Changes in / [b2fe1c9:32cab5b]
- Files:
-
- 246 added
- 4 deleted
- 113 edited
Legend:
- Unmodified
- Added
- Removed
-
doc/LaTeXmacros/common.tex
rb2fe1c9 r32cab5b 11 11 %% Created On : Sat Apr 9 10:06:17 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Sat Feb 17 21:58:43 201814 %% Update Count : 3 6913 %% Last Modified On : Mon Mar 19 17:18:23 2018 14 %% Update Count : 379 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 101 101 % index macros 102 102 \newcommand{\italic}[1]{\emph{\hyperpage{#1}}} 103 \newcommand{\ definition}[1]{\textbf{\hyperpage{#1}}}103 \newcommand{\Definition}[1]{\textbf{\hyperpage{#1}}} 104 104 \newcommand{\see}[1]{\emph{see}~#1} 105 105 … … 114 114 \def\impl{\@bsphack\begingroup 115 115 \def\protect##1{\string##1\space}\@sanitize 116 \@wrxref{| definition}}116 \@wrxref{|Definition}} 117 117 \newcommand{\indexcode}[1]{{\lstinline$#1$}} 118 118 \def\use{\@bsphack\begingroup … … 124 124 \if@nobreak \ifvmode\nobreak\fi\fi\@esphack} 125 125 %\newcommand{\use}[1]{\index{#1@{\lstinline$#1$}}} 126 %\newcommand{\impl}[1]{\index{\protect#1@{\lstinline$\protect#1$}| definition}}126 %\newcommand{\impl}[1]{\index{\protect#1@{\lstinline$\protect#1$}|Definition}} 127 127 128 128 % inline text and lowercase index: \Index{inline and lowercase index text} … … 148 148 % Latin abbreviation 149 149 \newcommand{\abbrevFont}{\textit} % set empty for no italics 150 \@ifundefined{eg}{ 150 151 \newcommand{\EG}{\abbrevFont{e}.\abbrevFont{g}.} 151 152 \newcommand*{\eg}{% … … 153 154 {\@ifnextchar{:}{\EG}% 154 155 {\EG,\xspace}}% 155 }% 156 }}{}% 157 \@ifundefined{ie}{ 156 158 \newcommand{\IE}{\abbrevFont{i}.\abbrevFont{e}.} 157 159 \newcommand*{\ie}{% … … 159 161 {\@ifnextchar{:}{\IE}% 160 162 {\IE,\xspace}}% 161 }% 163 }}{}% 164 \@ifundefined{etc}{ 162 165 \newcommand{\ETC}{\abbrevFont{etc}} 163 166 \newcommand*{\etc}{% 164 167 \@ifnextchar{.}{\ETC}% 165 168 {\ETC.\xspace}% 166 }% 169 }}{}% 170 \@ifundefined{etal}{ 167 171 \newcommand{\ETAL}{\abbrevFont{et}~\abbrevFont{al}} 168 172 \newcommand*{\etal}{% 169 173 \@ifnextchar{.}{\protect\ETAL}% 170 174 {\protect\ETAL.\xspace}% 171 }% 175 }}{}% 176 \@ifundefined{viz}{ 172 177 \newcommand{\VIZ}{\abbrevFont{viz}} 173 178 \newcommand*{\viz}{% 174 179 \@ifnextchar{.}{\VIZ}% 175 180 {\VIZ.\xspace}% 176 } %181 }}{}% 177 182 \makeatother 178 183 -
doc/LaTeXmacros/lstlang.sty
rb2fe1c9 r32cab5b 8 8 %% Created On : Sat May 13 16:34:42 2017 9 9 %% Last Modified By : Peter A. Buhr 10 %% Last Modified On : Wed Aug 30 22:11:14 201711 %% Update Count : 1410 %% Last Modified On : Fri Apr 6 23:44:50 2018 11 %% Update Count : 20 12 12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 13 13 … … 31 31 \lstdefinelanguage{sml} { 32 32 morekeywords= { 33 EQUAL, GREATER, LESS, NONE, SOME, abstraction, abstype, and, andalso, array, as, before, bool, 34 case, char, datatype, do, else, end, eqtype, exception, exn, false, fn, fun, functor, handle, 35 if, in, include, infix, infixr, int, let, list, local, nil, nonfix, not, o, of, op, open, 36 option, orelse, overload, print, raise, real, rec, ref, sharing, sig, signature, string, struct, 37 structure, substring, then, true, type, unit, val, vector, where, while, with, withtype, word 38 }, 39 morestring=[b]", 40 morecomment=[s]{(*}{*)}, 33 EQUAL, GREATER, LESS, NONE, SOME, abstraction, abstype, and, andalso, array, as, before, 34 bool, case, char, datatype, do, else, end, eqtype, exception, exn, false, fn, fun, functor, 35 handle, if, in, include, infix, infixr, int, let, list, local, nil, nonfix, not, o, of, op, 36 open, option, orelse, overload, print, raise, real, rec, ref, sharing, sig, signature, 37 string, struct, structure, substring, then, true, type, unit, val, vector, where, while, 38 with, withtype, word 39 }, 40 morestring=[b]", 41 morecomment=[s]{(*}{*)}, 41 42 } 42 43 … … 82 83 83 84 \lstdefinelanguage{rust}{ 85 % Keywords 84 86 morekeywords=[1]{ 85 87 abstract, alignof, as, become, box, break, const, continue, crate, do, else, enum, extern, 86 87 88 88 false, final, fn, for, if, impl, in, let, loop, macro, match, mod, move, mut, offsetof, 89 override, priv, proc, pub, pure, ref, return, Self, self, sizeof, static, struct, super, 90 trait, true, type, typeof, unsafe, unsized, use, virtual, where, while, yield 89 91 }, 92 % Strings 90 93 morestring=[b]{"}, 94 % Comments 91 95 comment=[l]{//}, 92 96 morecomment=[s]{/*}{*/}, 97 % Options 93 98 sensitive=true 94 99 } 95 100 96 \lstdefinelanguage{ Pseudo}{101 \lstdefinelanguage{pseudo}{ 97 102 morekeywords={string,uint,int,bool,float}, 98 103 sensitive=true, … … 107 112 \lstdefinelanguage{CFA}[ANSI]{C}{ 108 113 morekeywords={ 109 _Alignas, _Alignof, __alignof, __alignof__, asm, __asm, __asm__, _ At, __attribute,110 __attribute__, auto, _Bool, catch, catchResume, choose, _Complex, __complex, __complex__,111 __const, __const__, disable, dtype, enable, __extension__, fallthrough, fallthru,112 finally, forall, ftype, _Generic, _Imaginary, inline, __label__, lvalue, _Noreturn, one_t,113 otype, restrict, _Static_assert, throw, throwResume, trait, try, ttype, typeof, __typeof,114 __typeof__, virtual, with, zero_t},115 morekeywords=[2]{116 _Atomic, coroutine, is_coroutine, is_monitor, is_thread, monitor, mutex, nomutex, or,117 resume, suspend, thread, _Thread_local, waitfor, when, yield},114 _Alignas, _Alignof, __alignof, __alignof__, asm, __asm, __asm__, __attribute, __attribute__, 115 auto, _Bool, catch, catchResume, choose, _Complex, __complex, __complex__, __const, __const__, 116 coroutine, disable, dtype, enable, __extension__, exception, fallthrough, fallthru, finally, 117 __float80, float80, __float128, float128, forall, ftype, _Generic, _Imaginary, __imag, __imag__, 118 inline, __inline, __inline__, __int128, int128, __label__, monitor, mutex, _Noreturn, one_t, or, 119 otype, restrict, __restrict, __restrict__, __signed, __signed__, _Static_assert, thread, 120 _Thread_local, throw, throwResume, timeout, trait, try, ttype, typeof, __typeof, __typeof__, 121 virtual, __volatile, __volatile__, waitfor, when, with, zero_t, 122 }, 118 123 moredirectives={defined,include_next}% 119 124 } -
doc/bibliography/pl.bib
rb2fe1c9 r32cab5b 780 780 title = {Boost Coroutine Library}, 781 781 year = 2015, 782 note = {\href{http://www.boost.org/doc/libs/1_61_0/libs/coroutine/doc/html/index.html} 783 {{http://www.boost.org/\-doc/\-libs/1\_61\_0/\-libs/\-coroutine/\-doc/\-html/\-index.html}} [Accessed September 2016]}, 782 howpublished= {\href{http://www.boost.org/doc/libs/1_61_0/libs/coroutine/doc/html/index.html} 783 {{http://www.boost.org/\-doc/\-libs/1\_61\_0/\-libs/\-coroutine/\-doc/\-html/\-index.html}}}, 784 note = {Accessed: 2016-09}, 784 785 } 785 786 … … 865 866 keywords = {ISO/IEC C 11}, 866 867 contributer = {pabuhr@plg}, 867 author= {C11},868 title = { Programming Languages -- {C}{ISO/IEC} 9889:2011-12},868 key = {C11}, 869 title = {C Programming Language {ISO/IEC} 9889:2011-12}, 869 870 edition = {3rd}, 870 871 publisher = {International Standard Organization}, … … 873 874 } 874 875 875 @techreport{C++Concepts, 876 type = {International Standard}, 876 @manual{C++Concepts, 877 877 keywords = {ISO/IEC TS 19217:2015}, 878 878 contributer = {a3moss@uwaterloo.ca}, 879 879 key = {Concepts}, 880 title = { Information technology -- Programming languages -- {C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}}Extensions for concepts {ISO/IEC} {TS} 19217:2015},880 title = {{C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}} Programming language -- Extensions for concepts {ISO/IEC} {TS} 19217:2015}, 881 881 publisher = {International Standard Organization}, 882 882 address = {\href{https://www.iso.org/standard/64031.html}{https://\-www.iso.org/\-standard/\-64031.html}}, 883 year = 2015 883 year = 2015, 884 884 } 885 885 886 886 @misc{Cforall, 887 887 key = {Cforall}, 888 title = { C$\forall$Features},888 title = {\textsf{C}{$\mathbf{\forall}$} Features}, 889 889 howpublished= {\url{https://plg.uwaterloo.ca/~cforall/features}}, 890 890 note = {Accessed: 2018-01-01}, … … 895 895 contributer = {pabuhr@plg}, 896 896 author = {Rodolfo Gabriel Esteves}, 897 title = { C$\forall$, a Study in Evolutionary Design in Programming Languages},897 title = {\textsf{C}$\mathbf{\forall}$, a Study in Evolutionary Design in Programming Languages}, 898 898 school = {School of Computer Science, University of Waterloo}, 899 899 year = 2004, … … 1022 1022 } 1023 1023 1024 @inproceedings{Necula02, 1025 author = {Necula, George C. and McPeak, Scott and Weimer, Westley}, 1026 title = {{CCured}: Type-safe Retrofitting of Legacy Code}, 1027 booktitle = {Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages}, 1028 series = {POPL '02}, 1029 year = {2002}, 1030 location = {Portland, Oregon}, 1031 pages = {128-139}, 1032 publisher = {ACM}, 1033 address = {New York, NY, USA}, 1034 } 1035 1024 1036 @techreport{cforall-ug, 1025 1037 keywords = {cforall, user guide}, 1026 1038 contributer = {pabuhr@plg}, 1027 1039 author = {Peter A. Buhr and Glen Ditchfield and David Till and Charles R. Zarnke}, 1028 title = { {\mbox{\mdseries\sffamily C{$\mathbf{\forall}$}}}\Users Guide, Version 0.1},1040 title = {\textsf{C}$\mathbf{\forall}$ Users Guide, Version 0.1}, 1029 1041 institution = {Department of Computer Science, University of Waterloo}, 1030 1042 address = {Waterloo, Ontario, Canada, N2L 3G1}, … … 1105 1117 title = {Programming Languages -- {Cobol} ISO/IEC 1989:2014}, 1106 1118 edition = {2nd}, 1107 institution 1119 institution = {International Standard Organization}, 1108 1120 address = {\href{https://www.iso.org/standard/51416.html}{https://\-www.iso.org/\-standard/\-51416.html}}, 1109 1121 year = 2014, … … 1117 1129 journal = sigplan, 1118 1130 year = 1984, 1119 month = jun, volume = 19, number = 6, pages = {1-12}, 1131 month = jun, 1132 volume = 19, 1133 number = 6, 1134 pages = {1-12}, 1120 1135 note = {Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction}, 1121 1136 abstract = { … … 1536 1551 @mastersthesis{Delisle18, 1537 1552 author = {Thierry Delisle }, 1538 title = {Concurrency in {C}$\mathbf{\forall}$},1553 title = {Concurrency in \textsf{C}$\mathbf{\forall}$}, 1539 1554 school = {School of Computer Science, University of Waterloo}, 1540 1555 year = 2018, … … 1702 1717 contributer = {a3moss@uwaterloo.ca}, 1703 1718 author = {Glen Ditchfield}, 1704 title = {Conversions for {Cforall}},1719 title = {Conversions for \textsf{C}$\mathbf{\forall}$}, 1705 1720 note = {\href{http://plg.uwaterloo.ca/~cforall/Conversions/index.html}{http://\-plg.uwaterloo.ca/\-\textasciitilde cforall/\-Conversions/\-index.html}}, 1706 1721 month = {Nov}, … … 1989 2004 1990 2005 @book{Stroustrup94, 1991 keywords 1992 contributor 1993 author 1994 title 1995 publisher 2006 keywords = {C++}, 2007 contributor = {wyrmok@plg}, 2008 author = {Bjarne Stroustrup}, 2009 title = {The Design and Evolution of {C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}}}, 2010 publisher = {Addison-Wesley}, 1996 2011 address = {Boston}, 1997 year 2012 year = 1994 1998 2013 } 1999 2014 … … 2738 2753 } 2739 2754 2740 @ online{GCCExtensions,2755 @misc{GCCExtensions, 2741 2756 contributer = {a3moss@uwaterloo.ca}, 2742 2757 key = {{GNU}}, … … 2744 2759 title = {Extensions to the {C} Language Family}, 2745 2760 year = 2014, 2746 note= {\href{https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html}{https://\-gcc.gnu.org/\-onlinedocs/\-gcc-4.7.2/\-gcc/\-C\-Extensions.html}},2747 urldate = {2017-04-02}2761 howpublished= {\href{https://gcc.gnu.org/onlinedocs/gcc-4.7.2/gcc/C-Extensions.html}{https://\-gcc.gnu.org/\-onlinedocs/\-gcc-4.7.2/\-gcc/\-C\-Extensions.html}}, 2762 note = {Accessed: 2017-04-02}, 2748 2763 } 2749 2764 … … 3083 3098 keywords = {GMP arbitrary-precision library}, 3084 3099 contributer = {pabuhr@plg}, 3100 key = {GMP}, 3085 3101 title = {{GNU} Multiple Precision Arithmetic Library}, 3086 author = {GMP}, 3087 organization= {GNU}, 3102 address = {GNU}, 3088 3103 year = 2016, 3089 3104 note = {\href{https://gmplib.org}{https://\-gmplib.org}}, … … 3114 3129 } 3115 3130 3116 @ online{GObject,3131 @misc{GObject, 3117 3132 keywords = {GObject}, 3118 3133 contributor = {a3moss@uwaterloo.ca}, 3119 author = {{GObject}},3120 organization= {The GNOMEProject},3121 title = {{GO bject}Reference Manual},3134 key = {GObject}, 3135 organization= {The {GNOME} Project}, 3136 title = {{GO}bject Reference Manual}, 3122 3137 year = 2014, 3123 url= {https://developer.gnome.org/gobject/stable/},3124 urldate = {2017-04-04}3138 howpublished= {https://developer.gnome.org/gobject/stable/}, 3139 note = {Accessed: 2017-04}, 3125 3140 } 3126 3141 … … 3380 3395 contributer = {pabuhr@plg}, 3381 3396 author = {Richard C. Bilson}, 3382 title = {Implementing Overloading and Polymorphism in Cforall},3397 title = {Implementing Overloading and Polymorphism in \textsf{C}$\mathbf{\forall}$}, 3383 3398 school = {School of Computer Science, University of Waterloo}, 3384 3399 year = 2003, … … 3646 3661 } 3647 3662 3663 @inproceedings{Pharr12, 3664 title = {ispc: A {SPMD} compiler for high-performance CPU programming}, 3665 author = {Pharr, Matt and Mark, William R}, 3666 booktitle = {Innovative Parallel Computing (InPar), 2012}, 3667 pages = {1--13}, 3668 year = {2012}, 3669 month = may, 3670 address = {San Jose, CA, USA}, 3671 publisher = {IEEE}, 3672 } 3673 3674 @inproceedings{DeLozier13, 3675 keywords = {C++, local pointers, memory safety, type-safety}, 3676 author = {DeLozier, Christian and Eisenberg, Richard and Nagarakatte, Santosh and Osera, Peter-Michael and Martin, Milo M.K. and Zdancewic, Steve}, 3677 title = {{I}ronclad {C++}: A Library-augmented Type-safe Subset of {C++}}, 3678 booktitle = {Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages \& Applications}, 3679 series = {OOPSLA'13}, 3680 year = {2013}, 3681 address = {Indianapolis, Indiana, USA}, 3682 pages = {287-304}, 3683 publisher = {ACM}, 3684 } 3685 3648 3686 @inproceedings{Hibbard77, 3649 3687 keywords = {algol-68, concurrency}, … … 3687 3725 3688 3726 @book{Java, 3689 keywords 3690 contributer = {pabuhr@plg}, 3691 author 3692 title 3727 keywords = {Java}, 3728 contributer = {pabuhr@plg}, 3729 author = {James Gosling and Bill Joy and Guy Steele and Gilad Bracha}, 3730 title = {The {Java} Language Specification}, 3693 3731 publisher = {Addison-Wesley}, 3694 3732 address = {Reading}, 3695 year 3733 year = 2000, 3696 3734 edition = {2nd}, 3697 3735 } 3698 3736 3699 3737 @manual{Java8, 3700 keywords 3701 contributer = {pabuhr@plg}, 3702 author 3703 title 3738 keywords = {Java SE 8}, 3739 contributer = {pabuhr@plg}, 3740 author = {James Gosling and Bill Joy and Guy Steele and Gilad Bracha and Alex Buckley}, 3741 title = {{Java} Language Specification}, 3704 3742 publisher = {Oracle}, 3705 year 3706 edition = { Java SE8},3743 year = 2015, 3744 edition = {{J}ava {SE} 8}, 3707 3745 } 3708 3746 … … 4639 4677 } 4640 4678 4641 @m anual{obj-c-book,4679 @misc{obj-c-book, 4642 4680 keywords = {objective-c}, 4643 4681 contributor = {a3moss@uwaterloo.ca}, 4644 author = {{Objective-C}}, 4645 title = {The {Objective-C} Programming Language}, 4646 organization= {Apple Computer Inc.}, 4647 address = {Cupertino, CA}, 4648 year = 2003 4649 } 4650 4651 @online{xcode7, 4682 key = {Objective-C}, 4683 title = {Objective-C}, 4684 publisher = {Apple Inc.}, 4685 year = 2015, 4686 howpublished= {\href{https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/ObjectiveC.html}{https://developer.apple.com/\-library/\-content/\-documentation/\-General/\-Conceptual/\-DevPedia-\-CocoaCore/\-ObjectiveC.html}}, 4687 note = {Accessed: 2018-03} 4688 } 4689 4690 @misc{xcode7, 4652 4691 keywords = {objective-c}, 4653 4692 contributor = {a3moss@uwaterloo.ca}, 4654 author = {{Xcode}},4655 title = {{X code}7 Release Notes},4693 key = {Xcode}, 4694 title = {{X}code 7 Release Notes}, 4656 4695 year = 2015, 4657 note= {\href{https://developer.apple.com/library/content/documentation/Xcode/Conceptual/RN-Xcode-Archive/Chapters/xc7_release_notes.html}{https://developer.apple.com/\-library/\-content/\-documentation/\-Xcode/\-Conceptual/\-RN-Xcode-Archive/\-Chapters/\-xc7\_release\_notes.html}},4658 urldate = {2017-04-04}4696 howpublished= {\href{https://developer.apple.com/library/content/documentation/Xcode/Conceptual/RN-Xcode-Archive/Chapters/xc7_release_notes.html}{https://developer.apple.com/\-library/\-content/\-documentation/\-Xcode/\-Conceptual/\-RN-Xcode-Archive/\-Chapters/\-xc7\_release\_notes.html}}, 4697 note = {Accessed: 2017-04} 4659 4698 } 4660 4699 … … 5196 5235 year = 1984, 5197 5236 series = {Computers and their Applications}, 5198 address = {Market Cross House, Cooper Street, Chichester, West Sussex, 5199 PO19 1EB, England}, 5237 address = {Market Cross House, Cooper Street, Chichester, West Sussex, PO19 1EB, England}, 5200 5238 summary = { 5201 5239 The principles of Procedural Abstraction, Data Type Completeness, … … 5249 5287 } 5250 5288 5251 @book{PowerPC, 5252 key = {PowerPC processor}, 5253 title = {Programming Environments Manual for 32-Bit Implementations of the PowerPC ArchitectureARM Architecture}, 5254 publisher = {Freescale Semiconductor}, 5255 volume = {MPCFPE32B}, 5256 edition = {Rev. 3}, 5257 month = 9, 5258 year = 2005, 5289 @inproceedings{Rafkind09, 5290 keywords = {accurate, C programming language, conservative, garbage collection, precise}, 5291 contributer = {pabuhr@plg}, 5292 author = {Rafkind, Jon and Wick, Adam and Regehr, John and Flatt, Matthew}, 5293 title = {Precise Garbage Collection for C}, 5294 booktitle = {Proceedings of the 2009 International Symposium on Memory Management}, 5295 series = {ISMM '09}, 5296 year = {2009}, 5297 location = {Dublin, Ireland}, 5298 pages = {39-48}, 5299 publisher = {ACM}, 5300 address = {New York, NY, USA}, 5259 5301 } 5260 5302 … … 5329 5371 5330 5372 @article{psa:persistence, 5331 keywords = {persistence, first-class procedures, closure, PS-Algol, 5332 Abstract Data Types}, 5373 keywords = {persistence, first-class procedures, closure, PS-Algol, Abstract Data Types}, 5333 5374 contributer = {gjditchfield@plg}, 5334 5375 author = {Malcolm P. Atkinson and Ronald Morrison}, … … 5361 5402 5362 5403 @article{Procol89, 5363 keywords = {active objects, object-oriented languages, 5364 object-based languages, explicit per-object protocol}, 5404 keywords = {active objects, object-oriented languages, object-based languages, explicit per-object protocol}, 5365 5405 contributer = {akgoel@plg}, 5366 5406 author = {Jan van den Bos and Chris Laffra}, … … 5376 5416 } 5377 5417 5418 @book{PowerPC, 5419 key = {PowerPC processor}, 5420 title = {Programming Environments Manual for 32-Bit Implementations of the PowerPC ArchitectureARM Architecture}, 5421 publisher = {Freescale Semiconductor}, 5422 volume = {MPCFPE32B}, 5423 edition = {Rev. 3}, 5424 month = 9, 5425 year = 2005, 5426 } 5427 5378 5428 @book{Butenhof97, 5379 5429 keywords = {PThreads, concurrency}, … … 5422 5472 contributer = {pabuhr@plg}, 5423 5473 key = {C++98}, 5424 title = { Programming Languages -- {C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}}},5425 organization= {International Standard ISO/IEC 14882:1998 (E)},5426 publisher = { American National Standards Institute},5427 address = { www.ansi.org},5474 title = {{C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}} Programming Language ISO/IEC 14882:1998}, 5475 edition = {1st}, 5476 publisher = {International Standard Organization}, 5477 address = {\href{https://www.iso.org/standard/25845.html}{https://\-www.iso.org/\-standard/\-25845.html}}, 5428 5478 year = 1998, 5429 5479 } … … 5432 5482 keywords = {ISO/IEC C++ 14}, 5433 5483 contributer = {pabuhr@plg}, 5434 author= {C++14},5435 title = { Programming Languages -- {C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}}ISO/IEC 14882:2014},5484 key = {C++14}, 5485 title = {{C}{\kern-.1em\hbox{\large\texttt{+\kern-.25em+}}} Programming Language ISO/IEC 14882:2014}, 5436 5486 edition = {4th}, 5437 5487 publisher = {International Standard Organization}, … … 5878 5928 5879 5929 @mastersthesis{Schluntz17, 5930 keywords = {constructors, destructors, tuples}, 5880 5931 author = {Robert Schluntz}, 5881 title = {Resource Management and Tuples in {C}$\mathbf{\forall}$},5932 title = {Resource Management and Tuples in \textsf{C}$\mathbf{\forall}$}, 5882 5933 school = {School of Computer Science, University of Waterloo}, 5883 5934 year = 2017, … … 5956 6007 keywords = {Rust programming language}, 5957 6008 contributer = {pabuhr@plg}, 5958 author = {{Rust}},5959 title = {The {R ust}Programming Language},5960 organization= {The Rust Project Developers},6009 key = {Rust}, 6010 title = {The {R}ust Programming Language}, 6011 address = {The Rust Project Developers}, 5961 6012 year = 2015, 5962 6013 note = {\href{https://doc.rust-lang.org/reference.html}{https://\-doc.rust-lang\-.org/\-reference.html}}, … … 5968 6019 keywords = {Scala programming language}, 5969 6020 contributer = {pabuhr@plg}, 5970 author = {{Scala}},5971 title = {{S cala}Language Specification, Version 2.11},5972 organization= {\'{E}cole Polytechnique F\'{e}d\'{e}rale de Lausanne},6021 key = {Scala}, 6022 title = {{S}cala Language Specification, Version 2.11}, 6023 address = {\'{E}cole Polytechnique F\'{e}d\'{e}rale de Lausanne}, 5973 6024 year = 2016, 5974 6025 note = {\href{http://www.scala-lang.org/files/archive/spec/2.11}{http://\-www.scala-lang.org/\-files/\-archive/\-spec/\-2.11}}, … … 6050 6101 number = 12, 6051 6102 pages = {66-76}, 6103 } 6104 6105 @article{Nickolls08, 6106 author = {Nickolls, John and Buck, Ian and Garland, Michael and Skadron, Kevin}, 6107 title = {Scalable Parallel Programming with CUDA}, 6108 journal = {Queue}, 6109 volume = {6}, 6110 number = {2}, 6111 month = mar, 6112 year = 2008, 6113 pages = {40-53}, 6114 publisher = {ACM}, 6115 address = {New York, NY, USA}, 6116 } 6117 6118 @inproceedings{Leissa14, 6119 title = {{S}ierra: a {SIMD} extension for {C}++}, 6120 author = {Lei{\ss}a, Roland and Haffner, Immanuel and Hack, Sebastian}, 6121 booktitle = {Proceedings of the 2014 Workshop on Workshop on programming models for SIMD/Vector processing}, 6122 pages = {17-24}, 6123 year = {2014}, 6124 organization= {ACM} 6052 6125 } 6053 6126 … … 6292 6365 @article{Smith98, 6293 6366 keywords = {Polymorphic C}, 6294 contributor 6295 title = {A sound polymorphic type system for a dialect of C},6367 contributor = {a3moss@uwaterloo.ca}, 6368 title = {A sound polymorphic type system for a dialect of {C}}, 6296 6369 author = {Smith, Geoffrey and Volpano, Dennis}, 6297 6370 journal = {Science of computer programming}, … … 6401 6474 } 6402 6475 6403 @ online{Sutter15,6476 @misc{Sutter15, 6404 6477 contributer = {pabuhr@plg}, 6405 6478 author = {Herb Sutter and Bjarne Stroustrup and Gabriel Dos Reis}, … … 6408 6481 month = oct, 6409 6482 year = 2015, 6410 pages = {1- -6},6483 pages = {1-6}, 6411 6484 numpages = {6}, 6412 note= {\href{http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf}{http://\-www.open-std.org/\-jtc1/\-sc22/\-wg21/\-docs/\-papers/\-2015/\-p0144r0.pdf}},6485 howpublished= {\href{http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0144r0.pdf}{http://\-www.open-std.org/\-jtc1/\-sc22/\-wg21/\-docs/\-papers/\-2015/\-p0144r0.pdf}}, 6413 6486 } 6414 6487 … … 6684 6757 } 6685 6758 6686 @online{TIOBE, 6687 contributer = {pabuhr@plg}, 6688 author = {{TIOBE Index}}, 6689 year = {February 2018}, 6690 url = {http://www.tiobe.com/tiobe_index}, 6759 @misc{TIOBE, 6760 contributer = {pabuhr@plg}, 6761 key = {TIOBE Index}, 6762 title = {{TIOBE} Index}, 6763 howpublished= {\href{http://www.tiobe.com/tiobe_index}{http://\-www.tiobe.com/\-tiobe\_index}}, 6764 note = {Accessed: 2018-09}, 6691 6765 } 6692 6766 … … 6699 6773 month = sep, 6700 6774 year = 1990, 6701 note = {}6702 6775 } 6703 6776 … … 7006 7079 } 7007 7080 7008 @ online{Vala,7081 @misc{Vala, 7009 7082 keywords = {GObject, Vala}, 7010 7083 contributor = {a3moss@uwaterloo.ca}, 7011 author = {{Vala}},7012 organization= {The GNOMEProject},7013 title = { Vala Reference Manual},7084 key = {Vala}, 7085 organization= {The {GNOME} Project}, 7086 title = {{V}ala Reference Manual}, 7014 7087 year = 2017, 7015 url = {https://wiki.gnome.org/Projects/Vala/Manual},7016 urldate = {2017-04-04}7088 howpublished= {\url{https://wiki.gnome.org/Projects/Vala/Manual}}, 7089 note = {Accessed: 2017-04} 7017 7090 } 7018 7091 -
doc/papers/concurrency/.gitignore
rb2fe1c9 r32cab5b 3 3 *.pdf 4 4 *.ps 5 6 Paper.out.ps 7 WileyNJD-AMA.bst -
doc/papers/concurrency/Makefile
rb2fe1c9 r32cab5b 3 3 Build = build 4 4 Figures = figures 5 Macros = ../../LaTeXmacros6 TeXLIB = .: style:annex:${Macros}:${Build}:../../bibliography:5 Macros = AMA/AMA-stix/ama 6 TeXLIB = .:annex:../../LaTeXmacros:${Macros}:${Build}:../../bibliography: 7 7 LaTeX = TEXINPUTS=${TeXLIB} && export TEXINPUTS && latex -halt-on-error -output-directory=${Build} 8 8 BibTeX = BIBINPUTS=${TeXLIB} && export BIBINPUTS && bibtex 9 9 10 MAKEFLAGS = --no-print-directory --silent #10 MAKEFLAGS = --no-print-directory # --silent 11 11 VPATH = ${Build} ${Figures} 12 12 … … 40 40 41 41 DOCUMENT = Paper.pdf 42 BASE = ${basename ${DOCUMENT}} 42 43 43 44 # Directives # … … 48 49 49 50 clean : 50 @rm -frv ${DOCUMENT} ${ basename ${DOCUMENT}}.ps ${Build}51 @rm -frv ${DOCUMENT} ${BASE}.ps WileyNJD-AMA.bst ${BASE}.out.ps ${Build} 51 52 52 53 # File Dependencies # 53 54 54 ${DOCUMENT} : ${ basename ${DOCUMENT}}.ps55 ${DOCUMENT} : ${BASE}.ps 55 56 ps2pdf $< 56 57 57 ${ basename ${DOCUMENT}}.ps : ${basename ${DOCUMENT}}.dvi58 ${BASE}.ps : ${BASE}.dvi 58 59 dvips ${Build}/$< -o $@ 59 60 60 ${ basename ${DOCUMENT}}.dvi : Makefile ${Build}${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \61 ${Macros}/common.tex ${Macros}/indexstyleannex/local.bib ../../bibliography/pl.bib61 ${BASE}.dvi : Makefile ${Build} ${BASE}.out.ps WileyNJD-AMA.bst ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \ 62 annex/local.bib ../../bibliography/pl.bib 62 63 # Must have *.aux file containing citations for bibtex 63 64 if [ ! -r ${basename $@}.aux ] ; then ${LaTeX} ${basename $@}.tex ; fi 64 -${BibTeX} ${Build}/${basename $@}65 ${BibTeX} ${Build}/${basename $@} 65 66 # Some citations reference others so run again to resolve these citations 66 67 ${LaTeX} ${basename $@}.tex 67 -${BibTeX} ${Build}/${basename $@}68 ${BibTeX} ${Build}/${basename $@} 68 69 # Run again to finish citations 69 70 ${LaTeX} ${basename $@}.tex … … 73 74 ${Build}: 74 75 mkdir -p ${Build} 76 77 ${BASE}.out.ps: 78 ln -fs build/Paper.out.ps . 79 80 WileyNJD-AMA.bst: 81 ln -fs AMA/AMA-stix/ama/WileyNJD-AMA.bst . 75 82 76 83 %.tex : %.fig -
doc/papers/concurrency/Paper.tex
rb2fe1c9 r32cab5b 1 % inline code ©...© (copyright symbol) emacs: C-q M-) 2 % red highlighting ®...® (registered trademark symbol) emacs: C-q M-. 3 % blue highlighting ß...ß (sharp s symbol) emacs: C-q M-_ 4 % green highlighting ¢...¢ (cent symbol) emacs: C-q M-" 5 % LaTex escape §...§ (section symbol) emacs: C-q M-' 6 % keyword escape ¶...¶ (pilcrow symbol) emacs: C-q M-^ 7 % math escape $...$ (dollar symbol) 8 9 \ documentclass[10pt]{article}1 \documentclass[AMA,STIX1COL]{WileyNJD-v2} 2 3 \articletype{RESEARCH ARTICLE}% 4 5 \received{26 April 2016} 6 \revised{6 June 2016} 7 \accepted{6 June 2016} 8 9 \raggedbottom 10 10 11 11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 12 12 13 13 % Latex packages used in the document. 14 \usepackage[T1]{fontenc} % allow Latin1 (extended ASCII) characters15 \usepackage{textcomp}16 \usepackage[latin1]{inputenc}17 \usepackage{fullpage,times,comment}18 14 \usepackage{epic,eepic} 15 \usepackage{xspace} 16 \usepackage{comment} 19 17 \usepackage{upquote} % switch curled `'" to straight 20 \usepackage{calc} 21 \usepackage{xspace} 22 \usepackage[labelformat=simple]{subfig} 18 \usepackage{listings} % format program code 19 \usepackage[labelformat=simple,aboveskip=0pt,farskip=0pt]{subfig} 23 20 \renewcommand{\thesubfigure}{(\alph{subfigure})} 24 \usepackage{ graphicx}25 \ usepackage{tabularx}26 \usepackage{multicol} 27 \usepackage{varioref} 28 \ usepackage{listings} % format program code29 \ usepackage[flushmargin]{footmisc} % support label/reference in footnote30 \ usepackage{latexsym} % \Box glyph31 \ usepackage{mathptmx} % better math font with "times"32 \usepackage[usenames]{color} 21 \usepackage{siunitx} 22 \sisetup{ binary-units=true } 23 %\input{style} % bespoke macros used in the document 24 25 \hypersetup{breaklinks=true} 26 \definecolor{OliveGreen}{cmyk}{0.64 0 0.95 0.40} 27 \definecolor{Mahogany}{cmyk}{0 0.85 0.87 0.35} 28 \definecolor{Plum}{cmyk}{0.50 1 0 0} 29 33 30 \usepackage[pagewise]{lineno} 34 31 \renewcommand{\linenumberfont}{\scriptsize\sffamily} 35 \usepackage{fancyhdr} 36 \usepackage{float} 37 \usepackage{siunitx} 38 \sisetup{ binary-units=true } 39 \input{style} % bespoke macros used in the document 40 \usepackage{url} 41 \usepackage[dvips,plainpages=false,pdfpagelabels,pdfpagemode=UseNone,colorlinks=true,pagebackref=true,linkcolor=blue,citecolor=blue,urlcolor=blue,pagebackref=true,breaklinks=true]{hyperref} 42 \usepackage{breakurl} 43 \urlstyle{rm} 44 45 \setlength{\topmargin}{-0.45in} % move running title into header 46 \setlength{\headsep}{0.25in} 32 33 \lefthyphenmin=4 % hyphen only after 4 characters 34 \righthyphenmin=4 47 35 48 36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% … … 50 38 % Names used in the document. 51 39 52 \newcommand{\Version}{1.0.0} 53 \newcommand{\CS}{C\raisebox{-0.9ex}{\large$^\sharp$}\xspace} 40 \newcommand{\CFAIcon}{\textsf{C}\raisebox{\depth}{\rotatebox{180}{\textsf{A}}}\xspace} % Cforall symbolic name 41 \newcommand{\CFA}{\protect\CFAIcon} % safe for section/caption 42 \newcommand{\CFL}{\textrm{Cforall}\xspace} % Cforall symbolic name 43 \newcommand{\Celeven}{\textrm{C11}\xspace} % C11 symbolic name 44 \newcommand{\CC}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}\xspace} % C++ symbolic name 45 \newcommand{\CCeleven}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}11\xspace} % C++11 symbolic name 46 \newcommand{\CCfourteen}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}14\xspace} % C++14 symbolic name 47 \newcommand{\CCseventeen}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}17\xspace} % C++17 symbolic name 48 \newcommand{\CCtwenty}{\textrm{C}\kern-.1em\hbox{+\kern-.25em+}20\xspace} % C++20 symbolic name 49 \newcommand{\Csharp}{C\raisebox{-0.7ex}{\Large$^\sharp$}\xspace} % C# symbolic name 50 51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 54 52 55 53 \newcommand{\Textbf}[2][red]{{\color{#1}{\textbf{#2}}}} … … 62 60 \newcommand{\TODO}{{\Textbf{TODO}}} 63 61 64 65 \newsavebox{\LstBox}66 67 62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 68 63 69 \setcounter{secnumdepth}{2} % number subsubsections 70 \setcounter{tocdepth}{2} % subsubsections in table of contents 71 % \linenumbers % comment out to turn off line numbering 72 73 \title{Concurrency in \CFA} 74 \author{Thierry Delisle and Peter A. Buhr, Waterloo, Ontario, Canada} 64 % Default underscore is too low and wide. Cannot use lstlisting "literate" as replacing underscore 65 % removes it as a variable-name character so keywords in variables are highlighted. MUST APPEAR 66 % AFTER HYPERREF. 67 %\DeclareTextCommandDefault{\textunderscore}{\leavevmode\makebox[1.2ex][c]{\rule{1ex}{0.1ex}}} 68 \renewcommand{\textunderscore}{\leavevmode\makebox[1.2ex][c]{\rule{1ex}{0.075ex}}} 69 70 \makeatletter 71 % parindent is relative, i.e., toggled on/off in environments like itemize, so store the value for 72 % use rather than use \parident directly. 73 \newlength{\parindentlnth} 74 \setlength{\parindentlnth}{\parindent} 75 76 \newcommand{\LstBasicStyle}[1]{{\lst@basicstyle{\lst@basicstyle{#1}}}} 77 \newcommand{\LstKeywordStyle}[1]{{\lst@basicstyle{\lst@keywordstyle{#1}}}} 78 \newcommand{\LstCommentStyle}[1]{{\lst@basicstyle{\lst@commentstyle{#1}}}} 79 80 \newlength{\gcolumnposn} % temporary hack because lstlisting does not handle tabs correctly 81 \newlength{\columnposn} 82 \setlength{\gcolumnposn}{3.5in} 83 \setlength{\columnposn}{\gcolumnposn} 84 \newcommand{\C}[2][\@empty]{\ifx#1\@empty\else\global\setlength{\columnposn}{#1}\global\columnposn=\columnposn\fi\hfill\makebox[\textwidth-\columnposn][l]{\lst@basicstyle{\LstCommentStyle{#2}}}} 85 \newcommand{\CRT}{\global\columnposn=\gcolumnposn} 86 87 % Denote newterms in particular font and index them without particular font and in lowercase, e.g., \newterm{abc}. 88 % The option parameter provides an index term different from the new term, e.g., \newterm[\texttt{abc}]{abc} 89 % The star version does not lowercase the index information, e.g., \newterm*{IBM}. 90 \newcommand{\newtermFontInline}{\emph} 91 \newcommand{\newterm}{\@ifstar\@snewterm\@newterm} 92 \newcommand{\@newterm}[2][\@empty]{\lowercase{\def\temp{#2}}{\newtermFontInline{#2}}\ifx#1\@empty\index{\temp}\else\index{#1@{\protect#2}}\fi} 93 \newcommand{\@snewterm}[2][\@empty]{{\newtermFontInline{#2}}\ifx#1\@empty\index{#2}\else\index{#1@{\protect#2}}\fi} 94 95 % Latin abbreviation 96 \newcommand{\abbrevFont}{\textit} % set empty for no italics 97 \@ifundefined{eg}{ 98 \newcommand{\EG}{\abbrevFont{e}.\abbrevFont{g}.} 99 \newcommand*{\eg}{% 100 \@ifnextchar{,}{\EG}% 101 {\@ifnextchar{:}{\EG}% 102 {\EG,\xspace}}% 103 }}{}% 104 \@ifundefined{ie}{ 105 \newcommand{\IE}{\abbrevFont{i}.\abbrevFont{e}.} 106 \newcommand*{\ie}{% 107 \@ifnextchar{,}{\IE}% 108 {\@ifnextchar{:}{\IE}% 109 {\IE,\xspace}}% 110 }}{}% 111 \@ifundefined{etc}{ 112 \newcommand{\ETC}{\abbrevFont{etc}} 113 \newcommand*{\etc}{% 114 \@ifnextchar{.}{\ETC}% 115 {\ETC.\xspace}% 116 }}{}% 117 \@ifundefined{etal}{ 118 \newcommand{\ETAL}{\abbrevFont{et}~\abbrevFont{al}} 119 \newcommand*{\etal}{% 120 \@ifnextchar{.}{\protect\ETAL}% 121 {\protect\ETAL.\xspace}% 122 }}{}% 123 \@ifundefined{viz}{ 124 \newcommand{\VIZ}{\abbrevFont{viz}} 125 \newcommand*{\viz}{% 126 \@ifnextchar{.}{\VIZ}% 127 {\VIZ.\xspace}% 128 }}{}% 129 \makeatother 130 131 \newenvironment{cquote}{% 132 \list{}{\lstset{resetmargins=true,aboveskip=0pt,belowskip=0pt}\topsep=3pt\parsep=0pt\leftmargin=\parindentlnth\rightmargin\leftmargin}% 133 \item\relax 134 }{% 135 \endlist 136 }% cquote 137 138 % CFA programming language, based on ANSI C (with some gcc additions) 139 \lstdefinelanguage{CFA}[ANSI]{C}{ 140 morekeywords={ 141 _Alignas, _Alignof, __alignof, __alignof__, asm, __asm, __asm__, __attribute, __attribute__, 142 auto, _Bool, catch, catchResume, choose, _Complex, __complex, __complex__, __const, __const__, 143 coroutine, disable, dtype, enable, __extension__, exception, fallthrough, fallthru, finally, 144 __float80, float80, __float128, float128, forall, ftype, _Generic, _Imaginary, __imag, __imag__, 145 inline, __inline, __inline__, __int128, int128, __label__, monitor, mutex, _Noreturn, one_t, or, 146 otype, restrict, __restrict, __restrict__, __signed, __signed__, _Static_assert, thread, 147 _Thread_local, throw, throwResume, timeout, trait, try, ttype, typeof, __typeof, __typeof__, 148 virtual, __volatile, __volatile__, waitfor, when, with, zero_t}, 149 moredirectives={defined,include_next}% 150 } 151 152 \lstset{ 153 language=CFA, 154 columns=fullflexible, 155 basicstyle=\linespread{0.9}\sf, % reduce line spacing and use sanserif font 156 stringstyle=\tt, % use typewriter font 157 tabsize=5, % N space tabbing 158 xleftmargin=\parindentlnth, % indent code to paragraph indentation 159 %mathescape=true, % LaTeX math escape in CFA code $...$ 160 escapechar=\$, % LaTeX escape in CFA code 161 keepspaces=true, % 162 showstringspaces=false, % do not show spaces with cup 163 showlines=true, % show blank lines at end of code 164 aboveskip=4pt, % spacing above/below code block 165 belowskip=3pt, 166 % replace/adjust listing characters that look bad in sanserif 167 literate={-}{\makebox[1ex][c]{\raisebox{0.4ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptstyle\land\,$}}1 168 {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 % {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1 169 {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{\makebox[1ex][c]{\raisebox{0.5ex}{\rule{0.8ex}{0.075ex}}}\kern-0.2ex{\textgreater}}2, 170 moredelim=**[is][\color{red}]{`}{`}, 171 }% lstset 172 173 % uC++ programming language, based on ANSI C++ 174 \lstdefinelanguage{uC++}[ANSI]{C++}{ 175 morekeywords={ 176 _Accept, _AcceptReturn, _AcceptWait, _Actor, _At, _CatchResume, _Cormonitor, _Coroutine, _Disable, 177 _Else, _Enable, _Event, _Finally, _Monitor, _Mutex, _Nomutex, _PeriodicTask, _RealTimeTask, 178 _Resume, _Select, _SporadicTask, _Task, _Timeout, _When, _With, _Throw}, 179 } 180 \lstdefinelanguage{Golang}{ 181 morekeywords=[1]{package,import,func,type,struct,return,defer,panic,recover,select,var,const,iota,}, 182 morekeywords=[2]{string,uint,uint8,uint16,uint32,uint64,int,int8,int16,int32,int64, 183 bool,float32,float64,complex64,complex128,byte,rune,uintptr, error,interface}, 184 morekeywords=[3]{map,slice,make,new,nil,len,cap,copy,close,true,false,delete,append,real,imag,complex,chan,}, 185 morekeywords=[4]{for,break,continue,range,goto,switch,case,fallthrough,if,else,default,}, 186 morekeywords=[5]{Println,Printf,Error,}, 187 sensitive=true, 188 morecomment=[l]{//}, 189 morecomment=[s]{/*}{*/}, 190 morestring=[b]', 191 morestring=[b]", 192 morestring=[s]{`}{`}, 193 } 194 195 \lstnewenvironment{cfa}[1][] 196 {\lstset{#1}} 197 {} 198 \lstnewenvironment{C++}[1][] % use C++ style 199 {\lstset{language=C++,moredelim=**[is][\protect\color{red}]{`}{`},#1}\lstset{#1}} 200 {} 201 \lstnewenvironment{uC++}[1][] 202 {\lstset{#1}} 203 {} 204 \lstnewenvironment{Go}[1][] 205 {\lstset{#1}} 206 {} 207 208 % inline code @...@ 209 \lstMakeShortInline@% 210 211 212 \title{\texorpdfstring{Concurrency in \protect\CFA}{Concurrency in Cforall}} 213 214 \author[1]{Thierry Delisle} 215 \author[1]{Peter A. Buhr*} 216 \authormark{Thierry Delisle \textsc{et al}} 217 218 \address[1]{\orgdiv{Cheriton School of Computer Science}, \orgname{University of Waterloo}, \orgaddress{\state{Ontario}, \country{Canada}}} 219 220 \corres{*Peter A. Buhr, \email{pabuhr{\char`\@}uwaterloo.ca}} 221 \presentaddress{Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada} 222 223 224 \abstract[Summary]{ 225 \CFA is a modern, polymorphic, \emph{non-object-oriented} extension of the C programming language. 226 This paper discusses the design of the concurrency and parallelism features in \CFA, and the concurrent runtime-system. 227 These features are created from scratch as ISO C lacks concurrency, relying largely on pthreads. 228 Coroutines and lightweight (user) threads are introduced into the language. 229 In addition, monitors are added as a high-level mechanism for mutual exclusion and synchronization. 230 A unique contribution is allowing multiple monitors to be safely acquired simultaneously. 231 All features respect the expectations of C programmers, while being fully integrate with the \CFA polymorphic type-system and other language features. 232 Finally, experimental results are presented to compare the performance of the new features with similar mechanisms in other concurrent programming-languages. 233 }% 234 235 \keywords{concurrency, parallelism, coroutines, threads, monitors, runtime, C, Cforall} 75 236 76 237 77 238 \begin{document} 239 \linenumbers % comment out to turn off line numbering 240 78 241 \maketitle 79 242 80 \begin{abstract} 81 \CFA is a modern, \emph{non-object-oriented} extension of the C programming language. 