the alignment of type @T@.
     553On failure, it returns a @NULL@ pointer.
    347554
    348555\subsection{\lstinline{T * realloc( T * ptr, size_t size )}}
    349 This @realloc@ is a simplified polymorphic form of defualt @realloc@ (FIX ME: cite @realloc@ with align). It takes two parameters as compared to the above @realloc@ that takes three parameters. It frees the programmer from explicitly mentioning the alignment of the allocation as \CFA provides gives allocator the liberty to get the alignment of the returned type.
     556This @realloc@ is a simplified polymorphic form of default @realloc@ (FIX ME: cite @realloc@ with align).
     557It takes two parameters as compared to the above @realloc@ that takes three parameters.
     558It frees the programmer from explicitly mentioning the alignment of the allocation as \CFA provides gives allocator the liberty to get the alignment of the returned type.
    350559\paragraph{Usage}
    351560This @realloc@ takes two parameters.
     
    357566@size@: the required size of the new object.
    358567\end{itemize}
    359 It returns a dynamic object of the size given in paramters that preserves the data in the given object. The returned object is aligned to the alignemtn of type @T@. On failure, it returns a @NULL@ pointer.
     568It returns a dynamic object of the size given in parameters that preserves the data in the given object.
     569The returned object is aligned to the alignment of type @T@.
     570On failure, it returns a @NULL@ pointer.
    360571
    361572\subsection{\lstinline{T * memalign( size_t align )}}
    362 This memalign is a simplified polymorphic form of defualt memalign (FIX ME: cite memalign). It takes one parameters as compared to the default memalign that takes two parameters.
     573This memalign is a simplified polymorphic form of default memalign (FIX ME: cite memalign).
     574It takes one parameters as compared to the default memalign that takes two parameters.
    363575\paragraph{Usage}
    364576memalign takes one parameters.
     
    368580@align@: the required alignment of the dynamic object.
    369581\end{itemize}
    370 It returns a dynamic object of the size of type @T@ that is aligned to given parameter align. On failure, it returns a @NULL@ pointer.
     582It returns a dynamic object of the size of type @T@ that is aligned to given parameter align.
     583On failure, it returns a @NULL@ pointer.
    371584
    372585\subsection{\lstinline{T * amemalign( size_t align, size_t dim )}}
    373 This amemalign is a simplified polymorphic form of above amemalign (FIX ME: cite amemalign). It takes two parameter as compared to the above amemalign that takes three parameters.
     586This amemalign is a simplified polymorphic form of above amemalign (FIX ME: cite amemalign).
     587It takes two parameter as compared to the above amemalign that takes three parameters.
    374588\paragraph{Usage}
    375589amemalign takes two parameters.
     
    381595@dim@: required number of objects in the array.
    382596\end{itemize}
    383 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. The returned object is aligned to the given parameter align. On failure, it returns a @NULL@ pointer.
     597It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@.
     598The returned object is aligned to the given parameter align.
     599On failure, it returns a @NULL@ pointer.
    384600
    385601\subsection{\lstinline{T * cmemalign( size_t align, size_t dim  )}}
    386 This cmemalign is a simplified polymorphic form of above cmemalign (FIX ME: cite cmemalign). It takes two parameter as compared to the above cmemalign that takes three parameters.
     602This cmemalign is a simplified polymorphic form of above cmemalign (FIX ME: cite cmemalign).
     603It takes two parameter as compared to the above cmemalign that takes three parameters.
    387604\paragraph{Usage}
    388605cmemalign takes two parameters.
     
    394611@dim@: required number of objects in the array.
    395612\end{itemize}
    396 It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@. The returned object is aligned to the given parameter align and is zero filled. On failure, it returns a @NULL@ pointer.
     613It returns a dynamic object that has the capacity to contain dim number of objects, each of the size of type @T@.
     614The returned object is aligned to the given parameter align and is zero filled.
     615On failure, it returns a @NULL@ pointer.
    397616
    398617\subsection{\lstinline{T * aligned_alloc( size_t align )}}
    399 This @aligned_alloc@ is a simplified polymorphic form of defualt @aligned_alloc@ (FIX ME: cite @aligned_alloc@). It takes one parameter as compared to the default @aligned_alloc@ that takes two parameters.
     618This @aligned_alloc@ is a simplified polymorphic form of default @aligned_alloc@ (FIX ME: cite @aligned_alloc@).
     619It takes one parameter as compared to the default @aligned_alloc@ that takes two parameters.
    400620\paragraph{Usage}
    401621This @aligned_alloc@ takes one parameter.
     
    405625@align@: required alignment of the dynamic object.
    406626\end{itemize}
    407 It returns a dynamic object of the size of type @T@ that is aligned to the given parameter. On failure, it returns a @NULL@ pointer.
     627It returns a dynamic object of the size of type @T@ that is aligned to the given parameter.
     628On failure, it returns a @NULL@ pointer.
    408629
    409630\subsection{\lstinline{int posix_memalign( T ** ptr, size_t align )}}
    410 This @posix_memalign@ is a simplified polymorphic form of defualt @posix_memalign@ (FIX ME: cite @posix_memalign@). It takes two parameters as compared to the default @posix_memalign@ that takes three parameters.
     631This @posix_memalign@ is a simplified polymorphic form of default @posix_memalign@ (FIX ME: cite @posix_memalign@).
     632It takes two parameters as compared to the default @posix_memalign@ that takes three parameters.
    411633\paragraph{Usage}
    412634This @posix_memalign@ takes two parameter.
     
    419641\end{itemize}
    420642
    421 It stores address of the dynamic object of the size of type @T@ in given parameter ptr. This object is aligned to the given parameter. On failure, it returns a @NULL@ pointer.
     643It stores address of the dynamic object of the size of type @T@ in given parameter ptr.
     644This object is aligned to the given parameter.
     645On failure, it returns a @NULL@ pointer.
    422646
    423647\subsection{\lstinline{T * valloc( void )}}
    424 This @valloc@ is a simplified polymorphic form of defualt @valloc@ (FIX ME: cite @valloc@). It takes no parameters as compared to the default @valloc@ that takes one parameter.
     648This @valloc@ is a simplified polymorphic form of default @valloc@ (FIX ME: cite @valloc@).
     649It takes no parameters as compared to the default @valloc@ that takes one parameter.
    425650\paragraph{Usage}
    426651@valloc@ takes no parameters.
    427 It returns a dynamic object of the size of type @T@ that is aligned to the page size. On failure, it returns a @NULL@ pointer.
     652It returns a dynamic object of the size of type @T@ that is aligned to the page size.
     653On failure, it returns a @NULL@ pointer.
    428654
    429655\subsection{\lstinline{T * pvalloc( void )}}
    430656\paragraph{Usage}
    431657@pvalloc@ takes no parameters.
    432 It returns a dynamic object of the size that is calcutaed by rouding the size of type @T@. The returned object is also aligned to the page size. On failure, it returns a @NULL@ pointer.
     658It returns a dynamic object of the size that is calculated by rounding the size of type @T@.
     659The returned object is also aligned to the page size.
     660On failure, it returns a @NULL@ pointer.
    433661
    434662\subsection{Alloc Interface}
    435 In addition to improve allocator interface both for \CFA and our standalone allocator uHeap in C. We also added a new alloc interface in \CFA that increases usability of dynamic memory allocation.
     663In addition to improve allocator interface both for \CFA and our stand-alone allocator llheap in C.
     664We also added a new alloc interface in \CFA that increases usability of dynamic memory allocation.
    436665This interface helps programmers in three major ways.
    437666
    438667\begin{itemize}
    439668\item
    440 Routine Name: alloc interfce frees programmers from remmebring different routine names for different kind of dynamic allocations.
    441 \item
    442 Parametre Positions: alloc interface frees programmers from remembering parameter postions in call to routines.
    443 \item
    444 Object Size: alloc interface does not require programmer to mention the object size as \CFA allows allocator to determince the object size from returned type of alloc call.
    445 \end{itemize}
    446 
    447 Alloc interface uses polymorphism, backtick routines (FIX ME: cite backtick) and ttype parameters of \CFA (FIX ME: cite ttype) to provide a very simple dynamic memory allocation interface to the programmers. The new interfece has just one routine name alloc that can be used to perform a wide range of dynamic allocations. The parameters use backtick functions to provide a similar-to named parameters feature for our alloc interface so that programmers do not have to remember parameter positions in alloc call except the position of dimension (dim) parameter.
    448 
    449 \subsection{Routine: \lstinline{T * alloc( ... )}}
    450 Call to alloc wihout any parameter returns one object of size of type @T@ allocated dynamically.
    451 Only the dimension (dim) parameter for array allocation has the fixed position in the alloc routine. If programmer wants to allocate an array of objects that the required number of members in the array has to be given as the first parameter to the alloc routine.
    452 alocc routine accepts six kinds of arguments. Using different combinations of tha parameters, different kind of allocations can be performed. Any combincation of parameters can be used together except @`realloc@ and @`resize@ that should not be used simultanously in one call to routine as it creates ambiguity about whether to reallocate or resize a currently allocated dynamic object. If both @`resize@ and @`realloc@ are used in a call to alloc then the latter one will take effect or unexpected resulted might be produced.
     669Routine Name: alloc interface frees programmers from remembering different routine names for different kind of dynamic allocations.
     670\item
     671Parameter Positions: alloc interface frees programmers from remembering parameter positions in call to routines.
     672\item
     673Object Size: alloc interface does not require programmer to mention the object size as \CFA allows allocator to determine the object size from returned type of alloc call.
     674\end{itemize}
     675
     676Alloc interface uses polymorphism, backtick routines (FIX ME: cite backtick) and ttype parameters of \CFA (FIX ME: cite ttype) to provide a very simple dynamic memory allocation interface to the programmers.
     677The new interface has just one routine name alloc that can be used to perform a wide range of dynamic allocations.
     678The parameters use backtick functions to provide a similar-to named parameters feature for our alloc interface so that programmers do not have to remember parameter positions in alloc call except the position of dimension (dim) parameter.
     679
     680\subsection{Routine: \lstinline{T * alloc( ...
     681)}}
     682Call to alloc without any parameter returns one object of size of type @T@ allocated dynamically.
     683Only the dimension (dim) parameter for array allocation has the fixed position in the alloc routine.
     684If programmer wants to allocate an array of objects that the required number of members in the array has to be given as the first parameter to the alloc routine.
     685alloc routine accepts six kinds of arguments.
     686Using different combinations of than parameters, different kind of allocations can be performed.
     687Any combination of parameters can be used together except @`realloc@ and @`resize@ that should not be used simultaneously in one call to routine as it creates ambiguity about whether to reallocate or resize a currently allocated dynamic object.
     688If both @`resize@ and @`realloc@ are used in a call to alloc then the latter one will take effect or unexpected resulted might be produced.
    453689
    454690\paragraph{Dim}
    455 This is the only parameter in the alloc routine that has a fixed-position and it is also the only parameter that does not use a backtick function. It has to be passed at the first position to alloc call in-case of an array allocation of objects of type @T@.
    456 It represents the required number of members in the array allocation as in \CFA's aalloc (FIX ME: cite aalloc).
     691This is the only parameter in the alloc routine that has a fixed-position and it is also the only parameter that does not use a backtick function.
     692It has to be passed at the first position to alloc call in-case of an array allocation of objects of type @T@.
     693It represents the required number of members in the array allocation as in \CFA's @aalloc@ (FIX ME: cite aalloc).
    457694This parameter should be of type @size_t@.
    458695
     