82 This paper serves as a definition and an implementation for the concurrency and parallelism \CFA offers. These features are created from scratch due to the lack of concurrency in ISO C. Lightweight threads are introduced into the language. In addition, monitors are introduced as a high-level tool for control-flow based synchronization and mutual-exclusion. The main contributions of this paper are two-fold: it extends the existing semantics of monitors introduce by~\cite{Hoare74} to handle monitors in groups and also details the engineering effort needed to introduce these features as core language features. Indeed, these features are added with respect to expectations of C programmers, and integrate with the \CFA type-system and other language features. 83 \end{abstract} 84 85 %---------------------------------------------------------------------- 86 % MAIN BODY 87 %---------------------------------------------------------------------- 88 243 % ====================================================================== 89 244 % ====================================================================== 90 245 \section{Introduction} 91 246 % ====================================================================== 92 93 This paper provides a minimal concurrency \textbf{api} that is simple, efficient and can be reused to build higher-level features. The simplest possible concurrency system is a thread and a lock but this low-level approach is hard to master. An easier approach for users is to support higher-level constructs as the basis of concurrency. Indeed, for highly productive concurrent programming, high-level approaches are much more popular~\cite{HPP:Study}. Examples are task based, message passing and implicit threading. The high-level approach and its minimal \textbf{api} are tested in a dialect of C, called \CFA. Furthermore, the proposed \textbf{api} doubles as an early definition of the \CFA language and library. This paper also provides an implementation of the concurrency library for \CFA as well as all the required language features added to the source-to-source translator. 94 95 There are actually two problems that need to be solved in the design of concurrency for a programming language: which concurrency and which parallelism tools are available to the programmer. While these two concepts are often combined, they are in fact distinct, requiring different tools~\cite{Buhr05a}. Concurrency tools need to handle mutual exclusion and synchronization, while parallelism tools are about performance, cost and resource utilization. 96 97 In the context of this paper, a \textbf{thread} is a fundamental unit of execution that runs a sequence of code, generally on a program stack. Having multiple simultaneous threads gives rise to concurrency and generally requires some kind of locking mechanism to ensure proper execution. Correspondingly, \textbf{concurrency} is defined as the concepts and challenges that occur when multiple independent (sharing memory, timing dependencies, etc.) concurrent threads are introduced. Accordingly, \textbf{locking} (and by extension locks) are defined as a mechanism that prevents the progress of certain threads in order to avoid problems due to concurrency. Finally, in this paper \textbf{parallelism} is distinct from concurrency and is defined as running multiple threads simultaneously. More precisely, parallelism implies \emph{actual} simultaneous execution as opposed to concurrency which only requires \emph{apparent} simultaneous execution. As such, parallelism is only observable in the differences in performance or, more generally, differences in timing. 247 % ====================================================================== 248 249 This paper provides a minimal concurrency \newterm{Abstract Program Interface} (API) that is simple, efficient and can be used to build other concurrency features. 250 While the simplest concurrency system is a thread and a lock, this low-level approach is hard to master. 251 An easier approach for programmers is to support higher-level constructs as the basis of concurrency. 252 Indeed, for highly productive concurrent programming, high-level approaches are much more popular~\cite{Hochstein05}. 253 Examples of high-level approaches are task based~\cite{TBB}, message passing~\cite{Erlang,MPI}, and implicit threading~\cite{OpenMP}. 254 255 This paper used the following terminology. 256 A \newterm{thread} is a fundamental unit of execution that runs a sequence of code and requires a stack to maintain state. 257 Multiple simultaneous threads gives rise to \newterm{concurrency}, which requires locking to ensure safe communication and access to shared data. 258 % Correspondingly, concurrency is defined as the concepts and challenges that occur when multiple independent (sharing memory, timing dependencies, \etc) concurrent threads are introduced. 259 \newterm{Locking}, and by extension locks, are defined as a mechanism to prevent progress of threads to provide safety. 260 \newterm{Parallelism} is running multiple threads simultaneously. 261 Parallelism implies \emph{actual} simultaneous execution, where concurrency only requires \emph{apparent} simultaneous execution. 262 As such, parallelism is only observable in differences in performance, which is observed through differences in timing. 263 264 Hence, there are two problems to be solved in the design of concurrency for a programming language: concurrency and parallelism. 265 While these two concepts are often combined, they are in fact distinct, requiring different tools~\cite[\S~2]{Buhr05a}. 266 Concurrency tools handle synchronization and mutual exclusion, while parallelism tools handle performance, cost and resource utilization. 267 268 The proposed concurrency API is implemented in a dialect of C, called \CFA. 269 The paper discusses how the language features are added to the \CFA translator with respect to parsing, semantic, and type checking, and the corresponding high-perforamnce runtime-library to implement the concurrency features. 98 270 99 271 % ====================================================================== … … 105 277 The following is a quick introduction to the \CFA language, specifically tailored to the features needed to support concurrency. 106 278 107 \CFA is an extension of ISO-C and therefore supports all of the same paradigms as C. It is a non-object-oriented system-language, meaning most of the major abstractions have either no runtime overhead or can be opted out easily. Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. The vast majority of the code produced by the \CFA translator respects memory layouts and calling conventions laid out by C. Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (e.g., {\tt this}), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent 108 values''~\cite[3.15]{C11}}, most importantly construction and destruction of objects. Most of the following code examples can be found on the \CFA website~\cite{www-cfa}. 109 110 % ====================================================================== 279 \CFA is an extension of ISO-C and therefore supports all of the same paradigms as C. 280 It is a non-object-oriented system-language, meaning most of the major abstractions have either no runtime overhead or can be opted out easily. 281 Like C, the basics of \CFA revolve around structures and routines, which are thin abstractions over machine code. 282 The vast majority of the code produced by the \CFA translator respects memory layouts and calling conventions laid out by C. 283 Interestingly, while \CFA is not an object-oriented language, lacking the concept of a receiver (\eg {\tt this}), it does have some notion of objects\footnote{C defines the term objects as : ``region of data storage in the execution environment, the contents of which can represent 284 values''~\cite[3.15]{C11}}, most importantly construction and destruction of objects. 285 Most of the following code examples can be found on the \CFA website~\cite{Cforall}. 286 287 111 288 \subsection{References} 112 289 113 Like \CC, \CFA introduces rebind-able references providing multiple dereferencing as an alternative to pointers. In regards to concurrency, the semantic difference between pointers and references are not particularly relevant, but since this document uses mostly references, here is a quick overview of the semantics: 114 \begin{cfacode} 290 Like \CC, \CFA introduces rebind-able references providing multiple dereferencing as an alternative to pointers. 291 In regards to concurrency, the semantic difference between pointers and references are not particularly relevant, but since this document uses mostly references, here is a quick overview of the semantics: 292 \begin{cfa} 115 293 int x, *p1 = &x, **p2 = &p1, ***p3 = &p2, 116 294 &r1 = x, &&r2 = r1, &&&r3 = r2; 117 ***p3 = 3; //change x118 r3 = 3; //change x, ***r3119 **p3 = ...; //change p1120 *p3 = ...; //change p2121 int y, z, & ar[3] = {x, y, z}; //initialize array of references122 typeof( ar[1]) p; //is int, referenced object type123 typeof(&ar[1]) q; //is int &, reference type124 sizeof( ar[1]) == sizeof(int); //is true, referenced object size125 sizeof(&ar[1]) == sizeof(int *); //is true, reference size126 \end{cfa code}295 ***p3 = 3; $\C{// change x}$ 296 r3 = 3; $\C{// change x, ***r3}$ 297 **p3 = ...; $\C{// change p1}$ 298 *p3 = ...; $\C{// change p2}$ 299 int y, z, & ar[3] = {x, y, z}; $\C{// initialize array of references}$ 300 typeof( ar[1]) p; $\C{// is int, referenced object type}$ 301 typeof(&ar[1]) q; $\C{// is int \&, reference type}$ 302 sizeof( ar[1]) == sizeof(int); $\C{// is true, referenced object size}$ 303 sizeof(&ar[1]) == sizeof(int *); $\C{// is true, reference size}$ 304 \end{cfa} 127 305 The important take away from this code example is that a reference offers a handle to an object, much like a pointer, but which is automatically dereferenced for convenience. 128 306 … … 130 308 \subsection{Overloading} 131 309 132 Another important feature of \CFA is function overloading as in Java and \CC, where routines with the same name are selected based on the number and type of the arguments. As well, \CFA uses the return type as part of the selection criteria, as in Ada~\cite{Ada}. For routines with multiple parameters and returns, the selection is complex. 133 \begin{cfacode} 134 //selection based on type and number of parameters 135 void f(void); //(1) 136 void f(char); //(2) 137 void f(int, double); //(3) 138 f(); //select (1) 139 f('a'); //select (2) 140 f(3, 5.2); //select (3) 141 142 //selection based on type and number of returns 143 char f(int); //(1) 144 double f(int); //(2) 145 char c = f(3); //select (1) 146 double d = f(4); //select (2) 147 \end{cfacode} 148 This feature is particularly important for concurrency since the runtime system relies on creating different types to represent concurrency objects. Therefore, overloading is necessary to prevent the need for long prefixes and other naming conventions that prevent name clashes. As seen in section \ref{basics}, routine \code{main} is an example that benefits from overloading. 310 Another important feature of \CFA is function overloading as in Java and \CC, where routines with the same name are selected based on the number and type of the arguments. 311 As well, \CFA uses the return type as part of the selection criteria, as in Ada~\cite{Ada}. 312 For routines with multiple parameters and returns, the selection is complex. 313 \begin{cfa} 314 // selection based on type and number of parameters 315 void f(void); $\C{// (1)}$ 316 void f(char); $\C{// (2)}$ 317 void f(int, double); $\C{// (3)}$ 318 f(); $\C{// select (1)}$ 319 f('a'); $\C{// select (2)}$ 320 f(3, 5.2); $\C{// select (3)}$ 321 322 // selection based on type and number of returns 323 char f(int); $\C{// (1)}$ 324 double f(int); $\C{// (2)}$ 325 char c = f(3); $\C{// select (1)}$ 326 double d = f(4); $\C{// select (2)}$ 327 \end{cfa} 328 This feature is particularly important for concurrency since the runtime system relies on creating different types to represent concurrency objects. 329 Therefore, overloading is necessary to prevent the need for long prefixes and other naming conventions that prevent name clashes. 330 As seen in section \ref{basics}, routine @main@ is an example that benefits from overloading. 149 331 150 332 % ====================================================================== 151 333 \subsection{Operators} 152 Overloading also extends to operators. The syntax for denoting operator-overloading is to name a routine with the symbol of the operator and question marks where the arguments of the operation appear, e.g.: 153 \begin{cfacode} 154 int ++? (int op); //unary prefix increment 155 int ?++ (int op); //unary postfix increment 156 int ?+? (int op1, int op2); //binary plus 157 int ?<=?(int op1, int op2); //binary less than 158 int ?=? (int & op1, int op2); //binary assignment 159 int ?+=?(int & op1, int op2); //binary plus-assignment 334 Overloading also extends to operators. 335 The syntax for denoting operator-overloading is to name a routine with the symbol of the operator and question marks where the arguments of the operation appear, \eg: 336 \begin{cfa} 337 int ++? (int op); $\C{// unary prefix increment}$ 338 int ?++ (int op); $\C{// unary postfix increment}$ 339 int ?+? (int op1, int op2); $\C{// binary plus}$ 340 int ?<=?(int op1, int op2); $\C{// binary less than}$ 341 int ?=? (int & op1, int op2); $\C{// binary assignment}$ 342 int ?+=?(int & op1, int op2); $\C{// binary plus-assignment}$ 160 343 161 344 struct S {int i, j;}; 162 S ?+?(S op1, S op2) { //add two structures345 S ?+?(S op1, S op2) { $\C{// add two structures}$ 163 346 return (S){op1.i + op2.i, op1.j + op2.j}; 164 347 } 165 348 S s1 = {1, 2}, s2 = {2, 3}, s3; 166 s3 = s1 + s2; //compute sum: s3 == {2, 5}167 \end{cfa code}349 s3 = s1 + s2; $\C{// compute sum: s3 == {2, 5}}$ 350 \end{cfa} 168 351 While concurrency does not use operator overloading directly, this feature is more important as an introduction for the syntax of constructors. 169 352 170 353 % ====================================================================== 171 354 \subsection{Constructors/Destructors} 172 Object lifetime is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object lifetime as a means of synchronization and/or mutual exclusion. Since \CFA relies heavily on the lifetime of objects, constructors and destructors is a core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors: 173 \begin{cfacode} 355 Object lifetime is often a challenge in concurrency. \CFA uses the approach of giving concurrent meaning to object lifetime as a means of synchronization and/or mutual exclusion. 356 Since \CFA relies heavily on the lifetime of objects, constructors and destructors is a core feature required for concurrency and parallelism. \CFA uses the following syntax for constructors and destructors: 357 \begin{cfa} 174 358 struct S { 175 359 size_t size; 176 360 int * ia; 177 361 }; 178 void ?{}(S & s, int asize) { //constructor operator179 s.size = asize; //initialize fields362 void ?{}(S & s, int asize) { $\C{// constructor operator}$ 363 s.size = asize; $\C{// initialize fields}$ 180 364 s.ia = calloc(size, sizeof(S)); 181 365 } 182 void ^?{}(S & s) { //destructor operator183 free(ia); //de-initialization fields366 void ^?{}(S & s) { $\C{// destructor operator}$ 367 free(ia); $\C{// de-initialization fields}$ 184 368 } 185 369 int main() { 186 S x = {10}, y = {100}; //implicit calls: ?{}(x, 10), ?{}(y, 100) 187 ... //use x and y 188 ^x{}; ^y{}; //explicit calls to de-initialize 189 x{20}; y{200}; //explicit calls to reinitialize 190 ... //reuse x and y 191 } //implicit calls: ^?{}(y), ^?{}(x) 192 \end{cfacode} 193 The language guarantees that every object and all their fields are constructed. Like \CC, construction of an object is automatically done on allocation and destruction of the object is done on deallocation. Allocation and deallocation can occur on the stack or on the heap. 194 \begin{cfacode} 370 S x = {10}, y = {100}; $\C{// implicit calls: ?\{\}(x, 10), ?\{\}(y, 100)}$ 371 ... $\C{// use x and y}$ 372 ^x{}; ^y{}; $\C{// explicit calls to de-initialize}$ 373 x{20}; y{200}; $\C{// explicit calls to reinitialize}$ 374 ... $\C{// reuse x and y}$ 375 } $\C{// implicit calls: \^?\{\}(y), \^?\{\}(x)}$ 376 \end{cfa} 377 The language guarantees that every object and all their fields are constructed. 378 Like \CC, construction of an object is automatically done on allocation and destruction of the object is done on deallocation. 379 Allocation and deallocation can occur on the stack or on the heap. 380 \begin{cfa} 195 381 { 196 struct S s = {10}; //allocation, call constructor382 struct S s = {10}; $\C{// allocation, call constructor}$ 197 383 ... 198 } //deallocation, call destructor199 struct S * s = new(); //allocation, call constructor384 } $\C{// deallocation, call destructor}$ 385 struct S * s = new(); $\C{// allocation, call constructor}$ 200 386 ... 201 delete(s); //deallocation, call destructor202 \end{cfa code}203 Note that like \CC, \CFA introduces \code{new} and \code{delete}, which behave like \code{malloc} and \code{free} in addition to constructing and destructing objects, after calling \code{malloc} and before calling \code{free}, respectively.387 delete(s); $\C{// deallocation, call destructor}$ 388 \end{cfa} 389 Note that like \CC, \CFA introduces @new@ and @delete@, which behave like @malloc@ and @free@ in addition to constructing and destructing objects, after calling @malloc@ and before calling @free@, respectively. 204 390 205 391 % ====================================================================== 206 392 \subsection{Parametric Polymorphism} 207 393 \label{s:ParametricPolymorphism} 208 Routines in \CFA can also be reused for multiple types. This capability is done using the \code{forall} clauses, which allow separately compiled routines to support generic usage over multiple types. For example, the following sum function works for any type that supports construction from 0 and addition: 209 \begin{cfacode} 210 //constraint type, 0 and + 394 Routines in \CFA can also be reused for multiple types. 395 This capability is done using the @forall@ clauses, which allow separately compiled routines to support generic usage over multiple types. 396 For example, the following sum function works for any type that supports construction from 0 and addition: 397 \begin{cfa} 398 // constraint type, 0 and + 211 399 forall(otype T | { void ?{}(T *, zero_t); T ?+?(T, T); }) 212 400 T sum(T a[ ], size_t size) { 213 T total = 0; //construct T from 0401 T total = 0; $\C{// construct T from 0}$ 214 402 for(size_t i = 0; i < size; i++) 215 total = total + a[i]; //select appropriate +403 total = total + a[i]; $\C{// select appropriate +}$ 216 404 return total; 217 405 } 218 406 219 407 S sa[5]; 220 int i = sum(sa, 5); //use S's 0 construction and + 221 \end{cfacode} 222 223 Since writing constraints on types can become cumbersome for more constrained functions, \CFA also has the concept of traits. Traits are named collection of constraints that can be used both instead and in addition to regular constraints: 224 \begin{cfacode} 408 int i = sum(sa, 5); $\C{// use S's 0 construction and +}$ 409 \end{cfa} 410 411 Since writing constraints on types can become cumbersome for more constrained functions, \CFA also has the concept of traits. 412 Traits are named collection of constraints that can be used both instead and in addition to regular constraints: 413 \begin{cfa} 225 414 trait summable( otype T ) { 226 void ?{}(T *, zero_t); //constructor from 0 literal227 T ?+?(T, T); //assortment of additions415 void ?{}(T *, zero_t); $\C{// constructor from 0 literal}$ 416 T ?+?(T, T); $\C{// assortment of additions}$ 228 417 T ?+=?(T *, T); 229 418 T ++?(T *); 230 419 T ?++(T *); 231 420 }; 232 forall( otype T | summable(T) ) //use trait421 forall( otype T | summable(T) ) $\C{// use trait}$ 233 422 T sum(T a[], size_t size); 234 \end{cfacode} 235 236 Note that the type use for assertions can be either an \code{otype} or a \code{dtype}. Types declared as \code{otype} refer to ``complete'' objects, i.e., objects with a size, a default constructor, a copy constructor, a destructor and an assignment operator. Using \code{dtype,} on the other hand, has none of these assumptions but is extremely restrictive, it only guarantees the object is addressable. 423 \end{cfa} 424 425 Note that the type use for assertions can be either an @otype@ or a @dtype@. 426 Types declared as @otype@ refer to ``complete'' objects, \ie objects with a size, a default constructor, a copy constructor, a destructor and an assignment operator. 427 Using @dtype@, on the other hand, has none of these assumptions but is extremely restrictive, it only guarantees the object is addressable. 237 428 238 429 % ====================================================================== 239 430 \subsection{with Clause/Statement} 240 Since \CFA lacks the concept of a receiver, certain functions end up needing to repeat variable names often. To remove this inconvenience, \CFA provides the \code{with} statement, which opens an aggregate scope making its fields directly accessible (like Pascal). 241 \begin{cfacode} 431 Since \CFA lacks the concept of a receiver, certain functions end up needing to repeat variable names often. 432 To remove this inconvenience, \CFA provides the @with@ statement, which opens an aggregate scope making its fields directly accessible (like Pascal). 433 \begin{cfa} 242 434 struct S { int i, j; }; 243 int mem(S & this) with (this) //with clause244 i = 1; //this->i245 j = 2; //this->j435 int mem(S & this) with (this) $\C{// with clause}$ 436 i = 1; $\C{// this->i}$ 437 j = 2; $\C{// this->j}$ 246 438 } 247 439 int foo() { 248 440 struct S1 { ... } s1; 249 441 struct S2 { ... } s2; 250 with (s1) //with statement442 with (s1) $\C{// with statement}$ 251 443 { 252 // access fields of s1 without qualification253 with (s2) //nesting444 // access fields of s1 without qualification 445 with (s2) $\C{// nesting}$ 254 446 { 255 // access fields of s1 and s2 without qualification447 // access fields of s1 and s2 without qualification 256 448 } 257 449 } 258 with (s1, s2) //scopes open in parallel450 with (s1, s2) $\C{// scopes open in parallel}$ 259 451 { 260 // access fields of s1 and s2 without qualification452 // access fields of s1 and s2 without qualification 261 453 } 262 454 } 263 \end{cfa code}264 265 For more information on \CFA see \cite{cforall-ug, rob-thesis,www-cfa}.455 \end{cfa} 456 457 For more information on \CFA see \cite{cforall-ug,Schluntz17,www-cfa}. 266 458 267 459 % ====================================================================== … … 270 462 % ====================================================================== 271 463 % ====================================================================== 272 Before any detailed discussion of the concurrency and parallelism in \CFA, it is important to describe the basics of concurrency and how they are expressed in \CFA user code. 273 274 \section{Basics of concurrency} 275 At its core, concurrency is based on having multiple call-stacks and scheduling among threads of execution executing on these stacks. Concurrency without parallelism only requires having multiple call stacks (or contexts) for a single thread of execution. 276 277 Execution with a single thread and multiple stacks where the thread is self-scheduling deterministically across the stacks is called coroutining. Execution with a single and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread's perspective) across the stacks is called concurrency. 278 279 Therefore, a minimal concurrency system can be achieved by creating coroutines (see Section \ref{coroutine}), which instead of context-switching among each other, always ask an oracle where to context-switch next. While coroutines can execute on the caller's stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a., non-preemptive scheduling). The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. In any case, a subset of concurrency related challenges start to appear. For the complete set of concurrency challenges to occur, the only feature missing is preemption. 280 281 A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows. 282 283 \section{\protect\CFA's Thread Building Blocks} 284 One of the important features that are missing in C is threading\footnote{While the C11 standard defines a ``threads.h'' header, it is minimal and defined as optional. As such, library support for threading is far from widespread. At the time of writing the paper, neither \texttt{gcc} nor \texttt{clang} support ``threads.h'' in their respective standard libraries.}. On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay. 285 286 \section{Coroutines: A Stepping Stone}\label{coroutine} 287 While the main focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are actually a significant building block of a concurrency system. \textbf{Coroutine}s are generalized routines which have predefined points where execution is suspended and can be resumed at a later time. Therefore, they need to deal with context switches and other context-management operations. This proposal includes coroutines both as an intermediate step for the implementation of threads, and a first-class feature of \CFA. Furthermore, many design challenges of threads are at least partially present in designing coroutines, which makes the design effort that much more relevant. The core \textbf{api} of coroutines revolves around two features: independent call-stacks and \code{suspend}/\code{resume}. 288 289 \begin{table} 290 \begin{center} 291 \begin{tabular}{c @{\hskip 0.025in}|@{\hskip 0.025in} c @{\hskip 0.025in}|@{\hskip 0.025in} c} 292 \begin{ccode}[tabsize=2] 293 //Using callbacks 294 void fibonacci_func( 295 int n, 296 void (*callback)(int) 297 ) { 298 int first = 0; 299 int second = 1; 300 int next, i; 301 for(i = 0; i < n; i++) 302 { 303 if(i <= 1) 304 next = i; 305 else { 306 next = f1 + f2; 307 f1 = f2; 308 f2 = next; 309 } 310 callback(next); 464 465 At its core, concurrency is based on having multiple call-stacks and scheduling among threads of execution executing on these stacks. 466 Multiple call stacks (or contexts) and a single thread of execution does \emph{not} imply concurrency. 467 Execution with a single thread and multiple stacks where the thread is deterministically self-scheduling across the stacks is called \newterm{coroutining}; 468 execution with a single thread and multiple stacks but where the thread is scheduled by an oracle (non-deterministic from the thread's perspective) across the stacks is called concurrency~\cite[\S~3]{Buhr05a}. 469 Therefore, a minimal concurrency system can be achieved using coroutines (see Section \ref{coroutine}), which instead of context-switching among each other, always defer to an oracle for where to context-switch next. 470 471 While coroutines can execute on the caller's stack-frame, stack-full coroutines allow full generality and are sufficient as the basis for concurrency. 472 The aforementioned oracle is a scheduler and the whole system now follows a cooperative threading-model (a.k.a., non-preemptive scheduling). 473 The oracle/scheduler can either be a stack-less or stack-full entity and correspondingly require one or two context-switches to run a different coroutine. 474 In any case, a subset of concurrency related challenges start to appear. 475 For the complete set of concurrency challenges to occur, the only feature missing is preemption. 476 477 A scheduler introduces order of execution uncertainty, while preemption introduces uncertainty about where context switches occur. 478 Mutual exclusion and synchronization are ways of limiting non-determinism in a concurrent system. 479 Now it is important to understand that uncertainty is desirable; uncertainty can be used by runtime systems to significantly increase performance and is often the basis of giving a user the illusion that tasks are running in parallel. 480 Optimal performance in concurrent applications is often obtained by having as much non-determinism as correctness allows. 481 482 483 \subsection{\protect\CFA's Thread Building Blocks} 484 485 One of the important features that are missing in C is threading\footnote{While the C11 standard defines a ``threads.h'' header, it is minimal and defined as optional. 486 As such, library support for threading is far from widespread. 487 At the time of writing the paper, neither \protect\lstinline|gcc| nor \protect\lstinline|clang| support ``threads.h'' in their standard libraries.}. 488 On modern architectures, a lack of threading is unacceptable~\cite{Sutter05, Sutter05b}, and therefore modern programming languages must have the proper tools to allow users to write efficient concurrent programs to take advantage of parallelism. 489 As an extension of C, \CFA needs to express these concepts in a way that is as natural as possible to programmers familiar with imperative languages. 490 And being a system-level language means programmers expect to choose precisely which features they need and which cost they are willing to pay. 491 492 493 \subsection{Coroutines: A Stepping Stone}\label{coroutine} 494 495 While the focus of this proposal is concurrency and parallelism, it is important to address coroutines, which are a significant building block of a concurrency system. 496 \newterm{Coroutine}s are generalized routines with points where execution is suspended and resumed at a later time. 497 Suspend/resume is a context switche and coroutines have other context-management operations. 498 Many design challenges of threads are partially present in designing coroutines, which makes the design effort relevant. 499 The core \textbf{api} of coroutines has two features: independent call-stacks and @suspend@/@resume@. 500 501 A coroutine handles the class of problems that need to retain state between calls (\eg plugin, device driver, finite-state machine). 502 For example, a problem made easier with coroutines is unbounded generators, \eg generating an infinite sequence of Fibonacci numbers: 503 \begin{displaymath} 504 f(n) = \left \{ 505 \begin{array}{ll} 506 0 & n = 0 \\ 507 1 & n = 1 \\ 508 f(n-1) + f(n-2) & n \ge 2 \\ 509 \end{array} 510 \right. 511 \end{displaymath} 512 Figure~\ref{f:C-fibonacci} shows conventional approaches for writing a Fibonacci generator in C. 513 514 Figure~\ref{f:GlobalVariables} illustrates the following problems: 515 unencapsulated global variables necessary to retain state between calls; 516 only one fibonacci generator can run at a time; 517 execution state must be explicitly retained. 518 Figure~\ref{f:ExternalState} addresses these issues: 519 unencapsulated program global variables become encapsulated structure variables; 520 multiple fibonacci generators can run at a time by declaring multiple fibonacci objects; 521 explicit execution state is removed by precomputing the first two Fibonacci numbers and returning $f(n-2)$. 522 523 \begin{figure} 524 \centering 525 \newbox\myboxA 526 \begin{lrbox}{\myboxA} 527 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt] 528 `int f1, f2, state = 1;` // single global variables 529 int fib() { 530 int fn; 531 `switch ( state )` { // explicit execution state 532 case 1: fn = 0; f1 = fn; state = 2; break; 533 case 2: fn = 1; f2 = f1; f1 = fn; state = 3; break; 534 case 3: fn = f1 + f2; f2 = f1; f1 = fn; break; 311 535 } 312 } 313 536 return fn; 537 } 314 538 int main() { 315 void print_fib(int n) { 316 printf("%d\n", n); 539 540 for ( int i = 0; i < 10; i += 1 ) { 541 printf( "%d\n", fib() ); 317 542 } 318 319 fibonacci_func( 320 10, print_fib 321 ); 322 323 324 325 } 326 \end{ccode}&\begin{ccode}[tabsize=2] 327 //Using output array 328 void fibonacci_array( 329 int n, 330 int* array 331 ) { 332 int f1 = 0; int f2 = 1; 333 int next, i; 334 for(i = 0; i < n; i++) 335 { 336 if(i <= 1) 337 next = i; 338 else { 339 next = f1 + f2; 340 f1 = f2; 341 f2 = next; 342 } 343 array[i] = next; 543 } 544 \end{lstlisting} 545 \end{lrbox} 546 547 \newbox\myboxB 548 \begin{lrbox}{\myboxB} 549 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt] 550 #define FIB_INIT `{ 0, 1 }` 551 typedef struct { int f2, f1; } Fib; 552 int fib( Fib * f ) { 553 554 int ret = f->f2; 555 int fn = f->f1 + f->f2; 556 f->f2 = f->f1; f->f1 = fn; 557 558 return ret; 559 } 560 int main() { 561 Fib f1 = FIB_INIT, f2 = FIB_INIT; 562 for ( int i = 0; i < 10; i += 1 ) { 563 printf( "%d %d\n", fib( &f1 ), fib( &f2 ) ); 344 564 } 345 565 } 346 347 566 \end{lstlisting} 567 \end{lrbox} 568 569 \subfloat[3 States: global variables]{\label{f:GlobalVariables}\usebox\myboxA} 570 \qquad 571 \subfloat[1 State: external variables]{\label{f:ExternalState}\usebox\myboxB} 572 \caption{C Fibonacci Implementations} 573 \label{f:C-fibonacci} 574 575 \bigskip 576 577 \newbox\myboxA 578 \begin{lrbox}{\myboxA} 579 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt] 580 `coroutine` Fib { int fn; }; 581 void main( Fib & f ) with( f ) { 582 int f1, f2; 583 fn = 0; f1 = fn; `suspend()`; 584 fn = 1; f2 = f1; f1 = fn; `suspend()`; 585 for ( ;; ) { 586 fn = f1 + f2; f2 = f1; f1 = fn; `suspend()`; 587 } 588 } 589 int next( Fib & fib ) with( fib ) { 590 `resume( fib );` 591 return fn; 592 } 348 593 int main() { 349 int a[10]; 350 351 fibonacci_func( 352 10, a 353 ); 354 355 for(int i=0;i<10;i++){ 356 printf("%d\n", a[i]); 357 } 358 359 } 360 \end{ccode}&\begin{ccode}[tabsize=2] 361 //Using external state 362 typedef struct { 363 int f1, f2; 364 } Iterator_t; 365 366 int fibonacci_state( 367 Iterator_t* it 368 ) { 369 int f; 370 f = it->f1 + it->f2; 371 it->f2 = it->f1; 372 it->f1 = max(f,1); 373 return f; 374 } 375 376 377 378 379 380 381 382 int main() { 383 Iterator_t it={0,0}; 384 385 for(int i=0;i<10;i++){ 386 printf("%d\n", 387 fibonacci_state( 388 &it 389 ); 390 ); 391 } 392 393 } 394 \end{ccode} 395 \end{tabular} 396 \end{center} 397 \caption{Different implementations of a Fibonacci sequence generator in C.} 398 \label{lst:fibonacci-c} 399 \end{table} 400 401 A good example of a problem made easier with coroutines is generators, e.g., generating the Fibonacci sequence. This problem comes with the challenge of decoupling how a sequence is generated and how it is used. Listing \ref{lst:fibonacci-c} shows conventional approaches to writing generators in C. All three of these approach suffer from strong coupling. The left and centre approaches require that the generator have knowledge of how the sequence is used, while the rightmost approach requires holding internal state between calls on behalf of the generator and makes it much harder to handle corner cases like the Fibonacci seed. 402 403 Listing \ref{lst:fibonacci-cfa} is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. Indeed, this version is as easy to use as the \code{fibonacci_state} solution, while the implementation is very similar to the \code{fibonacci_func} example. 404 405 \begin{figure} 406 \begin{cfacode}[caption={Implementation of Fibonacci using coroutines},label={lst:fibonacci-cfa}] 407 coroutine Fibonacci { 408 int fn; //used for communication 409 }; 410 411 void ?{}(Fibonacci& this) { //constructor 412 this.fn = 0; 413 } 414 415 //main automatically called on first resume 416 void main(Fibonacci& this) with (this) { 417 int fn1, fn2; //retained between resumes 418 fn = 0; 419 fn1 = fn; 420 suspend(this); //return to last resume 421 422 fn = 1; 423 fn2 = fn1; 424 fn1 = fn; 425 suspend(this); //return to last resume 426 427 for ( ;; ) { 428 fn = fn1 + fn2; 429 fn2 = fn1; 430 fn1 = fn; 431 suspend(this); //return to last resume 432 } 433 } 434 435 int next(Fibonacci& this) { 436 resume(this); //transfer to last suspend 437 return this.fn; 438 } 439 440 void main() { //regular program main 441 Fibonacci f1, f2; 594 Fib f1, f2; 442 595 for ( int i = 1; i <= 10; i += 1 ) { 443 596 sout | next( f1 ) | next( f2 ) | endl; 444 597 } 445 598 } 446 \end{cfacode} 599 \end{lstlisting} 600 \end{lrbox} 601 \newbox\myboxB 602 \begin{lrbox}{\myboxB} 603 \begin{lstlisting}[aboveskip=0pt,belowskip=0pt] 604 `coroutine` Fib { int ret; }; 605 void main( Fib & f ) with( f ) { 606 int fn, f1 = 1, f2 = 0; 607 for ( ;; ) { 608 ret = f2; 609 610 fn = f1 + f2; f2 = f1; f1 = fn; `suspend();` 611 } 612 } 613 int next( Fib & fib ) with( fib ) { 614 `resume( fib );` 615 return ret; 616 } 617 618 619 620 621 622 623 \end{lstlisting} 624 \end{lrbox} 625 \subfloat[3 States, internal variables]{\label{f:Coroutine3States}\usebox\myboxA} 626 \qquad 627 \subfloat[1 State, internal variables]{\label{f:Coroutine1State}\usebox\myboxB} 628 \caption{\CFA Coroutine Fibonacci Implementations} 629 \label{f:fibonacci-cfa} 447 630 \end{figure} 448 631 449 Listing \ref{lst:fmt-line} shows the \code{Format} coroutine for restructuring text into groups of character blocks of fixed size. The example takes advantage of resuming coroutines in the constructor to simplify the code and highlights the idea that interesting control flow can occur in the constructor. 632 Figure~\ref{f:Coroutine3States} creates a @coroutine@ type, which provides communication for multiple interface functions, and the \newterm{coroutine main}, which runs on the coroutine stack. 633 \begin{cfa} 634 `coroutine C { char c; int i; _Bool s; };` $\C{// used for communication}$ 635 void ?{}( C & c ) { s = false; } $\C{// constructor}$ 636 void main( C & cor ) with( cor ) { $\C{// actual coroutine}$ 637 while ( ! s ) // process c 638 if ( v == ... ) s = false; 639 } 640 // interface functions 641 char cont( C & cor, char ch ) { c = ch; resume( cor ); return c; } 642 _Bool stop( C & cor, int v ) { s = true; i = v; resume( cor ); return s; } 643 \end{cfa} 644 645 encapsulates the Fibonacci state in the shows is an example of a solution to the Fibonacci problem using \CFA coroutines, where the coroutine stack holds sufficient state for the next generation. 646 This solution has the advantage of having very strong decoupling between how the sequence is generated and how it is used. 647 Indeed, this version is as easy to use as the @fibonacci_state@ solution, while the implementation is very similar to the @fibonacci_func@ example. 648 649 Figure~\ref{f:fmt-line} shows the @Format@ coroutine for restructuring text into groups of character blocks of fixed size. 650 The example takes advantage of resuming coroutines in the constructor to simplify the code and highlights the idea that interesting control flow can occur in the constructor. 450 651 451 652 \begin{figure} 452 \ begin{cfacode}[tabsize=3,caption={Formatting text into lines of 5 blocks of 4 characters.},label={lst:fmt-line}]453 //format characters into blocks of 4 and groups of 5 blocks per line 454 coroutineFormat {455 char ch; //used for communication456 int g, b; //global because used in destructor653 \centering 654 \begin{cfa} 655 `coroutine` Format { 656 char ch; $\C{// used for communication}$ 657 int g, b; $\C{// global because used in destructor}$ 457 658 }; 458 459 void ?{}(Format& fmt) { 460 resume( fmt ); //prime (start) coroutine 461 } 462 463 void ^?{}(Format& fmt) with fmt { 464 if ( fmt.g != 0 || fmt.b != 0 ) 465 sout | endl; 466 } 467 468 void main(Format& fmt) with fmt { 469 for ( ;; ) { //for as many characters 470 for(g = 0; g < 5; g++) { //groups of 5 blocks 471 for(b = 0; b < 4; fb++) { //blocks of 4 characters 472 suspend(); 473 sout | ch; //print character 659 void ?{}( Format & fmt ) { `resume( fmt );` } $\C{// prime (start) coroutine}$ 660 void ^?