    461698
    462699\paragraph{Align}
    463 This parameter is position-free and uses a backtick routine align (@`align@). The parameter passed with @`align@ should be of type @size_t@. If the alignment parameter is not a power of two or is less than the default alignment of the allocator (that can be found out using routine libAlign in \CFA) then the passed alignment parameter will be rejected and the default alignment will be used.
     700This parameter is position-free and uses a backtick routine align (@`align@).
     701The parameter passed with @`align@ should be of type @size_t@.
     702If the alignment parameter is not a power of two or is less than the default alignment of the allocator (that can be found out using routine libAlign in \CFA) then the passed alignment parameter will be rejected and the default alignment will be used.
    464703
    465704Example: @int b = alloc( 5 , 64`align )@
    466 This call will return a dynamic array of five integers. It will align the allocated object to 64.
     705This call will return a dynamic array of five integers.
     706It will align the allocated object to 64.
    467707
    468708\paragraph{Fill}
    469 This parameter is position-free and uses a backtick routine fill (@`fill@). In case of @realloc@, only the extra space after copying the data in the old object will be filled with given parameter.
     709This parameter is position-free and uses a backtick routine fill (@`fill@).
     710In case of @realloc@, only the extra space after copying the data in the old object will be filled with given parameter.
    470711Three types of parameters can be passed using `fill.
    471712
     
    476717Object of returned type: An object of type of returned type can be passed with @`fill@ to fill the whole dynamic allocation with the given object recursively till the end of required allocation.
    477718\item
    478 Dynamic object of returned type: A dynamic object of type of returned type can be passed with @`fill@ to fill the dynamic allocation with the given dynamic object. In this case, the allocated memory is not filled recursively till the end of allocation. The filling happen untill the end object passed to @`fill@ or the end of requested allocation reaches.
     719Dynamic object of returned type: A dynamic object of type of returned type can be passed with @`fill@ to fill the dynamic allocation with the given dynamic object.
     720In this case, the allocated memory is not filled recursively till the end of allocation.
     721The filling happen until the end object passed to @`fill@ or the end of requested allocation reaches.
    479722\end{itemize}
    480723
    481724Example: @int b = alloc( 5 , 'a'`fill )@
    482 This call will return a dynamic array of five integers. It will fill the allocated object with character 'a' recursively till the end of requested allocation size.
     725This call will return a dynamic array of five integers.
     726It will fill the allocated object with character 'a' recursively till the end of requested allocation size.
    483727
    484728Example: @int b = alloc( 5 , 4`fill )@
    485 This call will return a dynamic array of five integers. It will fill the allocated object with integer 4 recursively till the end of requested allocation size.
     729This call will return a dynamic array of five integers.
     730It will fill the allocated object with integer 4 recursively till the end of requested allocation size.
    486731
    487732Example: @int b = alloc( 5 , a`fill )@ where @a@ is a pointer of int type
    488 This call will return a dynamic array of five integers. It will copy data in a to the returned object non-recursively untill end of a or the newly allocated object is reached.
     733This call will return a dynamic array of five integers.
     734It will copy data in a to the returned object non-recursively until end of a or the newly allocated object is reached.
    489735
    490736\paragraph{Resize}
    491 This parameter is position-free and uses a backtick routine resize (@`resize@). It represents the old dynamic object (oaddr) that the programmer wants to
     737This parameter is position-free and uses a backtick routine resize (@`resize@).
     738It represents the old dynamic object (oaddr) that the programmer wants to
    492739\begin{itemize}
    493740\item
     
    498745fill with something.
    499746\end{itemize}
    500 The data in old dynamic object will not be preserved in the new object. The type of object passed to @`resize@ and the returned type of alloc call can be different.
     747The data in old dynamic object will not be preserved in the new object.
     748The type of object passed to @`resize@ and the returned type of alloc call can be different.
    501749
    502750Example: @int b = alloc( 5 , a`resize )@
     
    504752
    505753Example: @int b = alloc( 5 , a`resize , 32`align )@
    506 This call will resize object a to a dynamic array that can contain 5 integers. The returned object will also be aligned to 32.
     754This call will resize object a to a dynamic array that can contain 5 integers.
     755The returned object will also be aligned to 32.
    507756
    508757Example: @int b = alloc( 5 , a`resize , 32`align , 2`fill )@
    509 This call will resize object a to a dynamic array that can contain 5 integers. The returned object will also be aligned to 32 and will be filled with 2.
     758This call will resize object a to a dynamic array that can contain 5 integers.
     759The returned object will also be aligned to 32 and will be filled with 2.
    510760
    511761\paragraph{Realloc}
    512 This parameter is position-free and uses a backtick routine @realloc@ (@`realloc@). It represents the old dynamic object (oaddr) that the programmer wants to
     762This parameter is position-free and uses a backtick routine @realloc@ (@`realloc@).
     763It represents the old dynamic object (oaddr) that the programmer wants to
    513764\begin{itemize}
    514765\item
     
    519770fill with something.
    520771\end{itemize}
    521 The data in old dynamic object will be preserved in the new object. The type of object passed to @`realloc@ and the returned type of alloc call cannot be different.
     772The data in old dynamic object will be preserved in the new object.
     773The type of object passed to @`realloc@ and the returned type of alloc call cannot be different.
    522774
    523775Example: @int b = alloc( 5 , a`realloc )@
     
    525777
    526778Example: @int b = alloc( 5 , a`realloc , 32`align )@
    527 This call will realloc object a to a dynamic array that can contain 5 integers. The returned object will also be aligned to 32.
     779This call will realloc object a to a dynamic array that can contain 5 integers.
     780The returned object will also be aligned to 32.
    528781
    529782Example: @int b = alloc( 5 , a`realloc , 32`align , 2`fill )@
    530 This call will resize object a to a dynamic array that can contain 5 integers. The returned object will also be aligned to 32. The extra space after copying data of a to the returned object will be filled with 2.
     783This call will resize object a to a dynamic array that can contain 5 integers.
     784The returned object will also be aligned to 32.
     785The extra space after copying data of a to the returned object will be filled with 2.
  • doc/theses/mubeen_zulfiqar_MMath/background.tex

    r30d91e4 r365c8dcb  
    5454The trailer may be used to simplify an allocation implementation, \eg coalescing, and/or for security purposes to mark the end of an object.
    5555An object may be preceded by padding to ensure proper alignment.
    56 Some algorithms quantize allocation requests into distinct sizes resulting in additional spacing after objects less than the quantized value.
     56Some algorithms quantize allocation requests into distinct sizes, called \newterm{buckets}, resulting in additional spacing after objects less than the quantized value.
     57(Note, the buckets are often organized as an array of ascending bucket sizes for fast searching, \eg binary search, and the array is stored in the heap management-area, where each bucket is a top point to the freed objects of that size.)
    5758When padding and spacing are necessary, neither can be used to satisfy a future allocation request while the current allocation exists.
    5859A free object also contains management data, \eg size, chaining, etc.
  • doc/theses/mubeen_zulfiqar_MMath/figures/AllocDS1.fig