{}( Format & fmt ) with( fmt ) { if ( g != 0 || b != 0 ) sout | endl; } 661 void main( Format & fmt ) with( fmt ) { 662 for ( ;; ) { $\C{// for as many characters}$ 663 for ( g = 0; g < 5; g += 1 ) { $\C{// groups of 5 blocks}$ 664 for ( b = 0; b < 4; b += 1 ) { $\C{// blocks of 4 characters}$ 665 `suspend();` 666 sout | ch; $\C{// print character}$ 474 667 } 475 sout | " "; //print block separator668 sout | " "; $\C{// print block separator}$ 476 669 } 477 sout | endl; //print group separator670 sout | endl; $\C{// print group separator}$ 478 671 } 479 672 } 480 481 void prt(Format & fmt, char ch) { 673 void prt( Format & fmt, char ch ) { 482 674 fmt.ch = ch; 483 resume(fmt); 484 } 485 675 `resume( fmt );` 676 } 486 677 int main() { 487 678 Format fmt; 488 679 char ch; 489 Eof: for ( ;; ) { //read until end of file490 sin | ch; //read one character491 if(eof(sin)) break Eof; //eof ?492 prt( fmt, ch); //push character for formatting680 for ( ;; ) { $\C{// read until end of file}$ 681 sin | ch; $\C{// read one character}$ 682 if ( eof( sin ) ) break; $\C{// eof ?}$ 683 prt( fmt, ch ); $\C{// push character for formatting}$ 493 684 } 494 685 } 495 \end{cfacode} 686 \end{cfa} 687 \caption{Formatting text into lines of 5 blocks of 4 characters.} 688 \label{f:fmt-line} 496 689 \end{figure} 497 690 498 \subsection{Construction} 499 One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. However, the underlying challenge remains the same for coroutines and threads. 500 501 The runtime system needs to create the coroutine's stack and, more importantly, prepare it for the first resumption. The timing of the creation is non-trivial since users expect both to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. There are several solutions to this problem but the chosen option effectively forces the design of the coroutine. 502 503 Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. For example, the following code, while looking benign, can run into undefined behaviour because of thunks: 504 505 \begin{cfacode} 506 //async: Runs function asynchronously on another thread 691 \begin{figure} 692 \centering 693 \lstset{language=CFA,escapechar={},moredelim=**[is][\protect\color{red}]{`}{`}} 694 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 695 \begin{cfa} 696 `coroutine` Prod { 697 Cons & c; 698 int N, money, receipt; 699 }; 700 void main( Prod & prod ) with( prod ) { 701 // 1st resume starts here 702 for ( int i = 0; i < N; i += 1 ) { 703 int p1 = random( 100 ), p2 = random( 100 ); 704 sout | p1 | " " | p2 | endl; 705 int status = delivery( c, p1, p2 ); 706 sout | " $" | money | endl | status | endl; 707 receipt += 1; 708 } 709 stop( c ); 710 sout | "prod stops" | endl; 711 } 712 int payment( Prod & prod, int money ) { 713 prod.money = money; 714 `resume( prod );` 715 return prod.receipt; 716 } 717 void start( Prod & prod, int N, Cons &c ) { 718 &prod.c = &c; 719 prod.[N, receipt] = [N, 0]; 720 `resume( prod );` 721 } 722 int main() { 723 Prod prod; 724 Cons cons = { prod }; 725 srandom( getpid() ); 726 start( prod, 5, cons ); 727 } 728 \end{cfa} 729 & 730 \begin{cfa} 731 `coroutine` Cons { 732 Prod & p; 733 int p1, p2, status; 734 _Bool done; 735 }; 736 void ?{}( Cons & cons, Prod & p ) { 737 &cons.p = &p; 738 cons.[status, done ] = [0, false]; 739 } 740 void ^?{}( Cons & cons ) {} 741 void main( Cons & cons ) with( cons ) { 742 // 1st resume starts here 743 int money = 1, receipt; 744 for ( ; ! done; ) { 745 sout | p1 | " " | p2 | endl | " $" | money | endl; 746 status += 1; 747 receipt = payment( p, money ); 748 sout | " #" | receipt | endl; 749 money += 1; 750 } 751 sout | "cons stops" | endl; 752 } 753 int delivery( Cons & cons, int p1, int p2 ) { 754 cons.[p1, p2] = [p1, p2]; 755 `resume( cons );` 756 return cons.status; 757 } 758 void stop( Cons & cons ) { 759 cons.done = true; 760 `resume( cons );` 761 } 762 763 \end{cfa} 764 \end{tabular} 765 \caption{Producer / consumer: resume-resume cycle, bi-directional communication} 766 \label{f:ProdCons} 767 \end{figure} 768 769 770 \subsubsection{Construction} 771 772 One important design challenge for implementing coroutines and threads (shown in section \ref{threads}) is that the runtime system needs to run code after the user-constructor runs to connect the fully constructed object into the system. 773 In the case of coroutines, this challenge is simpler since there is no non-determinism from preemption or scheduling. 774 However, the underlying challenge remains the same for coroutines and threads. 775 776 The runtime system needs to create the coroutine's stack and, more importantly, prepare it for the first resumption. 777 The timing of the creation is non-trivial since users expect both to have fully constructed objects once execution enters the coroutine main and to be able to resume the coroutine from the constructor. 778 There are several solutions to this problem but the chosen option effectively forces the design of the coroutine. 779 780 Furthermore, \CFA faces an extra challenge as polymorphic routines create invisible thunks when cast to non-polymorphic routines and these thunks have function scope. 781 For example, the following code, while looking benign, can run into undefined behaviour because of thunks: 782 783 \begin{cfa} 784 // async: Runs function asynchronously on another thread 507 785 forall(otype T) 508 786 extern void async(void (*func)(T*), T* obj); … … 513 791 void bar() { 514 792 int a; 515 async(noop, &a); // start thread running noop with argument a516 } 517 \end{cfa code}793 async(noop, &a); // start thread running noop with argument a 794 } 795 \end{cfa} 518 796 519 797 The generated C code\footnote{Code trimmed down for brevity} creates a local thunk to hold type information: 520 798 521 \begin{c code}799 \begin{cfa} 522 800 extern void async(/* omitted */, void (*func)(void*), void* obj); 523 801 … … 533 811 async(/* omitted */, ((void (*)(void*))(&_thunk0)), (&a)); 534 812 } 535 \end{ccode} 536 The problem in this example is a storage management issue, the function pointer \code{_thunk0} is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes undefined behaviour; i.e., the stack-based thunk being destroyed before it can be used. This challenge is an extension of challenges that come with second-class routines. Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. The case of coroutines and threads is simply an extension of this problem to multiple call stacks. 537 538 \subsection{Alternative: Composition} 813 \end{cfa} 814 The problem in this example is a storage management issue, the function pointer @_thunk0@ is only valid until the end of the block, which limits the viable solutions because storing the function pointer for too long causes undefined behaviour; \ie the stack-based thunk being destroyed before it can be used. 815 This challenge is an extension of challenges that come with second-class routines. 816 Indeed, GCC nested routines also have the limitation that nested routine cannot be passed outside of the declaration scope. 817 The case of coroutines and threads is simply an extension of this problem to multiple call stacks. 818 819 820 \subsubsection{Alternative: Composition} 821 539 822 One solution to this challenge is to use composition/containment, where coroutine fields are added to manage the coroutine. 540 823 541 \begin{cfa code}824 \begin{cfa} 542 825 struct Fibonacci { 543 int fn; // used for communication544 coroutine c; // composition826 int fn; // used for communication 827 coroutine c; // composition 545 828 }; 546 829 … … 551 834 void ?{}(Fibonacci& this) { 552 835 this.fn = 0; 553 // Call constructor to initialize coroutine836 // Call constructor to initialize coroutine 554 837 (this.c){myMain}; 555 838 } 556 \end{cfacode} 557 The downside of this approach is that users need to correctly construct the coroutine handle before using it. Like any other objects, the user must carefully choose construction order to prevent usage of objects not yet constructed. However, in the case of coroutines, users must also pass to the coroutine information about the coroutine main, like in the previous example. This opens the door for user errors and requires extra runtime storage to pass at runtime information that can be known statically. 558 559 \subsection{Alternative: Reserved keyword} 839 \end{cfa} 840 The downside of this approach is that users need to correctly construct the coroutine handle before using it. 841 Like any other objects, the user must carefully choose construction order to prevent usage of objects not yet constructed. 842 However, in the case of coroutines, users must also pass to the coroutine information about the coroutine main, like in the previous example. 843 This opens the door for user errors and requires extra runtime storage to pass at runtime information that can be known statically. 844 845 846 \subsubsection{Alternative: Reserved keyword} 847 560 848 The next alternative is to use language support to annotate coroutines as follows: 561 562 \begin{cfacode} 849 \begin{cfa} 563 850 coroutine Fibonacci { 564 int fn; // used for communication851 int fn; // used for communication 565 852 }; 566 \end{cfacode} 567 The \code{coroutine} keyword means the compiler can find and inject code where needed. The downside of this approach is that it makes coroutine a special case in the language. Users wanting to extend coroutines or build their own for various reasons can only do so in ways offered by the language. Furthermore, implementing coroutines without language supports also displays the power of the programming language used. While this is ultimately the option used for idiomatic \CFA code, coroutines and threads can still be constructed by users without using the language support. The reserved keywords are only present to improve ease of use for the common cases. 568 569 \subsection{Alternative: Lambda Objects} 570 571 For coroutines as for threads, many implementations are based on routine pointers or function objects~\cite{Butenhof97, C++14, MS:VisualC++, BoostCoroutines15}. For example, Boost implements coroutines in terms of four functor object types: 572 \begin{cfacode} 853 \end{cfa} 854 The @coroutine@ keyword means the compiler can find and inject code where needed. 855 The downside of this approach is that it makes coroutine a special case in the language. 856 Users wanting to extend coroutines or build their own for various reasons can only do so in ways offered by the language. 857 Furthermore, implementing coroutines without language supports also displays the power of the programming language used. 858 While this is ultimately the option used for idiomatic \CFA code, coroutines and threads can still be constructed by users without using the language support. 859 The reserved keywords are only present to improve ease of use for the common cases. 860 861 862 \subsubsection{Alternative: Lambda Objects} 863 864 For coroutines as for threads, many implementations are based on routine pointers or function objects~\cite{Butenhof97, C++14, MS:VisualC++, BoostCoroutines15}. 865 For example, Boost implements coroutines in terms of four functor object types: 866 \begin{cfa} 573 867 asymmetric_coroutine<>::pull_type 574 868 asymmetric_coroutine<>::push_type 575 869 symmetric_coroutine<>::call_type 576 870 symmetric_coroutine<>::yield_type 577 \end{cfacode} 578 Often, the canonical threading paradigm in languages is based on function pointers, \texttt{pthread} being one of the most well-known examples. The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little. 579 580 A variation of this would be to use a simple function pointer in the same way \texttt{pthread} does for threads: 581 \begin{cfacode} 871 \end{cfa} 872 Often, the canonical threading paradigm in languages is based on function pointers, @pthread@ being one of the most well-known examples. 873 The main problem of this approach is that the thread usage is limited to a generic handle that must otherwise be wrapped in a custom type. 874 Since the custom type is simple to write in \CFA and solves several issues, added support for routine/lambda based coroutines adds very little. 875 876 A variation of this would be to use a simple function pointer in the same way @pthread@ does for threads: 877 \begin{cfa} 582 878 void foo( coroutine_t cid, void* arg ) { 583 879 int* value = (int*)arg; 584 // Coroutine body880 // Coroutine body 585 881 } 586 882 … … 590 886 coroutine_resume( &cid ); 591 887 } 592 \end{cfacode} 593 This semantics is more common for thread interfaces but coroutines work equally well. As discussed in section \ref{threads}, this approach is superseded by static approaches in terms of expressivity. 594 595 \subsection{Alternative: Trait-Based Coroutines} 596 597 Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. This approach defines a coroutine as anything that satisfies the trait \code{is_coroutine} (as defined below) and is used as a coroutine. 598 599 \begin{cfacode} 888 \end{cfa} 889 This semantics is more common for thread interfaces but coroutines work equally well. 890 As discussed in section \ref{threads}, this approach is superseded by static approaches in terms of expressivity. 891 892 893 \subsubsection{Alternative: Trait-Based Coroutines} 894 895 Finally, the underlying approach, which is the one closest to \CFA idioms, is to use trait-based lazy coroutines. 896 This approach defines a coroutine as anything that satisfies the trait @is_coroutine@ (as defined below) and is used as a coroutine. 897 898 \begin{cfa} 600 899 trait is_coroutine(dtype T) { 601 900 void main(T& this); … … 605 904 forall( dtype T | is_coroutine(T) ) void suspend(T&); 606 905 forall( dtype T | is_coroutine(T) ) void resume (T&); 607 \end{cfacode} 608 This ensures that an object is not a coroutine until \code{resume} is called on the object. Correspondingly, any object that is passed to \code{resume} is a coroutine since it must satisfy the \code{is_coroutine} trait to compile. The advantage of this approach is that users can easily create different types of coroutines, for example, changing the memory layout of a coroutine is trivial when implementing the \code{get_coroutine} routine. The \CFA keyword \code{coroutine} simply has the effect of implementing the getter and forward declarations required for users to implement the main routine. 906 \end{cfa} 907 This ensures that an object is not a coroutine until @resume@ is called on the object. 908 Correspondingly, any object that is passed to @resume@ is a coroutine since it must satisfy the @is_coroutine@ trait to compile. 909 The advantage of this approach is that users can easily create different types of coroutines, for example, changing the memory layout of a coroutine is trivial when implementing the @get_coroutine@ routine. 910 The \CFA keyword @coroutine@ simply has the effect of implementing the getter and forward declarations required for users to implement the main routine. 609 911 610 912 \begin{center} 611 913 \begin{tabular}{c c c} 612 \begin{cfa code}[tabsize=3]914 \begin{cfa}[tabsize=3] 613 915 coroutine MyCoroutine { 614 916 int someValue; 615 917 }; 616 \end{cfa code} & == & \begin{cfacode}[tabsize=3]918 \end{cfa} & == & \begin{cfa}[tabsize=3] 617 919 struct MyCoroutine { 618 920 int someValue; … … 628 930 629 931 void main(struct MyCoroutine* this); 630 \end{cfa code}932 \end{cfa} 631 933 \end{tabular} 632 934 \end{center} … … 634 936 The combination of these two approaches allows users new to coroutining and concurrency to have an easy and concise specification, while more advanced users have tighter control on memory layout and initialization. 635 937 636 \section{Thread Interface}\label{threads} 637 The basic building blocks of multithreading in \CFA are \textbf{cfathread}. Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. User threads offer a flexible and lightweight interface. A thread can be declared using a struct declaration \code{thread} as follows: 638 639 \begin{cfacode} 938 \subsection{Thread Interface}\label{threads} 939 The basic building blocks of multithreading in \CFA are \textbf{cfathread}. 940 Both user and kernel threads are supported, where user threads are the concurrency mechanism and kernel threads are the parallel mechanism. 941 User threads offer a flexible and lightweight interface. 942 A thread can be declared using a struct declaration @thread@ as follows: 943 944 \begin{cfa} 640 945 thread foo {}; 641 \end{cfa code}946 \end{cfa} 642 947 643 948 As for coroutines, the keyword is a thin wrapper around a \CFA trait: 644 949 645 \begin{cfa code}950 \begin{cfa} 646 951 trait is_thread(dtype T) { 647 952 void ^?{}(T & mutex this); … … 649 954 thread_desc* get_thread(T & this); 650 955 }; 651 \end{cfacode} 652 653 Obviously, for this thread implementation to be useful it must run some user code. Several other threading interfaces use a function-pointer representation as the interface of threads (for example \Csharp~\cite{Csharp} and Scala~\cite{Scala}). However, this proposal considers that statically tying a \code{main} routine to a thread supersedes this approach. Since the \code{main} routine is already a special routine in \CFA (where the program begins), it is a natural extension of the semantics to use overloading to declare mains for different threads (the normal main being the main of the initial thread). As such the \code{main} routine of a thread can be defined as 654 \begin{cfacode} 956 \end{cfa} 957 958 Obviously, for this thread implementation to be useful it must run some user code. 959 Several other threading interfaces use a function-pointer representation as the interface of threads (for example \Csharp~\cite{Csharp} and Scala~\cite{Scala}). 960 However, this proposal considers that statically tying a @main@ routine to a thread supersedes this approach. 961 Since the @main@ routine is already a special routine in \CFA (where the program begins), it is a natural extension of the semantics to use overloading to declare mains for different threads (the normal main being the main of the initial thread). 962 As such the @main@ routine of a thread can be defined as 963 \begin{cfa} 655 964 thread foo {}; 656 965 … … 658 967 sout | "Hello World!" | endl; 659 968 } 660 \end{cfacode} 661 662 In this example, threads of type \code{foo} start execution in the \code{void main(foo &)} routine, which prints \code{"Hello World!".} While this paper encourages this approach to enforce strongly typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously. 663 \begin{cfacode} 969 \end{cfa} 970 971 In this example, threads of type @foo@ start execution in the @void main(foo &)@ routine, which prints @"Hello World!".@ While this paper encourages this approach to enforce strongly typed programming, users may prefer to use the routine-based thread semantics for the sake of simplicity. 972 With the static semantics it is trivial to write a thread type that takes a function pointer as a parameter and executes it on its stack asynchronously. 973 \begin{cfa} 664 974 typedef void (*voidFunc)(int); 665 975 … … 675 985 676 986 void main(FuncRunner & this) { 677 // thread starts here and runs the function987 // thread starts here and runs the function 678 988 this.func( this.arg ); 679 989 } … … 687 997 return 0? 688 998 } 689 \end{cfa code}999 \end{cfa} 690 1000 691 1001 A consequence of the strongly typed approach to main is that memory layout of parameters and return values to/from a thread are now explicitly specified in the \textbf{api}. 692 1002 693 Of course, for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \textbf{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \textbf{raii} principles and have threads \code{fork} after the constructor has completed and \code{join} before the destructor runs. 694 \begin{cfacode} 1003 Of course, for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. 1004 While using an \textbf{api} such as @fork@ and @join@ is relatively common in the literature, such an interface is unnecessary. 1005 Indeed, the simplest approach is to use \textbf{raii} principles and have threads @fork@ after the constructor has completed and @join@ before the destructor runs. 1006 \begin{cfa} 695 1007 thread World; 696 1008 … … 701 1013 void main() { 702 1014 World w; 703 // Thread forks here704 705 // Printing "Hello " and "World!" are run concurrently1015 // Thread forks here 1016 1017 // Printing "Hello " and "World!" are run concurrently 706 1018 sout | "Hello " | endl; 707 1019 708 // Implicit join at end of scope709 } 710 \end{cfa code}1020 // Implicit join at end of scope 1021 } 1022 \end{cfa} 711 1023 712 1024 This semantic has several advantages over explicit semantics: a thread is always started and stopped exactly once, users cannot make any programming errors, and it naturally scales to multiple threads meaning basic synchronization is very simple. 713 1025 714 \begin{cfa code}1026 \begin{cfa} 715 1027 thread MyThread { 716 1028 //... 717 1029 }; 718 1030 719 // main1031 // main 720 1032 void main(MyThread& this) { 721 1033 //... … … 724 1036 void foo() { 725 1037 MyThread thrds[10]; 726 // Start 10 threads at the beginning of the scope1038 // Start 10 threads at the beginning of the scope 727 1039 728 1040 DoStuff(); 729 1041 730 //Wait for the 10 threads to finish 731 } 732 \end{cfacode} 733 734 However, one of the drawbacks of this approach is that threads always form a tree where nodes must always outlive their children, i.e., they are always destroyed in the opposite order of construction because of C scoping rules. This restriction is relaxed by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating memory lets objects outlive the scope in which they are created. 735 736 \begin{cfacode} 1042 // Wait for the 10 threads to finish 1043 } 1044 \end{cfa} 1045 1046 However, one of the drawbacks of this approach is that threads always form a tree where nodes must always outlive their children, \ie they are always destroyed in the opposite order of construction because of C scoping rules. 1047 This restriction is relaxed by using dynamic allocation, so threads can outlive the scope in which they are created, much like dynamically allocating memory lets objects outlive the scope in which they are created. 1048 1049 \begin{cfa} 737 1050 thread MyThread { 738 1051 //... … … 746 1059 MyThread* long_lived; 747 1060 { 748 // Start a thread at the beginning of the scope1061 // Start a thread at the beginning of the scope 749 1062 MyThread short_lived; 750 1063 751 // create another thread that will outlive the thread in this scope1064 // create another thread that will outlive the thread in this scope 752 1065 long_lived = new MyThread; 753 1066 754 1067 DoStuff(); 755 1068 756 // Wait for the thread short_lived to finish1069 // Wait for the thread short_lived to finish 757 1070 } 758 1071 DoMoreStuff(); 759 1072 760 // Now wait for the long_lived to finish1073 // Now wait for the long_lived to finish 761 1074 delete long_lived; 762 1075 } 763 \end{cfa code}1076 \end{cfa} 764 1077 765 1078 … … 769 1082 % ====================================================================== 770 1083 % ====================================================================== 771 Several tools can be used to solve concurrency challenges. Since many of these challenges appear with the use of mutable shared state, some languages and libraries simply disallow mutable shared state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). However, in languages that use routine calls as their core abstraction mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine calls). This distinction in turn means that, in order to be effective, programmers need to learn two sets of design patterns. While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account. 772 773 Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on basic constructs like routine calls and shared objects. At the lowest level, concurrent paradigms are implemented as atomic operations and locks. Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. However, for productivity reasons it is desirable to have a higher-level construct be the core concurrency paradigm~\cite{HPP:Study}. 774 775 An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for system languages, which is why it was rejected as the core paradigm for concurrency in \CFA. 776 777 One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency construct. 778 779 \section{Basics} 780 Non-determinism requires concurrent systems to offer support for mutual-exclusion and synchronization. Mutual-exclusion is the concept that only a fixed number of threads can access a critical section at any given time, where a critical section is a group of instructions on an associated portion of data that requires the restricted access. On the other hand, synchronization enforces relative ordering of execution and synchronization tools provide numerous mechanisms to establish timing relationships among threads. 781 782 \subsection{Mutual-Exclusion} 783 As mentioned above, mutual-exclusion is the guarantee that only a fix number of threads can enter a critical section at once. However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. Methods range from low-level locks, which are fast and flexible but require significant attention to be correct, to higher-level concurrency techniques, which sacrifice some performance in order to improve ease of use. Ease of use comes by either guaranteeing some problems cannot occur (e.g., being deadlock free) or by offering a more explicit coupling between data and corresponding critical section. For example, the \CC \code{std::atomic<T>} offers an easy way to express mutual-exclusion on a restricted set of operations (e.g., reading/writing large types atomically). Another challenge with low-level locks is composability. Locks have restricted composability because it takes careful organizing for multiple locks to be used while preventing deadlocks. Easing composability is another feature higher-level mutual-exclusion mechanisms often offer. 784 785 \subsection{Synchronization} 786 As with mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. Again, higher-level mechanisms often simplify usage by adding either better coupling between synchronization and data (e.g., message passing) or offering a simpler solution to otherwise involved challenges. As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. Not satisfying this property is called \textbf{barging}. For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete to acquire the resource. Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. This challenge is often split into two different methods, barging avoidance and barging prevention. Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention. 1084 Several tools can be used to solve concurrency challenges. 1085 Since many of these challenges appear with the use of mutable shared state, some languages and libraries simply disallow mutable shared state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). 1086 In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms closely relate to networking concepts (channels~\cite{CSP,Go} for example). 1087 However, in languages that use routine calls as their core abstraction mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (\ie message passing versus routine calls). 1088 This distinction in turn means that, in order to be effective, programmers need to learn two sets of design patterns. 1089 While this distinction can be hidden away in library code, effective use of the library still has to take both paradigms into account. 1090 1091 Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on basic constructs like routine calls and shared objects. 1092 At the lowest level, concurrent paradigms are implemented as atomic operations and locks. 1093 Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. 1094 However, for productivity reasons it is desirable to have a higher-level construct be the core concurrency paradigm~\cite{Hochstein05}. 1095 1096 An approach that is worth mentioning because it is gaining in popularity is transactional memory~\cite{Herlihy93}. 1097 While this approach is even pursued by system languages like \CC~\cite{Cpp-Transactions}, the performance and feature set is currently too restrictive to be the main concurrency paradigm for system languages, which is why it was rejected as the core paradigm for concurrency in \CFA. 1098 1099 One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared-memory systems, is the \emph{monitor}. 1100 Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. 1101 Many programming languages---\eg Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. 1102 In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. 1103 For these reasons, this project proposes monitors as the core concurrency construct. 1104 1105 1106 \subsection{Basics} 1107 1108 Non-determinism requires concurrent systems to offer support for mutual-exclusion and synchronization. 1109 Mutual-exclusion is the concept that only a fixed number of threads can access a critical section at any given time, where a critical section is a group of instructions on an associated portion of data that requires the restricted access. 1110 On the other hand, synchronization enforces relative ordering of execution and synchronization tools provide numerous mechanisms to establish timing relationships among threads. 1111 1112 1113 \subsubsection{Mutual-Exclusion} 1114 1115 As mentioned above, mutual-exclusion is the guarantee that only a fix number of threads can enter a critical section at once. 1116 However, many solutions exist for mutual exclusion, which vary in terms of performance, flexibility and ease of use. 1117 Methods range from low-level locks, which are fast and flexible but require significant attention to be correct, to higher-level concurrency techniques, which sacrifice some performance in order to improve ease of use. 1118 Ease of use comes by either guaranteeing some problems cannot occur (\eg being deadlock free) or by offering a more explicit coupling between data and corresponding critical section. 1119 For example, the \CC @std::atomic<T>@ offers an easy way to express mutual-exclusion on a restricted set of operations (\eg reading/writing large types atomically). 1120 Another challenge with low-level locks is composability. 1121 Locks have restricted composability because it takes careful organizing for multiple locks to be used while preventing deadlocks. 1122 Easing composability is another feature higher-level mutual-exclusion mechanisms often offer. 1123 1124 1125 \subsubsection{Synchronization} 1126 1127 As with mutual-exclusion, low-level synchronization primitives often offer good performance and good flexibility at the cost of ease of use. 1128 Again, higher-level mechanisms often simplify usage by adding either better coupling between synchronization and data (\eg message passing) or offering a simpler solution to otherwise involved challenges. 1129 As mentioned above, synchronization can be expressed as guaranteeing that event \textit{X} always happens before \textit{Y}. 1130 Most of the time, synchronization happens within a critical section, where threads must acquire mutual-exclusion in a certain order. 1131 However, it may also be desirable to guarantee that event \textit{Z} does not occur between \textit{X} and \textit{Y}. 1132 Not satisfying this property is called \textbf{barging}. 1133 For example, where event \textit{X} tries to effect event \textit{Y} but another thread acquires the critical section and emits \textit{Z} before \textit{Y}. 1134 The classic example is the thread that finishes using a resource and unblocks a thread waiting to use the resource, but the unblocked thread must compete to acquire the resource. 1135 Preventing or detecting barging is an involved challenge with low-level locks, which can be made much easier by higher-level constructs. 1136 This challenge is often split into two different methods, barging avoidance and barging prevention. 1137 Algorithms that use flag variables to detect barging threads are said to be using barging avoidance, while algorithms that baton-pass locks~\cite{Andrews89} between threads instead of releasing the locks are said to be using barging prevention. 1138 787 1139 788 1140 % ====================================================================== … … 791 1143 % ====================================================================== 792 1144 % ====================================================================== 793 A \textbf{monitor} is a set of routines that ensure mutual-exclusion when accessing shared state. More precisely, a monitor is a programming technique that associates mutual-exclusion to routine scopes, as opposed to mutex locks, where mutual-exclusion is defined by lock/release calls independently of any scoping of the calling routine. This strong association eases readability and maintainability, at the cost of flexibility. Note that both monitors and mutex locks, require an abstract handle to identify them. This concept is generally associated with object-oriented languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it: 794 \begin{cfacode} 1145 A \textbf{monitor} is a set of routines that ensure mutual-exclusion when accessing shared state. 1146 More precisely, a monitor is a programming technique that associates mutual-exclusion to routine scopes, as opposed to mutex locks, where mutual-exclusion is defined by lock/release calls independently of any scoping of the calling routine. 1147 This strong association eases readability and maintainability, at the cost of flexibility. 1148 Note that both monitors and mutex locks, require an abstract handle to identify them. 1149 This concept is generally associated with object-oriented languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OO semantics. 1150 The only requirement is the ability to declare a handle to a shared object and a set of routines that act on it: 1151 \begin{cfa} 795 1152 typedef /*some monitor type*/ monitor; 796 1153 int f(monitor & m); 797 1154 798 1155 int main() { 799 monitor m; // Handle m800 f(m); // Routine using handle801 } 802 \end{cfa code}1156 monitor m; // Handle m 1157 f(m); // Routine using handle 1158 } 1159 \end{cfa} 803 1160 804 1161 % ====================================================================== … … 807 1164 % ====================================================================== 808 1165 % ====================================================================== 809 The above monitor example displays some of the intrinsic characteristics. First, it is necessary to use pass-by-reference over pass-by-value for monitor routines. This semantics is important, because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects cannot be copied. Therefore, monitors are non-copy-able objects (\code{dtype}). 810 811 Another aspect to consider is when a monitor acquires its mutual exclusion. For example, a monitor may need to be passed through multiple helper routines that do not acquire the monitor mutual-exclusion on entry. Passthrough can occur for generic helper routines (\code{swap}, \code{sort}, etc.) or specific helper routines like the following to implement an atomic counter: 812 813 \begin{cfacode} 1166 The above monitor example displays some of the intrinsic characteristics. 1167 First, it is necessary to use pass-by-reference over pass-by-value for monitor routines. 1168 This semantics is important, because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects cannot be copied. 1169 Therefore, monitors are non-copy-able objects (@dtype@). 1170 1171 Another aspect to consider is when a monitor acquires its mutual exclusion. 1172 For example, a monitor may need to be passed through multiple helper routines that do not acquire the monitor mutual-exclusion on entry. 1173 Passthrough can occur for generic helper routines (@swap@, @sort@, \etc) or specific helper routines like the following to implement an atomic counter: 1174 1175 \begin{cfa} 814 1176 monitor counter_t { /*...see section $\ref{data}$...*/ }; 815 1177 816 void ?{}(counter_t & nomutex this); // constructor817 size_t ++?(counter_t & mutex this); // increment818 819 // need for mutex is platform dependent820 void ?{}(size_t * this, counter_t & mutex cnt); // conversion821 \end{cfa code}1178 void ?{}(counter_t & nomutex this); // constructor 1179 size_t ++?(counter_t & mutex this); // increment 1180 1181 // need for mutex is platform dependent 1182 void ?{}(size_t * this, counter_t & mutex cnt); // conversion 1183 \end{cfa} 822 1184 This counter is used as follows: 823 1185 \begin{center} 824 1186 \begin{tabular}{c @{\hskip 0.35in} c @{\hskip 0.35in} c} 825 \begin{cfa code}826 // shared counter1187 \begin{cfa} 1188 // shared counter 827 1189 counter_t cnt1, cnt2; 828 1190 829 // multiple threads access counter1191 // multiple threads access counter 830 1192 thread 1 : cnt1++; cnt2++; 831 1193 thread 2 : cnt1++; cnt2++; … … 833 1195 ... 834 1196 thread N : cnt1++; cnt2++; 835 \end{cfa code}1197 \end{cfa} 836 1198 \end{tabular} 837 1199 \end{center} 838 Notice how the counter is used without any explicit synchronization and yet supports thread-safe semantics for both reading and writing, which is similar in usage to the \CC template \code{std::atomic}. 839 840 Here, the constructor (\code{?\{\}}) uses the \code{nomutex} keyword to signify that it does not acquire the monitor mutual-exclusion when constructing. This semantics is because an object not yet con\-structed should never be shared and therefore does not require mutual exclusion. Furthermore, it allows the implementation greater freedom when it initializes the monitor locking. The prefix increment operator uses \code{mutex} to protect the incrementing process from race conditions. Finally, there is a conversion operator from \code{counter_t} to \code{size_t}. This conversion may or may not require the \code{mutex} keyword depending on whether or not reading a \code{size_t} is an atomic operation. 841 842 For maximum usability, monitors use \textbf{multi-acq} semantics, which means a single thread can acquire the same monitor multiple times without deadlock. For example, listing \ref{fig:search} uses recursion and \textbf{multi-acq} to print values inside a binary tree. 1200 Notice how the counter is used without any explicit synchronization and yet supports thread-safe semantics for both reading and writing, which is similar in usage to the \CC template @std::atomic@. 1201 1202 Here, the constructor (@?{}@) uses the @nomutex@ keyword to signify that it does not acquire the monitor mutual-exclusion when constructing. 1203 This semantics is because an object not yet constructed should never be shared and therefore does not require mutual exclusion. 1204 Furthermore, it allows the implementation greater freedom when it initializes the monitor locking. 1205 The prefix increment operator uses @mutex@ to protect the incrementing process from race conditions. 1206 Finally, there is a conversion operator from @counter_t@ to @size_t@. 1207 This conversion may or may not require the @mutex@ keyword depending on whether or not reading a @size_t@ is an atomic operation. 1208 1209 For maximum usability, monitors use \textbf{multi-acq} semantics, which means a single thread can acquire the same monitor multiple times without deadlock. 1210 For example, listing \ref{fig:search} uses recursion and \textbf{multi-acq} to print values inside a binary tree. 843 1211 \begin{figure} 844 \begin{cfa code}[caption={Recursive printing algorithm using \textbf{multi-acq}.},label={fig:search}]1212 \begin{cfa}[caption={Recursive printing algorithm using \textbf{multi-acq}.