    r30d91e4 r365c8dcb  
    88-2
    991200 2
    10 6 4200 1575 4500 1725
    11 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4275 1650 20 20 4275 1650 4295 1650
    12 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4350 1650 20 20 4350 1650 4370 1650
    13 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4425 1650 20 20 4425 1650 4445 1650
     106 2850 2100 3150 2250
     111 3 0 1 0 0 50 -1 20 0.000 1 0.0000 2925 2175 20 20 2925 2175 2945 2175
     121 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3000 2175 20 20 3000 2175 3020 2175
     131 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3075 2175 20 20 3075 2175 3095 2175
    1414-6
    15 6 2850 2475 3150 2850
     156 4050 2100 4350 2250
     161 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4125 2175 20 20 4125 2175 4145 2175
     171 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4200 2175 20 20 4200 2175 4220 2175
     181 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4275 2175 20 20 4275 2175 4295 2175
     19-6
     206 4650 2100 4950 2250
     211 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4725 2175 20 20 4725 2175 4745 2175
     221 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4800 2175 20 20 4800 2175 4820 2175
     231 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4875 2175 20 20 4875 2175 4895 2175
     24-6
     256 3450 2100 3750 2250
     261 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3525 2175 20 20 3525 2175 3545 2175
     271 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3600 2175 20 20 3600 2175 3620 2175
     281 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3675 2175 20 20 3675 2175 3695 2175
     29-6
     306 3300 2175 3600 2550
    16312 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    1732        1 1 1.00 45.00 90.00
    18          2925 2475 2925 2700
     33         3375 2175 3375 2400
    19342 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    20          2850 2700 3150 2700 3150 2850 2850 2850 2850 2700
     35         3300 2400 3600 2400 3600 2550 3300 2550 3300 2400
    2136-6
    22 6 4350 2475 4650 2850
     372 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     38         3150 1800 3150 2250
     392 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     40         2850 1800 2850 2250
     412 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     42         4650 1800 4650 2250
     432 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     44         4950 1800 4950 2250
     452 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     46         4500 1725 4500 2250
     472 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     48         5100 1725 5100 2250
     492 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     50         3450 1800 3450 2250
     512 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     52         3750 1800 3750 2250
     532 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     54         3300 1725 3300 2250
     552 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     56         3900 1725 3900 2250
     572 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     58         5250 1800 5250 2250
     592 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     60         5400 1800 5400 2250
     612 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     62         5550 1800 5550 2250
     632 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     64         5700 1800 5700 2250
     652 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     66         5850 1800 5850 2250
     672 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     68         2700 1725 2700 2250
    23692 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    2470        1 1 1.00 45.00 90.00
    25          4425 2475 4425 2700
    26 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    27          4350 2700 4650 2700 4650 2850 4350 2850 4350 2700
    28 -6
    29 6 3600 2475 3825 3150
     71         3375 1275 3375 1575
    30722 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    3173        1 1 1.00 45.00 90.00
    32          3675 2475 3675 2700
    33 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    34          3600 2700 3825 2700 3825 2850 3600 2850 3600 2700
    35 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    36          3600 3000 3825 3000 3825 3150 3600 3150 3600 3000
     74         2700 1275 2700 1575
     752 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
     76        1 1 1.00 45.00 90.00
     77         2775 1275 2775 1575
    37782 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    3879        1 1 1.00 45.00 90.00
    39          3675 2775 3675 3000
    40 -6
    41 6 4875 3600 5175 3750
    42 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4950 3675 20 20 4950 3675 4970 3675
    43 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5025 3675 20 20 5025 3675 5045 3675
    44 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5100 3675 20 20 5100 3675 5120 3675
    45 -6
    46 6 4875 2325 5175 2475
    47 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4950 2400 20 20 4950 2400 4970 2400
    48 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5025 2400 20 20 5025 2400 5045 2400
    49 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5100 2400 20 20 5100 2400 5120 2400
    50 -6
    51 6 5625 2325 5925 2475
    52 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5700 2400 20 20 5700 2400 5720 2400
    53 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5775 2400 20 20 5775 2400 5795 2400
    54 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5850 2400 20 20 5850 2400 5870 2400
    55 -6
    56 6 5625 3600 5925 3750
    57 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5700 3675 20 20 5700 3675 5720 3675
    58 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5775 3675 20 20 5775 3675 5795 3675
    59 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5850 3675 20 20 5850 3675 5870 3675
    60 -6
    61 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    62          2400 2100 2400 2550
    63 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    64          2550 2100 2550 2550
    65 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    66          2700 2100 2700 2550
    67 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    68          2850 2100 2850 2550
    69 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    70          3000 2100 3000 2550
    71 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    72          3600 2100 3600 2550
    73 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    74          3900 2100 3900 2550
    75 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    76          4050 2100 4050 2550
    77 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    78          4200 2100 4200 2550
    79 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    80          4350 2100 4350 2550
    81 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    82          4500 2100 4500 2550
    83 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    84          3300 1500 3300 1800
    85 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    86          3600 1500 3600 1800
    87 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    88          3900 1500 3900 1800
    89 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    90          3000 1500 4800 1500 4800 1800 3000 1800 3000 1500
     80         5175 1275 5175 1575
     812 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
     82        1 1 1.00 45.00 90.00
     83         5625 1275 5625 1575
     842 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
     85        1 1 1.00 45.00 90.00
     86         3750 1275 3750 1575
    91872 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
    9288        1 1 1.00 45.00 90.00
    93          3225 1650 2625 2100
     89         3825 1275 3825 1575
     902 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     91         2700 1950 6000 1950
     922 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     93         2700 2100 6000 2100
     942 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     95         2700 1800 6000 1800 6000 2250 2700 2250 2700 1800
    94962 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    9597        1 1 1.00 45.00 90.00
    96          3150 1650 2550 2100
     98         2775 2175 2775 2400
    97992 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    98100        1 1 1.00 45.00 90.00
    99          3450 1650 4050 2100
    100 2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
    101         1 1 1.00 45.00 90.00
    102          3375 1650 3975 2100
    103 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    104          2100 2100 2100 2550
    105 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    106          1950 2250 3150 2250
    107 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    108          3450 2250 4650 2250
     101         2775 2475 2775 2700
    1091022 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    110          1950 2100 3150 2100 3150 2550 1950 2550 1950 2100
     103         2700 2700 2850 2700 2850 2850 2700 2850 2700 2700
    1111042 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    112          3450 2100 4650 2100 4650 2550 3450 2550 3450 2100
    113 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    114          2250 2100 2250 2550
    115 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    116          3750 2100 3750 2550
     105         2700 2400 2850 2400 2850 2550 2700 2550 2700 2400
    1171062 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    118107        1 1 1.00 45.00 90.00
    119          2025 2475 2025 2700
    120 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    121         1 1 1.00 45.00 90.00
    122          2025 2775 2025 3000
     108         4575 2175 4575 2400
    1231092 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    124          1950 3000 2100 3000 2100 3150 1950 3150 1950 3000
    125 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    126          1950 2700 2100 2700 2100 2850 1950 2850 1950 2700
     110         4500 2400 5025 2400 5025 2550 4500 2550 4500 2400
    1271112 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
    128112        1 1 1.00 45.00 90.00
    129          1950 3750 2700 3750 2700 3525
     113         3600 3375 4350 3375 4350 3150
    1301142 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    131          1950 3525 3150 3525 3150 3900 1950 3900 1950 3525
    132 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
    133         1 1 1.00 45.00 90.00
    134          3450 3750 4200 3750 4200 3525
    135 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    136          3450 3525 4650 3525 4650 3900 3450 3900 3450 3525
    137 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
    138         1 1 1.00 45.00 90.00
    139          3150 4650 4200 4650 4200 4275
    140 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    141          3150 4275 4650 4275 4650 4875 3150 4875 3150 4275
    142 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    143          1950 2400 3150 2400
    144 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    145          3450 2400 4650 2400
    146 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    147          5400 2100 5400 3900
    148 4 2 0 50 -1 0 11 0.0000 2 120 300 1875 2250 lock\001
    149 4 1 0 50 -1 0 12 0.0000 2 135 1935 3900 1425 N kernel-thread buckets\001
    150 4 1 0 50 -1 0 12 0.0000 2 195 810 4425 2025 heap$_2$\001
    151 4 1 0 50 -1 0 12 0.0000 2 195 810 2175 2025 heap$_1$\001
    152 4 2 0 50 -1 0 11 0.0000 2 120 270 1875 2400 size\001
    153 4 2 0 50 -1 0 11 0.0000 2 120 270 1875 2550 free\001
    154 4 1 0 50 -1 0 12 0.0000 2 180 825 2550 3450 local pool\001
    155 4 0 0 50 -1 0 12 0.0000 2 135 360 3525 3700 lock\001
    156 4 0 0 50 -1 0 12 0.0000 2 135 360 3225 4450 lock\001
    157 4 2 0 50 -1 0 12 0.0000 2 135 600 1875 3000 free list\001
    158 4 1 0 50 -1 0 12 0.0000 2 180 825 4050 3450 local pool\001
    159 4 1 0 50 -1 0 12 0.0000 2 180 1455 3900 4200 global pool (sbrk)\001
    160 4 0 0 50 -1 0 12 0.0000 2 135 360 2025 3700 lock\001
    161 4 1 0 50 -1 0 12 0.0000 2 180 720 6450 3150 free pool\001
    162 4 1 0 50 -1 0 12 0.0000 2 180 390 6450 2925 heap\001
     115         3600 3150 5100 3150 5100 3525 3600 3525 3600 3150
     1164 2 0 50 -1 0 11 0.0000 2 135 300 2625 1950 lock\001
     1174 1 0 50 -1 0 11 0.0000 2 150 1155 3000 1725 N$\\times$S$_1$\001
     1184 1 0 50 -1 0 11 0.0000 2 150 1155 3600 1725 N$\\times$S$_2$\001
     1194 1 0 50 -1 0 12 0.0000 2 180 390 4425 1500 heap\001
     1204 2 0 50 -1 0 12 0.0000 2 135 1140 2550 1425 kernel threads\001
     1214 2 0 50 -1 0 11 0.0000 2 120 270 2625 2100 size\001
     1224 2 0 50 -1 0 11 0.0000 2 120 270 2625 2250 free\001
     1234 2 0 50 -1 0 12 0.0000 2 135 600 2625 2700 free list\001
     1244 0 0 50 -1 0 12 0.0000 2 135 360 3675 3325 lock\001
     1254 1 0 50 -1 0 12 0.0000 2 180 1455 4350 3075 global pool (sbrk)\001
     1264 1 0 50 -1 0 11 0.0000 2 150 1110 4800 1725 N$\\times$S$_t$\001
  • doc/theses/mubeen_zulfiqar_MMath/figures/AllocDS2.fig