},label={fig:search}] 845 1213 monitor printer { ... }; 846 1214 struct tree { … … 855 1223 print(p, t->right); 856 1224 } 857 \end{cfa code}1225 \end{cfa} 858 1226 \end{figure} 859 1227 860 Having both \code{mutex} and \code{nomutex} keywords can be redundant, depending on the meaning of a routine having neither of these keywords. For example, it is reasonable that it should default to the safest option (\code{mutex}) when given a routine without qualifiers \code{void foo(counter_t & this)}, whereas assuming \code{nomutex} is unsafe and may cause subtle errors. On the other hand, \code{nomutex} is the ``normal'' parameter behaviour, it effectively states explicitly that ``this routine is not special''. Another alternative is making exactly one of these keywords mandatory, which provides the same semantics but without the ambiguity of supporting routines with neither keyword. Mandatory keywords would also have the added benefit of being self-documented but at the cost of extra typing. While there are several benefits to mandatory keywords, they do bring a few challenges. Mandatory keywords in \CFA would imply that the compiler must know without doubt whether or not a parameter is a monitor or not. Since \CFA relies heavily on traits as an abstraction mechanism, the distinction between a type that is a monitor and a type that looks like a monitor can become blurred. For this reason, \CFA only has the \code{mutex} keyword and uses no keyword to mean \code{nomutex}. 861 862 The next semantic decision is to establish when \code{mutex} may be used as a type qualifier. Consider the following declarations: 863 \begin{cfacode} 1228 Having both @mutex@ and @nomutex@ keywords can be redundant, depending on the meaning of a routine having neither of these keywords. 1229 For example, it is reasonable that it should default to the safest option (@mutex@) when given a routine without qualifiers @void foo(counter_t & this)@, whereas assuming @nomutex@ is unsafe and may cause subtle errors. 1230 On the other hand, @nomutex@ is the ``normal'' parameter behaviour, it effectively states explicitly that ``this routine is not special''. 1231 Another alternative is making exactly one of these keywords mandatory, which provides the same semantics but without the ambiguity of supporting routines with neither keyword. 1232 Mandatory keywords would also have the added benefit of being self-documented but at the cost of extra typing. 1233 While there are several benefits to mandatory keywords, they do bring a few challenges. 1234 Mandatory keywords in \CFA would imply that the compiler must know without doubt whether or not a parameter is a monitor or not. 1235 Since \CFA relies heavily on traits as an abstraction mechanism, the distinction between a type that is a monitor and a type that looks like a monitor can become blurred. 1236 For this reason, \CFA only has the @mutex@ keyword and uses no keyword to mean @nomutex@. 1237 1238 The next semantic decision is to establish when @mutex@ may be used as a type qualifier. 1239 Consider the following declarations: 1240 \begin{cfa} 864 1241 int f1(monitor & mutex m); 865 1242 int f2(const monitor & mutex m); … … 867 1244 int f4(monitor * mutex m []); 868 1245 int f5(graph(monitor *) & mutex m); 869 \end{cfacode} 870 The problem is to identify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to identify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. This problem can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is acquired, passing an array to this routine would be type-safe and yet result in undefined behaviour because only the first element of the array is acquired. However, this ambiguity is part of the C type-system with respects to arrays. For this reason, \code{mutex} is disallowed in the context where arrays may be passed: 871 \begin{cfacode} 872 int f1(monitor & mutex m); //Okay : recommended case 873 int f2(monitor * mutex m); //Not Okay : Could be an array 874 int f3(monitor mutex m []); //Not Okay : Array of unknown length 875 int f4(monitor ** mutex m); //Not Okay : Could be an array 876 int f5(monitor * mutex m []); //Not Okay : Array of unknown length 877 \end{cfacode} 878 Note that not all array functions are actually distinct in the type system. However, even if the code generation could tell the difference, the extra information is still not sufficient to extend meaningfully the monitor call semantic. 879 880 Unlike object-oriented monitors, where calling a mutex member \emph{implicitly} acquires mutual-exclusion of the receiver object, \CFA uses an explicit mechanism to specify the object that acquires mutual-exclusion. A consequence of this approach is that it extends naturally to multi-monitor calls. 881 \begin{cfacode} 1246 \end{cfa} 1247 The problem is to identify which object(s) should be acquired. 1248 Furthermore, each object needs to be acquired only once. 1249 In the case of simple routines like @f1@ and @f2@ it is easy to identify an exhaustive list of objects to acquire on entry. 1250 Adding indirections (@f3@) still allows the compiler and programmer to identify which object is acquired. 1251 However, adding in arrays (@f4@) makes it much harder. 1252 Array lengths are not necessarily known in C, and even then, making sure objects are only acquired once becomes none-trivial. 1253 This problem can be extended to absurd limits like @f5@, which uses a graph of monitors. 1254 To make the issue tractable, this project imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter with at most one level of indirection (ignoring potential qualifiers). 1255 Also note that while routine @f3@ can be supported, meaning that monitor @**m@ is acquired, passing an array to this routine would be type-safe and yet result in undefined behaviour because only the first element of the array is acquired. 1256 However, this ambiguity is part of the C type-system with respects to arrays. 1257 For this reason, @mutex@ is disallowed in the context where arrays may be passed: 1258 \begin{cfa} 1259 int f1(monitor & mutex m); // Okay : recommended case 1260 int f2(monitor * mutex m); // Not Okay : Could be an array 1261 int f3(monitor mutex m []); // Not Okay : Array of unknown length 1262 int f4(monitor ** mutex m); // Not Okay : Could be an array 1263 int f5(monitor * mutex m []); // Not Okay : Array of unknown length 1264 \end{cfa} 1265 Note that not all array functions are actually distinct in the type system. 1266 However, even if the code generation could tell the difference, the extra information is still not sufficient to extend meaningfully the monitor call semantic. 1267 1268 Unlike object-oriented monitors, where calling a mutex member \emph{implicitly} acquires mutual-exclusion of the receiver object, \CFA uses an explicit mechanism to specify the object that acquires mutual-exclusion. 1269 A consequence of this approach is that it extends naturally to multi-monitor calls. 1270 \begin{cfa} 882 1271 int f(MonitorA & mutex a, MonitorB & mutex b); 883 1272 … … 885 1274 MonitorB b; 886 1275 f(a,b); 887 \end{cfacode} 888 While OO monitors could be extended with a mutex qualifier for multiple-monitor calls, no example of this feature could be found. The capability to acquire multiple locks before entering a critical section is called \emph{\textbf{bulk-acq}}. In practice, writing multi-locking routines that do not lead to deadlocks is tricky. Having language support for such a feature is therefore a significant asset for \CFA. In the case presented above, \CFA guarantees that the order of acquisition is consistent across calls to different routines using the same monitors as arguments. This consistent ordering means acquiring multiple monitors is safe from deadlock when using \textbf{bulk-acq}. However, users can still force the acquiring order. For example, notice which routines use \code{mutex}/\code{nomutex} and how this affects acquiring order: 889 \begin{cfacode} 890 void foo(A& mutex a, B& mutex b) { //acquire a & b 1276 \end{cfa} 1277 While OO monitors could be extended with a mutex qualifier for multiple-monitor calls, no example of this feature could be found. 1278 The capability to acquire multiple locks before entering a critical section is called \emph{\textbf{bulk-acq}}. 1279 In practice, writing multi-locking routines that do not lead to deadlocks is tricky. 1280 Having language support for such a feature is therefore a significant asset for \CFA. 1281 In the case presented above, \CFA guarantees that the order of acquisition is consistent across calls to different routines using the same monitors as arguments. 1282 This consistent ordering means acquiring multiple monitors is safe from deadlock when using \textbf{bulk-acq}. 1283 However, users can still force the acquiring order. 1284 For example, notice which routines use @mutex@/@nomutex@ and how this affects acquiring order: 1285 \begin{cfa} 1286 void foo(A& mutex a, B& mutex b) { // acquire a & b 891 1287 ... 892 1288 } 893 1289 894 void bar(A& mutex a, B& /*nomutex*/ b) { //acquire a 895 ... foo(a, b); ... //acquire b 896 } 897 898 void baz(A& /*nomutex*/ a, B& mutex b) { //acquire b 899 ... foo(a, b); ... //acquire a 900 } 901 \end{cfacode} 902 The \textbf{multi-acq} monitor lock allows a monitor lock to be acquired by both \code{bar} or \code{baz} and acquired again in \code{foo}. In the calls to \code{bar} and \code{baz} the monitors are acquired in opposite order. 903 904 However, such use leads to lock acquiring order problems. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore undefined behaviour. As shown~\cite{Lister77}, solving this problem requires: 1290 void bar(A& mutex a, B& /*nomutex*/ b) { // acquire a 1291 ... foo(a, b); ... // acquire b 1292 } 1293 1294 void baz(A& /*nomutex*/ a, B& mutex b) { // acquire b 1295 ... foo(a, b); ... // acquire a 1296 } 1297 \end{cfa} 1298 The \textbf{multi-acq} monitor lock allows a monitor lock to be acquired by both @bar@ or @baz@ and acquired again in @foo@. 1299 In the calls to @bar@ and @baz@ the monitors are acquired in opposite order. 1300 1301 However, such use leads to lock acquiring order problems. 1302 In the example above, the user uses implicit ordering in the case of function @foo@ but explicit ordering in the case of @bar@ and @baz@. 1303 This subtle difference means that calling these routines concurrently may lead to deadlock and is therefore undefined behaviour. 1304 As shown~\cite{Lister77}, solving this problem requires: 905 1305 \begin{enumerate} 906 1306 \item Dynamically tracking the monitor-call order. 907 1307 \item Implement rollback semantics. 908 1308 \end{enumerate} 909 While the first requirement is already a significant constraint on the system, implementing a general rollback semantics in a C-like language is still prohibitively complex~\cite{Dice10}. In \CFA, users simply need to be careful when acquiring multiple monitors at the same time or only use \textbf{bulk-acq} of all the monitors. While \CFA provides only a partial solution, most systems provide no solution and the \CFA partial solution handles many useful cases. 1309 While the first requirement is already a significant constraint on the system, implementing a general rollback semantics in a C-like language is still prohibitively complex~\cite{Dice10}. 1310 In \CFA, users simply need to be careful when acquiring multiple monitors at the same time or only use \textbf{bulk-acq} of all the monitors. 1311 While \CFA provides only a partial solution, most systems provide no solution and the \CFA partial solution handles many useful cases. 910 1312 911 1313 For example, \textbf{multi-acq} and \textbf{bulk-acq} can be used together in interesting ways: 912 \begin{cfa code}1314 \begin{cfa} 913 1315 monitor bank { ... }; 914 1316 … … 919 1321 deposit( yourbank, me2you ); 920 1322 } 921 \end{cfacode} 922 This example shows a trivial solution to the bank-account transfer problem~\cite{BankTransfer}. Without \textbf{multi-acq} and \textbf{bulk-acq}, the solution to this problem is much more involved and requires careful engineering. 923 924 \subsection{\code{mutex} statement} \label{mutex-stmt} 925 926 The call semantics discussed above have one software engineering issue: only a routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the \code{mutex} statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. Table \ref{lst:mutex-stmt} shows an example of the \code{mutex} statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. Beyond naming, the \code{mutex} statement has no semantic difference from a routine call with \code{mutex} parameters. 1323 \end{cfa} 1324 This example shows a trivial solution to the bank-account transfer problem~\cite{BankTransfer}. 1325 Without \textbf{multi-acq} and \textbf{bulk-acq}, the solution to this problem is much more involved and requires careful engineering. 1326 1327 1328 \subsection{\protect\lstinline|mutex| statement} \label{mutex-stmt} 1329 1330 The call semantics discussed above have one software engineering issue: only a routine can acquire the mutual-exclusion of a set of monitor. \CFA offers the @mutex@ statement to work around the need for unnecessary names, avoiding a major software engineering problem~\cite{2FTwoHardThings}. 1331 Table \ref{f:mutex-stmt} shows an example of the @mutex@ statement, which introduces a new scope in which the mutual-exclusion of a set of monitor is acquired. 1332 Beyond naming, the @mutex@ statement has no semantic difference from a routine call with @mutex@ parameters. 927 1333 928 1334 \begin{table} 929 1335 \begin{center} 930 1336 \begin{tabular}{|c|c|} 931 function call & \code{mutex}statement \\1337 function call & @mutex@ statement \\ 932 1338 \hline 933 \begin{cfa code}[tabsize=3]1339 \begin{cfa}[tabsize=3] 934 1340 monitor M {}; 935 1341 void foo( M & mutex m1, M & mutex m2 ) { 936 // critical section1342 // critical section 937 1343 } 938 1344 … … 940 1346 foo( m1, m2 ); 941 1347 } 942 \end{cfa code}&\begin{cfacode}[tabsize=3]1348 \end{cfa}&\begin{cfa}[tabsize=3] 943 1349 monitor M {}; 944 1350 void bar( M & m1, M & m2 ) { 945 1351 mutex(m1, m2) { 946 // critical section1352 // critical section 947 1353 } 948 1354 } 949 1355 950 1356 951 \end{cfa code}1357 \end{cfa} 952 1358 \end{tabular} 953 1359 \end{center} 954 \caption{Regular call semantics vs. \ code{mutex}statement}955 \label{ lst:mutex-stmt}1360 \caption{Regular call semantics vs. \protect\lstinline|mutex| statement} 1361 \label{f:mutex-stmt} 956 1362 \end{table} 957 1363 … … 961 1367 % ====================================================================== 962 1368 % ====================================================================== 963 Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter shown in section \ref{call}: 964 \begin{cfacode} 1369 Once the call semantics are established, the next step is to establish data semantics. 1370 Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contain shared data. 1371 This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. 1372 For example, here is a complete version of the counter shown in section \ref{call}: 1373 \begin{cfa} 965 1374 monitor counter_t { 966 1375 int value; … … 975 1384 } 976 1385 977 // need for mutex is platform dependent here1386 // need for mutex is platform dependent here 978 1387 void ?{}(int * this, counter_t & mutex cnt) { 979 1388 *this = (int)cnt; 980 1389 } 981 \end{cfacode} 982 983 Like threads and coroutines, monitors are defined in terms of traits with some additional language support in the form of the \code{monitor} keyword. The monitor trait is: 984 \begin{cfacode} 1390 \end{cfa} 1391 1392 Like threads and coroutines, monitors are defined in terms of traits with some additional language support in the form of the @monitor@ keyword. 1393 The monitor trait is: 1394 \begin{cfa} 985 1395 trait is_monitor(dtype T) { 986 1396 monitor_desc * get_monitor( T & ); 987 1397 void ^?{}( T & mutex ); 988 1398 }; 989 \end{cfacode} 990 Note that the destructor of a monitor must be a \code{mutex} routine to prevent deallocation while a thread is accessing the monitor. As with any object, calls to a monitor, using \code{mutex} or otherwise, is undefined behaviour after the destructor has run. 1399 \end{cfa} 1400 Note that the destructor of a monitor must be a @mutex@ routine to prevent deallocation while a thread is accessing the monitor. 1401 As with any object, calls to a monitor, using @mutex@ or otherwise, is undefined behaviour after the destructor has run. 991 1402 992 1403 % ====================================================================== … … 995 1406 % ====================================================================== 996 1407 % ====================================================================== 997 In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. With \textbf{scheduling} loosely defined as deciding which thread acquires the critical section next, \textbf{internal scheduling} means making the decision from inside the critical section (i.e., with access to the shared state), while \textbf{external scheduling} means making the decision when entering the critical section (i.e., without access to the shared state). Since internal scheduling within a single monitor is mostly a solved problem, this paper concentrates on extending internal scheduling to multiple monitors. Indeed, like the \textbf{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side. 1408 In addition to mutual exclusion, the monitors at the core of \CFA's concurrency can also be used to achieve synchronization. 1409 With monitors, this capability is generally achieved with internal or external scheduling as in~\cite{Hoare74}. 1410 With \textbf{scheduling} loosely defined as deciding which thread acquires the critical section next, \textbf{internal scheduling} means making the decision from inside the critical section (\ie with access to the shared state), while \textbf{external scheduling} means making the decision when entering the critical section (\ie without access to the shared state). 1411 Since internal scheduling within a single monitor is mostly a solved problem, this paper concentrates on extending internal scheduling to multiple monitors. 1412 Indeed, like the \textbf{bulk-acq} semantics, internal scheduling extends to multiple monitors in a way that is natural to the user but requires additional complexity on the implementation side. 998 1413 999 1414 First, here is a simple example of internal scheduling: 1000 1415 1001 \begin{cfa code}1416 \begin{cfa} 1002 1417 monitor A { 1003 1418 condition e; … … 1006 1421 void foo(A& mutex a1, A& mutex a2) { 1007 1422 ... 1008 // Wait for cooperation from bar()1423 // Wait for cooperation from bar() 1009 1424 wait(a1.e); 1010 1425 ... … … 1012 1427 1013 1428 void bar(A& mutex a1, A& mutex a2) { 1014 // Provide cooperation for foo()1429 // Provide cooperation for foo() 1015 1430 ... 1016 // Unblock foo1431 // Unblock foo 1017 1432 signal(a1.e); 1018 1433 } 1019 \end{cfacode} 1020 There are two details to note here. First, \code{signal} is a delayed operation; it only unblocks the waiting thread when it reaches the end of the critical section. This semantics is needed to respect mutual-exclusion, i.e., the signaller and signalled thread cannot be in the monitor simultaneously. The alternative is to return immediately after the call to \code{signal}, which is significantly more restrictive. Second, in \CFA, while it is common to store a \code{condition} as a field of the monitor, a \code{condition} variable can be stored/created independently of a monitor. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, ensuring a basic ordering. 1021 1022 An important aspect of the implementation is that \CFA does not allow barging, which means that once function \code{bar} releases the monitor, \code{foo} is guaranteed to be the next thread to acquire the monitor (unless some other thread waited on the same condition). This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency. 1434 \end{cfa} 1435 There are two details to note here. 1436 First, @signal@ is a delayed operation; it only unblocks the waiting thread when it reaches the end of the critical section. 1437 This semantics is needed to respect mutual-exclusion, \ie the signaller and signalled thread cannot be in the monitor simultaneously. 1438 The alternative is to return immediately after the call to @signal@, which is significantly more restrictive. 1439 Second, in \CFA, while it is common to store a @condition@ as a field of the monitor, a @condition@ variable can be stored/created independently of a monitor. 1440 Here routine @foo@ waits for the @signal@ from @bar@ before making further progress, ensuring a basic ordering. 1441 1442 An important aspect of the implementation is that \CFA does not allow barging, which means that once function @bar@ releases the monitor, @foo@ is guaranteed to be the next thread to acquire the monitor (unless some other thread waited on the same condition). 1443 This guarantee offers the benefit of not having to loop around waits to recheck that a condition is met. 1444 The main reason \CFA offers this guarantee is that users can easily introduce barging if it becomes a necessity but adding barging prevention or barging avoidance is more involved without language support. 1445 Supporting barging prevention as well as extending internal scheduling to multiple monitors is the main source of complexity in the design and implementation of \CFA concurrency. 1023 1446 1024 1447 % ====================================================================== … … 1027 1450 % ====================================================================== 1028 1451 % ====================================================================== 1029 It is easy to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. Indeed, \code{wait} statements always use the implicit condition variable as parameters and explicitly name the monitors (A and B) associated with the condition. Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. The example below shows the simple case of having two threads (one for each column) and a single monitor A. 1452 It is easy to understand the problem of multi-monitor scheduling using a series of pseudo-code examples. 1453 Note that for simplicity in the following snippets of pseudo-code, waiting and signalling is done using an implicit condition variable, like Java built-in monitors. 1454 Indeed, @wait@ statements always use the implicit condition variable as parameters and explicitly name the monitors (A and B) associated with the condition. 1455 Note that in \CFA, condition variables are tied to a \emph{group} of monitors on first use (called branding), which means that using internal scheduling with distinct sets of monitors requires one condition variable per set of monitors. 1456 The example below shows the simple case of having two threads (one for each column) and a single monitor A. 1030 1457 1031 1458 \begin{multicols}{2} 1032 1459 thread 1 1033 \begin{ pseudo}1460 \begin{cfa} 1034 1461 acquire A 1035 1462 wait A 1036 1463 release A 1037 \end{ pseudo}1464 \end{cfa} 1038 1465 1039 1466 \columnbreak 1040 1467 1041 1468 thread 2 1042 \begin{ pseudo}1469 \begin{cfa} 1043 1470 acquire A 1044 1471 signal A 1045 1472 release A 1046 \end{ pseudo}1473 \end{cfa} 1047 1474 \end{multicols} 1048 One thread acquires before waiting (atomically blocking and releasing A) and the other acquires before signalling. It is important to note here that both \code{wait} and \code{signal} must be called with the proper monitor(s) already acquired. This semantic is a logical requirement for barging prevention. 1475 One thread acquires before waiting (atomically blocking and releasing A) and the other acquires before signalling. 1476 It is important to note here that both @wait@ and @signal@ must be called with the proper monitor(s) already acquired. 1477 This semantic is a logical requirement for barging prevention. 1049 1478 1050 1479 A direct extension of the previous example is a \textbf{bulk-acq} version: 1051 1480 \begin{multicols}{2} 1052 \begin{ pseudo}1481 \begin{cfa} 1053 1482 acquire A & B 1054 1483 wait A & B 1055 1484 release A & B 1056 \end{ pseudo}1485 \end{cfa} 1057 1486 \columnbreak 1058 \begin{ pseudo}1487 \begin{cfa} 1059 1488 acquire A & B 1060 1489 signal A & B 1061 1490 release A & B 1062 \end{ pseudo}1491 \end{cfa} 1063 1492 \end{multicols} 1064 \noindent This version uses \textbf{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. Synchronization happens between the two threads in exactly the same way and order. The only difference is that mutual exclusion covers a group of monitors. On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate. 1065 1066 While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. For monitors, a well-known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a \code{wait} is made by a thread that holds more than one monitor. For example, the following pseudo-code runs into the nested-monitor problem: 1493 \noindent This version uses \textbf{bulk-acq} (denoted using the {\sf\&} symbol), but the presence of multiple monitors does not add a particularly new meaning. 1494 Synchronization happens between the two threads in exactly the same way and order. 1495 The only difference is that mutual exclusion covers a group of monitors. 1496 On the implementation side, handling multiple monitors does add a degree of complexity as the next few examples demonstrate. 1497 1498 While deadlock issues can occur when nesting monitors, these issues are only a symptom of the fact that locks, and by extension monitors, are not perfectly composable. 1499 For monitors, a well-known deadlock problem is the Nested Monitor Problem~\cite{Lister77}, which occurs when a @wait@ is made by a thread that holds more than one monitor. 1500 For example, the following cfa-code runs into the nested-monitor problem: 1067 1501 \begin{multicols}{2} 1068 \begin{ pseudo}1502 \begin{cfa} 1069 1503 acquire A 1070 1504 acquire B … … 1072 1506 release B 1073 1507 release A 1074 \end{ pseudo}1508 \end{cfa} 1075 1509 1076 1510 \columnbreak 1077 1511 1078 \begin{ pseudo}1512 \begin{cfa} 1079 1513 acquire A 1080 1514 acquire B … … 1082 1516 release B 1083 1517 release A 1084 \end{ pseudo}1518 \end{cfa} 1085 1519 \end{multicols} 1086 \noindent The \code{wait} only releases monitor \code{B} so the signalling thread cannot acquire monitor \code{A} to get to the \code{signal}. Attempting release of all acquired monitors at the \code{wait} introduces a different set of problems, such as releasing monitor \code{C}, which has nothing to do with the \code{signal}. 1087 1088 However, for monitors as for locks, it is possible to write a program using nesting without encountering any problems if nesting is done correctly. For example, the next pseudo-code snippet acquires monitors {\sf A} then {\sf B} before waiting, while only acquiring {\sf B} when signalling, effectively avoiding the Nested Monitor Problem~\cite{Lister77}. 1520 \noindent The @wait@ only releases monitor @B@ so the signalling thread cannot acquire monitor @A@ to get to the @signal@. 1521 Attempting release of all acquired monitors at the @wait@ introduces a different set of problems, such as releasing monitor @C@, which has nothing to do with the @signal@. 1522 1523 However, for monitors as for locks, it is possible to write a program using nesting without encountering any problems if nesting is done correctly. 1524 For example, the next cfa-code snippet acquires monitors {\sf A} then {\sf B} before waiting, while only acquiring {\sf B} when signalling, effectively avoiding the Nested Monitor Problem~\cite{Lister77}. 1089 1525 1090 1526 \begin{multicols}{2} 1091 \begin{ pseudo}1527 \begin{cfa} 1092 1528 acquire A 1093 1529 acquire B … … 1095 1531 release B 1096 1532 release A 1097 \end{ pseudo}1533 \end{cfa} 1098 1534 1099 1535 \columnbreak 1100 1536 1101 \begin{ pseudo}1537 \begin{cfa} 1102 1538 1103 1539 acquire B … … 1105 1541 release B 1106 1542 1107 \end{ pseudo}1543 \end{cfa} 1108 1544 \end{multicols} 1109 1545 … … 1116 1552 % ====================================================================== 1117 1553 1118 A larger example is presented to show complex issues for \textbf{bulk-acq} and its implementation options are analyzed. Listing \ref{lst:int-bulk-pseudo} shows an example where \textbf{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{lst:int-bulk-cfa} shows the corresponding \CFA code to implement the pseudo-code in listing \ref{lst:int-bulk-pseudo}. For the purpose of translating the given pseudo-code into \CFA-code, any method of introducing a monitor is acceptable, e.g., \code{mutex} parameters, global variables, pointer parameters, or using locals with the \code{mutex} statement. 1119 1120 \begin{figure}[!t] 1554 A larger example is presented to show complex issues for \textbf{bulk-acq} and its implementation options are analyzed. 1555 Figure~\ref{f:int-bulk-cfa} shows an example where \textbf{bulk-acq} adds a significant layer of complexity to the internal signalling semantics, and listing \ref{f:int-bulk-cfa} shows the corresponding \CFA code to implement the cfa-code in listing \ref{f:int-bulk-cfa}. 1556 For the purpose of translating the given cfa-code into \CFA-code, any method of introducing a monitor is acceptable, \eg @mutex@ parameters, global variables, pointer parameters, or using locals with the @mutex@ statement. 1557 1558 \begin{figure} 1121 1559 \begin{multicols}{2} 1122 1560 Waiting thread 1123 \begin{ pseudo}[numbers=left]1561 \begin{cfa}[numbers=left] 1124 1562 acquire A 1125 // Code Section 11563 // Code Section 1 1126 1564 acquire A & B 1127 // Code Section 21565 // Code Section 2 1128 1566 wait A & B 1129 // Code Section 31567 // Code Section 3 1130 1568 release A & B 1131 // Code Section 41569 // Code Section 4 1132 1570 release A 1133 \end{ pseudo}1571 \end{cfa} 1134 1572 \columnbreak 1135 1573 Signalling thread 1136 \begin{ pseudo}[numbers=left, firstnumber=10,escapechar=|]1574 \begin{cfa}[numbers=left, firstnumber=10,escapechar=|] 1137 1575 acquire A 1138 // Code Section 51576 // Code Section 5 1139 1577 acquire A & B 1140 // Code Section 61578 // Code Section 6 1141 1579 |\label{line:signal1}|signal A & B 1142 // Code Section 71580 // Code Section 7 1143 1581 |\label{line:releaseFirst}|release A & B 1144 // Code Section 81582 // Code Section 8 1145 1583 |\label{line:lastRelease}|release A 1146 \end{ pseudo}1584 \end{cfa} 1147 1585 \end{multicols} 1148 \begin{cfa code}[caption={Internal scheduling with \textbf{bulk-acq}},label={lst:int-bulk-pseudo}]1149 \end{cfa code}1586 \begin{cfa}[caption={Internal scheduling with \textbf{bulk-acq}},label={f:int-bulk-cfa}] 1587 \end{cfa} 1150 1588 \begin{center} 1151 \begin{cfa code}[xleftmargin=.4\textwidth]1589 \begin{cfa}[xleftmargin=.4\textwidth] 1152 1590 monitor A a; 1153 1591 monitor B b; 1154 1592 condition c; 1155 \end{cfa code}1593 \end{cfa} 1156 1594 \end{center} 1157 1595 \begin{multicols}{2} 1158 1596 Waiting thread 1159 \begin{cfa code}1597 \begin{cfa} 1160 1598 mutex(a) { 1161 // Code Section 11599 // Code Section 1 1162 1600 mutex(a, b) { 1163 // Code Section 21601 // Code Section 2 1164 1602 wait(c); 1165 // Code Section 31603 // Code Section 3 1166 1604 } 1167 // Code Section 41168 } 1169 \end{cfa code}1605 // Code Section 4 1606 } 1607 \end{cfa} 1170 1608 \columnbreak 1171 1609 Signalling thread 1172 \begin{cfa code}1610 \begin{cfa} 1173 1611 mutex(a) { 1174 // Code Section 51612 // Code Section 5 1175 1613 mutex(a, b) { 1176 // Code Section 61614 // Code Section 6 1177 1615 signal(c); 1178 // Code Section 71616 // Code Section 7 1179 1617 } 1180 // Code Section 81181 } 1182 \end{cfa code}1618 // Code Section 8 1619 } 1620 \end{cfa} 1183 1621 \end{multicols} 1184 \begin{cfa code}[caption={Equivalent \CFA code for listing \ref{lst:int-bulk-pseudo}},label={lst:int-bulk-cfa}]1185 \end{cfa code}1622 \begin{cfa}[caption={Equivalent \CFA code for listing \ref{f:int-bulk-cfa}},label={f:int-bulk-cfa}] 1623 \end{cfa} 1186 1624 \begin{multicols}{2} 1187 1625 Waiter 1188 \begin{ pseudo}[numbers=left]1626 \begin{cfa}[numbers=left] 1189 1627 acquire A 1190 1628 acquire A & B … … 1192 1630 release A & B 1193 1631 release A 1194 \end{ pseudo}1632 \end{cfa} 1195 1633 1196 1634 \columnbreak 1197 1635 1198 1636 Signaller 1199 \begin{ pseudo}[numbers=left, firstnumber=6,escapechar=|]1637 \begin{cfa}[numbers=left, firstnumber=6,escapechar=|] 1200 1638 acquire A 1201 1639 acquire A & B 1202 1640 signal A & B 1203 1641 release A & B 1204 |\label{line:secret}|// Secretly keep B here1642 |\label{line:secret}|// Secretly keep B here 1205 1643 release A 1206 // Wakeup waiter and transfer A & B1207 \end{ pseudo}1644 // Wakeup waiter and transfer A & B 1645 \end{cfa} 1208 1646 \end{multicols} 1209 \begin{cfa code}[caption={Listing \ref{lst:int-bulk-pseudo}, with delayed signalling comments},label={lst:int-secret}]1210 \end{cfa code}1647 \begin{cfa}[caption={Figure~\ref{f:int-bulk-cfa}, with delayed signalling comments},label={f:int-secret}] 1648 \end{cfa} 1211 1649 \end{figure} 1212 1650 1213 The complexity begins at code sections 4 and 8 in listing \ref{lst:int-bulk-pseudo}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. The root of the problem is that \textbf{bulk-acq} is used in a context where one of the monitors is already acquired, which is why it is important to define the behaviour of the previous pseudo-code. When the signaller thread reaches the location where it should ``release \code{A & B}'' (listing \ref{lst:int-bulk-pseudo} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor \code{B} to the waiting thread. This ownership transfer is required in order to prevent barging into \code{B} by another thread, since both the signalling and signalled threads still need monitor \code{A}. There are three options: 1651 The complexity begins at code sections 4 and 8 in listing \ref{f:int-bulk-cfa}, which are where the existing semantics of internal scheduling needs to be extended for multiple monitors. 1652 The root of the problem is that \textbf{bulk-acq} is used in a context where one of the monitors is already acquired, which is why it is important to define the behaviour of the previous cfa-code. 1653 When the signaller thread reaches the location where it should ``release @A & B@'' (listing \ref{f:int-bulk-cfa} line \ref{line:releaseFirst}), it must actually transfer ownership of monitor @B@ to the waiting thread. 1654 This ownership transfer is required in order to prevent barging into @B@ by another thread, since both the signalling and signalled threads still need monitor @A@. 1655 There are three options: 1214 1656 1215 1657 \subsubsection{Delaying Signals} 1216 The obvious solution to the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. It can be argued that that moment is when the last lock is no longer needed, because this semantics fits most closely to the behaviour of single-monitor scheduling. This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. This solution releases the monitors once every monitor in a group can be released. However, since some monitors are never released (e.g., the monitor of a thread), this interpretation means a group might never be released. A more interesting interpretation is to transfer the group until all its monitors are released, which means the group is not passed further and a thread can retain its locks. 1217 1218 However, listing \ref{lst:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors. Listing \ref{lst:dependency} shows a slightly different example where a third thread is waiting on monitor \code{A}, using a different condition variable. Because the third thread is signalled when secretly holding \code{B}, the goal becomes unreachable. Depending on the order of signals (listing \ref{lst:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen: 1219 1220 \paragraph{Case 1: thread $\alpha$ goes first.} In this case, the problem is that monitor \code{A} needs to be passed to thread $\beta$ when thread $\alpha$ is done with it. 1221 \paragraph{Case 2: thread $\beta$ goes first.} In this case, the problem is that monitor \code{B} needs to be retained and passed to thread $\alpha$ along with monitor \code{A}, which can be done directly or possibly using thread $\beta$ as an intermediate. 1658 The obvious solution to the problem of multi-monitor scheduling is to keep ownership of all locks until the last lock is ready to be transferred. 1659 It can be argued that that moment is when the last lock is no longer needed, because this semantics fits most closely to the behaviour of single-monitor scheduling. 1660 This solution has the main benefit of transferring ownership of groups of monitors, which simplifies the semantics from multiple objects to a single group of objects, effectively making the existing single-monitor semantic viable by simply changing monitors to monitor groups. 1661 This solution releases the monitors once every monitor in a group can be released. 1662 However, since some monitors are never released (\eg the monitor of a thread), this interpretation means a group might never be released. 1663 A more interesting interpretation is to transfer the group until all its monitors are released, which means the group is not passed further and a thread can retain its locks. 1664 1665 However, listing \ref{f:int-secret} shows this solution can become much more complicated depending on what is executed while secretly holding B at line \ref{line:secret}, while avoiding the need to transfer ownership of a subset of the condition monitors. 1666 Figure~\ref{f:dependency} shows a slightly different example where a third thread is waiting on monitor @A@, using a different condition variable. 1667 Because the third thread is signalled when secretly holding @B@, the goal becomes unreachable. 1668 Depending on the order of signals (listing \ref{f:dependency} line \ref{line:signal-ab} and \ref{line:signal-a}) two cases can happen: 1669 1670 \paragraph{Case 1: thread $\alpha$ goes first.} In this case, the problem is that monitor @A@ needs to be passed to thread $\beta$ when thread $\alpha$ is done with it. 1671 \paragraph{Case 2: thread $\beta$ goes first.} In this case, the problem is that monitor @B@ needs to be retained and passed to thread $\alpha$ along with monitor @A@, which can be done directly or possibly using thread $\beta$ as an intermediate. 1222 1672 \\ 1223 1673 1224 Note that ordering is not determined by a race condition but by whether signalled threads are enqueued in FIFO or FILO order. However, regardless of the answer, users can move line \ref{line:signal-a} before line \ref{line:signal-ab} and get the reverse effect for listing \ref{lst:dependency}. 1674 Note that ordering is not determined by a race condition but by whether signalled threads are enqueued in FIFO or FILO order. 1675 However, regardless of the answer, users can move line \ref{line:signal-a} before line \ref{line:signal-ab} and get the reverse effect for listing \ref{f:dependency}. 