    r30d91e4 r365c8dcb  
    88-2
    991200 2
    10 6 2850 2100 3150 2250
    11 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 2925 2175 20 20 2925 2175 2945 2175
    12 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3000 2175 20 20 3000 2175 3020 2175
    13 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3075 2175 20 20 3075 2175 3095 2175
    14 -6
    15 6 4050 2100 4350 2250
    16 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4125 2175 20 20 4125 2175 4145 2175
    17 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4200 2175 20 20 4200 2175 4220 2175
    18 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4275 2175 20 20 4275 2175 4295 2175
    19 -6
    20 6 4650 2100 4950 2250
    21 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4725 2175 20 20 4725 2175 4745 2175
    22 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4800 2175 20 20 4800 2175 4820 2175
    23 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4875 2175 20 20 4875 2175 4895 2175
    24 -6
    25 6 3450 2100 3750 2250
    26 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3525 2175 20 20 3525 2175 3545 2175
    27 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3600 2175 20 20 3600 2175 3620 2175
    28 1 3 0 1 0 0 50 -1 20 0.000 1 0.0000 3675 2175 20 20 3675 2175 3695 2175
    29 -6
    30 6 3300 2175 3600 2550
     106 2850 2475 3150 2850
    31112 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    3212        1 1 1.00 45.00 90.00
    33          3375 2175 3375 2400
     13         2925 2475 2925 2700
    34142 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    35          3300 2400 3600 2400 3600 2550 3300 2550 3300 2400
     15         2850 2700 3150 2700 3150 2850 2850 2850 2850 2700
     16-6
     176 4350 2475 4650 2850
     182 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
     19        1 1 1.00 45.00 90.00
     20         4425 2475 4425 2700
     212 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     22         4350 2700 4650 2700 4650 2850 4350 2850 4350 2700
     23-6
     246 3600 2475 3825 3150
     252 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
     26        1 1 1.00 45.00 90.00
     27         3675 2475 3675 2700
     282 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     29         3600 2700 3825 2700 3825 2850 3600 2850 3600 2700
     302 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     31         3600 3000 3825 3000 3825 3150 3600 3150 3600 3000
     322 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
     33        1 1 1.00 45.00 90.00
     34         3675 2775 3675 3000
     35-6
     366 1950 3525 3150 3900
     372 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
     38        1 1 1.00 45.00 90.00
     39         1950 3750 2700 3750 2700 3525
     402 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     41         1950 3525 3150 3525 3150 3900 1950 3900 1950 3525
     424 0 0 50 -1 0 12 0.0000 2 135 360 2025 3700 lock\001
     43-6
     446 4050 1575 4350 1725
     451 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4125 1650 20 20 4125 1650 4145 1650
     461 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4200 1650 20 20 4200 1650 4220 1650
     471 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4275 1650 20 20 4275 1650 4295 1650
     48-6
     496 4875 2325 6150 3750
     506 4875 2325 5175 2475
     511 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4950 2400 20 20 4950 2400 4970 2400
     521 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5025 2400 20 20 5025 2400 5045 2400
     531 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5100 2400 20 20 5100 2400 5120 2400
     54-6
     556 4875 3600 5175 3750
     561 3 0 1 0 0 50 -1 20 0.000 1 0.0000 4950 3675 20 20 4950 3675 4970 3675
     571 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5025 3675 20 20 5025 3675 5045 3675
     581 3 0 1 0 0 50 -1 20 0.000 1 0.0000 5100 3675 20 20 5100 3675 5120 3675
     59-6
     604 1 0 50 -1 0 12 0.0000 2 180 900 5700 3150 local pools\001
     614 1 0 50 -1 0 12 0.0000 2 180 465 5700 2925 heaps\001
     62-6
     636 3600 4050 5100 4650
     642 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
     65        1 1 1.00 45.00 90.00
     66         3600 4500 4350 4500 4350 4275
     672 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     68         3600 4275 5100 4275 5100 4650 3600 4650 3600 4275
     694 1 0 50 -1 0 12 0.0000 2 180 1455 4350 4200 global pool (sbrk)\001
     704 0 0 50 -1 0 12 0.0000 2 135 360 3675 4450 lock\001
    3671-6
    37722 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    38          3150 1800 3150 2250
     73         2400 2100 2400 2550
    39742 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    40          2850 1800 2850 2250
     75         2550 2100 2550 2550
    41762 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    42          4650 1800 4650 2250
     77         2700 2100 2700 2550
    43782 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    44          4950 1800 4950 2250
    45 2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    46          4500 1725 4500 2250
    47 2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    48          5100 1725 5100 2250
     79         2850 2100 2850 2550
    49802 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    50          3450 1800 3450 2250
     81         3000 2100 3000 2550
    51822 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    52          3750 1800 3750 2250
    53 2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    54          3300 1725 3300 2250
    55 2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    56          3900 1725 3900 2250
     83         3600 2100 3600 2550
    57842 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    58          5250 1800 5250 2250
     85         3900 2100 3900 2550
    59862 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    60          5400 1800 5400 2250
     87         4050 2100 4050 2550
    61882 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    62          5550 1800 5550 2250
     89         4200 2100 4200 2550
    63902 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    64          5700 1800 5700 2250
     91         4350 2100 4350 2550
    65922 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    66          5850 1800 5850 2250
    67 2 1 0 3 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    68          2700 1725 2700 2250
     93         4500 2100 4500 2550
     942 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     95         3300 1500 3300 1800
     962 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     97         3600 1500 3600 1800
     982 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     99         3000 1500 4800 1500 4800 1800 3000 1800 3000 1500
    691002 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    70101        1 1 1.00 45.00 90.00
    71          3375 1275 3375 1575
     102         3150 1650 2550 2100
    721032 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    73104        1 1 1.00 45.00 90.00
    74          2700 1275 2700 1575
    75 2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
    76         1 1 1.00 45.00 90.00
    77          2775 1275 2775 1575
     105         3450 1650 4050 2100
     1062 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     107         2100 2100 2100 2550
     1082 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     109         1950 2250 3150 2250
     1102 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     111         3450 2250 4650 2250
     1122 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     113         1950 2100 3150 2100 3150 2550 1950 2550 1950 2100
     1142 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
     115         3450 2100 4650 2100 4650 2550 3450 2550 3450 2100
     1162 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     117         2250 2100 2250 2550
     1182 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     119         3750 2100 3750 2550
    781202 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    79121        1 1 1.00 45.00 90.00
    80          5175 1275 5175 1575
     122         2025 2475 2025 2700
    811232 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    82124        1 1 1.00 45.00 90.00
    83          5625 1275 5625 1575
    84 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    85         1 1 1.00 45.00 90.00
    86          3750 1275 3750 1575
    87 2 1 1 1 0 7 50 -1 -1 4.000 0 0 -1 1 0 2
    88         1 1 1.00 45.00 90.00
    89          3825 1275 3825 1575
    90 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    91          2700 1950 6000 1950
    92 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
    93          2700 2100 6000 2100
     125         2025 2775 2025 3000
    941262 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    95          2700 1800 6000 1800 6000 2250 2700 2250 2700 1800
    96 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    97         1 1 1.00 45.00 90.00
    98          2775 2175 2775 2400
    99 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    100         1 1 1.00 45.00 90.00
    101          2775 2475 2775 2700
     127         1950 3000 2100 3000 2100 3150 1950 3150 1950 3000
    1021282 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    103          2700 2700 2850 2700 2850 2850 2700 2850 2700 2700
    104 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    105          2700 2400 2850 2400 2850 2550 2700 2550 2700 2400
    106 2 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 2
    107         1 1 1.00 45.00 90.00
    108          4575 2175 4575 2400
    109 2 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    110          4500 2400 5025 2400 5025 2550 4500 2550 4500 2400
     129         1950 2700 2100 2700 2100 2850 1950 2850 1950 2700
    1111302 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 1 0 3
    112131        1 1 1.00 45.00 90.00
    113          3600 3525 4650 3525 4650 3150
     132         3450 3750 4200 3750 4200 3525
    1141332 2 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 5
    115          3600 3150 5100 3150 5100 3750 3600 3750 3600 3150
    116 4 2 0 50 -1 0 11 0.0000 2 120 300 2625 1950 lock\001
    117 4 1 0 50 -1 0 10 0.0000 2 150 1155 3000 1725 N$\\times$S$_1$\001
    118 4 1 0 50 -1 0 10 0.0000 2 150 1155 3600 1725 N$\\times$S$_2$\001
    119 4 1 0 50 -1 0 12 0.0000 2 180 390 4425 1500 heap\001
    120 4 2 0 50 -1 0 12 0.0000 2 135 1140 2550 1425 kernel threads\001
    121 4 2 0 50 -1 0 11 0.0000 2 120 270 2625 2100 size\001
    122 4 2 0 50 -1 0 11 0.0000 2 120 270 2625 2250 free\001
    123 4 2 0 50 -1 0 12 0.0000 2 135 600 2625 2700 free list\001
    124 4 0 0 50 -1 0 12 0.0000 2 135 360 3675 3325 lock\001
    125 4 1 0 50 -1 0 12 0.0000 2 180 1455 4350 3075 global pool (sbrk)\001
    126 4 1 0 50 -1 0 10 0.0000 2 150 1110 4800 1725 N$\\times$S$_t$\001
     134         3450 3525 4650 3525 4650 3900 3450 3900 3450 3525
     1352 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     136         1950 2400 3150 2400
     1372 1 0 1 0 7 50 -1 -1 0.000 0 0 -1 0 0 2
     138         3450 2400 4650 2400
     1394 2 0 50 -1 0 11 0.0000 2 135 300 1875 2250 lock\001
     1404 1 0 50 -1 0 12 0.0000 2 180 1245 3900 1425 H heap buckets\001
     1414 1 0 50 -1 0 12 0.0000 2 180 810 4425 2025 heap$_2$\001
     1424 1 0 50 -1 0 12 0.0000 2 180 810 2175 2025 heap$_1$\001
     1434 2 0 50 -1 0 11 0.0000 2 120 270 1875 2400 size\001
     1444 2 0 50 -1 0 11 0.0000 2 120 270 1875 2550 free\001
     1454 1 0 50 -1 0 12 0.0000 2 180 825 2550 3450 local pool\001
     1464 0 0 50 -1 0 12 0.0000 2 135 360 3525 3700 lock\001
     1474 2 0 50 -1 0 12 0.0000 2 135 600 1875 3000 free list\001
     1484 1 0 50 -1 0 12 0.0000 2 180 825 4050 3450 local pool\001
  • doc/theses/mubeen_zulfiqar_MMath/performance.tex