1225 1676 1226 1677 In both cases, the threads need to be able to distinguish, on a per monitor basis, which ones need to be released and which ones need to be transferred, which means knowing when to release a group becomes complex and inefficient (see next section) and therefore effectively precludes this approach. … … 1232 1683 \begin{multicols}{3} 1233 1684 Thread $\alpha$ 1234 \begin{ pseudo}[numbers=left, firstnumber=1]1685 \begin{cfa}[numbers=left, firstnumber=1] 1235 1686 acquire A 1236 1687 acquire A & B … … 1238 1689 release A & B 1239 1690 release A 1240 \end{ pseudo}1691 \end{cfa} 1241 1692 \columnbreak 1242 1693 Thread $\gamma$ 1243 \begin{ pseudo}[numbers=left, firstnumber=6, escapechar=|]1694 \begin{cfa}[numbers=left, firstnumber=6, escapechar=|] 1244 1695 acquire A 1245 1696 acquire A & B … … 1248 1699 |\label{line:signal-a}|signal A 1249 1700 |\label{line:release-a}|release A 1250 \end{ pseudo}1701 \end{cfa} 1251 1702 \columnbreak 1252 1703 Thread $\beta$ 1253 \begin{ pseudo}[numbers=left, firstnumber=12, escapechar=|]1704 \begin{cfa}[numbers=left, firstnumber=12, escapechar=|] 1254 1705 acquire A 1255 1706 wait A 1256 1707 |\label{line:release-aa}|release A 1257 \end{ pseudo}1708 \end{cfa} 1258 1709 \end{multicols} 1259 \begin{cfa code}[caption={Pseudo-code for the three thread example.},label={lst:dependency}]1260 \end{cfa code}1710 \begin{cfa}[caption={Pseudo-code for the three thread example.},label={f:dependency}] 1711 \end{cfa} 1261 1712 \begin{center} 1262 1713 \input{dependency} 1263 1714 \end{center} 1264 \caption{Dependency graph of the statements in listing \ref{ lst:dependency}}1715 \caption{Dependency graph of the statements in listing \ref{f:dependency}} 1265 1716 \label{fig:dependency} 1266 1717 \end{figure} 1267 1718 1268 In listing \ref{lst:int-bulk-pseudo}, there is a solution that satisfies both barging prevention and mutual exclusion. If ownership of both monitors is transferred to the waiter when the signaller releases \code{A & B} and then the waiter transfers back ownership of \code{A} back to the signaller when it releases it, then the problem is solved (\code{B} is no longer in use at this point). Dynamically finding the correct order is therefore the second possible solution. The problem is effectively resolving a dependency graph of ownership requirements. Here even the simplest of code snippets requires two transfers and has a super-linear complexity. This complexity can be seen in listing \ref{lst:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks. 1719 In listing \ref{f:int-bulk-cfa}, there is a solution that satisfies both barging prevention and mutual exclusion. 1720 If ownership of both monitors is transferred to the waiter when the signaller releases @A & B@ and then the waiter transfers back ownership of @A@ back to the signaller when it releases it, then the problem is solved (@B@ is no longer in use at this point). 1721 Dynamically finding the correct order is therefore the second possible solution. 1722 The problem is effectively resolving a dependency graph of ownership requirements. 1723 Here even the simplest of code snippets requires two transfers and has a super-linear complexity. 1724 This complexity can be seen in listing \ref{f:explosion}, which is just a direct extension to three monitors, requires at least three ownership transfer and has multiple solutions. 1725 Furthermore, the presence of multiple solutions for ownership transfer can cause deadlock problems if a specific solution is not consistently picked; In the same way that multiple lock acquiring order can cause deadlocks. 1269 1726 \begin{figure} 1270 1727 \begin{multicols}{2} 1271 \begin{ pseudo}1728 \begin{cfa} 1272 1729 acquire A 1273 1730 acquire B … … 1277 1734 release B 1278 1735 release A 1279 \end{ pseudo}1736 \end{cfa} 1280 1737 1281 1738 \columnbreak 1282 1739 1283 \begin{ pseudo}1740 \begin{cfa} 1284 1741 acquire A 1285 1742 acquire B … … 1289 1746 release B 1290 1747 release A 1291 \end{ pseudo}1748 \end{cfa} 1292 1749 \end{multicols} 1293 \begin{cfa code}[caption={Extension to three monitors of listing \ref{lst:int-bulk-pseudo}},label={lst:explosion}]1294 \end{cfa code}1750 \begin{cfa}[caption={Extension to three monitors of listing \ref{f:int-bulk-cfa}},label={f:explosion}] 1751 \end{cfa} 1295 1752 \end{figure} 1296 1753 1297 Given the three threads example in listing \ref{lst:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (e.g., $\alpha1$ must happen before $\alpha2$). The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependencies unfold. Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one. 1754 Given the three threads example in listing \ref{f:dependency}, figure \ref{fig:dependency} shows the corresponding dependency graph that results, where every node is a statement of one of the three threads, and the arrows the dependency of that statement (\eg $\alpha1$ must happen before $\alpha2$). 1755 The extra challenge is that this dependency graph is effectively post-mortem, but the runtime system needs to be able to build and solve these graphs as the dependencies unfold. 1756 Resolving dependency graphs being a complex and expensive endeavour, this solution is not the preferred one. 1298 1757 1299 1758 \subsubsection{Partial Signalling} \label{partial-sig} 1300 Finally, the solution that is chosen for \CFA is to use partial signalling. Again using listing \ref{lst:int-bulk-pseudo}, the partial signalling solution transfers ownership of monitor \code{B} at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor \code{A}. Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. This solution has the benefit that complexity is encapsulated into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. Furthermore, after being fully implemented, this solution does not appear to have any significant downsides. 1301 1302 Using partial signalling, listing \ref{lst:dependency} can be solved easily: 1759 Finally, the solution that is chosen for \CFA is to use partial signalling. 1760 Again using listing \ref{f:int-bulk-cfa}, the partial signalling solution transfers ownership of monitor @B@ at lines \ref{line:signal1} to the waiter but does not wake the waiting thread since it is still using monitor @A@. 1761 Only when it reaches line \ref{line:lastRelease} does it actually wake up the waiting thread. 1762 This solution has the benefit that complexity is encapsulated into only two actions: passing monitors to the next owner when they should be released and conditionally waking threads if all conditions are met. 1763 This solution has a much simpler implementation than a dependency graph solving algorithms, which is why it was chosen. 1764 Furthermore, after being fully implemented, this solution does not appear to have any significant downsides. 1765 1766 Using partial signalling, listing \ref{f:dependency} can be solved easily: 1303 1767 \begin{itemize} 1304 \item When thread $\gamma$ reaches line \ref{line:release-ab} it transfers monitor \code{B} to thread $\alpha$ and continues to hold monitor \code{A}.1305 \item When thread $\gamma$ reaches line \ref{line:release-a} it transfers monitor \code{A}to thread $\beta$ and wakes it up.1306 \item When thread $\beta$ reaches line \ref{line:release-aa} it transfers monitor \code{A}to thread $\alpha$ and wakes it up.1768 \item When thread $\gamma$ reaches line \ref{line:release-ab} it transfers monitor @B@ to thread $\alpha$ and continues to hold monitor @A@. 1769 \item When thread $\gamma$ reaches line \ref{line:release-a} it transfers monitor @A@ to thread $\beta$ and wakes it up. 1770 \item When thread $\beta$ reaches line \ref{line:release-aa} it transfers monitor @A@ to thread $\alpha$ and wakes it up. 1307 1771 \end{itemize} 1308 1772 … … 1314 1778 \begin{table} 1315 1779 \begin{tabular}{|c|c|} 1316 \code{signal} & \code{signal_block}\\1780 @signal@ & @signal_block@ \\ 1317 1781 \hline 1318 \begin{cfacode}[tabsize=3] 1319 monitor DatingService 1320 { 1321 //compatibility codes 1782 \begin{cfa}[tabsize=3] 1783 monitor DatingService { 1784 // compatibility codes 1322 1785 enum{ CCodes = 20 }; 1323 1786 … … 1330 1793 condition exchange; 1331 1794 1332 int girl(int phoneNo, int ccode) 1333 { 1334 //no compatible boy ? 1335 if(empty(boys[ccode])) 1336 { 1337 //wait for boy 1338 wait(girls[ccode]); 1339 1340 //make phone number available 1341 girlPhoneNo = phoneNo; 1342 1343 //wake boy from chair 1344 signal(exchange); 1345 } 1346 else 1347 { 1348 //make phone number available 1349 girlPhoneNo = phoneNo; 1350 1351 //wake boy 1352 signal(boys[ccode]); 1353 1354 //sit in chair 1355 wait(exchange); 1795 int girl(int phoneNo, int cfa) { 1796 // no compatible boy ? 1797 if(empty(boys[cfa])) { 1798 wait(girls[cfa]); // wait for boy 1799 girlPhoneNo = phoneNo; // make phone number available 1800 signal(exchange); // wake boy from chair 1801 } else { 1802 girlPhoneNo = phoneNo; // make phone number available 1803 signal(boys[cfa]); // wake boy 1804 wait(exchange); // sit in chair 1356 1805 } 1357 1806 return boyPhoneNo; 1358 1807 } 1359 1360 int boy(int phoneNo, int ccode) 1361 { 1362 //same as above 1363 //with boy/girl interchanged 1364 } 1365 \end{cfacode}&\begin{cfacode}[tabsize=3] 1366 monitor DatingService 1367 { 1368 //compatibility codes 1369 enum{ CCodes = 20 }; 1808 int boy(int phoneNo, int cfa) { 1809 // same as above 1810 // with boy/girl interchanged 1811 } 1812 \end{cfa}&\begin{cfa}[tabsize=3] 1813 monitor DatingService { 1814 1815 enum{ CCodes = 20 }; // compatibility codes 1370 1816 1371 1817 int girlPhoneNo; … … 1375 1821 condition girls[CCodes]; 1376 1822 condition boys [CCodes]; 1377 //exchange is not needed 1378 1379 int girl(int phoneNo, int ccode) 1380 { 1381 //no compatible boy ? 1382 if(empty(boys[ccode])) 1383 { 1384 //wait for boy 1385 wait(girls[ccode]); 1386 1387 //make phone number available 1388 girlPhoneNo = phoneNo; 1389 1390 //wake boy from chair 1391 signal(exchange); 1392 } 1393 else 1394 { 1395 //make phone number available 1396 girlPhoneNo = phoneNo; 1397 1398 //wake boy 1399 signal_block(boys[ccode]); 1400 1401 //second handshake unnecessary 1823 // exchange is not needed 1824 1825 int girl(int phoneNo, int cfa) { 1826 // no compatible boy ? 1827 if(empty(boys[cfa])) { 1828 wait(girls[cfa]); // wait for boy 1829 girlPhoneNo = phoneNo; // make phone number available 1830 signal(exchange); // wake boy from chair 1831 } else { 1832 girlPhoneNo = phoneNo; // make phone number available 1833 signal_block(boys[cfa]); // wake boy 1834 1835 // second handshake unnecessary 1402 1836 1403 1837 } … … 1405 1839 } 1406 1840 1407 int boy(int phoneNo, int ccode) 1408 { 1409 //same as above 1410 //with boy/girl interchanged 1411 } 1412 \end{cfacode} 1841 int boy(int phoneNo, int cfa) { 1842 // same as above 1843 // with boy/girl interchanged 1844 } 1845 \end{cfa} 1413 1846 \end{tabular} 1414 \caption{Dating service example using \ code{signal} and \code{signal_block}. }1847 \caption{Dating service example using \protect\lstinline|signal| and \protect\lstinline|signal_block|. } 1415 1848 \label{tbl:datingservice} 1416 1849 \end{table} 1417 An important note is that, until now, signalling a monitor was a delayed operation. The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the \code{signal} statement. However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the \code{signal_block} routine. 1418 1419 The example in table \ref{tbl:datingservice} highlights the difference in behaviour. As mentioned, \code{signal} only transfers ownership once the current critical section exits; this behaviour requires additional synchronization when a two-way handshake is needed. To avoid this explicit synchronization, the \code{condition} type offers the \code{signal_block} routine, which handles the two-way handshake as shown in the example. This feature removes the need for a second condition variables and simplifies programming. Like every other monitor semantic, \code{signal_block} uses barging prevention, which means mutual-exclusion is baton-passed both on the front end and the back end of the call to \code{signal_block}, meaning no other thread can acquire the monitor either before or after the call. 1850 An important note is that, until now, signalling a monitor was a delayed operation. 1851 The ownership of the monitor is transferred only when the monitor would have otherwise been released, not at the point of the @signal@ statement. 1852 However, in some cases, it may be more convenient for users to immediately transfer ownership to the thread that is waiting for cooperation, which is achieved using the @signal_block@ routine. 1853 1854 The example in table \ref{tbl:datingservice} highlights the difference in behaviour. 1855 As mentioned, @signal@ only transfers ownership once the current critical section exits; this behaviour requires additional synchronization when a two-way handshake is needed. 1856 To avoid this explicit synchronization, the @condition@ type offers the @signal_block@ routine, which handles the two-way handshake as shown in the example. 1857 This feature removes the need for a second condition variables and simplifies programming. 1858 Like every other monitor semantic, @signal_block@ uses barging prevention, which means mutual-exclusion is baton-passed both on the front end and the back end of the call to @signal_block@, meaning no other thread can acquire the monitor either before or after the call. 1420 1859 1421 1860 % ====================================================================== … … 1429 1868 Internal Scheduling & External Scheduling & Go\\ 1430 1869 \hline 1431 \begin{u cppcode}[tabsize=3]1870 \begin{uC++}[tabsize=3] 1432 1871 _Monitor Semaphore { 1433 1872 condition c; … … 1444 1883 } 1445 1884 } 1446 \end{u cppcode}&\begin{ucppcode}[tabsize=3]1885 \end{uC++}&\begin{uC++}[tabsize=3] 1447 1886 _Monitor Semaphore { 1448 1887 … … 1459 1898 } 1460 1899 } 1461 \end{u cppcode}&\begin{gocode}[tabsize=3]1900 \end{uC++}&\begin{Go}[tabsize=3] 1462 1901 type MySem struct { 1463 1902 inUse bool … … 1479 1918 s.inUse = false 1480 1919 1481 // This actually deadlocks1482 // when single thread1920 // This actually deadlocks 1921 // when single thread 1483 1922 s.c <- false 1484 1923 } 1485 \end{ gocode}1924 \end{Go} 1486 1925 \end{tabular} 1487 1926 \caption{Different forms of scheduling.} 1488 1927 \label{tbl:sched} 1489 1928 \end{table} 1490 This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. Indeed, as the following examples demonstrate, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. External scheduling can generally be done either in terms of control flow (e.g., Ada with \code{accept}, \uC with \code{_Accept}) or in terms of data (e.g., Go with channels). Of course, both of these paradigms have their own strengths and weaknesses, but for this project, control-flow semantics was chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. The previous example shows a simple use \code{_Accept} versus \code{wait}/\code{signal} and its advantages. Note that while other languages often use \code{accept}/\code{select} as the core external scheduling keyword, \CFA uses \code{waitfor} to prevent name collisions with existing socket \textbf{api}s. 1491 1492 For the \code{P} member above using internal scheduling, the call to \code{wait} only guarantees that \code{V} is the last routine to access the monitor, allowing a third routine, say \code{isInUse()}, acquire mutual exclusion several times while routine \code{P} is waiting. On the other hand, external scheduling guarantees that while routine \code{P} is waiting, no other routine than \code{V} can acquire the monitor. 1929 This method is more constrained and explicit, which helps users reduce the non-deterministic nature of concurrency. 1930 Indeed, as the following examples demonstrate, external scheduling allows users to wait for events from other threads without the concern of unrelated events occurring. 1931 External scheduling can generally be done either in terms of control flow (\eg Ada with @accept@, \uC with @_Accept@) or in terms of data (\eg Go with channels). 1932 Of course, both of these paradigms have their own strengths and weaknesses, but for this project, control-flow semantics was chosen to stay consistent with the rest of the languages semantics. 1933 Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multiple-monitor routines. 1934 The previous example shows a simple use @_Accept@ versus @wait@/@signal@ and its advantages. 1935 Note that while other languages often use @accept@/@select@ as the core external scheduling keyword, \CFA uses @waitfor@ to prevent name collisions with existing socket \textbf{api}s. 1936 1937 For the @P@ member above using internal scheduling, the call to @wait@ only guarantees that @V@ is the last routine to access the monitor, allowing a third routine, say @isInUse()@, acquire mutual exclusion several times while routine @P@ is waiting. 1938 On the other hand, external scheduling guarantees that while routine @P@ is waiting, no other routine than @V@ can acquire the monitor. 1493 1939 1494 1940 % ====================================================================== … … 1497 1943 % ====================================================================== 1498 1944 % ====================================================================== 1499 In \uC, a monitor class declaration includes an exhaustive list of monitor operations. Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user: 1500 1501 \begin{cfacode} 1945 In \uC, a monitor class declaration includes an exhaustive list of monitor operations. 1946 Since \CFA is not object oriented, monitors become both more difficult to implement and less clear for a user: 1947 1948 \begin{cfa} 1502 1949 monitor A {}; 1503 1950 1504 1951 void f(A & mutex a); 1505 1952 void g(A & mutex a) { 1506 waitfor(f); // Obvious which f() to wait for1507 } 1508 1509 void f(A & mutex a, int); // New different F added in scope1953 waitfor(f); // Obvious which f() to wait for 1954 } 1955 1956 void f(A & mutex a, int); // New different F added in scope 1510 1957 void h(A & mutex a) { 1511 waitfor(f); //Less obvious which f() to wait for 1512 } 1513 \end{cfacode} 1514 1515 Furthermore, external scheduling is an example where implementation constraints become visible from the interface. Here is the pseudo-code for the entering phase of a monitor: 1958 waitfor(f); // Less obvious which f() to wait for 1959 } 1960 \end{cfa} 1961 1962 Furthermore, external scheduling is an example where implementation constraints become visible from the interface. 1963 Here is the cfa-code for the entering phase of a monitor: 1516 1964 \begin{center} 1517 1965 \begin{tabular}{l} 1518 \begin{ pseudo}1966 \begin{cfa} 1519 1967 if monitor is free 1520 1968 enter … … 1525 1973 else 1526 1974 block 1527 \end{ pseudo}1975 \end{cfa} 1528 1976 \end{tabular} 1529 1977 \end{center} 1530 For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instructions. However, a fast check for \pscode{monitor accepts me} is much harder to implement depending on the constraints put on the monitors. Indeed, monitors are often expressed as an entry queue and some acceptor queue as in Figure~\ref{fig:ClassicalMonitor}. 1978 For the first two conditions, it is easy to implement a check that can evaluate the condition in a few instructions. 1979 However, a fast check for @monitor accepts me@ is much harder to implement depending on the constraints put on the monitors. 1980 Indeed, monitors are often expressed as an entry queue and some acceptor queue as in Figure~\ref{fig:ClassicalMonitor}. 1531 1981 1532 1982 \begin{figure} … … 1544 1994 \end{figure} 1545 1995 1546 There are other alternatives to these pictures, but in the case of the left picture, implementing a fast accept check is relatively easy. Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (e.g., 128) of mutex members. This approach requires a unique dense ordering of routines with an upper-bound and that ordering must be consistent across translation units. For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritance. However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects. 1996 There are other alternatives to these pictures, but in the case of the left picture, implementing a fast accept check is relatively easy. 1997 Restricted to a fixed number of mutex members, N, the accept check reduces to updating a bitmask when the acceptor queue changes, a check that executes in a single instruction even with a fairly large number (\eg 128) of mutex members. 1998 This approach requires a unique dense ordering of routines with an upper-bound and that ordering must be consistent across translation units. 1999 For OO languages these constraints are common, since objects only offer adding member routines consistently across translation units via inheritance. 2000 However, in \CFA users can extend objects with mutex routines that are only visible in certain translation unit. 2001 This means that establishing a program-wide dense-ordering among mutex routines can only be done in the program linking phase, and still could have issues when using dynamically shared objects. 1547 2002 1548 2003 The alternative is to alter the implementation as in Figure~\ref{fig:BulkMonitor}. 1549 Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept separate. Generating a mask dynamically means that the storage for the mask information can vary between calls to \code{waitfor}, allowing for more flexibility and extensions. Storing an array of accepted function pointers replaces the single instruction bitmask comparison with dereferencing a pointer followed by a linear search. Furthermore, supporting nested external scheduling (e.g., listing \ref{lst:nest-ext}) may now require additional searches for the \code{waitfor} statement to check if a routine is already queued. 2004 Here, the mutex routine called is associated with a thread on the entry queue while a list of acceptable routines is kept separate. 2005 Generating a mask dynamically means that the storage for the mask information can vary between calls to @waitfor@, allowing for more flexibility and extensions. 2006 Storing an array of accepted function pointers replaces the single instruction bitmask comparison with dereferencing a pointer followed by a linear search. 2007 Furthermore, supporting nested external scheduling (\eg listing \ref{f:nest-ext}) may now require additional searches for the @waitfor@ statement to check if a routine is already queued. 1550 2008 1551 2009 \begin{figure} 1552 \begin{cfa code}[caption={Example of nested external scheduling},label={lst:nest-ext}]2010 \begin{cfa}[caption={Example of nested external scheduling},label={f:nest-ext}] 1553 2011 monitor M {}; 1554 2012 void foo( M & mutex a ) {} 1555 2013 void bar( M & mutex b ) { 1556 // Nested in the waitfor(bar, c) call2014 // Nested in the waitfor(bar, c) call 1557 2015 waitfor(foo, b); 1558 2016 } … … 1561 2019 } 1562 2020 1563 \end{cfa code}2021 \end{cfa} 1564 2022 \end{figure} 1565 2023 1566 Note that in the right picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is discussed in the next section. These details are omitted from the picture for the sake of simplicity. 1567 1568 At this point, a decision must be made between flexibility and performance. Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. Here, however, the cost of flexibility cannot be trivially removed. In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be hard to write. This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problem than writing locks that are as flexible as external scheduling in \CFA. 2024 Note that in the right picture, tasks need to always keep track of the monitors associated with mutex routines, and the routine mask needs to have both a function pointer and a set of monitors, as is discussed in the next section. 2025 These details are omitted from the picture for the sake of simplicity. 2026 2027 At this point, a decision must be made between flexibility and performance. 2028 Many design decisions in \CFA achieve both flexibility and performance, for example polymorphic routines add significant flexibility but inlining them means the optimizer can easily remove any runtime cost. 2029 Here, however, the cost of flexibility cannot be trivially removed. 2030 In the end, the most flexible approach has been chosen since it allows users to write programs that would otherwise be hard to write. 2031 This decision is based on the assumption that writing fast but inflexible locks is closer to a solved problem than writing locks that are as flexible as external scheduling in \CFA. 1569 2032 1570 2033 % ====================================================================== … … 1574 2037 % ====================================================================== 1575 2038 1576 External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. Even in the simplest possible case, some new semantics needs to be established: 1577 \begin{cfacode} 2039 External scheduling, like internal scheduling, becomes significantly more complex when introducing multi-monitor syntax. 2040 Even in the simplest possible case, some new semantics needs to be established: 2041 \begin{cfa} 1578 2042 monitor M {}; 1579 2043 … … 1581 2045 1582 2046 void g(M & mutex b, M & mutex c) { 1583 waitfor(f); // two monitors M => unknown which to pass to f(M & mutex)1584 } 1585 \end{cfa code}2047 waitfor(f); // two monitors M => unknown which to pass to f(M & mutex) 2048 } 2049 \end{cfa} 1586 2050 The obvious solution is to specify the correct monitor as follows: 1587 2051 1588 \begin{cfa code}2052 \begin{cfa} 1589 2053 monitor M {}; 1590 2054 … … 1592 2056 1593 2057 void g(M & mutex a, M & mutex b) { 1594 // wait for call to f with argument b2058 // wait for call to f with argument b 1595 2059 waitfor(f, b); 1596 2060 } 1597 \end{cfacode} 1598 This syntax is unambiguous. Both locks are acquired and kept by \code{g}. When routine \code{f} is called, the lock for monitor \code{b} is temporarily transferred from \code{g} to \code{f} (while \code{g} still holds lock \code{a}). This behaviour can be extended to the multi-monitor \code{waitfor} statement as follows. 1599 1600 \begin{cfacode} 2061 \end{cfa} 2062 This syntax is unambiguous. 2063 Both locks are acquired and kept by @g@. 2064 When routine @f@ is called, the lock for monitor @b@ is temporarily transferred from @g@ to @f@ (while @g@ still holds lock @a@). 2065 This behaviour can be extended to the multi-monitor @waitfor@ statement as follows. 2066 2067 \begin{cfa} 1601 2068 monitor M {}; 1602 2069 … … 1604 2071 1605 2072 void g(M & mutex a, M & mutex b) { 1606 // wait for call to f with arguments a and b2073 // wait for call to f with arguments a and b 1607 2074 waitfor(f, a, b); 1608 2075 } 1609 \end{cfa code}1610 1611 Note that the set of monitors passed to the \code{waitfor} statement must be entirely contained in the set of monitors already acquired in the routine. \code{waitfor}used in any other context is undefined behaviour.2076 \end{cfa} 2077 2078 Note that the set of monitors passed to the @waitfor@ statement must be entirely contained in the set of monitors already acquired in the routine. @waitfor@ used in any other context is undefined behaviour. 1612 2079 1613 2080 An important behaviour to note is when a set of monitors only match partially: 1614 2081 1615 \begin{cfa code}2082 \begin{cfa} 1616 2083 mutex struct A {}; 1617 2084 … … 1626 2093 1627 2094 void foo() { 1628 g(a1, b); // block on accept2095 g(a1, b); // block on accept 1629 2096 } 1630 2097 1631 2098 void bar() { 1632 f(a2, b); //fulfill cooperation 1633 } 1634 \end{cfacode} 1635 While the equivalent can happen when using internal scheduling, the fact that conditions are specific to a set of monitors means that users have to use two different condition variables. In both cases, partially matching monitor sets does not wakeup the waiting thread. It is also important to note that in the case of external scheduling the order of parameters is irrelevant; \code{waitfor(f,a,b)} and \code{waitfor(f,b,a)} are indistinguishable waiting condition. 1636 1637 % ====================================================================== 1638 % ====================================================================== 1639 \subsection{\code{waitfor} Semantics} 1640 % ====================================================================== 1641 % ====================================================================== 1642 1643 Syntactically, the \code{waitfor} statement takes a function identifier and a set of monitors. While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the \code{waitfor} statement. It checks that the set of monitors passed in matches the requirements for a function call. Listing \ref{lst:waitfor} shows various usages of the waitfor statement and which are acceptable. The choice of the function type is made ignoring any non-\code{mutex} parameter. One limitation of the current implementation is that it does not handle overloading, but overloading is possible. 2099 f(a2, b); // fulfill cooperation 2100 } 2101 \end{cfa} 2102 While the equivalent can happen when using internal scheduling, the fact that conditions are specific to a set of monitors means that users have to use two different condition variables. 2103 In both cases, partially matching monitor sets does not wakeup the waiting thread. 2104 It is also important to note that in the case of external scheduling the order of parameters is irrelevant; @waitfor(f,a,b)@ and @waitfor(f,b,a)@ are indistinguishable waiting condition. 2105 2106 % ====================================================================== 2107 % ====================================================================== 2108 \subsection{\protect\lstinline|waitfor| Semantics} 2109 % ====================================================================== 2110 % ====================================================================== 2111 2112 Syntactically, the @waitfor@ statement takes a function identifier and a set of monitors. 2113 While the set of monitors can be any list of expressions, the function name is more restricted because the compiler validates at compile time the validity of the function type and the parameters used with the @waitfor@ statement. 2114 It checks that the set of monitors passed in matches the requirements for a function call. 2115 Figure~\ref{f:waitfor} shows various usages of the waitfor statement and which are acceptable. 2116 The choice of the function type is made ignoring any non-@mutex@ parameter. 2117 One limitation of the current implementation is that it does not handle overloading, but overloading is possible. 1644 2118 \begin{figure} 1645 \begin{cfa code}[caption={Various correct and incorrect uses of the waitfor statement},label={lst:waitfor}]2119 \begin{cfa}[caption={Various correct and incorrect uses of the waitfor statement},label={f:waitfor}] 1646 2120 monitor A{}; 1647 2121 monitor B{}; … … 1657 2131 void (*fp)( A & mutex ) = f1; 1658 2132 1659 waitfor(f1, a1); // Correct : 1 monitor case1660 waitfor(f2, a1, b1); // Correct : 2 monitor case1661 waitfor(f3, a1); // Correct : non-mutex arguments are ignored1662 waitfor(f1, *ap); // Correct : expression as argument1663 1664 waitfor(f1, a1, b1); // Incorrect : Too many mutex arguments1665 waitfor(f2, a1); // Incorrect : Too few mutex arguments1666 waitfor(f2, a1, a2); // Incorrect : Mutex arguments don't match1667 waitfor(f1, 1); // Incorrect : 1 not a mutex argument1668 waitfor(f9, a1); // Incorrect : f9 function does not exist1669 waitfor(*fp, a1 ); // Incorrect : fp not an identifier1670 waitfor(f4, a1); // Incorrect : f4 ambiguous1671 1672 waitfor(f2, a1, b2); // Undefined behaviour : b2 not mutex1673 } 1674 \end{cfa code}2133 waitfor(f1, a1); // Correct : 1 monitor case 2134 waitfor(f2, a1, b1); // Correct : 2 monitor case 2135 waitfor(f3, a1); // Correct : non-mutex arguments are ignored 2136 waitfor(f1, *ap); // Correct : expression as argument 2137 2138 waitfor(f1, a1, b1); // Incorrect : Too many mutex arguments 2139 waitfor(f2, a1); // Incorrect : Too few mutex arguments 2140 waitfor(f2, a1, a2); // Incorrect : Mutex arguments don't match 2141 waitfor(f1, 1); // Incorrect : 1 not a mutex argument 2142 waitfor(f9, a1); // Incorrect : f9 function does not exist 2143 waitfor(*fp, a1 ); // Incorrect : fp not an identifier 2144 waitfor(f4, a1); // Incorrect : f4 ambiguous 2145 2146 waitfor(f2, a1, b2); // Undefined behaviour : b2 not mutex 2147 } 2148 \end{cfa} 1675 2149 \end{figure} 1676 2150 1677 Finally, for added flexibility, \CFA supports constructing a complex \code{waitfor} statement using the \code{or}, \code{timeout} and \code{else}. Indeed, multiple \code{waitfor} clauses can be chained together using \code{or}; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. To enable users to tell which accepted function executed, \code{waitfor}s are followed by a statement (including the null statement \code{;}) or a compound statement, which is executed after the clause is triggered. A \code{waitfor} chain can also be followed by a \code{timeout}, to signify an upper bound on the wait, or an \code{else}, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. Any and all of these clauses can be preceded by a \code{when} condition to dynamically toggle the accept clauses on or off based on some current state. Listing \ref{lst:waitfor2} demonstrates several complex masks and some incorrect ones. 2151 Finally, for added flexibility, \CFA supports constructing a complex @waitfor@ statement using the @or@, @timeout@ and @else@. 2152 Indeed, multiple @waitfor@ clauses can be chained together using @or@; this chain forms a single statement that uses baton pass to any function that fits one of the function+monitor set passed in. 2153 To enable users to tell which accepted function executed, @waitfor@s are followed by a statement (including the null statement @;@) or a compound statement, which is executed after the clause is triggered. 2154 A @waitfor@ chain can also be followed by a @timeout@, to signify an upper bound on the wait, or an @else@, to signify that the call should be non-blocking, which checks for a matching function call already arrived and otherwise continues. 2155 Any and all of these clauses can be preceded by a @when@ condition to dynamically toggle the accept clauses on or off based on some current state. 2156 Figure~\ref{f:waitfor2} demonstrates several complex masks and some incorrect ones. 1678 2157 1679 2158 \begin{figure} 1680 \begin{cfacode}[caption={Various correct and incorrect uses of the or, else, and timeout clause around a waitfor statement},label={lst:waitfor2}] 2159 \lstset{language=CFA,deletedelim=**[is][]{`}{`}} 2160 \begin{cfa} 1681 2161 monitor A{}; 1682 2162 … … 1685 2165 1686 2166 void foo( A & mutex a, bool b, int t ) { 1687 //Correct : blocking case 1688 waitfor(f1, a); 1689 1690 //Correct : block with statement 1691 waitfor(f1, a) { 2167 waitfor(f1, a); $\C{// Correct : blocking case}$ 2168 2169 waitfor(f1, a) { $\C{// Correct : block with statement}$ 1692 2170 sout | "f1" | endl; 1693 2171 } 1694 1695 //Correct : block waiting for f1 or f2 1696 waitfor(f1, a) { 2172 waitfor(f1, a) { $\C{// Correct : block waiting for f1 or f2}$ 1697 2173 sout | "f1" | endl; 1698 2174 } or waitfor(f2, a) { 1699 2175 sout | "f2" | endl; 1700 2176 } 1701 1702 //Correct : non-blocking case 1703 waitfor(f1, a); or else; 1704 1705 //Correct : non-blocking case 1706 waitfor(f1, a) { 2177 waitfor(f1, a); or else; $\C{// Correct : non-blocking case}$ 2178 2179 waitfor(f1, a) { $\C{// Correct : non-blocking case}$ 1707 2180 sout | "blocked" | endl; 1708 2181 } or else { 1709 2182 sout | "didn't block" | endl; 1710 2183 } 1711 1712 //Correct : block at most 10 seconds 1713 waitfor(f1, a) { 2184 waitfor(f1, a) { $\C{// Correct : block at most 10 seconds}$ 1714 2185 sout | "blocked" | endl; 1715 2186 } or timeout( 10`s) { 1716 2187 sout | "didn't block" | endl; 1717 2188 } 1718 1719 //Correct : block only if b == true 1720 //if b == false, don't even make the call 2189 // Correct : block only if b == true if b == false, don't even make the call 1721 2190 when(b) waitfor(f1, a); 1722 2191 1723 //Correct : block only if b == true 1724 //if b == false, make non-blocking call 2192 // Correct : block only if b == true if b == false, make non-blocking call 1725 2193 waitfor(f1, a); or when(!b) else; 1726 2194 1727 // Correct : block only of t > 12195 // Correct : block only of t > 1 1728 2196 waitfor(f1, a); or when(t > 1) timeout(t); or else; 1729 2197 1730 // Incorrect : timeout clause is dead code2198 // Incorrect : timeout clause is dead code 1731 2199 waitfor(f1, a); or timeout(t); or else; 1732 2200 1733 //Incorrect : order must be 1734 //waitfor [or waitfor... [or timeout] [or else]] 2201 // Incorrect : order must be waitfor [or waitfor... [or timeout] [or else]] 1735 2202 timeout(t); or waitfor(f1, a); or else; 1736 2203 } 1737 \end{cfacode} 2204 \end{cfa} 2205 \caption{Correct and incorrect uses of the or, else, and timeout clause around a waitfor statement} 2206 \label{f:waitfor2} 1738 2207 \end{figure} 1739 2208 … … 1743 2212 % ====================================================================== 1744 2213 % ====================================================================== 1745 An interesting use for the \code{waitfor} statement is destructor semantics. Indeed, the \code{waitfor} statement can accept any \code{mutex} routine, which includes the destructor (see section \ref{data}). However, with the semantics discussed until now, waiting for the destructor does not make any sense, since using an object after its destructor is called is undefined behaviour. The simplest approach is to disallow \code{waitfor} on a destructor. However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current \code{mutex} routine, similarly to how a condition is signalled. 2214 An interesting use for the @waitfor@ statement is destructor semantics. 2215 Indeed, the @waitfor@ statement can accept any @mutex@ routine, which includes the destructor (see section \ref{data}). 2216 However, with the semantics discussed until now, waiting for the destructor does not make any sense, since using an object after its destructor is called is undefined behaviour. 2217 The simplest approach is to disallow @waitfor@ on a destructor. 2218 However, a more expressive approach is to flip ordering of execution when waiting for the destructor, meaning that waiting for the destructor allows the destructor to run after the current @mutex@ routine, similarly to how a condition is signalled. 1746 2219 \begin{figure} 1747 \begin{cfa code}[caption={Example of an executor which executes action in series until the destructor is called.},label={lst:dtor-order}]2220 \begin{cfa}[caption={Example of an executor which executes action in series until the destructor is called.},label={f:dtor-order}] 1748 2221 monitor Executer {}; 1749 2222 struct Action; … … 1759 2232 } 1760 2233 } 1761 \end{cfa code}2234 \end{cfa} 1762 2235 \end{figure} 1763 For example, listing \ref{lst:dtor-order} shows an example of an executor with an infinite loop, which waits for the destructor to break out of this loop. Switching the semantic meaning introduces an idiomatic way to terminate a task and/or wait for its termination via destruction. 2236 For example, listing \ref{f:dtor-order} shows an example of an executor with an infinite loop, which waits for the destructor to break out of this loop. 2237 Switching the semantic meaning introduces an idiomatic way to terminate a task and/or wait for its termination via destruction. 