    r30d91e4 r365c8dcb  
    11\chapter{Performance}
     2\label{c:Performance}
    23
    34\noindent
  • doc/theses/mubeen_zulfiqar_MMath/uw-ethesis.bib

    r30d91e4 r365c8dcb  
    124124}
    125125
    126 @misc{nedmalloc,
    127     author      = {Niall Douglas},
    128     title       = {nedmalloc version 1.06 Beta},
    129     month       = jan,
    130     year        = 2010,
    131     note        = {\textsf{http://\-prdownloads.\-sourceforge.\-net/\-nedmalloc/\-nedmalloc\_v1.06beta1\_svn1151.zip}},
     126@misc{ptmalloc2,
     127    author      = {Wolfram Gloger},
     128    title       = {ptmalloc version 2},
     129    month       = jun,
     130    year        = 2006,
     131    note        = {\href{http://www.malloc.de/malloc/ptmalloc2-current.tar.gz}{http://www.malloc.de/\-malloc/\-ptmalloc2-current.tar.gz}},
     132}
     133
     134@misc{GNUallocAPI,
     135    author      = {GNU},
     136    title       = {Summary of malloc-Related Functions},
     137    year        = 2020,
     138    note        = {\href{https://www.gnu.org/software/libc/manual/html\_node/Summary-of-Malloc.html}{https://www.gnu.org/\-software/\-libc/\-manual/\-html\_node/\-Summary-of-Malloc.html}},
     139}
     140
     141@misc{SeriallyReusable,
     142    author      = {IBM},
     143    title       = {Serially reusable programs},
     144    month       = mar,
     145    year        = 2021,
     146    note        = {\href{https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=structures-serially-reusable-programs}{https://www.ibm.com/\-docs/\-en/\-ztpf/\-1.1.0.15?\-topic=structures-serially-reusable-programs}},
     147}
     148
     149@misc{librseq,
     150    author      = {Mathieu Desnoyers},
     151    title       = {Library for Restartable Sequences},
     152    month       = mar,
     153    year        = 2022,
     154    note        = {\href{https://github.com/compudj/librseq}{https://github.com/compudj/librseq}},
    132155}
    133156
  • doc/theses/mubeen_zulfiqar_MMath/uw-ethesis.tex

    r30d91e4 r365c8dcb  
    9595% Use the "hyperref" package
    9696% N.B. HYPERREF MUST BE THE LAST PACKAGE LOADED; ADD ADDITIONAL PKGS ABOVE
    97 \usepackage[pagebackref=true]{hyperref} % with basic options
     97\usepackage{url}
     98\usepackage[dvips,pagebackref=true]{hyperref} % with basic options
    9899%\usepackage[pdftex,pagebackref=true]{hyperref}
    99100% N.B. pagebackref=true provides links back from the References to the body text. This can cause trouble for printing.
     
    114115    citecolor=blue,        % color of links to bibliography
    115116    filecolor=magenta,      % color of file links
    116     urlcolor=blue           % color of external links
     117    urlcolor=blue,           % color of external links
     118    breaklinks=true
    117119}
    118120\ifthenelse{\boolean{PrintVersion}}{   % for improved print quality, change some hyperref options
     
    123125    urlcolor=black
    124126}}{} % end of ifthenelse (no else)
     127%\usepackage[dvips,plainpages=false,pdfpagelabels,pdfpagemode=UseNone,pagebackref=true,breaklinks=true,colorlinks=true,linkcolor=blue,citecolor=blue,urlcolor=blue]{hyperref}
     128\usepackage{breakurl}
     129\urlstyle{sf}
    125130
    126131%\usepackage[automake,toc,abbreviations]{glossaries-extra} % Exception to the rule of hyperref being the last add-on package
  • doc/theses/thierry_delisle_PhD/thesis/Makefile

    r30d91e4 r365c8dcb  
    3030        base \
    3131        base_avg \
     32        cache-share \
     33        cache-noshare \
    3234        empty \
    3335        emptybit \
  • doc/theses/thierry_delisle_PhD/thesis/local.bib

    r30d91e4 r365c8dcb  
    685685  note = "[Online; accessed 9-February-2021]"
    686686}
     687
     688@misc{wiki:rcu,
     689  author = "{Wikipedia contributors}",
     690  title = "Read-copy-update --- {W}ikipedia{,} The Free Encyclopedia",
     691  year = "2022",
     692  url = "https://en.wikipedia.org/wiki/Linear_congruential_generator",
     693  note = "[Online; accessed 12-April-2022]"
     694}
     695
     696@misc{wiki:rwlock,
     697  author = "{Wikipedia contributors}",
     698  title = "Readers-writer lock --- {W}ikipedia{,} The Free Encyclopedia",
     699  year = "2021",
     700  url = "https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock",
     701  note = "[Online; accessed 12-April-2022]"
     702}
  • doc/theses/thierry_delisle_PhD/thesis/text/core.tex

    r30d91e4 r365c8dcb  
    3232        \item Faster than other schedulers that have equal or better fairness.
    3333\end{itemize}
     34
     35\subsection{Fairness Goals}
     36For this work fairness will be considered as having two strongly related requirements: true starvation freedom and ``fast'' load balancing.
     37
     38\paragraph{True starvation freedom} is more easily defined: As long as at least one \proc continues to dequeue \ats, all read \ats should be able to run eventually.
     39In any running system, \procs can stop dequeing \ats if they start running a \at that will simply never park.
     40Traditional workstealing schedulers do not have starvation freedom in these cases.
     41Now this requirement begs the question, what about preemption?
     42Generally speaking preemption happens on the timescale of several milliseconds, which brings us to the next requirement: ``fast'' load balancing.
     43
     44\paragraph{Fast load balancing} means that load balancing should happen faster than preemption would normally allow.
     45For interactive applications that need to run at 60, 90, 120 frames per second, \ats having to wait for several millseconds to run are effectively starved.
     46Therefore load-balancing should be done at a faster pace, one that can detect starvation at the microsecond scale.
     47With that said, this is a much fuzzier requirement since it depends on the number of \procs, the number of \ats and the general load of the system.
    3448
    3549\subsection{Fairness vs Scheduler Locality} \label{fairnessvlocal}
     
    223237Therefore this unprotected read of the timestamp and average satisfy the limited correctness that is required.
    224238
     239\begin{figure}
     240        \centering
     241        \input{cache-share.pstex_t}
     242        \caption[CPU design with wide L3 sharing]{CPU design with wide L3 sharing \smallskip\newline A very simple CPU with 4 \glspl{hthrd}. L1 and L2 are private to each \gls{hthrd} but the L3 is shared across to entire core.}
     243        \label{fig:cache-share}
     244\end{figure}
     245
     246\begin{figure}
     247        \centering
     248        \input{cache-noshare.pstex_t}
     249        \caption[CPU design with a narrower L3 sharing]{CPU design with a narrower L3 sharing \smallskip\newline A different CPU design, still with 4 \glspl{hthrd}. L1 and L2 are still private to each \gls{hthrd} but the L3 is shared some of the CPU but there is still two distinct L3 instances.}
     250        \label{fig:cache-noshare}
     251\end{figure}
     252
     253With redundant tiemstamps this scheduling algorithm achieves both the fairness and performance requirements, on some machines.
     254The problem is that the cost of polling and helping is not necessarily consistent across each \gls{hthrd}.
     255For example, on machines where the motherboard holds multiple CPU, cache misses can be satisfied from a cache that belongs to the CPU that missed, the \emph{local} CPU, or by a different CPU, a \emph{remote} one.
     256Cache misses that are satisfied by a remote CPU will have higher latency than if it is satisfied by the local CPU.
     257However, this is not specific to systems with multiple CPUs.
     258Depending on the cache structure, cache-misses can have different latency for the same CPU.
     259The AMD EPYC 7662 CPUs that is described in Chapter~\ref{microbench} is an example of that.
     260Figure~\ref{fig:cache-share} and Figure~\ref{fig:cache-noshare} show two different cache topologies with highlight this difference.
     261In Figure~\ref{fig:cache-share}, all cache instances are either private to a \gls{hthrd} or shared to the entire system, this means latency due to cache-misses are likely fairly consistent.
     262By comparison, in Figure~\ref{fig:cache-noshare} misses in the L2 cache can be satisfied by a hit in either instance of the L3.
     263However, the memory access latency to the remote L3 instance will be notably higher than the memory access latency to the local L3.
     264The impact of these different design on this algorithm is that scheduling will scale very well on architectures similar to Figure~\ref{fig:cache-share}, both will have notably worst scalling with many narrower L3 instances.
     265This is simply because as the number of L3 instances grow, so two does the chances that the random helping will cause significant latency.
     266The solution is to have the scheduler be aware of the cache topology.
     267
    225268\subsection{Per CPU Sharding}
     269Building a scheduler that is aware of cache topology poses two main challenges: discovering cache topology and matching \procs to cache instance.
     270Sadly, there is no standard portable way to discover cache topology in C.
     271Therefore, while this is a significant portability challenge, it is outside the scope of this thesis to design a cross-platform cache discovery mechanisms.
     272The rest of this work assumes discovering the cache topology based on Linux's \texttt{/sys/devices/system/cpu} directory.
     273This leaves the challenge of matching \procs to cache instance, or more precisely identifying which subqueues of the ready queue are local to which cache instance.
     274Once this matching is available, the helping algorithm can be changed to add bias so that \procs more often help subqueues local to the same cache instance
     275\footnote{Note that like other biases mentioned in this section, the actual bias value does not appear to need precise tuinng.}.
     276
     277The obvious approach to mapping cache instances to subqueues is to statically tie subqueues to CPUs.
     278Instead of having each subqueue local to a specific \proc, the system is initialized with subqueues for each \glspl{hthrd} up front.
     279Then \procs dequeue and enqueue by first asking which CPU id they are local to, in order to identify which subqueues are the local ones.
     280\Glspl{proc} can get the CPU id from \texttt{sched\_getcpu} or \texttt{librseq}.
     281
     282This approach solves the performance problems on systems with topologies similar to Figure~\ref{fig:cache-noshare}.
     283However, it actually causes some subtle fairness problems in some systems, specifically systems with few \procs and many \glspl{hthrd}.
     284In these cases, the large number of subqueues and the bias agains subqueues tied to different cache instances make it so it is very unlikely any single subqueue is picked.
     285To make things worst, the small number of \procs mean that few helping attempts will be made.
     286This combination of few attempts and low chances make it so a \at stranded on a subqueue that is not actively dequeued from may wait very long before it gets randomly helped.
     287On a system with 2 \procs, 256 \glspl{hthrd} with narrow cache sharing, and a 100:1 bias, it can actually take multiple seconds for a \at to get dequeued from a remote queue.
     288Therefore, a more dynamic matching of subqueues to cache instance is needed.
    226289
    227290\subsection{Topological Work Stealing}
    228 
    229 
     291The approach that is used in the \CFA scheduler is to have per-\proc subqueue, but have an excplicit data-structure track which cache instance each subqueue is tied to.
     292This is requires some finess because reading this data structure must lead to fewer cache misses than not having the data structure in the first place.
     293A key element however is that, like the timestamps for helping, reading the cache instance mapping only needs to give the correct result \emph{often enough}.
     294Therefore the algorithm can be built as follows: Before enqueuing or dequeing a \at, each \proc queries the CPU id and the corresponding cache instance.
     295Since subqueues are tied to \procs, each \proc can then update the cache instance mapped to the local subqueue(s).
     296To avoid unnecessary cache line invalidation, the map is only written to if the mapping changes.
     297
  • doc/theses/thierry_delisle_PhD/thesis/text/io.tex

    r30d91e4 r365c8dcb  
    406406Finally, the last important part of the \io subsystem is it's interface. There are multiple approaches that can be offered to programmers, each with advantages and disadvantages. The new \io subsystem can replace the C runtime's API or extend it. And in the later case the interface can go from very similar to vastly different. The following sections discuss some useful options using @read@ as an example. The standard Linux interface for C is :
    407407
    408 @ssize_t read(int fd, void *buf, size_t count);@.
     408@ssize_t read(int fd, void *buf, size_t count);@
    409409
    410410\subsection{Replacement}
    411 Replacing the C \glsxtrshort{api}
     411Replacing the C \glsxtrshort{api} is the more intrusive and draconian approach.
     412The goal is to convince the compiler and linker to replace any calls to @read@ to direct them to the \CFA implementation instead of glibc's.
     413This has the advantage of potentially working transparently and supporting existing binaries without needing recompilation.
     414It also offers a, presumably, well known and familiar API that C programmers can simply continue to work with.
     415However, this approach also entails a plethora of subtle technical challenges which generally boils down to making a perfect replacement.
     416If the \CFA interface replaces only \emph{some} of the calls to glibc, then this can easily lead to esoteric concurrency bugs.
     417Since the gcc ecosystems does not offer a scheme for such perfect replacement, this approach was rejected as being laudable but infeasible.
    412418
    413419\subsection{Synchronous Extension}
     420An other interface option is to simply offer an interface that is different in name only. For example:
     421
     422@ssize_t cfa_read(int fd, void *buf, size_t count);@
     423
     424\noindent This is much more feasible but still familiar to C programmers.
     425It comes with the caveat that any code attempting to use it must be recompiled, which can be a big problem considering the amount of existing legacy C binaries.
     426However, it has the advantage of implementation simplicity.
    414427
    415428\subsection{Asynchronous Extension}
     429It is important to mention that there is a certain irony to using only synchronous, therefore blocking, interfaces for a feature often referred to as ``non-blocking'' \io.
     430A fairly traditional way of doing this is using futures\cit{wikipedia futures}.
     431As simple way of doing so is as follows:
     432
     433@future(ssize_t) read(int fd, void *buf, size_t count);@
     434
     435\noindent Note that this approach is not necessarily the most idiomatic usage of futures.
     436The definition of read above ``returns'' the read content through an output parameter which cannot be synchronized on.
     437A more classical asynchronous API could look more like:
     438
     439@future([ssize_t, void *]) read(int fd, size_t count);@
     440
     441\noindent However, this interface immediately introduces memory lifetime challenges since the call must effectively allocate a buffer to be returned.
     442Because of the performance implications of this, the first approach is considered preferable as it is more familiar to C programmers.
    416443
    417444\subsection{Interface directly to \lstinline{io_uring}}
     445Finally, an other interface that can be relevant is to simply expose directly the underlying \texttt{io\_uring} interface. For example:
     446
     447@array(SQE, want) cfa_io_allocate(int want);@
     448
     449@void cfa_io_submit( const array(SQE, have) & );@
     450
     451\noindent This offers more flexibility to users wanting to fully use all of the \texttt{io\_uring} features.
     452However, it is not the most user-friendly option.
     453It obviously imposes a strong dependency between user code and \texttt{io\_uring} but at the same time restricting users to usages that are compatible with how \CFA internally uses \texttt{io\_uring}.
     454
     455
  • doc/theses/thierry_delisle_PhD/thesis/text/practice.tex