1764 2238 1765 2239 … … 1772 2246 % # # # # # # # ####### ####### ####### ####### ### ##### # # 1773 2247 \section{Parallelism} 1774 Historically, computer performance was about processor speeds and instruction counts. However, with heat dissipation being a direct consequence of speed increase, parallelism has become the new source for increased performance~\cite{Sutter05, Sutter05b}. In this decade, it is no longer reasonable to create a high-performance application without caring about parallelism. Indeed, parallelism is an important aspect of performance and more specifically throughput and hardware utilization. The lowest-level approach of parallelism is to use \textbf{kthread} in combination with semantics like \code{fork}, \code{join}, etc. However, since these have significant costs and limitations, \textbf{kthread} are now mostly used as an implementation tool rather than a user oriented one. There are several alternatives to solve these issues that all have strengths and weaknesses. While there are many variations of the presented paradigms, most of these variations do not actually change the guarantees or the semantics, they simply move costs in order to achieve better performance for certain workloads. 2248 Historically, computer performance was about processor speeds and instruction counts. 2249 However, with heat dissipation being a direct consequence of speed increase, parallelism has become the new source for increased performance~\cite{Sutter05, Sutter05b}. 2250 In this decade, it is no longer reasonable to create a high-performance application without caring about parallelism. 2251 Indeed, parallelism is an important aspect of performance and more specifically throughput and hardware utilization. 2252 The lowest-level approach of parallelism is to use \textbf{kthread} in combination with semantics like @fork@, @join@, \etc. 2253 However, since these have significant costs and limitations, \textbf{kthread} are now mostly used as an implementation tool rather than a user oriented one. 2254 There are several alternatives to solve these issues that all have strengths and weaknesses. 2255 While there are many variations of the presented paradigms, most of these variations do not actually change the guarantees or the semantics, they simply move costs in order to achieve better performance for certain workloads. 1775 2256 1776 2257 \section{Paradigms} 1777 2258 \subsection{User-Level Threads} 1778 A direct improvement on the \textbf{kthread} approach is to use \textbf{uthread}. These threads offer most of the same features that the operating system already provides but can be used on a much larger scale. This approach is the most powerful solution as it allows all the features of multithreading, while removing several of the more expensive costs of kernel threads. The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees, but the parallelism toolkit offers very little to reduce complexity in itself. 2259 A direct improvement on the \textbf{kthread} approach is to use \textbf{uthread}. 2260 These threads offer most of the same features that the operating system already provides but can be used on a much larger scale. 2261 This approach is the most powerful solution as it allows all the features of multithreading, while removing several of the more expensive costs of kernel threads. 2262 The downside is that almost none of the low-level threading problems are hidden; users still have to think about data races, deadlocks and synchronization issues. 2263 These issues can be somewhat alleviated by a concurrency toolkit with strong guarantees, but the parallelism toolkit offers very little to reduce complexity in itself. 1779 2264 1780 2265 Examples of languages that support \textbf{uthread} are Erlang~\cite{Erlang} and \uC~\cite{uC++book}. 1781 2266 1782 2267 \subsection{Fibers : User-Level Threads Without Preemption} \label{fibers} 1783 A popular variant of \textbf{uthread} is what is often referred to as \textbf{fiber}. However, \textbf{fiber} do not present meaningful semantic differences with \textbf{uthread}. The significant difference between \textbf{uthread} and \textbf{fiber} is the lack of \textbf{preemption} in the latter. Advocates of \textbf{fiber} list their high performance and ease of implementation as major strengths, but the performance difference between \textbf{uthread} and \textbf{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignores fibers. 2268 A popular variant of \textbf{uthread} is what is often referred to as \textbf{fiber}. 2269 However, \textbf{fiber} do not present meaningful semantic differences with \textbf{uthread}. 2270 The significant difference between \textbf{uthread} and \textbf{fiber} is the lack of \textbf{preemption} in the latter. 2271 Advocates of \textbf{fiber} list their high performance and ease of implementation as major strengths, but the performance difference between \textbf{uthread} and \textbf{fiber} is controversial, and the ease of implementation, while true, is a weak argument in the context of language design. 2272 Therefore this proposal largely ignores fibers. 1784 2273 1785 2274 An example of a language that uses fibers is Go~\cite{Go} 1786 2275 1787 2276 \subsection{Jobs and Thread Pools} 1788 An approach on the opposite end of the spectrum is to base parallelism on \textbf{pool}. Indeed, \textbf{pool} offer limited flexibility but at the benefit of a simpler user interface. In \textbf{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that ties them together. This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. Indeed, any \textbf{job} that blocks also block the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant number of blocked jobs always results in idles cores. 2277 An approach on the opposite end of the spectrum is to base parallelism on \textbf{pool}. 2278 Indeed, \textbf{pool} offer limited flexibility but at the benefit of a simpler user interface. 2279 In \textbf{pool} based systems, users express parallelism as units of work, called jobs, and a dependency graph (either explicit or implicit) that ties them together. 2280 This approach means users need not worry about concurrency but significantly limit the interaction that can occur among jobs. 2281 Indeed, any \textbf{job} that blocks also block the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. 2282 It can be argued that a solution to this problem is to use more workers than available cores. 2283 However, unless the number of jobs and the number of workers are comparable, having a significant number of blocked jobs always results in idles cores. 1789 2284 1790 2285 The gold standard of this implementation is Intel's TBB library~\cite{TBB}. 1791 2286 1792 2287 \subsection{Paradigm Performance} 1793 While the choice between the three paradigms listed above may have significant performance implications, it is difficult to pin down the performance implications of choosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantees equivalent performance across paradigms and that the \textbf{pool}-based system has the best efficiency thanks to the lower memory overhead (i.e., no thread stack per job). However, interactions among jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. Finally, if the units of uninterrupted work are large, enough the paradigm choice is largely amortized by the actual work done. 2288 While the choice between the three paradigms listed above may have significant performance implications, it is difficult to pin down the performance implications of choosing a model at the language level. 2289 Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. 2290 Having a large amount of mostly independent units of work to execute almost guarantees equivalent performance across paradigms and that the \textbf{pool}-based system has the best efficiency thanks to the lower memory overhead (\ie no thread stack per job). 2291 However, interactions among jobs can easily exacerbate contention. 2292 User-level threads allow fine-grain context switching, which results in better resource utilization, but a context switch is more expensive and the extra control means users need to tweak more variables to get the desired performance. 2293 Finally, if the units of uninterrupted work are large, enough the paradigm choice is largely amortized by the actual work done. 1794 2294 1795 2295 \section{The \protect\CFA\ Kernel : Processors, Clusters and Threads}\label{kernel} 1796 A \textbf{cfacluster} is a group of \textbf{kthread} executed in isolation. \textbf{uthread} are scheduled on the \textbf{kthread} of a given \textbf{cfacluster}, allowing organization between \textbf{uthread} and \textbf{kthread}. It is important that \textbf{kthread} belonging to a same \textbf{cfacluster} have homogeneous settings, otherwise migrating a \textbf{uthread} from one \textbf{kthread} to the other can cause issues. A \textbf{cfacluster} also offers a pluggable scheduler that can optimize the workload generated by the \textbf{uthread}. 1797 1798 \textbf{cfacluster} have not been fully implemented in the context of this paper. Currently \CFA only supports one \textbf{cfacluster}, the initial one. 2296 A \textbf{cfacluster} is a group of \textbf{kthread} executed in isolation. \textbf{uthread} are scheduled on the \textbf{kthread} of a given \textbf{cfacluster}, allowing organization between \textbf{uthread} and \textbf{kthread}. 2297 It is important that \textbf{kthread} belonging to a same \textbf{cfacluster} have homogeneous settings, otherwise migrating a \textbf{uthread} from one \textbf{kthread} to the other can cause issues. 2298 A \textbf{cfacluster} also offers a pluggable scheduler that can optimize the workload generated by the \textbf{uthread}. 2299 2300 \textbf{cfacluster} have not been fully implemented in the context of this paper. 2301 Currently \CFA only supports one \textbf{cfacluster}, the initial one. 1799 2302 1800 2303 \subsection{Future Work: Machine Setup}\label{machine} 1801 While this was not done in the context of this paper, another important aspect of clusters is affinity. While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heterogeneous setups. For example, a system using \textbf{numa} configurations may benefit from users being able to tie clusters and/or kernel threads to certain CPU cores. OS support for CPU affinity is now common~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx}, which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity. 2304 While this was not done in the context of this paper, another important aspect of clusters is affinity. 2305 While many common desktop and laptop PCs have homogeneous CPUs, other devices often have more heterogeneous setups. 2306 For example, a system using \textbf{numa} configurations may benefit from users being able to tie clusters and/or kernel threads to certain CPU cores. 2307 OS support for CPU affinity is now common~\cite{affinityLinux, affinityWindows, affinityFreebsd, affinityNetbsd, affinityMacosx}, which means it is both possible and desirable for \CFA to offer an abstraction mechanism for portable CPU affinity. 1802 2308 1803 2309 \subsection{Paradigms}\label{cfaparadigms} 1804 Given these building blocks, it is possible to reproduce all three of the popular paradigms. Indeed, \textbf{uthread} is the default paradigm in \CFA. However, disabling \textbf{preemption} on the \textbf{cfacluster} means \textbf{cfathread} effectively become \textbf{fiber}. Since several \textbf{cfacluster} with different scheduling policy can coexist in the same application, this allows \textbf{fiber} and \textbf{uthread} to coexist in the runtime of an application. Finally, it is possible to build executors for thread pools from \textbf{uthread} or \textbf{fiber}, which includes specialized jobs like actors~\cite{Actors}. 2310 Given these building blocks, it is possible to reproduce all three of the popular paradigms. 2311 Indeed, \textbf{uthread} is the default paradigm in \CFA. 2312 However, disabling \textbf{preemption} on the \textbf{cfacluster} means \textbf{cfathread} effectively become \textbf{fiber}. 2313 Since several \textbf{cfacluster} with different scheduling policy can coexist in the same application, this allows \textbf{fiber} and \textbf{uthread} to coexist in the runtime of an application. 2314 Finally, it is possible to build executors for thread pools from \textbf{uthread} or \textbf{fiber}, which includes specialized jobs like actors~\cite{Actors}. 1805 2315 1806 2316 1807 2317 1808 2318 \section{Behind the Scenes} 1809 There are several challenges specific to \CFA when implementing concurrency. These challenges are a direct result of \textbf{bulk-acq} and loose object definitions. These two constraints are the root cause of most design decisions in the implementation. Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. This extra goal means that memory management is a constant concern in the design of the system. 1810 1811 The main memory concern for concurrency is queues. All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each node has pre-allocated link fields for chaining, to avoid the need for memory allocation. Since several concurrency operations can use an unbound amount of memory (depending on \textbf{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. Conveniently, the call stack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. Since stack allocation is based on scopes, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. The threads and the condition both have a fixed amount of memory, while \code{mutex} routines and blocking calls allow for an unbound amount, within the stack size. 2319 There are several challenges specific to \CFA when implementing concurrency. 2320 These challenges are a direct result of \textbf{bulk-acq} and loose object definitions. 2321 These two constraints are the root cause of most design decisions in the implementation. 2322 Furthermore, to avoid contention from dynamically allocating memory in a concurrent environment, the internal-scheduling design is (almost) entirely free of mallocs. 2323 This approach avoids the chicken and egg problem~\cite{Chicken} of having a memory allocator that relies on the threading system and a threading system that relies on the runtime. 2324 This extra goal means that memory management is a constant concern in the design of the system. 2325 2326 The main memory concern for concurrency is queues. 2327 All blocking operations are made by parking threads onto queues and all queues are designed with intrusive nodes, where each node has pre-allocated link fields for chaining, to avoid the need for memory allocation. 2328 Since several concurrency operations can use an unbound amount of memory (depending on \textbf{bulk-acq}), statically defining information in the intrusive fields of threads is insufficient.The only way to use a variable amount of memory without requiring memory allocation is to pre-allocate large buffers of memory eagerly and store the information in these buffers. 2329 Conveniently, the call stack fits that description and is easy to use, which is why it is used heavily in the implementation of internal scheduling, particularly variable-length arrays. 2330 Since stack allocation is based on scopes, the first step of the implementation is to identify the scopes that are available to store the information, and which of these can have a variable-length array. 2331 The threads and the condition both have a fixed amount of memory, while @mutex@ routines and blocking calls allow for an unbound amount, within the stack size. 1812 2332 1813 2333 Note that since the major contributions of this paper are extending monitor semantics to \textbf{bulk-acq} and loose object definitions, any challenges that are not resulting of these characteristics of \CFA are considered as solved problems and therefore not discussed. … … 1819 2339 % ====================================================================== 1820 2340 1821 The first step towards the monitor implementation is simple \code{mutex} routines. In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{lst:entry1}. The entry/exit procedures do not have to be extended to support multiple monitors. Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. In \CFA, ordering of monitor acquisition relies on memory ordering. This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is undefined behaviour. When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer array and sorted based on pointer values. This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively. 2341 The first step towards the monitor implementation is simple @mutex@ routines. 2342 In the single monitor case, mutual-exclusion is done using the entry/exit procedure in listing \ref{f:entry1}. 2343 The entry/exit procedures do not have to be extended to support multiple monitors. 2344 Indeed it is sufficient to enter/leave monitors one-by-one as long as the order is correct to prevent deadlock~\cite{Havender68}. 2345 In \CFA, ordering of monitor acquisition relies on memory ordering. 2346 This approach is sufficient because all objects are guaranteed to have distinct non-overlapping memory layouts and mutual-exclusion for a monitor is only defined for its lifetime, meaning that destroying a monitor while it is acquired is undefined behaviour. 2347 When a mutex call is made, the concerned monitors are aggregated into a variable-length pointer array and sorted based on pointer values. 2348 This array persists for the entire duration of the mutual-exclusion and its ordering reused extensively. 1822 2349 \begin{figure} 1823 2350 \begin{multicols}{2} 1824 2351 Entry 1825 \begin{ pseudo}2352 \begin{cfa} 1826 2353 if monitor is free 1827 2354 enter … … 1831 2358 block 1832 2359 increment recursions 1833 \end{ pseudo}2360 \end{cfa} 1834 2361 \columnbreak 1835 2362 Exit 1836 \begin{ pseudo}2363 \begin{cfa} 1837 2364 decrement recursion 1838 2365 if recursion == 0 1839 2366 if entry queue not empty 1840 2367 wake-up thread 1841 \end{ pseudo}2368 \end{cfa} 1842 2369 \end{multicols} 1843 \begin{ pseudo}[caption={Initial entry and exit routine for monitors},label={lst:entry1}]1844 \end{ pseudo}2370 \begin{cfa}[caption={Initial entry and exit routine for monitors},label={f:entry1}] 2371 \end{cfa} 1845 2372 \end{figure} 1846 2373 1847 2374 \subsection{Details: Interaction with polymorphism} 1848 Depending on the choice of semantics for when monitor locks are acquired, interaction between monitors and \CFA's concept of polymorphism can be more complex to support. However, it is shown that entry-point locking solves most of the issues. 1849 1850 First of all, interaction between \code{otype} polymorphism (see Section~\ref{s:ParametricPolymorphism}) and monitors is impossible since monitors do not support copying. Therefore, the main question is how to support \code{dtype} polymorphism. It is important to present the difference between the two acquiring options: \textbf{callsite-locking} and entry-point locking, i.e., acquiring the monitors before making a mutex routine-call or as the first operation of the mutex routine-call. For example: 1851 \begin{table}[H] 2375 Depending on the choice of semantics for when monitor locks are acquired, interaction between monitors and \CFA's concept of polymorphism can be more complex to support. 2376 However, it is shown that entry-point locking solves most of the issues. 2377 2378 First of all, interaction between @otype@ polymorphism (see Section~\ref{s:ParametricPolymorphism}) and monitors is impossible since monitors do not support copying. 2379 Therefore, the main question is how to support @dtype@ polymorphism. 2380 It is important to present the difference between the two acquiring options: \textbf{callsite-locking} and entry-point locking, \ie acquiring the monitors before making a mutex routine-call or as the first operation of the mutex routine-call. 2381 For example: 2382 \begin{table} 1852 2383 \begin{center} 1853 2384 \begin{tabular}{|c|c|c|} 1854 2385 Mutex & \textbf{callsite-locking} & \textbf{entry-point-locking} \\ 1855 call & pseudo-code & pseudo-code \\2386 call & cfa-code & cfa-code \\ 1856 2387 \hline 1857 \begin{cfa code}[tabsize=3]2388 \begin{cfa}[tabsize=3] 1858 2389 void foo(monitor& mutex a){ 1859 2390 1860 // Do Work2391 // Do Work 1861 2392 //... 1862 2393 … … 1869 2400 1870 2401 } 1871 \end{cfa code} & \begin{pseudo}[tabsize=3]2402 \end{cfa} & \begin{cfa}[tabsize=3] 1872 2403 foo(& a) { 1873 2404 1874 // Do Work2405 // Do Work 1875 2406 //... 1876 2407 … … 1883 2414 release(a); 1884 2415 } 1885 \end{ pseudo} & \begin{pseudo}[tabsize=3]2416 \end{cfa} & \begin{cfa}[tabsize=3] 1886 2417 foo(& a) { 1887 2418 acquire(a); 1888 // Do Work2419 // Do Work 1889 2420 //... 1890 2421 release(a); … … 1897 2428 1898 2429 } 1899 \end{ pseudo}2430 \end{cfa} 1900 2431 \end{tabular} 1901 2432 \end{center} … … 1904 2435 \end{table} 1905 2436 1906 Note the \code{mutex} keyword relies on the type system, which means that in cases where a generic monitor-routine is desired, writing the mutex routine is possible with the proper trait, e.g.:1907 \begin{cfa code}1908 // Incorrect: T may not be monitor2437 Note the @mutex@ keyword relies on the type system, which means that in cases where a generic monitor-routine is desired, writing the mutex routine is possible with the proper trait, \eg: 2438 \begin{cfa} 2439 // Incorrect: T may not be monitor 1909 2440 forall(dtype T) 1910 2441 void foo(T * mutex t); 1911 2442 1912 // Correct: this function only works on monitors (any monitor)2443 // Correct: this function only works on monitors (any monitor) 1913 2444 forall(dtype T | is_monitor(T)) 1914 2445 void bar(T * mutex t)); 1915 \end{cfacode} 1916 1917 Both entry point and \textbf{callsite-locking} are feasible implementations. The current \CFA implementation uses entry-point locking because it requires less work when using \textbf{raii}, effectively transferring the burden of implementation to object construction/destruction. It is harder to use \textbf{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, i.e., the function body. For example, the monitor call can appear in the middle of an expression. Furthermore, entry-point locking requires less code generation since any useful routine is called multiple times but there is only one entry point for many call sites. 2446 \end{cfa} 2447 2448 Both entry point and \textbf{callsite-locking} are feasible implementations. 2449 The current \CFA implementation uses entry-point locking because it requires less work when using \textbf{raii}, effectively transferring the burden of implementation to object construction/destruction. 2450 It is harder to use \textbf{raii} for call-site locking, as it does not necessarily have an existing scope that matches exactly the scope of the mutual exclusion, \ie the function body. 2451 For example, the monitor call can appear in the middle of an expression. 2452 Furthermore, entry-point locking requires less code generation since any useful routine is called multiple times but there is only one entry point for many call sites. 1918 2453 1919 2454 % ====================================================================== … … 1923 2458 % ====================================================================== 1924 2459 1925 Figure \ref{fig:system1} shows a high-level picture if the \CFA runtime system in regards to concurrency. Each component of the picture is explained in detail in the flowing sections. 2460 Figure \ref{fig:system1} shows a high-level picture if the \CFA runtime system in regards to concurrency. 2461 Each component of the picture is explained in detail in the flowing sections. 1926 2462 1927 2463 \begin{figure} … … 1934 2470 1935 2471 \subsection{Processors} 1936 Parallelism in \CFA is built around using processors to specify how much parallelism is desired. \CFA processors are object wrappers around kernel threads, specifically \texttt{pthread}s in the current implementation of \CFA. Indeed, any parallelism must go through operating-system libraries. However, \textbf{uthread} are still the main source of concurrency, processors are simply the underlying source of parallelism. Indeed, processor \textbf{kthread} simply fetch a \textbf{uthread} from the scheduler and run it; they are effectively executers for user-threads. The main benefit of this approach is that it offers a well-defined boundary between kernel code and user code, for example, kernel thread quiescing, scheduling and interrupt handling. Processors internally use coroutines to take advantage of the existing context-switching semantics. 2472 Parallelism in \CFA is built around using processors to specify how much parallelism is desired. \CFA processors are object wrappers around kernel threads, specifically @pthread@s in the current implementation of \CFA. 2473 Indeed, any parallelism must go through operating-system libraries. 2474 However, \textbf{uthread} are still the main source of concurrency, processors are simply the underlying source of parallelism. 2475 Indeed, processor \textbf{kthread} simply fetch a \textbf{uthread} from the scheduler and run it; they are effectively executers for user-threads. 2476 The main benefit of this approach is that it offers a well-defined boundary between kernel code and user code, for example, kernel thread quiescing, scheduling and interrupt handling. 2477 Processors internally use coroutines to take advantage of the existing context-switching semantics. 1937 2478 1938 2479 \subsection{Stack Management} 1939 One of the challenges of this system is to reduce the footprint as much as possible. Specifically, all \texttt{pthread}s created also have a stack created with them, which should be used as much as possible. Normally, coroutines also create their own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \textbf{kthread} stack, effectively stealing the processor stack. The exception to this rule is the Main Processor, i.e., the initial \textbf{kthread} that is given to any program. In order to respect C user expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large. 2480 One of the challenges of this system is to reduce the footprint as much as possible. 2481 Specifically, all @pthread@s created also have a stack created with them, which should be used as much as possible. 2482 Normally, coroutines also create their own stack to run on, however, in the case of the coroutines used for processors, these coroutines run directly on the \textbf{kthread} stack, effectively stealing the processor stack. 2483 The exception to this rule is the Main Processor, \ie the initial \textbf{kthread} that is given to any program. 2484 In order to respect C user expectations, the stack of the initial kernel thread, the main stack of the program, is used by the main user thread rather than the main processor, which can grow very large. 1940 2485 1941 2486 \subsection{Context Switching} 1942 As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. Threads, however, do not context-switch between each other directly. They context-switch to the scheduler. This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operations happen. Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. However, the performance of the 2-step context-switch is still superior to a \code{pthread_yield} (see section \ref{results}). Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft \code{SwitchToFiber}~\cite{switchToWindows} routine). This option is not currently present in \CFA, but the changes required to add it are strictly additive. 2487 As mentioned in section \ref{coroutine}, coroutines are a stepping stone for implementing threading, because they share the same mechanism for context-switching between different stacks. 2488 To improve performance and simplicity, context-switching is implemented using the following assumption: all context-switches happen inside a specific function call. 2489 This assumption means that the context-switch only has to copy the callee-saved registers onto the stack and then switch the stack registers with the ones of the target coroutine/thread. 2490 Note that the instruction pointer can be left untouched since the context-switch is always inside the same function. 2491 Threads, however, do not context-switch between each other directly. 2492 They context-switch to the scheduler. 2493 This method is called a 2-step context-switch and has the advantage of having a clear distinction between user code and the kernel where scheduling and other system operations happen. 2494 Obviously, this doubles the context-switch cost because threads must context-switch to an intermediate stack. 2495 The alternative 1-step context-switch uses the stack of the ``from'' thread to schedule and then context-switches directly to the ``to'' thread. 2496 However, the performance of the 2-step context-switch is still superior to a @pthread_yield@ (see section \ref{results}). 2497 Additionally, for users in need for optimal performance, it is important to note that having a 2-step context-switch as the default does not prevent \CFA from offering a 1-step context-switch (akin to the Microsoft @SwitchToFiber@~\cite{switchToWindows} routine). 2498 This option is not currently present in \CFA, but the changes required to add it are strictly additive. 1943 2499 1944 2500 \subsection{Preemption} \label{preemption} 1945 Finally, an important aspect for any complete threading system is preemption. As mentioned in section \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. Indeed, preemption is desirable because it adds a degree of isolation among threads. In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. Obviously, preemption is not optimal for every workload. However any preemptive system can become a cooperative system by making the time slices extremely large. Therefore, \CFA uses a preemptive threading system. 1946 1947 Preemption in \CFA\footnote{Note that the implementation of preemption is strongly tied with the underlying threading system. For this reason, only the Linux implementation is cover, \CFA does not run on Windows at the time of writting} is based on kernel timers, which are used to run a discrete-event simulation. Every processor keeps track of the current time and registers an expiration time with the preemption system. When the preemption system receives a change in preemption, it inserts the time in a sorted order and sets a kernel timer for the closest one, effectively stepping through preemption events on each signal sent by the timer. These timers use the Linux signal {\tt SIGALRM}, which is delivered to the process rather than the kernel-thread. This results in an implementation problem, because when delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the signal is not blocked, i.e.: 2501 Finally, an important aspect for any complete threading system is preemption. 2502 As mentioned in section \ref{basics}, preemption introduces an extra degree of uncertainty, which enables users to have multiple threads interleave transparently, rather than having to cooperate among threads for proper scheduling and CPU distribution. 2503 Indeed, preemption is desirable because it adds a degree of isolation among threads. 2504 In a fully cooperative system, any thread that runs a long loop can starve other threads, while in a preemptive system, starvation can still occur but it does not rely on every thread having to yield or block on a regular basis, which reduces significantly a programmer burden. 2505 Obviously, preemption is not optimal for every workload. 2506 However any preemptive system can become a cooperative system by making the time slices extremely large. 2507 Therefore, \CFA uses a preemptive threading system. 2508 2509 Preemption in \CFA\footnote{Note that the implementation of preemption is strongly tied with the underlying threading system. 2510 For this reason, only the Linux implementation is cover, \CFA does not run on Windows at the time of writting} is based on kernel timers, which are used to run a discrete-event simulation. 2511 Every processor keeps track of the current time and registers an expiration time with the preemption system. 2512 When the preemption system receives a change in preemption, it inserts the time in a sorted order and sets a kernel timer for the closest one, effectively stepping through preemption events on each signal sent by the timer. 2513 These timers use the Linux signal {\tt SIGALRM}, which is delivered to the process rather than the kernel-thread. 2514 This results in an implementation problem, because when delivering signals to a process, the kernel can deliver the signal to any kernel thread for which the signal is not blocked, \ie: 1948 2515 \begin{quote} 1949 A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. If more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which to deliver the signal. 2516 A process-directed signal may be delivered to any one of the threads that does not currently have the signal blocked. 2517 If more than one of the threads has the signal unblocked, then the kernel chooses an arbitrary thread to which to deliver the signal. 1950 2518 SIGNAL(7) - Linux Programmer's Manual 1951 2519 \end{quote} 1952 2520 For the sake of simplicity, and in order to prevent the case of having two threads receiving alarms simultaneously, \CFA programs block the {\tt SIGALRM} signal on every kernel thread except one. 1953 2521 1954 Now because of how involuntary context-switches are handled, the kernel thread handling {\tt SIGALRM} cannot also be a processor thread. Hence, involuntary context-switching is done by sending signal {\tt SIGUSR1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. This approach effectively context-switches away from the signal handler back to the kernel and the signal handler frame is eventually unwound when the thread is scheduled again. As a result, a signal handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). It is important to note that signal handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. For this reason, the alarm thread is in a tight loop around a system call to \code{sigwaitinfo}, requiring very little CPU time for preemption. One final detail about the alarm thread is how to wake it when additional communication is required (e.g., on thread termination). This unblocking is also done using {\tt SIGALRM}, but sent through the \code{pthread_sigqueue}. Indeed, \code{sigwait} can differentiate signals sent from \code{pthread_sigqueue} from signals sent from alarms or the kernel. 2522 Now because of how involuntary context-switches are handled, the kernel thread handling {\tt SIGALRM} cannot also be a processor thread. 2523 Hence, involuntary context-switching is done by sending signal {\tt SIGUSR1} to the corresponding proces\-sor and having the thread yield from inside the signal handler. 2524 This approach effectively context-switches away from the signal handler back to the kernel and the signal handler frame is eventually unwound when the thread is scheduled again. 2525 As a result, a signal handler can start on one kernel thread and terminate on a second kernel thread (but the same user thread). 2526 It is important to note that signal handlers save and restore signal masks because user-thread migration can cause a signal mask to migrate from one kernel thread to another. 2527 This behaviour is only a problem if all kernel threads, among which a user thread can migrate, differ in terms of signal masks\footnote{Sadly, official POSIX documentation is silent on what distinguishes ``async-signal-safe'' functions from other functions.}. 2528 However, since the kernel thread handling preemption requires a different signal mask, executing user threads on the kernel-alarm thread can cause deadlocks. 2529 For this reason, the alarm thread is in a tight loop around a system call to @sigwaitinfo@, requiring very little CPU time for preemption. 2530 One final detail about the alarm thread is how to wake it when additional communication is required (\eg on thread termination). 2531 This unblocking is also done using {\tt SIGALRM}, but sent through the @pthread_sigqueue@. 2532 Indeed, @sigwait@ can differentiate signals sent from @pthread_sigqueue@ from signals sent from alarms or the kernel. 1955 2533 1956 2534 \subsection{Scheduler} 1957 Finally, an aspect that was not mentioned yet is the scheduling algorithm. Currently, the \CFA scheduler uses a single ready queue for all processors, which is the simplest approach to scheduling. Further discussion on scheduling is present in section \ref{futur:sched}. 2535 Finally, an aspect that was not mentioned yet is the scheduling algorithm. 2536 Currently, the \CFA scheduler uses a single ready queue for all processors, which is the simplest approach to scheduling. 2537 Further discussion on scheduling is present in section \ref{futur:sched}. 1958 2538 1959 2539 % ====================================================================== … … 1964 2544 The following figure is the traditional illustration of a monitor (repeated from page~\pageref{fig:ClassicalMonitor} for convenience): 1965 2545 1966 \begin{figure} [H]2546 \begin{figure} 1967 2547 \begin{center} 1968 2548 {\resizebox{0.4\textwidth}{!}{\input{monitor}}} … … 1971 2551 \end{figure} 1972 2552 1973 This picture has several components, the two most important being the entry queue and the AS-stack. The entry queue is an (almost) FIFO list where threads waiting to enter are parked, while the acceptor/signaller (AS) stack is a FILO list used for threads that have been signalled or otherwise marked as running next. 1974 1975 For \CFA, this picture does not have support for blocking multiple monitors on a single condition. To support \textbf{bulk-acq} two changes to this picture are required. First, it is no longer helpful to attach the condition to \emph{a single} monitor. Secondly, the thread waiting on the condition has to be separated across multiple monitors, seen in figure \ref{fig:monitor_cfa}. 1976 1977 \begin{figure}[H] 2553 This picture has several components, the two most important being the entry queue and the AS-stack. 2554 The entry queue is an (almost) FIFO list where threads waiting to enter are parked, while the acceptor/signaller (AS) stack is a FILO list used for threads that have been signalled or otherwise marked as running next. 2555 2556 For \CFA, this picture does not have support for blocking multiple monitors on a single condition. 2557 To support \textbf{bulk-acq} two changes to this picture are required. 2558 First, it is no longer helpful to attach the condition to \emph{a single} monitor. 2559 Secondly, the thread waiting on the condition has to be separated across multiple monitors, seen in figure \ref{fig:monitor_cfa}. 2560 2561 \begin{figure} 1978 2562 \begin{center} 1979 2563 {\resizebox{0.8\textwidth}{!}{\input{int_monitor}}} … … 1983 2567 \end{figure} 1984 2568 1985 This picture and the proper entry and leave algorithms (see listing \ref{lst:entry2}) is the fundamental implementation of internal scheduling. Note that when a thread is moved from the condition to the AS-stack, it is conceptually split into N pieces, where N is the number of monitors specified in the parameter list. The thread is woken up when all the pieces have popped from the AS-stacks and made active. In this picture, the threads are split into halves but this is only because there are two monitors. For a specific signalling operation every monitor needs a piece of thread on its AS-stack. 1986 1987 \begin{figure}[b] 2569 This picture and the proper entry and leave algorithms (see listing \ref{f:entry2}) is the fundamental implementation of internal scheduling. 2570 Note that when a thread is moved from the condition to the AS-stack, it is conceptually split into N pieces, where N is the number of monitors specified in the parameter list. 2571 The thread is woken up when all the pieces have popped from the AS-stacks and made active. 2572 In this picture, the threads are split into halves but this is only because there are two monitors. 