    r30d91e4 r365c8dcb  
    22The scheduling algorithm discribed in Chapter~\ref{core} addresses scheduling in a stable state.
    33However, it does not address problems that occur when the system changes state.
    4 Indeed the \CFA runtime, supports expanding and shrinking the number of KTHREAD\_place \todo{add kthrd to glossary}, both manually and, to some extent automatically.
     4Indeed the \CFA runtime, supports expanding and shrinking the number of \procs, both manually and, to some extent, automatically.
    55This entails that the scheduling algorithm must support these transitions.
    66
    7 \section{Resizing}
     7More precise \CFA supports adding \procs using the RAII object @processor@.
     8These objects can be created at any time and can be destroyed at any time.
     9They are normally create as automatic stack variables, but this is not a requirement.
     10
     11The consequence is that the scheduler and \io subsystems must support \procs comming in and out of existence.
     12
     13\section{Manual Resizing}
     14The consequence of dynamically changing the number of \procs is that all internal arrays that are sized based on the number of \procs neede to be \texttt{realloc}ed.
     15This also means that any references into these arrays, pointers or indexes, may need to be fixed when shrinking\footnote{Indexes may still need fixing because there is no guarantee the \proc causing the shrink had the highest index. Therefore indexes need to be reassigned to preserve contiguous indexes.}.
     16
     17There are no performance requirements, within reason, for resizing since this is usually considered as part of setup and teardown.
     18However, this operation has strict correctness requirements since shrinking and idle sleep can easily lead to deadlocks.
     19It should also avoid as much as possible any effect on performance when the number of \procs remain constant.
     20This later requirement prehibits simple solutions, like simply adding a global lock to these arrays.
     21
     22\subsection{Read-Copy-Update}
     23One solution is to use the Read-Copy-Update\cite{wiki:rcu} pattern.
     24In this pattern, resizing is done by creating a copy of the internal data strucures, updating the copy with the desired changes, and then attempt an Idiana Jones Switch to replace the original witht the copy.
     25This approach potentially has the advantage that it may not need any synchronization to do the switch.
     26The switch definitely implies a race where \procs could still use the previous, original, data structure after the copy was switched in.
     27The important question then becomes whether or not this race can be recovered from.
     28If the changes that arrived late can be transferred from the original to the copy then this solution works.
     29
     30For linked-lists, dequeing is somewhat of a problem.
     31Dequeing from the original will not necessarily update the copy which could lead to multiple \procs dequeing the same \at.
     32Fixing this requires making the array contain pointers to subqueues rather than the subqueues themselves.
     33
     34Another challenge is that the original must be kept until all \procs have witnessed the change.
     35This is a straight forward memory reclamation challenge but it does mean that every operation will need \emph{some} form of synchronization.
     36If each of these operation does need synchronization then it is possible a simpler solution achieves the same performance.
     37Because in addition to the classic challenge of memory reclamation, transferring the original data to the copy before reclaiming it poses additional challenges.
     38Especially merging subqueues while having a minimal impact on fairness and locality.
     39
     40\subsection{Read-Writer Lock}
     41A simpler approach would be to use a \newterm{Readers-Writer Lock}\cite{wiki:rwlock} where the resizing requires acquiring the lock as a writer while simply enqueing/dequeing \ats requires acquiring the lock as a reader.
     42Using a Readers-Writer lock solves the problem of dynamically resizing and leaves the challenge of finding or building a lock with sufficient good read-side performance.
     43Since this is not a very complex challenge and an ad-hoc solution is perfectly acceptable, building a Readers-Writer lock was the path taken.
     44
     45To maximize reader scalability, the readers should not contend with eachother when attempting to acquire and release the critical sections.
     46This effectively requires that each reader have its own piece of memory to mark as locked and unlocked.
     47Reades then acquire the lock wait for writers to finish the critical section and then acquire their local spinlocks.
     48Writers acquire the global lock, so writers have mutual exclusion among themselves, and then acquires each of the local reader locks.
     49Acquiring all the local locks guarantees mutual exclusion between the readers and the writer, while the wait on the read side prevents readers from continously starving the writer.
     50\todo{reference listings}
     51
     52\begin{lstlisting}
     53void read_lock() {
     54        // Step 1 : make sure no writers in
     55        while write_lock { Pause(); }
     56
     57        // May need fence here
     58
     59        // Step 2 : acquire our local lock
     60        while atomic_xchg( tls.lock ) {
     61                Pause();
     62        }
     63}
     64
     65void read_unlock() {
     66        tls.lock = false;
     67}
     68\end{lstlisting}
     69
     70\begin{lstlisting}
     71void write_lock()  {
     72        // Step 1 : lock global lock
     73        while atomic_xchg( write_lock ) {
     74                Pause();
     75        }
     76
     77        // Step 2 : lock per-proc locks
     78        for t in all_tls {
     79                while atomic_xchg( t.lock ) {
     80                        Pause();
     81                }
     82        }
     83}
     84
     85void write_unlock() {
     86        // Step 1 : release local locks
     87        for t in all_tls {
     88                t.lock = false;
     89        }
     90
     91        // Step 2 : release global lock
     92        write_lock = false;
     93}
     94\end{lstlisting}
    895
    996\section{Idle-Sleep}
     97
     98\subsection{Tracking Sleepers}
     99
     100\subsection{Event FDs}
     101
     102\subsection{Epoll}
     103
     104\subsection{\texttt{io\_uring}}
     105
     106\subsection{Reducing Latency}
  • libcfa/src/containers/array.hfa

    r30d91e4 r365c8dcb  
     1#include <assert.h>
    12
    23
     
    3435
    3536    static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, int i ) {
     37        assert( i < N );
    3638        return (Timmed &) a.strides[i];
    3739    }
    3840
    3941    static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned int i ) {
     42        assert( i < N );
    4043        return (Timmed &) a.strides[i];
    4144    }
    4245
    4346    static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, long int i ) {
     47        assert( i < N );
    4448        return (Timmed &) a.strides[i];
    4549    }
    4650
    4751    static inline Timmed & ?[?]( arpk(N, S, Timmed, Tbase) & a, unsigned long int i ) {
     52        assert( i < N );
    4853        return (Timmed &) a.strides[i];
    4954    }
  • src/AST/Convert.cpp

    r30d91e4 r365c8dcb  
    951951        }
    952952
     953        const ast::Expr * visit( const ast::DimensionExpr * node ) override final {
     954                auto expr = visitBaseExpr( node, new DimensionExpr( node->name ) );
     955                this->node = expr;
     956                return nullptr;
     957        }
     958
    953959        const ast::Expr * visit( const ast::AsmExpr * node ) override final {
    954960                auto expr = visitBaseExpr( node,
     
    24632469
    24642470        virtual void visit( const DimensionExpr * old ) override final {
    2465                 // DimensionExpr gets desugared away in Validate.
    2466                 // As long as new-AST passes don't use it, this cheap-cheerful error
    2467                 // detection helps ensure that these occurrences have been compiled
    2468                 // away, as expected.  To move the DimensionExpr boundary downstream
    2469                 // or move the new-AST translation boundary upstream, implement
    2470                 // DimensionExpr in the new AST and implement a conversion.
    2471                 (void) old;
    2472                 assert(false && "DimensionExpr should not be present at new-AST boundary");
     2471                this->node = visitBaseExpr( old,
     2472                        new ast::DimensionExpr( old->location, old->name )
     2473                );
    24732474        }
    24742475
  • src/AST/Expr.hpp

    r30d91e4 r365c8dcb  
    604604};
    605605
     606class DimensionExpr final : public Expr {
     607public:
     608        std::string name;
     609
     610        DimensionExpr( const CodeLocation & loc, std::string name )
     611        : Expr( loc ), name( name ) {}
     612
     613        const Expr * accept( Visitor & v ) const override { return v.visit( this ); }
     614private:
     615        DimensionExpr * clone() const override { return new DimensionExpr{ *this }; }
     616        MUTATE_FRIEND
     617};
     618
    606619/// A GCC "asm constraint operand" used in an asm statement, e.g. `[output] "=f" (result)`.
    607620/// https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Machine-Constraints.html#Machine-Constraints
  • src/AST/Fwd.hpp

    r30d91e4 r365c8dcb  
    8484class CommaExpr;
    8585class TypeExpr;
     86class DimensionExpr;
    8687class AsmExpr;
    8788class ImplicitCopyCtorExpr;
  • src/AST/Pass.hpp

    r30d91e4 r365c8dcb  
    184184        const ast::Expr *             visit( const ast::CommaExpr            * ) override final;
    185185        const ast::Expr *             visit( const ast::TypeExpr             * ) override final;
     186        const ast::Expr *             visit( const ast::DimensionExpr        * ) override final;
    186187        const ast::Expr *             visit( const ast::AsmExpr              * ) override final;
    187188        const ast::Expr *             visit( const ast::ImplicitCopyCtorExpr * ) override final;
  • src/AST/Pass.impl.hpp

    r30d91e4 r365c8dcb  
    575575                        __pass::symtab::addId( core, 0, func );
    576576                        if ( __visit_children() ) {
    577                                 // parameter declarations
     577                                maybe_accept( node, &FunctionDecl::type_params );
     578                                maybe_accept( node, &FunctionDecl::assertions );
    578579                                maybe_accept( node, &FunctionDecl::params );
    579580                                maybe_accept( node, &FunctionDecl::returns );
    580                                 // type params and assertions
    581                                 maybe_accept( node, &FunctionDecl::type_params );
    582                                 maybe_accept( node, &FunctionDecl::assertions );
     581                                maybe_accept( node, &FunctionDecl::type );
    583582                                // First remember that we are now within a function.
    584583                                ValueGuard< bool > oldInFunction( inFunction );
     
    15221521
    15231522//--------------------------------------------------------------------------
     1523// DimensionExpr
     1524template< typename core_t >
     1525const ast::Expr * ast::Pass< core_t >::visit( const ast::DimensionExpr * node ) {
     1526        VISIT_START( node );
     1527
     1528        if ( __visit_children() ) {
     1529                guard_symtab guard { *this };
     1530                maybe_accept( node, &DimensionExpr::result );
     1531        }
     1532
     1533        VISIT_END( Expr, node );
     1534}
     1535
     1536//--------------------------------------------------------------------------
    15241537// AsmExpr
    15251538template< typename core_t >
     
    18591872
    18601873        if ( __visit_children() ) {
    1861                 // xxx - should PointerType visit/mutate dimension?
     1874                maybe_accept( node, &PointerType::dimension );
    18621875                maybe_accept( node, &PointerType::base );
    18631876        }
  • src/AST/Pass.proto.hpp

    r30d91e4 r365c8dcb  
    2626
    2727struct PureVisitor;
     28
     29template<typename node_t>
     30node_t * deepCopy( const node_t * localRoot );
    2831
    2932namespace __pass {
     
    396399                static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) {
    397400                        ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name );
    398                         fwd->params = decl->params;
     401                        for ( const auto & param : decl->params ) {
     402                                fwd->params.push_back( deepCopy( param.get() ) );
     403                        }
    399404                        core.symtab.addStruct( fwd );
    400405                }
     
    405410                template<typename core_t>
    406411                static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) {
    407                         UnionDecl * fwd = new UnionDecl( decl->location, decl->name );
    408                         fwd->params = decl->params;
     412                        ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name );
     413                        for ( const auto & param : decl->params ) {
     414                                fwd->params.push_back( deepCopy( param.get() ) );
     415                        }
    409416                        core.symtab.addUnion( fwd );
    410417                }
  • src/AST/Print.cpp

    r30d91e4 r365c8dcb  
    11011101        }
    11021102
     1103        virtual const ast::Expr * visit( const ast::DimensionExpr * node ) override final {
     1104                os << "Type-Sys Value: " << node->name;
     1105                postprint( node );
     1106
     1107                return node;
     1108        }
     1109
    11031110        virtual const ast::Expr * visit( const ast::AsmExpr * node ) override final {
    11041111                os << "Asm Expression:" << endl;
  • src/AST/Visitor.hpp

    r30d91e4 r365c8dcb  
    7676    virtual const ast::Expr *             visit( const ast::CommaExpr            * ) = 0;
    7777    virtual const ast::Expr *             visit( const ast::TypeExpr             * ) = 0;
     78    virtual const ast::Expr *             visit( const ast::DimensionExpr        * ) = 0;
    7879    virtual const ast::Expr *             visit( const ast::AsmExpr              * ) = 0;
    7980    virtual const ast::Expr *             visit( const ast::ImplicitCopyCtorExpr * ) = 0;
  • src/Common/CodeLocationTools.cpp

    r30d91e4 r365c8dcb  
    147147    macro(CommaExpr, Expr) \
    148148    macro(TypeExpr, Expr) \
     149    macro(DimensionExpr, Expr) \
    149150    macro(AsmExpr, Expr) \
    150151    macro(ImplicitCopyCtorExpr, Expr) \
  • src/InitTweak/GenInit.cc

    r30d91e4 r365c8dcb  
    402402                                        retVal->location, "?{}", retVal, stmt->expr );
    403403                                assertf( ctorStmt,
    404                                         "ReturnFixer: genCtorDtor returned nllptr: %s / %s",
     404                                        "ReturnFixer: genCtorDtor returned nullptr: %s / %s",
    405405                                        toString( retVal ).c_str(),
    406406                                        toString( stmt->expr ).c_str() );
    407                                         stmtsToAddBefore.push_back( ctorStmt );
     407                                stmtsToAddBefore.push_back( ctorStmt );
    408408
    409409                                // Return the retVal object.
     
    421421        void genInit( ast::TranslationUnit & transUnit ) {
    422422                ast::Pass<HoistArrayDimension_NoResolve_New>::run( transUnit );
     423                ast::Pass<ReturnFixer_New>::run( transUnit );
     424        }
     425
     426        void fixReturnStatements( ast::TranslationUnit & transUnit ) {
    423427                ast::Pass<ReturnFixer_New>::run( transUnit );
    424428        }
  • src/InitTweak/GenInit.h

    r30d91e4 r365c8dcb  
    1010// Created On       : Mon May 18 07:44:20 2015
    1111// Last Modified By : Andrew Beach
    12 // Last Modified On : Fri Oct 22 16:08:00 2021
    13 // Update Count     : 6
     12// Last Modified On : Fri Mar 18 14:22:00 2022
     13// Update Count     : 7
    1414//
    1515
     
    3131        /// Converts return statements into copy constructor calls on the hidden return variable
    3232        void fixReturnStatements( std::list< Declaration * > & translationUnit );
     33        void fixReturnStatements( ast::TranslationUnit & translationUnit );
    3334
    3435        /// generates a single ctor/dtor statement using objDecl as the 'this' parameter and arg as the optional argument
  • src/Validate/module.mk

    r30d91e4 r365c8dcb  
    2222        Validate/ForallPointerDecay.cpp \
    2323        Validate/ForallPointerDecay.hpp \
     24        Validate/GenericParameter.cpp \
     25        Validate/GenericParameter.hpp \
    2426        Validate/HandleAttributes.cc \
    2527        Validate/HandleAttributes.h \
     
    2830        Validate/LabelAddressFixer.cpp \
    2931        Validate/LabelAddressFixer.hpp \
     32        Validate/ReturnCheck.cpp \
     33        Validate/ReturnCheck.hpp \
    3034        Validate/FindSpecialDeclsNew.cpp \
    3135        Validate/FindSpecialDecls.cc \
  • src/main.cc

    r30d91e4 r365c8dcb  
    1010// Created On       : Fri May 15 23:12:02 2015
    1111// Last Modified By : Andrew Beach
    12 // Last Modified On : Fri Mar 11 10:39:00 2022
    13 // Update Count     : 671
     12// Last Modified On : Wed Apr 13 11:11:00 2022
     13// Update Count     : 672
    1414//
    1515
     
    7575#include "Tuples/Tuples.h"                  // for expandMemberTuples, expan...
    7676#include "Validate/Autogen.hpp"             // for autogenerateRoutines
     77#include "Validate/GenericParameter.hpp"    // for fillGenericParameters, tr...
    7778#include "Validate/FindSpecialDecls.h"      // for findGlobalDecls
    7879#include "Validate/ForallPointerDecay.hpp"  // for decayForallPointers
     
    8081#include "Validate/InitializerLength.hpp"   // for setLengthFromInitializer
    8182#include "Validate/LabelAddressFixer.hpp"   // for fixLabelAddresses
     83#include "Validate/ReturnCheck.hpp"         // for checkReturnStatements
    8284#include "Virtual/ExpandCasts.h"            // for expandCasts
    8385
     
    327329                PASS( "Validate-A", SymTab::validate_A( translationUnit ) );
    328330                PASS( "Validate-B", SymTab::validate_B( translationUnit ) );
    329                 PASS( "Validate-C", SymTab::validate_C( translationUnit ) );
    330331
    331332                CodeTools::fillLocations( translationUnit );
     
    341342
    342343                        forceFillCodeLocations( transUnit );
     344
     345                        // Check as early as possible. Can't happen before
     346                        // LinkReferenceToType, observed failing when attempted
     347                        // before eliminateTypedef
     348                        PASS( "Validate Generic Parameters", Validate::fillGenericParameters( transUnit ) );
     349
     350                        PASS( "Translate Dimensions", Validate::translateDimensionParameters( transUnit ) );
     351                        PASS( "Check Function Returns", Validate::checkReturnStatements( transUnit ) );
     352
     353                        // Must happen before Autogen.
     354                        PASS( "Fix Return Statements", InitTweak::fixReturnStatements( transUnit ) );
    343355
    344356                        PASS( "Implement Concurrent Keywords", Concurrency::implementKeywords( transUnit ) );
     
    426438                        translationUnit = convert( move( transUnit ) );
    427439                } else {
     440                        PASS( "Validate-C", SymTab::validate_C( translationUnit ) );
    428441                        PASS( "Validate-D", SymTab::validate_D( translationUnit ) );
    429442                        PASS( "Validate-E", SymTab::validate_E( translationUnit ) );
Note: See TracChangeset for help on using the changeset viewer.