2573 For a specific signalling operation every monitor needs a piece of thread on its AS-stack. 2574 2575 \begin{figure} 1988 2576 \begin{multicols}{2} 1989 2577 Entry 1990 \begin{ pseudo}2578 \begin{cfa} 1991 2579 if monitor is free 1992 2580 enter … … 1997 2585 increment recursion 1998 2586 1999 \end{ pseudo}2587 \end{cfa} 2000 2588 \columnbreak 2001 2589 Exit 2002 \begin{ pseudo}2590 \begin{cfa} 2003 2591 decrement recursion 2004 2592 if recursion == 0 … … 2010 2598 if entry queue not empty 2011 2599 wake-up thread 2012 \end{ pseudo}2600 \end{cfa} 2013 2601 \end{multicols} 2014 \begin{ pseudo}[caption={Entry and exit routine for monitors with internal scheduling},label={lst:entry2}]2015 \end{ pseudo}2602 \begin{cfa}[caption={Entry and exit routine for monitors with internal scheduling},label={f:entry2}] 2603 \end{cfa} 2016 2604 \end{figure} 2017 2605 2018 The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{lst:entry2}. Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. This solution is deadlock safe as well as preventing any potential barging. The data structures used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call stack of the \code{wait} and \code{signal_block} routines. 2019 2020 \begin{figure}[H] 2606 The solution discussed in \ref{intsched} can be seen in the exit routine of listing \ref{f:entry2}. 2607 Basically, the solution boils down to having a separate data structure for the condition queue and the AS-stack, and unconditionally transferring ownership of the monitors but only unblocking the thread when the last monitor has transferred ownership. 2608 This solution is deadlock safe as well as preventing any potential barging. 2609 The data structures used for the AS-stack are reused extensively for external scheduling, but in the case of internal scheduling, the data is allocated using variable-length arrays on the call stack of the @wait@ and @signal_block@ routines. 2610 2611 \begin{figure} 2021 2612 \begin{center} 2022 2613 {\resizebox{0.8\textwidth}{!}{\input{monitor_structs.pstex_t}}} … … 2026 2617 \end{figure} 2027 2618 2028 Figure \ref{fig:structs} shows a high-level representation of these data structures. The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive ``next'' pointers for linking onto monitors. The \code{condition node} is the data structure that is queued onto a condition variable and, when signalled, the condition queue is popped and each \code{condition criterion} is moved to the AS-stack. Once all the criteria have been popped from their respective AS-stacks, the thread is woken up, which is what is shown in listing \ref{lst:entry2}. 2619 Figure \ref{fig:structs} shows a high-level representation of these data structures. 2620 The main idea behind them is that, a thread cannot contain an arbitrary number of intrusive ``next'' pointers for linking onto monitors. 2621 The @condition node@ is the data structure that is queued onto a condition variable and, when signalled, the condition queue is popped and each @condition criterion@ is moved to the AS-stack. 2622 Once all the criteria have been popped from their respective AS-stacks, the thread is woken up, which is what is shown in listing \ref{f:entry2}. 2029 2623 2030 2624 % ====================================================================== … … 2033 2627 % ====================================================================== 2034 2628 % ====================================================================== 2035 Similarly to internal scheduling, external scheduling for multiple monitors relies on the idea that waiting-thread queues are no longer specific to a single monitor, as mentioned in section \ref{extsched}. For internal scheduling, these queues are part of condition variables, which are still unique for a given scheduling operation (i.e., no signal statement uses multiple conditions). However, in the case of external scheduling, there is no equivalent object which is associated with \code{waitfor} statements. This absence means the queues holding the waiting threads must be stored inside at least one of the monitors that is acquired. These monitors being the only objects that have sufficient lifetime and are available on both sides of the \code{waitfor} statement. This requires an algorithm to choose which monitor holds the relevant queue. It is also important that said algorithm be independent of the order in which users list parameters. The proposed algorithm is to fall back on monitor lock ordering (sorting by address) and specify that the monitor that is acquired first is the one with the relevant waiting queue. This assumes that the lock acquiring order is static for the lifetime of all concerned objects but that is a reasonable constraint. 2629 Similarly to internal scheduling, external scheduling for multiple monitors relies on the idea that waiting-thread queues are no longer specific to a single monitor, as mentioned in section \ref{extsched}. 2630 For internal scheduling, these queues are part of condition variables, which are still unique for a given scheduling operation (\ie no signal statement uses multiple conditions). 2631 However, in the case of external scheduling, there is no equivalent object which is associated with @waitfor@ statements. 2632 This absence means the queues holding the waiting threads must be stored inside at least one of the monitors that is acquired. 2633 These monitors being the only objects that have sufficient lifetime and are available on both sides of the @waitfor@ statement. 2634 This requires an algorithm to choose which monitor holds the relevant queue. 2635 It is also important that said algorithm be independent of the order in which users list parameters. 2636 The proposed algorithm is to fall back on monitor lock ordering (sorting by address) and specify that the monitor that is acquired first is the one with the relevant waiting queue. 2637 This assumes that the lock acquiring order is static for the lifetime of all concerned objects but that is a reasonable constraint. 2036 2638 2037 2639 This algorithm choice has two consequences: 2038 2640 \begin{itemize} 2039 \item The queue of the monitor with the lowest address is no longer a true FIFO queue because threads can be moved to the front of the queue. These queues need to contain a set of monitors for each of the waiting threads. Therefore, another thread whose set contains the same lowest address monitor but different lower priority monitors may arrive first but enter the critical section after a thread with the correct pairing. 2040 \item The queue of the lowest priority monitor is both required and potentially unused. Indeed, since it is not known at compile time which monitor is the monitor which has the lowest address, every monitor needs to have the correct queues even though it is possible that some queues go unused for the entire duration of the program, for example if a monitor is only used in a specific pair. 2641 \item The queue of the monitor with the lowest address is no longer a true FIFO queue because threads can be moved to the front of the queue. 2642 These queues need to contain a set of monitors for each of the waiting threads. 2643 Therefore, another thread whose set contains the same lowest address monitor but different lower priority monitors may arrive first but enter the critical section after a thread with the correct pairing. 2644 \item The queue of the lowest priority monitor is both required and potentially unused. 2645 Indeed, since it is not known at compile time which monitor is the monitor which has the lowest address, every monitor needs to have the correct queues even though it is possible that some queues go unused for the entire duration of the program, for example if a monitor is only used in a specific pair. 2041 2646 \end{itemize} 2042 2647 Therefore, the following modifications need to be made to support external scheduling: 2043 2648 \begin{itemize} 2044 \item The threads waiting on the entry queue need to keep track of which routine they are trying to enter, and using which set of monitors. The \code{mutex} routine already has all the required information on its stack, so the thread only needs to keep a pointer to that information. 2045 \item The monitors need to keep a mask of acceptable routines. This mask contains for each acceptable routine, a routine pointer and an array of monitors to go with it. It also needs storage to keep track of which routine was accepted. Since this information is not specific to any monitor, the monitors actually contain a pointer to an integer on the stack of the waiting thread. Note that if a thread has acquired two monitors but executes a \code{waitfor} with only one monitor as a parameter, setting the mask of acceptable routines to both monitors will not cause any problems since the extra monitor will not change ownership regardless. This becomes relevant when \code{when} clauses affect the number of monitors passed to a \code{waitfor} statement. 2046 \item The entry/exit routines need to be updated as shown in listing \ref{lst:entry3}. 2649 \item The threads waiting on the entry queue need to keep track of which routine they are trying to enter, and using which set of monitors. 2650 The @mutex@ routine already has all the required information on its stack, so the thread only needs to keep a pointer to that information. 2651 \item The monitors need to keep a mask of acceptable routines. 2652 This mask contains for each acceptable routine, a routine pointer and an array of monitors to go with it. 2653 It also needs storage to keep track of which routine was accepted. 2654 Since this information is not specific to any monitor, the monitors actually contain a pointer to an integer on the stack of the waiting thread. 2655 Note that if a thread has acquired two monitors but executes a @waitfor@ with only one monitor as a parameter, setting the mask of acceptable routines to both monitors will not cause any problems since the extra monitor will not change ownership regardless. 2656 This becomes relevant when @when@ clauses affect the number of monitors passed to a @waitfor@ statement. 2657 \item The entry/exit routines need to be updated as shown in listing \ref{f:entry3}. 2047 2658 \end{itemize} 2048 2659 2049 2660 \subsection{External Scheduling - Destructors} 2050 Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. This routine is needed because of the storage requirements of the call order inversion. Indeed, when waiting for the destructors, storage is needed for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. For regular \code{waitfor} statements, the call stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. The \code{waitfor} semantics can then be adjusted correspondingly, as seen in listing \ref{lst:entry-dtor} 2661 Finally, to support the ordering inversion of destructors, the code generation needs to be modified to use a special entry routine. 2662 This routine is needed because of the storage requirements of the call order inversion. 2663 Indeed, when waiting for the destructors, storage is needed for the waiting context and the lifetime of said storage needs to outlive the waiting operation it is needed for. 2664 For regular @waitfor@ statements, the call stack of the routine itself matches this requirement but it is no longer the case when waiting for the destructor since it is pushed on to the AS-stack for later. 2665 The @waitfor@ semantics can then be adjusted correspondingly, as seen in listing \ref{f:entry-dtor} 2051 2666 2052 2667 \begin{figure} 2053 2668 \begin{multicols}{2} 2054 2669 Entry 2055 \begin{ pseudo}2670 \begin{cfa} 2056 2671 if monitor is free 2057 2672 enter … … 2064 2679 block 2065 2680 increment recursion 2066 \end{ pseudo}2681 \end{cfa} 2067 2682 \columnbreak 2068 2683 Exit 2069 \begin{ pseudo}2684 \begin{cfa} 2070 2685 decrement recursion 2071 2686 if recursion == 0 … … 2080 2695 wake-up thread 2081 2696 endif 2082 \end{ pseudo}2697 \end{cfa} 2083 2698 \end{multicols} 2084 \begin{ pseudo}[caption={Entry and exit routine for monitors with internal scheduling and external scheduling},label={lst:entry3}]2085 \end{ pseudo}2699 \begin{cfa}[caption={Entry and exit routine for monitors with internal scheduling and external scheduling},label={f:entry3}] 2700 \end{cfa} 2086 2701 \end{figure} 2087 2702 … … 2089 2704 \begin{multicols}{2} 2090 2705 Destructor Entry 2091 \begin{ pseudo}2706 \begin{cfa} 2092 2707 if monitor is free 2093 2708 enter … … 2103 2718 wait 2104 2719 increment recursion 2105 \end{ pseudo}2720 \end{cfa} 2106 2721 \columnbreak 2107 2722 Waitfor 2108 \begin{ pseudo}2723 \begin{cfa} 2109 2724 if matching thread is already there 2110 2725 if found destructor … … 2126 2741 block 2127 2742 return 2128 \end{ pseudo}2743 \end{cfa} 2129 2744 \end{multicols} 2130 \begin{ pseudo}[caption={Pseudo code for the \code{waitfor} routine and the \code{mutex} entry routine for destructors},label={lst:entry-dtor}]2131 \end{ pseudo}2745 \begin{cfa}[caption={Pseudo code for the \protect\lstinline|waitfor| routine and the \protect\lstinline|mutex| entry routine for destructors},label={f:entry-dtor}] 2746 \end{cfa} 2132 2747 \end{figure} 2133 2748 … … 2141 2756 2142 2757 \section{Threads As Monitors} 2143 As it was subtly alluded in section \ref{threads}, \code{thread}s in \CFA are in fact monitors, which means that all monitor features are available when using threads. For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine: 2144 \begin{figure}[H] 2145 \begin{cfacode}[caption={Toy simulator using \code{thread}s and \code{monitor}s.},label={lst:engine-v1}] 2758 As it was subtly alluded in section \ref{threads}, @thread@s in \CFA are in fact monitors, which means that all monitor features are available when using threads. 2759 For example, here is a very simple two thread pipeline that could be used for a simulator of a game engine: 2760 \begin{figure} 2761 \begin{cfa}[caption={Toy simulator using \protect\lstinline|thread|s and \protect\lstinline|monitor|s.},label={f:engine-v1}] 2146 2762 // Visualization declaration 2147 2763 thread Renderer {} renderer; … … 2170 2786 } 2171 2787 } 2172 \end{cfa code}2788 \end{cfa} 2173 2789 \end{figure} 2174 One of the obvious complaints of the previous code snippet (other than its toy-like simplicity) is that it does not handle exit conditions and just goes on forever. Luckily, the monitor semantics can also be used to clearly enforce a shutdown order in a concise manner: 2175 \begin{figure}[H] 2176 \begin{cfacode}[caption={Same toy simulator with proper termination condition.},label={lst:engine-v2}] 2790 One of the obvious complaints of the previous code snippet (other than its toy-like simplicity) is that it does not handle exit conditions and just goes on forever. 2791 Luckily, the monitor semantics can also be used to clearly enforce a shutdown order in a concise manner: 2792 \begin{figure} 2793 \begin{cfa}[caption={Same toy simulator with proper termination condition.},label={f:engine-v2}] 2177 2794 // Visualization declaration 2178 2795 thread Renderer {} renderer; … … 2212 2829 // Call destructor for simulator once simulator finishes 2213 2830 // Call destructor for renderer to signify shutdown 2214 \end{cfa code}2831 \end{cfa} 2215 2832 \end{figure} 2216 2833 2217 2834 \section{Fibers \& Threads} 2218 As mentioned in section \ref{preemption}, \CFA uses preemptive threads by default but can use fibers on demand. Currently, using fibers is done by adding the following line of code to the program~: 2219 \begin{cfacode} 2835 As mentioned in section \ref{preemption}, \CFA uses preemptive threads by default but can use fibers on demand. 2836 Currently, using fibers is done by adding the following line of code to the program~: 2837 \begin{cfa} 2220 2838 unsigned int default_preemption() { 2221 2839 return 0; 2222 2840 } 2223 \end{cfacode} 2224 This function is called by the kernel to fetch the default preemption rate, where 0 signifies an infinite time-slice, i.e., no preemption. However, once clusters are fully implemented, it will be possible to create fibers and \textbf{uthread} in the same system, as in listing \ref{lst:fiber-uthread} 2841 \end{cfa} 2842 This function is called by the kernel to fetch the default preemption rate, where 0 signifies an infinite time-slice, \ie no preemption. 2843 However, once clusters are fully implemented, it will be possible to create fibers and \textbf{uthread} in the same system, as in listing \ref{f:fiber-uthread} 2225 2844 \begin{figure} 2226 \begin{cfacode}[caption={Using fibers and \textbf{uthread} side-by-side in \CFA},label={lst:fiber-uthread}] 2227 //Cluster forward declaration 2845 \lstset{language=CFA,deletedelim=**[is][]{`}{`}} 2846 \begin{cfa}[caption={Using fibers and \textbf{uthread} side-by-side in \CFA},label={f:fiber-uthread}] 2847 // Cluster forward declaration 2228 2848 struct cluster; 2229 2849 2230 // Processor forward declaration2850 // Processor forward declaration 2231 2851 struct processor; 2232 2852 2233 // Construct clusters with a preemption rate2853 // Construct clusters with a preemption rate 2234 2854 void ?{}(cluster& this, unsigned int rate); 2235 // Construct processor and add it to cluster2855 // Construct processor and add it to cluster 2236 2856 void ?{}(processor& this, cluster& cluster); 2237 // Construct thread and schedule it on cluster2857 // Construct thread and schedule it on cluster 2238 2858 void ?{}(thread& this, cluster& cluster); 2239 2859 2240 // Declare two clusters2241 cluster thread_cluster = { 10`ms }; // Preempt every 10 ms2242 cluster fibers_cluster = { 0 }; // Never preempt2243 2244 // Construct 4 processors2860 // Declare two clusters 2861 cluster thread_cluster = { 10`ms }; // Preempt every 10 ms 2862 cluster fibers_cluster = { 0 }; // Never preempt 2863 2864 // Construct 4 processors 2245 2865 processor processors[4] = { 2246 2866 //2 for the thread cluster … … 2252 2872 }; 2253 2873 2254 // Declares thread2874 // Declares thread 2255 2875 thread UThread {}; 2256 2876 void ?{}(UThread& this) { 2257 // Construct underlying thread to automatically2258 // be scheduled on the thread cluster2877 // Construct underlying thread to automatically 2878 // be scheduled on the thread cluster 2259 2879 (this){ thread_cluster } 2260 2880 } … … 2262 2882 void main(UThread & this); 2263 2883 2264 // Declares fibers2884 // Declares fibers 2265 2885 thread Fiber {}; 2266 2886 void ?{}(Fiber& this) { 2267 // Construct underlying thread to automatically2268 // be scheduled on the fiber cluster2887 // Construct underlying thread to automatically 2888 // be scheduled on the fiber cluster 2269 2889 (this.__thread){ fibers_cluster } 2270 2890 } 2271 2891 2272 2892 void main(Fiber & this); 2273 \end{cfa code}2893 \end{cfa} 2274 2894 \end{figure} 2275 2895 … … 2281 2901 % ====================================================================== 2282 2902 \section{Machine Setup} 2283 Table \ref{tab:machine} shows the characteristics of the machine used to run the benchmarks. All tests were made on this machine. 2284 \begin{table}[H] 2903 Table \ref{tab:machine} shows the characteristics of the machine used to run the benchmarks. 2904 All tests were made on this machine. 2905 \begin{table} 2285 2906 \begin{center} 2286 2907 \begin{tabular}{| l | r | l | r |} … … 2314 2935 2315 2936 \section{Micro Benchmarks} 2316 All benchmarks are run using the same harness to produce the results, seen as the \code{BENCH()} macro in the following examples. This macro uses the following logic to benchmark the code: 2317 \begin{pseudo} 2937 All benchmarks are run using the same harness to produce the results, seen as the @BENCH()@ macro in the following examples. 2938 This macro uses the following logic to benchmark the code: 2939 \begin{cfa} 2318 2940 #define BENCH(run, result) \ 2319 2941 before = gettime(); \ … … 2321 2943 after = gettime(); \ 2322 2944 result = (after - before) / N; 2323 \end{pseudo} 2324 The method used to get time is \code{clock_gettime(CLOCK_THREAD_CPUTIME_ID);}. Each benchmark is using many iterations of a simple call to measure the cost of the call. The specific number of iterations depends on the specific benchmark. 2945 \end{cfa} 2946 The method used to get time is @clock_gettime(CLOCK_THREAD_CPUTIME_ID);@. 2947 Each benchmark is using many iterations of a simple call to measure the cost of the call. 2948 The specific number of iterations depends on the specific benchmark. 2325 2949 2326 2950 \subsection{Context-Switching} 2327 The first interesting benchmark is to measure how long context-switches take. The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. Yielding causes the thread to context-switch to the scheduler and back, more precisely: from the \textbf{uthread} to the \textbf{kthread} then from the \textbf{kthread} back to the same \textbf{uthread} (or a different one in the general case). In order to make the comparison fair, coroutines also execute a 2-step context-switch by resuming another coroutine which does nothing but suspending in a tight loop, which is a resume/suspend cycle instead of a yield. Listing \ref{lst:ctx-switch} shows the code for coroutines and threads with the results in table \ref{tab:ctx-switch}. All omitted tests are functionally identical to one of these tests. The difference between coroutines and threads can be attributed to the cost of scheduling. 2951 The first interesting benchmark is to measure how long context-switches take. 2952 The simplest approach to do this is to yield on a thread, which executes a 2-step context switch. 2953 Yielding causes the thread to context-switch to the scheduler and back, more precisely: from the \textbf{uthread} to the \textbf{kthread} then from the \textbf{kthread} back to the same \textbf{uthread} (or a different one in the general case). 2954 In order to make the comparison fair, coroutines also execute a 2-step context-switch by resuming another coroutine which does nothing but suspending in a tight loop, which is a resume/suspend cycle instead of a yield. 2955 Figure~\ref{f:ctx-switch} shows the code for coroutines and threads with the results in table \ref{tab:ctx-switch}. 2956 All omitted tests are functionally identical to one of these tests. 2957 The difference between coroutines and threads can be attributed to the cost of scheduling. 2328 2958 \begin{figure} 2329 2959 \begin{multicols}{2} 2330 2960 \CFA Coroutines 2331 \begin{cfa code}2961 \begin{cfa} 2332 2962 coroutine GreatSuspender {}; 2333 2963 void main(GreatSuspender& this) { … … 2345 2975 printf("%llu\n", result); 2346 2976 } 2347 \end{cfa code}2977 \end{cfa} 2348 2978 \columnbreak 2349 2979 \CFA Threads 2350 \begin{cfa code}2980 \begin{cfa} 2351 2981 2352 2982 … … 2364 2994 printf("%llu\n", result); 2365 2995 } 2366 \end{cfa code}2996 \end{cfa} 2367 2997 \end{multicols} 2368 \begin{cfa code}[caption={\CFA benchmark code used to measure context-switches for coroutines and threads.},label={lst:ctx-switch}]2369 \end{cfa code}2998 \begin{cfa}[caption={\CFA benchmark code used to measure context-switches for coroutines and threads.},label={f:ctx-switch}] 2999 \end{cfa} 2370 3000 \end{figure} 2371 3001 … … 2386 3016 \end{tabular} 2387 3017 \end{center} 2388 \caption{Context Switch comparison. All numbers are in nanoseconds(\si{\nano\second})} 3018 \caption{Context Switch comparison. 3019 All numbers are in nanoseconds(\si{\nano\second})} 2389 3020 \label{tab:ctx-switch} 2390 3021 \end{table} 2391 3022 2392 3023 \subsection{Mutual-Exclusion} 2393 The next interesting benchmark is to measure the overhead to enter/leave a critical-section. For monitors, the simplest approach is to measure how long it takes to enter and leave a monitor routine. Listing \ref{lst:mutex} shows the code for \CFA. To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a \code{pthread_mutex} lock is also measured. The results can be shown in table \ref{tab:mutex}. 3024 The next interesting benchmark is to measure the overhead to enter/leave a critical-section. 3025 For monitors, the simplest approach is to measure how long it takes to enter and leave a monitor routine. 3026 Figure~\ref{f:mutex} shows the code for \CFA. 3027 To put the results in context, the cost of entering a non-inline function and the cost of acquiring and releasing a @pthread_mutex@ lock is also measured. 3028 The results can be shown in table \ref{tab:mutex}. 2394 3029 2395 3030 \begin{figure} 2396 \begin{cfa code}[caption={\CFA benchmark code used to measure mutex routines.},label={lst:mutex}]3031 \begin{cfa}[caption={\CFA benchmark code used to measure mutex routines.},label={f:mutex}] 2397 3032 monitor M {}; 2398 3033 void __attribute__((noinline)) call( M & mutex m /*, m2, m3, m4*/ ) {} … … 2408 3043 printf("%llu\n", result); 2409 3044 } 2410 \end{cfa code}3045 \end{cfa} 2411 3046 \end{figure} 2412 3047 … … 2420 3055 FetchAdd + FetchSub & 26 & 26 & 0 \\ 2421 3056 Pthreads Mutex Lock & 31 & 31.86 & 0.99 \\ 2422 \uC \code{monitor}member routine & 30 & 30 & 0 \\2423 \CFA \code{mutex}routine, 1 argument & 41 & 41.57 & 0.9 \\2424 \CFA \code{mutex}routine, 2 argument & 76 & 76.96 & 1.57 \\2425 \CFA \code{mutex}routine, 4 argument & 145 & 146.68 & 3.85 \\3057 \uC @monitor@ member routine & 30 & 30 & 0 \\ 3058 \CFA @mutex@ routine, 1 argument & 41 & 41.57 & 0.9 \\ 3059 \CFA @mutex@ routine, 2 argument & 76 & 76.96 & 1.57 \\ 3060 \CFA @mutex@ routine, 4 argument & 145 & 146.68 & 3.85 \\ 2426 3061 Java synchronized routine & 27 & 28.57 & 2.6 \\ 2427 3062 \hline 2428 3063 \end{tabular} 2429 3064 \end{center} 2430 \caption{Mutex routine comparison. All numbers are in nanoseconds(\si{\nano\second})} 3065 \caption{Mutex routine comparison. 3066 All numbers are in nanoseconds(\si{\nano\second})} 2431 3067 \label{tab:mutex} 2432 3068 \end{table} 2433 3069 2434 3070 \subsection{Internal Scheduling} 2435 The internal-scheduling benchmark measures the cost of waiting on and signalling a condition variable. Listing \ref{lst:int-sched} shows the code for \CFA, with results table \ref{tab:int-sched}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 3071 The internal-scheduling benchmark measures the cost of waiting on and signalling a condition variable. 3072 Figure~\ref{f:int-sched} shows the code for \CFA, with results table \ref{tab:int-sched}. 3073 As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 2436 3074 2437 3075 \begin{figure} 2438 \begin{cfa code}[caption={Benchmark code for internal scheduling},label={lst:int-sched}]3076 \begin{cfa}[caption={Benchmark code for internal scheduling},label={f:int-sched}] 2439 3077 volatile int go = 0; 2440 3078 condition c; … … 2466 3104 return do_wait(m1); 2467 3105 } 2468 \end{cfa code}3106 \end{cfa} 2469 3107 \end{figure} 2470 3108 … … 2476 3114 \hline 2477 3115 Pthreads Condition Variable & 5902.5 & 6093.29 & 714.78 \\ 2478 \uC \code{signal}& 322 & 323 & 3.36 \\2479 \CFA \code{signal}, 1 \code{monitor}& 352.5 & 353.11 & 3.66 \\2480 \CFA \code{signal}, 2 \code{monitor}& 430 & 430.29 & 8.97 \\2481 \CFA \code{signal}, 4 \code{monitor}& 594.5 & 606.57 & 18.33 \\2482 Java \code{notify}& 13831.5 & 15698.21 & 4782.3 \\3116 \uC @signal@ & 322 & 323 & 3.36 \\ 3117 \CFA @signal@, 1 @monitor@ & 352.5 & 353.11 & 3.66 \\ 3118 \CFA @signal@, 2 @monitor@ & 430 & 430.29 & 8.97 \\ 3119 \CFA @signal@, 4 @monitor@ & 594.5 & 606.57 & 18.33 \\ 3120 Java @notify@ & 13831.5 & 15698.21 & 4782.3 \\ 2483 3121 \hline 2484 3122 \end{tabular} 2485 3123 \end{center} 2486 \caption{Internal scheduling comparison. All numbers are in nanoseconds(\si{\nano\second})} 3124 \caption{Internal scheduling comparison. 3125 All numbers are in nanoseconds(\si{\nano\second})} 2487 3126 \label{tab:int-sched} 2488 3127 \end{table} 2489 3128 2490 3129 \subsection{External Scheduling} 2491 The Internal scheduling benchmark measures the cost of the \code{waitfor} statement (\code{_Accept} in \uC). Listing \ref{lst:ext-sched} shows the code for \CFA, with results in table \ref{tab:ext-sched}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 3130 The Internal scheduling benchmark measures the cost of the @waitfor@ statement (@_Accept@ in \uC). 3131 Figure~\ref{f:ext-sched} shows the code for \CFA, with results in table \ref{tab:ext-sched}. 3132 As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 2492 3133 2493 3134 \begin{figure} 2494 \begin{cfa code}[caption={Benchmark code for external scheduling},label={lst:ext-sched}]3135 \begin{cfa}[caption={Benchmark code for external scheduling},label={f:ext-sched}] 2495 3136 volatile int go = 0; 2496 3137 monitor M {}; … … 2521 3162 return do_wait(m1); 2522 3163 } 2523 \end{cfa code}3164 \end{cfa} 2524 3165 \end{figure} 2525 3166 … … 2530 3171 \multicolumn{1}{c |}{} & \multicolumn{1}{c |}{ Median } &\multicolumn{1}{c |}{ Average } & \multicolumn{1}{c |}{ Standard Deviation} \\ 2531 3172 \hline 2532 \uC \code{Accept}& 350 & 350.61 & 3.11 \\2533 \CFA \code{waitfor}, 1 \code{monitor}& 358.5 & 358.36 & 3.82 \\2534 \CFA \code{waitfor}, 2 \code{monitor}& 422 & 426.79 & 7.95 \\2535 \CFA \code{waitfor}, 4 \code{monitor}& 579.5 & 585.46 & 11.25 \\3173 \uC @Accept@ & 350 & 350.61 & 3.11 \\ 3174 \CFA @waitfor@, 1 @monitor@ & 358.5 & 358.36 & 3.82 \\ 3175 \CFA @waitfor@, 2 @monitor@ & 422 & 426.79 & 7.95 \\ 3176 \CFA @waitfor@, 4 @monitor@ & 579.5 & 585.46 & 11.25 \\ 2536 3177 \hline 2537 3178 \end{tabular} 2538 3179 \end{center} 2539 \caption{External scheduling comparison. All numbers are in nanoseconds(\si{\nano\second})} 3180 \caption{External scheduling comparison. 3181 All numbers are in nanoseconds(\si{\nano\second})} 2540 3182 \label{tab:ext-sched} 2541 3183 \end{table} 2542 3184 3185 2543 3186 \subsection{Object Creation} 2544 Finally, the last benchmark measures the cost of creation for concurrent objects. Listing \ref{lst:creation} shows the code for \texttt{pthread}s and \CFA threads, with results shown in table \ref{tab:creation}. As with all other benchmarks, all omitted tests are functionally identical to one of these tests. The only note here is that the call stacks of \CFA coroutines are lazily created, therefore without priming the coroutine, the creation cost is very low. 3187 Finally, the last benchmark measures the cost of creation for concurrent objects. 3188 Figure~\ref{f:creation} shows the code for @pthread@s and \CFA threads, with results shown in table \ref{tab:creation}. 3189 As with all other benchmarks, all omitted tests are functionally identical to one of these tests. 3190 The only note here is that the call stacks of \CFA coroutines are lazily created, therefore without priming the coroutine, the creation cost is very low. 2545 3191 2546 3192 \begin{figure} 2547 3193 \begin{center} 2548 \texttt{pthread} 2549 \begin{c code}3194 @pthread@ 3195 \begin{cfa} 2550 3196 int main() { 2551 3197 BENCH( … … 2566 3212 printf("%llu\n", result); 2567 3213 } 2568 \end{c code}3214 \end{cfa} 2569 3215 2570 3216 2571 3217 2572 3218 \CFA Threads 2573 \begin{cfa code}3219 \begin{cfa} 2574 3220 int main() { 2575 3221 BENCH( … … 2581 3227 printf("%llu\n", result); 2582 3228 } 2583 \end{cfa code}3229 \end{cfa} 2584 3230 \end{center} 2585 \ begin{cfacode}[caption={Benchmark code for \texttt{pthread}s and \CFA to measure object creation},label={lst:creation}]2586 \ end{cfacode}3231 \caption{Benchmark code for \protect\lstinline|pthread|s and \CFA to measure object creation} 3232 \label{f:creation} 2587 3233 \end{figure} 2588 3234 … … 2604 3250 \end{tabular} 2605 3251 \end{center} 2606 \caption{Creation comparison. All numbers are in nanoseconds(\si{\nano\second}).} 3252 \caption{Creation comparison. 3253 All numbers are in nanoseconds(\si{\nano\second}).} 2607 3254 \label{tab:creation} 2608 3255 \end{table} … … 2611 3258 2612 3259 \section{Conclusion} 2613 This paper has achieved a minimal concurrency \textbf{api} that is simple, efficient and usable as the basis for higher-level features. The approach presented is based on a lightweight thread-system for parallelism, which sits on top of clusters of processors. This M:N model is judged to be both more efficient and allow more flexibility for users. Furthermore, this document introduces monitors as the main concurrency tool for users. This paper also offers a novel approach allowing multiple monitors to be accessed simultaneously without running into the Nested Monitor Problem~\cite{Lister77}. It also offers a full implementation of the concurrency runtime written entirely in \CFA, effectively the largest \CFA code base to date. 3260 This paper has achieved a minimal concurrency \textbf{api} that is simple, efficient and usable as the basis for higher-level features. 3261 The approach presented is based on a lightweight thread-system for parallelism, which sits on top of clusters of processors. 3262 This M:N model is judged to be both more efficient and allow more flexibility for users. 3263 Furthermore, this document introduces monitors as the main concurrency tool for users. 3264 This paper also offers a novel approach allowing multiple monitors to be accessed simultaneously without running into the Nested Monitor Problem~\cite{Lister77}. 3265 It also offers a full implementation of the concurrency runtime written entirely in \CFA, effectively the largest \CFA code base to date. 2614 3266 2615 3267 … … 2621 3273 2622 3274 \subsection{Performance} \label{futur:perf} 2623 This paper presents a first implementation of the \CFA concurrency runtime. Therefore, there is still significant work to improve performance. Many of the data structures and algorithms may change in the future to more efficient versions. For example, the number of monitors in a single \textbf{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. It may be possible that limiting the number helps increase performance. However, it is not obvious that the benefit would be significant. 3275 This paper presents a first implementation of the \CFA concurrency runtime. 3276 Therefore, there is still significant work to improve performance. 3277 Many of the data structures and algorithms may change in the future to more efficient versions. 3278 For example, the number of monitors in a single \textbf{bulk-acq} is only bound by the stack size, this is probably unnecessarily generous. 3279 It may be possible that limiting the number helps increase performance. 3280 However, it is not obvious that the benefit would be significant. 2624 3281 2625 3282 \subsection{Flexible Scheduling} \label{futur:sched} 2626 An important part of concurrency is scheduling. Different scheduling algorithms can affect performance (both in terms of average and variation). However, no single scheduler is optimal for all workloads and therefore there is value in being able to change the scheduler for given programs. One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to the requirements of the workload. However, in order to be truly flexible, it would be interesting to allow users to add arbitrary data and arbitrary scheduling algorithms. For example, a web server could attach Type-of-Service information to threads and have a ``ToS aware'' scheduling algorithm tailored to this specific web server. This path of flexible schedulers will be explored for \CFA. 3283 An important part of concurrency is scheduling. 3284 Different scheduling algorithms can affect performance (both in terms of average and variation). 3285 However, no single scheduler is optimal for all workloads and therefore there is value in being able to change the scheduler for given programs. 3286 One solution is to offer various tweaking options to users, allowing the scheduler to be adjusted to the requirements of the workload. 3287 However, in order to be truly flexible, it would be interesting to allow users to add arbitrary data and arbitrary scheduling algorithms. 3288 For example, a web server could attach Type-of-Service information to threads and have a ``ToS aware'' scheduling algorithm tailored to this specific web server. 3289 This path of flexible schedulers will be explored for \CFA. 2627 3290 2628 3291 \subsection{Non-Blocking I/O} \label{futur:nbio} 2629 While most of the parallelism tools are aimed at data parallelism and control-flow parallelism, many modern workloads are not bound on computation but on IO operations, a common case being web servers and XaaS (anything as a service). These types of workloads often require significant engineering around amortizing costs of blocking IO operations. At its core, non-blocking I/O is an operating system level feature that allows queuing IO operations (e.g., network operations) and registering for notifications instead of waiting for requests to complete. In this context, the role of the language makes Non-Blocking IO easily available and with low overhead. The current trend is to use asynchronous programming using tools like callbacks and/or futures and promises, which can be seen in frameworks like Node.js~\cite{NodeJs} for JavaScript, Spring MVC~\cite{SpringMVC} for Java and Django~\cite{Django} for Python. However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear. 3292 While most of the parallelism tools are aimed at data parallelism and control-flow parallelism, many modern workloads are not bound on computation but on IO operations, a common case being web servers and XaaS (anything as a service). 3293 These types of workloads often require significant engineering around amortizing costs of blocking IO operations. 3294 At its core, non-blocking I/O is an operating system level feature that allows queuing IO operations (\eg network operations) and registering for notifications instead of waiting for requests to complete. 3295 In this context, the role of the language makes Non-Blocking IO easily available and with low overhead. 3296 The current trend is to use asynchronous programming using tools like callbacks and/or futures and promises, which can be seen in frameworks like Node.js~\cite{NodeJs} for JavaScript, Spring MVC~\cite{SpringMVC} for Java and Django~\cite{Django} for Python. 3297 However, while these are valid solutions, they lead to code that is harder to read and maintain because it is much less linear. 2630 3298 2631 3299 \subsection{Other Concurrency Tools} \label{futur:tools} 2632 While monitors offer a flexible and powerful concurrent core for \CFA, other concurrency tools are also necessary for a complete multi-paradigm concurrency package. Examples of such tools can include simple locks and condition variables, futures and promises~\cite{promises}, executors and actors. These additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks. 3300 While monitors offer a flexible and powerful concurrent core for \CFA, other concurrency tools are also necessary for a complete multi-paradigm concurrency package. 3301 Examples of such tools can include simple locks and condition variables, futures and promises~\cite{promises}, executors and actors. 3302 These additional features are useful when monitors offer a level of abstraction that is inadequate for certain tasks. 2633 3303 2634 3304 \subsection{Implicit Threading} \label{futur:implcit} 2635 Simpler applications can benefit greatly from having implicit parallelism. That is, parallelism that does not rely on the user to write concurrency. This type of parallelism can be achieved both at the language level and at the library level. The canonical example of implicit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithms~\cite{uC++book}. Table \ref{lst:parfor} shows three different code examples that accomplish point-wise sums of large arrays. Note that none of these examples explicitly declare any concurrency or parallelism objects. 3305 Simpler applications can benefit greatly from having implicit parallelism. 3306 That is, parallelism that does not rely on the user to write concurrency. 3307 This type of parallelism can be achieved both at the language level and at the library level. 3308 The canonical example of implicit parallelism is parallel for loops, which are the simplest example of a divide and conquer algorithms~\cite{uC++book}. 3309 Table \ref{f:parfor} shows three different code examples that accomplish point-wise sums of large arrays. 3310 Note that none of these examples explicitly declare any concurrency or parallelism objects. 2636 3311 2637 3312 \begin{table} … … 2639 3314 \begin{tabular}[t]{|c|c|c|} 2640 3315 Sequential & Library Parallel & Language Parallel \\ 2641 \begin{cfa code}[tabsize=3]3316 \begin{cfa}[tabsize=3] 2642 3317 void big_sum( 2643 3318 int* a, int* b, … … 2663 3338 //... fill in a & b 2664 3339 big_sum(a,b,c,10000); 2665 \end{cfa code} &\begin{cfacode}[tabsize=3]3340 \end{cfa} &\begin{cfa}[tabsize=3] 2666 3341 void big_sum( 2667 3342 int* a, int* b, … … 2687 3362 //... fill in a & b 2688 3363 big_sum(a,b,c,10000); 2689 \end{cfa code}&\begin{cfacode}[tabsize=3]3364 \end{cfa}&\begin{cfa}[tabsize=3] 2690 3365 void big_sum( 2691 3366 int* a, int* b, … … 2711 3386 //... fill in a & b 2712 3387 big_sum(a,b,c,10000); 2713 \end{cfa code}3388 \end{cfa} 2714 3389 \end{tabular} 2715 3390 \end{center} 2716 3391 \caption{For loop to sum numbers: Sequential, using library parallelism and language parallelism.} 2717 \label{ lst:parfor}3392 \label{f:parfor} 2718 3393 \end{table} 2719 3394 2720 Implicit parallelism is a restrictive solution and therefore has its limitations. However, it is a quick and simple approach to parallelism, which may very well be sufficient for smaller applications and reduces the amount of boilerplate needed to start benefiting from parallelism in modern CPUs. 3395 Implicit parallelism is a restrictive solution and therefore has its limitations. 3396 However, it is a quick and simple approach to parallelism, which may very well be sufficient for smaller applications and reduces the amount of boilerplate needed to start benefiting from parallelism in modern CPUs. 2721 3397 2722 3398 … … 2731 3407 % B I B L I O G R A P H Y 2732 3408 % ----------------------------- 2733 \bibliographystyle{plain}3409 %\bibliographystyle{plain} 2734 3410 \bibliography{pl,local} 2735 3411 -
doc/papers/concurrency/annex/local.bib
rb2fe1c9 r32cab5b 21 21 @string{pldi="Programming Language Design and Implementation"} 22 22 23 24 @article{HPP:Study, 25 keywords = {Parallel, Productivity}, 26 author = {Lorin Hochstein and Jeff Carver and Forrest Shull and Sima Asgari and Victor Basili and Jeffrey K. Hollingsworth and Marvin V. Zelkowitz }, 27 title = {Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers}, 23 @inproceedings{Hochstein05, 24 keywords = {Application software; Computer aided software engineering; Concurrent computing; Educational 25 institutions; High performance computing; Humans; Instruments; Productivity; Programming profession; 26 Software engineering}, 27 author = {Lorin Hochstein and Jeff Carver and Forrest Shull and Sima Asgari and Victor Basili and Jeffrey K. Hollingsworth and Marvin V. Zelkowitz}, 28 title = {Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers}, 29 booktitle = {Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference}, 30 publisher = {IEEE}, 31 year = {2005}, 32 pages = {35-35}, 33 month = nov, 28 34 } 29 35 … … 35 41 } 36 42 37 @article{TBB, 38 key = {TBB}, 39 keywords = {Intel, TBB}, 40 title = {Intel Thread Building Blocks}, 41 note = "\url{https://www.threadingbuildingblocks.org/}" 43 @misc{TBB, 44 keywords = {Intel, TBB}, 45 key = {TBB}, 46 title = {Thread Building Blocks}, 47 howpublished= {Intel, \url{https://www.threadingbuildingblocks.org}}, 48 note = {Accessed: 2018-3}, 42 49 } 43 50 … … 48 55 title = {C$\forall$ Programmming Language}, 49 56 note = {\url{https://plg.uwaterloo.ca/~cforall}}, 50 }51 52 @mastersthesis{rob-thesis,53 keywords = {Constructors, Destructors, Tuples},54 author = {Rob Schluntz},55 title = {Resource Management and Tuples in Cforall},56 year = 2017,57 school = {University of Waterloo},58 note = {\url{https://uwspace.uwaterloo.ca/handle/10012/11830}},59 57 } 60 58 -
doc/papers/concurrency/style/cfa-format.tex
rb2fe1c9 r32cab5b 1 \usepackage[usenames,dvipsnames]{xcolor}1 %\usepackage[usenames,dvipsnames]{xcolor} 2 2 \usepackage{listings} 3 3 \usepackage{inconsolata} … … 11 11 % from https://gist.github.com/nikolajquorning/92bbbeef32e1dd80105c9bf2daceb89a 12 12 \lstdefinelanguage{sml} { 13 morekeywords= { 14 EQUAL, GREATER, LESS, NONE, SOME, abstraction, abstype, and, andalso, array, as, before, bool, case, char, datatype, do, else, end, eqtype, exception, exn, false, fn, fun, functor, handle, if, in, include, infix, infixr, int, let, list, local, nil, nonfix, not, o, of, op, open, option, orelse, overload, print, raise, real, rec, ref, sharing, sig, signature, string, struct, structure, substring, then, true, type, unit, val, vector, where, while, with, withtype, word 15 }, 16 morestring=[b]", 17 morecomment=[s]{(*}{*)}, 13 morekeywords= { 14 EQUAL, GREATER, LESS, NONE, SOME, abstraction, abstype, and, andalso, array, as, before, 15 bool, case, char, datatype, do, else, end, eqtype, exception, exn, false, fn, fun, functor, 16 handle, if, in, include, infix, infixr, int, let, list, local, nil, nonfix, not, o, of, op, 17 open, option, orelse, overload, print, raise, real, rec, ref, sharing, sig, signature, 18 string, struct, structure, substring, then, true, type, unit, val, vector, where, while, 19 with, withtype, word 20 }, 21 morestring=[b]", 22 morecomment=[s]{(*}{*)}, 18 23 } 19 24 20 25 \lstdefinelanguage{D}{ 21 % Keywords 22 morekeywords=[1]{ 23 abstract, alias, align, auto, body, break, cast, catch, class, const, 24 continue, debug, delegate, delete, deprecated, do, else, enum, export, 25 false, final, finally, for, foreach, foreach_reverse, function, goto, if, 26 immutable, import, in, inout, interface, invariant, is, lazy, macro, mixin, 27 module, new, nothrow, null, out, override, package, pragma, private, 28 protected, public, pure, ref, return, shared, static, struct, super, 29 switch, synchronized, template, this, throw, true, try, typedef, typeid, 30 typeof, union, unittest, volatile, while, with 31 }, 32 % Special identifiers, common functions 33 morekeywords=[2]{enforce}, 34 % Ugly identifiers 35 morekeywords=[3]{ 36 __DATE__, __EOF__, __FILE__, __LINE__, __TIMESTAMP__, __TIME__, __VENDOR__, 37 __VERSION__, __ctfe, __gshared, __monitor, __thread, __vptr, _argptr, 38 _arguments, _ctor, _dtor 39 }, 40 % Basic types 41 morekeywords=[4]{ 42 byte, ubyte, short, ushort, int, uint, long, ulong, cent, ucent, void, 43 bool, bit, float, double, real, ushort, int, uint, long, ulong, float, 44 char, wchar, dchar, string, wstring, dstring, ireal, ifloat, idouble, 45 creal, cfloat, cdouble, size_t, ptrdiff_t, sizediff_t, equals_t, hash_t 46 }, 47 % Strings 48 morestring=[b]{"}, 49 morestring=[b]{'}, 50 morestring=[b]{`}, 51 % Comments 52 comment=[l]{//}, 53 morecomment=[s]{/*}{*/}, 54 morecomment=[s][\color{blue}]{/**}{*/}, 55 morecomment=[n]{/+}{+/}, 56 morecomment=[n][\color{blue}]{/++}{+/}, 57 % Options 58 sensitive=true 26 % Keywords 27 morekeywords=[1]{ 28 abstract, alias, align, auto, body, break, cast, catch, class, const, continue, debug, 29 delegate, delete, deprecated, do, else, enum, export, false, final, finally, for, foreach, 30 foreach_reverse, function, goto, if, immutable, import, in, inout, interface, invariant, is, 31 lazy, macro, mixin, module, new, nothrow, null, out, override, package, pragma, private, 32 protected, public, pure, ref, return, shared, static, struct, super, switch, synchronized, 33 template, this, throw, true, try, typedef, typeid, typeof, union, unittest, volatile, while, 34 with 35 }, 36 % Special identifiers, common functions 37 morekeywords=[2]{enforce}, 38 % Ugly identifiers 39 morekeywords=[3]{ 40 __DATE__, __EOF__, __FILE__, __LINE__, __TIMESTAMP__, __TIME__, __VENDOR__, 41 __VERSION__, __ctfe, __gshared, __monitor, __thread, __vptr, _argptr, 42 _arguments, _ctor, _dtor 43 }, 44 % Basic types 45 morekeywords=[4]{ 46 byte, ubyte, short, ushort, int, uint, long, ulong, cent, ucent, void, bool, bit, float, 47 double, real, ushort, int, uint, long, ulong, float, char, wchar, dchar, string, wstring, 48 dstring, ireal, ifloat, idouble, creal, cfloat, cdouble, size_t, ptrdiff_t, sizediff_t, 49 equals_t, hash_t 50 }, 51 % Strings 52 morestring=[b]{"}, 53 morestring=[b]{'}, 54 morestring=[b]{`}, 55 % Comments 56 comment=[l]{//}, 57 morecomment=[s]{/*}{*/}, 58 morecomment=[s][\color{blue}]{/**}{*/}, 59 morecomment=[n]{/+}{+/}, 60 morecomment=[n][\color{blue}]{/++}{+/}, 61 % Options 62 sensitive=true 59 63 } 60 64 61 65 \lstdefinelanguage{rust}{ 62 % Keywords 63 morekeywords=[1]{ 64 abstract, alignof, as, become, box, 65 break, const, continue, crate, do, 66 else, enum, extern, false, final, 67 fn, for, if, impl, in, 68 let, loop, macro, match, mod, 69 move, mut, offsetof, override, priv, 70 proc, pub, pure, ref, return, 71 Self, self, sizeof, static, struct, 72 super, trait, true, type, typeof, 73 unsafe, unsized, use, virtual, where, 74 while, yield 75 }, 76 % Strings 77 morestring=[b]{"}, 78 % Comments 79 comment=[l]{//}, 80 morecomment=[s]{/*}{*/}, 81 % Options 82 sensitive=true 66 % Keywords 67 morekeywords=[1]{ 68 abstract, alignof, as, become, box, break, const, continue, crate, do, else, enum, extern, 69 false, final, fn, for, if, impl, in, let, loop, macro, match, mod, move, mut, offsetof, 70 override, priv, proc, pub, pure, ref, return, Self, self, sizeof, static, struct, super, 71 trait, true, type, typeof, unsafe, unsized, use, virtual, where, while, yield 72 }, 73 % Strings 74 morestring=[b]{"}, 75 % Comments 76 comment=[l]{//}, 77 morecomment=[s]{/*}{*/}, 78 % Options 79 sensitive=true 83 80 } 84 81 85 82 \lstdefinelanguage{pseudo}{ 86 morekeywords={string,uint,int,bool,float}, %87 sensitive=true, %88 morecomment=[l]{//}, %89 morecomment=[s]{/*}{*/}, %90 morestring=[b]', %91 morestring=[b]", %92 morestring=[s]{`}{`}, %93 } %83 morekeywords={string,uint,int,bool,float}, 84 sensitive=true, 85 morecomment=[l]{//}, 86 morecomment=[s]{/*}{*/}, 87 morestring=[b]', 88 morestring=[b]", 89 morestring=[s]{`}{`}, 90 } 94 91 95 92 \newcommand{\KWC}{K-W C\xspace} 96 93 97 94 \lstdefinestyle{pseudoStyle}{ 98 99 100 101 102 103 104 stringstyle=\sf\color{Mahogany},% use sanserif font105 106 107 aboveskip=4pt,% spacing above/below code block108 109 110 111 112 113 showlines=true,% show blank lines at end of code114 115 116 117 xleftmargin=\parindentlnth,% indent code to paragraph indentation118 119 120 95 escapeinside={@@}, 96 basicstyle=\linespread{0.9}\sf\footnotesize, % reduce line spacing and use typewriter font 97 keywordstyle=\bfseries\color{blue}, 98 keywordstyle=[2]\bfseries\color{Plum}, 99 commentstyle=\itshape\color{OliveGreen}, % green and italic comments 100 identifierstyle=\color{identifierCol}, 101 stringstyle=\sf\color{Mahogany}, % use sanserif font 102 mathescape=true, 103 columns=fixed, 104 aboveskip=4pt, % spacing above/below code block 105 belowskip=3pt, 106 keepspaces=true, 107 tabsize=4, 108 % frame=lines, 109 literate=, 110 showlines=true, % show blank lines at end of code 111 showspaces=false, 112 showstringspaces=false, 113 escapechar=\$, 114 xleftmargin=\parindentlnth, % indent code to paragraph indentation 115 moredelim=[is][\color{red}\bfseries]{**R**}{**R**}, % red highlighting 116 % moredelim=* detects keywords, comments, strings, and other delimiters and applies their formatting 117 % moredelim=** allows cumulative application 121 118 } 122 119 123 120 \lstdefinestyle{defaultStyle}{ 124 125 126 127 128 129 130 stringstyle=\sf\color{Mahogany},% use sanserif font131 132 133 aboveskip=4pt,% spacing above/below code block134 135 136 137 138 139 showlines=true,% show blank lines at end of code140 141 142 143 xleftmargin=\parindentlnth,% indent code to paragraph indentation144 145 146 121 escapeinside={@@}, 122 basicstyle=\linespread{0.9}\tt\footnotesize, % reduce line spacing and use typewriter font 123 keywordstyle=\bfseries\color{blue}, 124 keywordstyle=[2]\bfseries\color{Plum}, 125 commentstyle=\itshape\color{OliveGreen}, % green and italic comments 126 identifierstyle=\color{identifierCol}, 127 stringstyle=\sf\color{Mahogany}, % use sanserif font 128 mathescape=true, 129 columns=fixed, 130 aboveskip=4pt, % spacing above/below code block 131 belowskip=3pt, 132 keepspaces=true, 133 tabsize=4, 134 % frame=lines, 135 literate=, 136 showlines=true, % show blank lines at end of code 137 showspaces=false, 138 showstringspaces=false, 139 escapechar=\$, 140 xleftmargin=\parindentlnth, % indent code to paragraph indentation 141 moredelim=[is][\color{red}\bfseries]{**R**}{**R**}, % red highlighting 142 % moredelim=* detects keywords, comments, strings, and other delimiters and applies their formatting 143 % moredelim=** allows cumulative application 147 144 } 148 145 149 146 \lstdefinestyle{cfaStyle}{ 150 escapeinside={@@}, 151 basicstyle=\linespread{0.9}\tt\footnotesize, % reduce line spacing and use typewriter font 152 keywordstyle=\bfseries\color{blue}, 153 keywordstyle=[2]\bfseries\color{Plum}, 154 commentstyle=\sf\itshape\color{OliveGreen}, % green and italic comments 155 identifierstyle=\color{identifierCol}, 156 stringstyle=\sf\color{Mahogany}, % use sanserif font 157 mathescape=true, 158 columns=fixed, 159 aboveskip=4pt, % spacing above/below code block 160 belowskip=3pt, 161 keepspaces=true, 162 tabsize=4, 163 % frame=lines, 164 literate=, 165 showlines=true, % show blank lines at end of code 166 showspaces=false, 167 showstringspaces=false, 168 escapechar=\$, 169 xleftmargin=\parindentlnth, % indent code to paragraph indentation 170 moredelim=[is][\color{red}\bfseries]{**R**}{**R**}, % red highlighting 171 morekeywords=[2]{accept, signal, signal_block, wait, waitfor}, 147 escapeinside={@@}, 148 basicstyle=\linespread{0.9}\sf, % reduce line spacing and use typewriter font 149 % keywordstyle=\bfseries\color{blue}, 150 keywordstyle=[2]\bfseries\color{red}, 151 % commentstyle=\sf\itshape\color{OliveGreen}, % green and italic comments 152 identifierstyle=\color{identifierCol}, 153 % stringstyle=\sf\color{Mahogany}, % use sanserif font 154 stringstyle=\tt, % use typewriter font 155 mathescape=true, 156 columns=fixed, 157 aboveskip=4pt, % spacing above/below code block 158 belowskip=3pt, 159 keepspaces=true, 160 tabsize=4, 161 % frame=lines, 162 literate=, 163 showlines=true, % show blank lines at end of code 164 showspaces=false, 165 showstringspaces=false, 166 escapechar=\$, 167 xleftmargin=\parindentlnth, % indent code to paragraph indentation 168 moredelim=[is][\color{red}\bfseries]{**R**}{**R**}, % red highlighting 169 morekeywords=[2]{accept, signal, signal_block, wait, waitfor}, 172 170 } 173 171 … … 175 173 176 174 \lstnewenvironment{ccode}[1][]{ 177 178 179 180 181 182 175 \lstset{ 176 language = C, 177 style=defaultStyle, 178 captionpos=b, 179 #1 180 } 183 181 }{} 184 182 185 183 \lstnewenvironment{cfacode}[1][]{ 186 187 188 189 190 191 184 \lstset{ 185 language = CFA, 186 style=cfaStyle, 187 captionpos=b, 188 #1 189 } 192 190 }{} 193 191 194 192 \lstnewenvironment{pseudo}[1][]{ 195 196 197 198 199 200 193 \lstset{ 194 language = pseudo, 195 style=pseudoStyle, 196 captionpos=b, 197 #1 198 } 201 199 }{} 202 200 203 201 \lstnewenvironment{cppcode}[1][]{ 204 205 206 207 208 209 202 \lstset{ 203 language = c++, 204 style=defaultStyle, 205 captionpos=b, 206 #1 207 } 210 208 }{} 211 209 212 210 \lstnewenvironment{ucppcode}[1][]{ 213 214 215 216 217 218 211 \lstset{ 212 language = c++, 213 style=defaultStyle, 214 captionpos=b, 215 #1 216 } 219 217 }{} 220 218 221 219 \lstnewenvironment{javacode}[1][]{ 222 223 224 225 226 227 220 \lstset{ 221 language = java, 222 style=defaultStyle, 223 captionpos=b, 224 #1 225 } 228 226 }{} 229 227 230 228 \lstnewenvironment{scalacode}[1][]{ 231 232 233 234 235 236 229 \lstset{ 230 language = scala, 231 style=defaultStyle, 232 captionpos=b, 233 #1 234 } 237 235 }{} 238 236 239 237 \lstnewenvironment{smlcode}[1][]{ 240 241 242 243 244 245 238 \lstset{ 239 language = sml, 240 style=defaultStyle, 241 captionpos=b, 242 #1 243 } 246 244 }{} 247 245 248 246 \lstnewenvironment{dcode}[1][]{ 249 250 251 252 253 254 247 \lstset{ 248 language = D, 249 style=defaultStyle, 250 captionpos=b, 251 #1 252 } 255 253 }{} 256 254 257 255 \lstnewenvironment{rustcode}[1][]{ 258 259 260 261 262 263 256 \lstset{ 257 language = rust, 258 style=defaultStyle, 259 captionpos=b, 260 #1 261 } 264 262 }{} 265 263 266 264 \lstnewenvironment{gocode}[1][]{ 267 268 269 270 271 272 265 \lstset{ 266 language = Golang, 267 style=defaultStyle, 268 captionpos=b, 269 #1 270 } 273 271 }{} 274 272 … … 278 276 \newcommand{\code}[1]{\lstinline[language=CFA,style=cfaStyle]{#1}} 279 277 \newcommand{\pscode}[1]{\lstinline[language=pseudo,style=pseudoStyle]{#1}} 278 279 % Local Variables: % 280 % tab-width: 4 % 281 % fill-column: 100 % 282 % End: % -
doc/papers/general/.gitignore
rb2fe1c9 r32cab5b 3 3 *.pdf 4 4 *.ps 5 6 Paper.tex.plain 7 mail 8 Paper.out.ps 9 WileyNJD-AMA.bst -
doc/papers/general/Makefile
rb2fe1c9 r32cab5b 3 3 Build = build 4 4 Figures = figures 5 Macros = ../../LaTeXmacros5 Macros = AMA/AMA-stix/ama 6 6 TeXLIB = .:${Macros}:${Build}:../../bibliography: 7 7 LaTeX = TEXINPUTS=${TeXLIB} && export TEXINPUTS && latex -halt-on-error -output-directory=${Build} 8 8 BibTeX = BIBINPUTS=${TeXLIB} && export BIBINPUTS && bibtex 9 9 10 MAKEFLAGS = --no-print-directory --silent #10 MAKEFLAGS = --no-print-directory # --silent 11 11 VPATH = ${Build} ${Figures} evaluation 12 12 … … 34 34 35 35 DOCUMENT = Paper.pdf 36 BASE = ${basename ${DOCUMENT}} 36 37 37 38 # Directives # … … 42 43 43 44 clean : 44 @rm -frv ${DOCUMENT} ${ basename ${DOCUMENT}}.ps ${Build}45 @rm -frv ${DOCUMENT} ${BASE}.ps WileyNJD-AMA.bst ${BASE}.out.ps ${Build} 45 46 46 47 # File Dependencies # 47 48 48 ${DOCUMENT} : ${ basename ${DOCUMENT}}.ps49 ${DOCUMENT} : ${BASE}.ps 49 50 ps2pdf $< 50 51 51 ${ basename ${DOCUMENT}}.ps : ${basename ${DOCUMENT}}.dvi52 ${BASE}.ps : ${BASE}.dvi 52 53 dvips ${Build}/$< -o $@ 53 54 54 ${ basename ${DOCUMENT}}.dvi : Makefile ${Build}${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \55 ${Macros}/common.tex ${Macros}/indexstyle../../bibliography/pl.bib55 ${BASE}.dvi : Makefile ${Build} ${BASE}.out.ps WileyNJD-AMA.bst ${GRAPHS} ${PROGRAMS} ${PICTURES} ${FIGURES} ${SOURCES} \ 56 ../../bibliography/pl.bib 56 57 # Must have *.aux file containing citations for bibtex 57 58 if [ ! -r ${basename $@}.aux ] ; then ${LaTeX} ${basename $@}.tex ; fi 58 -${BibTeX} ${Build}/${basename $@}59 ${BibTeX} ${Build}/${basename $@} 59 60 # Some citations reference others so run again to resolve these citations 60 61 ${LaTeX} ${basename $@}.tex 61 -${BibTeX} ${Build}/${basename $@}62 ${BibTeX} ${Build}/${basename $@} 62 63 # Run again to finish citations 63 64 ${LaTeX} ${basename $@}.tex … … 67 68 ${Build}: 68 69 mkdir -p ${Build} 70 71 ${BASE}.out.ps: 72 ln -fs build/Paper.out.ps . 73 74 WileyNJD-AMA.bst: 75 ln -fs AMA/AMA-stix/ama/WileyNJD-AMA.bst . 69 76 70 77 ${GRAPHS} : timing.gp timing.dat -
doc/papers/general/Paper.tex
rb2fe1c9 r32cab5b 1 \documentclass{article} 2 3 \usepackage{fullpage} 1 \documentclass[AMA,STIX1COL]{WileyNJD-v2} 2 3 \articletype{RESEARCH ARTICLE}% 4 5 \received{26 April 2016} 6 \revised{6 June 2016} 7 \accepted{6 June 2016} 8 9 \raggedbottom 10 11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 12 13 % Latex packages used in the document. 14 4 15 \usepackage{epic,eepic} 5 \usepackage{xspace,calc,comment} 16 \usepackage{xspace} 17 \usepackage{comment} 6 18 \usepackage{upquote} % switch curled `'" to straight 7 19 \usepackage{listings} % format program code 8 \usepackage{enumitem} 9 \setlist[itemize]{topsep=3pt,itemsep=2pt,parsep=0pt}% global 10 \usepackage[flushmargin]{footmisc} % support label/reference in footnote 11 \usepackage{rotating} 12 \usepackage[usenames]{color} 13 \usepackage{pslatex} % reduce size of san serif font 14 \usepackage[plainpages=false,pdfpagelabels,pdfpagemode=UseNone,pagebackref=true,breaklinks=true,colorlinks=true,linkcolor=blue,citecolor=blue,urlcolor=blue]{hyperref} 15 \urlstyle{sf} 16 \usepackage{breakurl} 17 18 \setlength{\textheight}{9in} 19 %\oddsidemargin 0.0in 20 \renewcommand{\topfraction}{0.8} % float must be greater than X of the page before it is forced onto its own page 21 \renewcommand{\bottomfraction}{0.8} % float must be greater than X of the page before it is forced onto its own page 22 \renewcommand{\floatpagefraction}{0.8} % float must be greater than X of the page before it is forced onto its own page 23 \renewcommand{\textfraction}{0.0} % the entire page maybe devoted to floats with no text on the page at all 20 %\usepackage{enumitem} 21 %\setlist[itemize]{topsep=3pt,itemsep=2pt,parsep=0pt}% global 22 %\usepackage{rotating} 23 24 \hypersetup{breaklinks=true} 25 \definecolor{ForestGreen}{cmyk}{1, 0, 0.99995, 0} 26 27 \usepackage[pagewise]{lineno} 28 \renewcommand{\linenumberfont}{\scriptsize\sffamily} 24 29 25 30 \lefthyphenmin=4 % hyphen only after 4 characters 26 31 \righthyphenmin=4 32 33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 27 34 28 35 % Names used in the document. … … 64 71 \newlength{\gcolumnposn} % temporary hack because lstlisting does not handle tabs correctly 65 72 \newlength{\columnposn} 66 \setlength{\gcolumnposn}{ 2.75in}73 \setlength{\gcolumnposn}{3.5in} 67 74 \setlength{\columnposn}{\gcolumnposn} 68 75 \newcommand{\C}[2][\@empty]{\ifx#1\@empty\else\global\setlength{\columnposn}{#1}\global\columnposn=\columnposn\fi\hfill\makebox[\textwidth-\columnposn][l]{\lst@basicstyle{\LstCommentStyle{#2}}}} … … 97 104 }% 98 105 \newcommand{\ETAL}{\abbrevFont{et}~\abbrevFont{al}} 99 \ newcommand*{\etal}{%106 \renewcommand*{\etal}{% 100 107 \@ifnextchar{.}{\protect\ETAL}% 101 108 {\protect\ETAL.\xspace}% … … 145 152 belowskip=3pt, 146 153 % replace/adjust listing characters that look bad in sanserif 147 literate={-}{\makebox[1ex][c]{\raisebox{0.4ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scripts criptstyle\land\,$}}1148 {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 {@}{\small{@}}1% {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1149 {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{\makebox[1ex][c]{\raisebox{0. 4ex}{\rule{0.8ex}{0.075ex}}}\kern-0.2ex\textgreater}2,154 literate={-}{\makebox[1ex][c]{\raisebox{0.4ex}{\rule{0.8ex}{0.1ex}}}}1 {^}{\raisebox{0.6ex}{$\scriptstyle\land\,$}}1 155 {~}{\raisebox{0.3ex}{$\scriptstyle\sim\,$}}1 % {`}{\ttfamily\upshape\hspace*{-0.1ex}`}1 156 {<-}{$\leftarrow$}2 {=>}{$\Rightarrow$}2 {->}{\makebox[1ex][c]{\raisebox{0.5ex}{\rule{0.8ex}{0.075ex}}}\kern-0.2ex{\textgreater}}2, 150 157 moredelim=**[is][\color{red}]{`}{`}, 151 158 }% lstset 152 153 % inline code @...@154 \lstMakeShortInline@%155 159 156 160 \lstnewenvironment{cfa}[1][] … … 161 165 {} 162 166 163 164 \title{\protect\CFA : Adding Modern Programming Language Features to C} 165 166 \author{Aaron Moss, Robert Schluntz, Peter Buhr} 167 % \email{a3moss@uwaterloo.ca} 168 % \email{rschlunt@uwaterloo.ca} 169 % \email{pabuhr@uwaterloo.ca} 170 % \affiliation{% 171 % \institution{University of Waterloo} 172 % \department{David R. Cheriton School of Computer Science} 173 % \streetaddress{Davis Centre, University of Waterloo} 174 % \city{Waterloo} 175 % \state{ON} 176 % \postcode{N2L 3G1} 177 % \country{Canada} 178 % } 179 180 %\terms{generic, tuple, variadic, types} 181 %\keywords{generic types, tuple types, variadic types, polymorphic functions, C, Cforall} 182 183 \begin{document} 184 \maketitle 185 186 187 \begin{abstract} 167 % inline code @...@ 168 \lstMakeShortInline@% 169 170 171 \title{\texorpdfstring{\protect\CFA : Adding Modern Programming Language Features to C}{Cforall : Adding Modern Programming Language Features to C}} 172 173 \author[1]{Aaron Moss} 174 \author[1]{Robert Schluntz} 175 \author[1]{Peter A. Buhr*} 176 \authormark{Aaron Moss \textsc{et al}} 177 178 \address[1]{\orgdiv{David R. Cheriton School of Computer Science}, \orgname{University of Waterloo}, \orgaddress{\state{Ontario}, \country{Canada}}} 179 180 \corres{*Peter A. Buhr, \email{pabuhr{\char`\@}uwaterloo.ca}} 181 \presentaddress{David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada} 182 183 184 \abstract[Summary]{ 188 185 The C programming language is a foundational technology for modern computing with millions of lines of code implementing everything from commercial operating-systems to hobby projects. 189 186 This installation base and the programmers producing it represent a massive software-engineering investment spanning decades and likely to continue for decades more. … … 195 192 This paper presents a quick tour of \CFA features showing how their design avoids shortcomings of similar features in C and other C-like languages. 196 193 Finally, experimental results are presented to validate several of the new features. 197 \end{abstract} 194 }% 195 196 \keywords{generic types, tuple types, variadic types, polymorphic functions, C, Cforall} 197 198 199 \begin{document} 200 \linenumbers % comment out to turn off line numbering 201 202 \maketitle 198 203 199 204 … … 217 222 Love it or hate it, C is extremely popular, highly used, and one of the few systems languages. 218 223 In many cases, \CC is often used solely as a better C. 219 N onetheless, C, first standardized over thirty years ago, lacks many features that make programming in more modern languages safer and more productive.224 Nevertheless, C, first standardized over thirty years ago, lacks many features that make programming in more modern languages safer and more productive. 220 225 221 226 \CFA (pronounced ``C-for-all'', and written \CFA or Cforall) is an evolutionary extension of the C programming language that aims to add modern language features to C while maintaining both source compatibility with C and a familiar programming model for programmers. … … 230 235 \CFA is currently implemented as a source-to-source translator from \CFA to the gcc-dialect of C~\cite{GCCExtensions}, allowing it to leverage the portability and code optimizations provided by gcc, meeting goals (1)--(3). 231 236 Ultimately, a compiler is necessary for advanced features and optimal performance. 232 All of the features discussed in this paper are working, unless a feature states it is a future feature for completion.237 All features discussed in this paper are working, unless otherwise stated as under construction. 233 238 234 239 Finally, it is impossible to describe a programming language without usages before definitions. … … 258 263 259 264 \begin{cfa} 260 int max = 2147483647; $\C[3.75in]{// (1)}$265 int max = 2147483647; $\C[4in]{// (1)}$ 261 266 double max = 1.7976931348623157E+308; $\C{// (2)}$ 262 267 int max( int a, int b ) { return a < b ? b : a; } $\C{// (3)}$ 263 268 double max( double a, double b ) { return a < b ? b : a; } $\C{// (4)}\CRT$ 264 max( 7, -max ); $\C{// uses (3) and (1), by matching int from constant 7}$265 max( max, 3.14 ); 266 max( max, -max ); 267 int m = max( max, -max ); $\C{// uses (3) and (1) twice, by matching return type}$269 max( 7, -max ); $\C[2.75in]{// uses (3) and (1), by matching int from constant 7}$ 270 max( max, 3.14 ); $\C{// uses (4) and (2), by matching double from constant 3.14}$ 271 max( max, -max ); $\C{// ERROR: ambiguous}$ 272 int m = max( max, -max ); $\C{// uses (3) and (1) twice, by matching return type}\CRT$ 268 273 \end{cfa} 269 274 … … 292 297 \begin{cfa} 293 298 `forall( otype T )` T identity( T val ) { return val; } 294 int forty_two = identity( 42 ); 299 int forty_two = identity( 42 ); $\C{// T is bound to int, forty\_two == 42}$ 295 300 \end{cfa} 296 301 This @identity@ function can be applied to any complete \newterm{object type} (or @otype@). … … 306 311 For example, the function @twice@ can be defined using the \CFA syntax for operator overloading: 307 312 \begin{cfa} 308 forall( otype T `| { T ?+?(T, T); }` ) T twice( T x ) { return x `+` x; } 313 forall( otype T `| { T ?+?(T, T); }` ) T twice( T x ) { return x `+` x; } $\C{// ? denotes operands}$ 309 314 int val = twice( twice( 3.7 ) ); 310 315 \end{cfa} … … 325 330 } 326 331 double key = 5.0, vals[10] = { /* 10 sorted float values */ }; 327 double * val = (double *)bsearch( &key, vals, 10, sizeof(vals[0]), comp ); 332 double * val = (double *)bsearch( &key, vals, 10, sizeof(vals[0]), comp ); $\C{// search sorted array}$ 328 333 \end{cfa} 329 334 which can be augmented simply with a generalized, type-safe, \CFA-overloaded wrappers: … … 335 340 forall( otype T | { int ?<?( T, T ); } ) unsigned int bsearch( T key, const T * arr, size_t size ) { 336 341 T * result = bsearch( key, arr, size ); $\C{// call first version}$ 337 return result ? result - arr : size; 338 } 339 double * val = bsearch( 5.0, vals, 10 ); 342 return result ? result - arr : size; $\C{// pointer subtraction includes sizeof(T)}$ 343 } 344 double * val = bsearch( 5.0, vals, 10 ); $\C{// selection based on return type}$ 340 345 int posn = bsearch( 5.0, vals, 10 ); 341 346 \end{cfa} … … 361 366 forall( otype T | { int ?<?( T, T ); } ) void qsort( const T * arr, size_t size ) { /* use C qsort */ } 362 367 { 363 int ?<?( double x, double y ) { return x `>` y; } 368 int ?<?( double x, double y ) { return x `>` y; } $\C{// locally override behaviour}$ 364 369 qsort( vals, size ); $\C{// descending sort}$ 365 370 } … … 367 372 Within the block, the nested version of @?<?@ performs @?>?@ and this local version overrides the built-in @?<?@ so it is passed to @qsort@. 368 373 Hence, programmers can easily form local environments, adding and modifying appropriate functions, to maximize reuse of other existing functions and types. 374 375 Under construction is a mechanism to distribute @forall@ over routines/types, where each block declaration is prefixed with the initial @forall@ clause significantly reducing duplication (see @stack@ examples in Section~\ref{sec:eval}): 376 \begin{cfa} 377 forall( otype `T` ) { $\C{// forall block}$ 378 struct stack { stack_node(`T`) * head; }; $\C{// generic type}$ 379 void push( stack(`T`) & s, `T` value ) ... $\C{// generic operations}$ 380 T pop( stack(`T`) & s ) ... 381 } 382 \end{cfa} 369 383 370 384 … … 378 392 T ?+=?( T *, T ); 379 393 T ++?( T * ); 380 T ?++( T * ); };381 394 T ?++( T * ); 395 }; 382 396 forall( otype T `| summable( T )` ) T sum( T a[$\,$], size_t size ) { // use trait 383 397 `T` total = { `0` }; $\C{// instantiate T from 0 by calling its constructor}$ 384 398 for ( unsigned int i = 0; i < size; i += 1 ) total `+=` a[i]; $\C{// select appropriate +}$ 385 return total; } 399 return total; 400 } 386 401 \end{cfa} 387 402 … … 392 407 void ?{}( T &, T ); $\C{// copy constructor}$ 393 408 void ?=?( T &, T ); $\C{// assignment operator}$ 394 void ^?{}( T & ); }; $\C{// destructor}$ 409 void ^?{}( T & ); $\C{// destructor}$ 410 }; 395 411 \end{cfa} 396 412 Given the information provided for an @otype@, variables of polymorphic type can be treated as if they were a complete type: stack-allocatable, default or copy-initialized, assigned, and deleted. … … 436 452 One approach is to write bespoke data-structures for each context in which they are needed. 437 453 While this approach is flexible and supports integration with the C type-checker and tooling, it is also tedious and error-prone, especially for more complex data structures. 438 A second approach is to use @void *@ 454 A second approach is to use @void *@-based polymorphism, \eg the C standard-library functions @bsearch@ and @qsort@, which allow reuse of code with common functionality. 439 455 However, basing all polymorphism on @void *@ eliminates the type-checker's ability to ensure that argument types are properly matched, often requiring a number of extra function parameters, pointer indirection, and dynamic allocation that is not otherwise needed. 440 456 A third approach to generic code is to use preprocessor macros, which does allow the generated code to be both generic and type-checked, but errors may be difficult to interpret. … … 526 542 Results of these layout functions are cached so that they are only computed once per type per function. %, as in the example below for @pair@. 527 543 Layout functions also allow generic types to be used in a function definition without reflecting them in the function signature. 528 For instance, a function that strips duplicate values from an unsorted @vector(T)@ would likely have a pointer to the vector as its only explicit parameter, but usesome sort of @set(T)@ internally to test for duplicate values.544 For instance, a function that strips duplicate values from an unsorted @vector(T)@ likely has a pointer to the vector as its only explicit parameter, but uses some sort of @set(T)@ internally to test for duplicate values. 529 545 This function could acquire the layout for @set(T)@ by calling its layout function with the layout of @T@ implicitly passed into the function. 530 546 … … 553 569 struct litres {}; 554 570 555 forall( dtype U ) scalar(U) ?+?( scalar(U) a, scalar(U) b ) {571 forall( dtype U ) scalar(U) ?+?( scalar(U) a, scalar(U) b ) { 556 572 return (scalar(U)){ a.value + b.value }; 557 573 } … … 592 608 [ q, r ] = div( 13.5, 5.2 ); $\C{// assign into tuple}$ 593 609 \end{cfa} 594 Clearly, this approach is straightforward to understand and use;610 This approach is straightforward to understand and use; 595 611 therefore, why do few programming languages support this obvious feature or provide it awkwardly? 596 T he answer is thatthere are complex consequences that cascade through multiple aspects of the language, especially the type-system.612 To answer, there are complex consequences that cascade through multiple aspects of the language, especially the type-system. 597 613 This section show these consequences and how \CFA handles them. 598 614 … … 644 660 p`->0` = 5; $\C{// change quotient}$ 645 661 bar( qr`.1`, qr ); $\C{// pass remainder and quotient/remainder}$ 646 rem = [div( 13, 5 ), 42]`.0.1`; $\C{// access 2nd component of 1st component of tuple expression}$662 rem = [div( 13, 5 ), 42]`.0.1`; $\C{// access 2nd component of 1st component}$ 647 663 \end{cfa} 648 664 … … 653 669 Tuple flattening recursively expands a tuple into the list of its basic components. 654 670 Tuple structuring packages a list of expressions into a value of tuple type, \eg: 655 %\lstDeleteShortInline@%656 %\par\smallskip657 %\begin{tabular}{@{}l@{\hspace{1.5\parindent}}||@{\hspace{1.5\parindent}}l@{}}658 671 \begin{cfa} 659 672 int f( int, int ); 660 intg( [int, int] );661 inth( int, [int, int] );673 [int] g( [int, int] ); 674 [int] h( int, [int, int] ); 662 675 [int, int] x; 663 676 int y; 664 f( x ); $\C{// flatten}$ 665 g( y, 10 ); $\C{// structure}$ 666 h( x, y ); $\C{// flatten and structure}$ 667 \end{cfa} 668 %\end{cfa} 669 %& 670 %\begin{cfa} 671 %\end{tabular} 672 %\smallskip\par\noindent 673 %\lstMakeShortInline@% 677 f( x ); $\C{// flatten}$ 678 g( y, 10 ); $\C{// structure}$ 679 h( x, y ); $\C{// flatten and structure}$ 680 \end{cfa} 674 681 In the call to @f@, @x@ is implicitly flattened so the components of @x@ are passed as the two arguments. 675 682 In the call to @g@, the values @y@ and @10@ are structured into a single argument of type @[int, int]@ to match the parameter type of @g@. … … 682 689 An assignment where the left side is a tuple type is called \newterm{tuple assignment}. 683 690 There are two kinds of tuple assignment depending on whether the right side of the assignment operator has a tuple type or a non-tuple type, called \newterm{multiple} and \newterm{mass assignment}, respectively. 684 %\lstDeleteShortInline@%685 %\par\smallskip686 %\begin{tabular}{@{}l@{\hspace{1.5\parindent}}||@{\hspace{1.5\parindent}}l@{}}687 691 \begin{cfa} 688 692 int x = 10; … … 694 698 [y, x] = 3.14; $\C{// mass assignment}$ 695 699 \end{cfa} 696 %\end{cfa}697 %&698 %\begin{cfa}699 %\end{tabular}700 %\smallskip\par\noindent701 %\lstMakeShortInline@%702 700 Both kinds of tuple assignment have parallel semantics, so that each value on the left and right side is evaluated before any assignments occur. 703 701 As a result, it is possible to swap the values in two variables without explicitly creating any temporary variables or calling a function, \eg, @[x, y] = [y, x]@. … … 708 706 This example shows mass, multiple, and cascading assignment used in one expression: 709 707 \begin{cfa} 710 voidf( [int, int] );708 [void] f( [int, int] ); 711 709 f( [x, y] = z = 1.5 ); $\C{// assignments in parameter list}$ 712 710 \end{cfa} … … 723 721 Here, the mass assignment sets all members of @s@ to zero. 724 722 Since tuple-index expressions are a form of member-access expression, it is possible to use tuple-index expressions in conjunction with member tuple expressions to manually restructure a tuple (\eg rearrange, drop, and duplicate components). 725 %\lstDeleteShortInline@%726 %\par\smallskip727 %\begin{tabular}{@{}l@{\hspace{1.5\parindent}}||@{\hspace{1.5\parindent}}l@{}}728 723 \begin{cfa} 729 724 [int, int, long, double] x; … … 733 728 [int, int, int] y = x.[2, 0, 2]; $\C{// duplicate: [y.0, y.1, y.2] = [x.2, x.0.x.2]}$ 734 729 \end{cfa} 735 %\end{cfa}736 %&737 %\begin{cfa}738 %\end{tabular}739 %\smallskip\par\noindent740 %\lstMakeShortInline@%741 730 It is also possible for a member access to contain other member accesses, \eg: 742 731 \begin{cfa} … … 796 785 Since @void@ is effectively a 0-element tuple, (3) discards the first and third return values, which is effectively equivalent to @[(int)(g().1.0), (int)(g().1.1)]@). 797 786 798 Note that a cast is not a function call in \CFA, so flattening and structuring conversions do not occur for cast expressions\footnote{User-defined conversions have been considered, but for compatibility with C and the existing use of casts as type ascription, any future design for such conversions would requiremore precise matching of types than allowed for function arguments and parameters.}.787 Note that a cast is not a function call in \CFA, so flattening and structuring conversions do not occur for cast expressions\footnote{User-defined conversions have been considered, but for compatibility with C and the existing use of casts as type ascription, any future design for such conversions requires more precise matching of types than allowed for function arguments and parameters.}. 799 788 As such, (4) is invalid because the cast target type contains 4 components, while the source type contains only 3. 800 789 Similarly, (5) is invalid because the cast @([int, int, int])(g().1)@ is invalid. … … 813 802 where @[5, "hello"]@ is flattened, giving argument list @5, "hello"@, and @T@ binds to @int@ and @U@ binds to @const char@. 814 803 Tuples, however, may contain polymorphic components. 815 For example, a plus operator can be written to add two triples together.804 For example, a plus operator can be written to sum two triples. 816 805 \begin{cfa} 817 806 forall( otype T | { T ?+?( T, T ); } ) [T, T, T] ?+?( [T, T, T] x, [T, T, T] y ) { … … 825 814 Flattening and restructuring conversions are also applied to tuple types in polymorphic type assertions. 826 815 \begin{cfa} 827 intf( [int, double], double );816 [int] f( [int, double], double ); 828 817 forall( otype T, otype U | { T f( T, U, U ); } ) void g( T, U ); 829 818 g( 5, 10.21 ); … … 836 825 % \end{cfa} 837 826 % so the thunk provides flattening and structuring conversions to inferred functions, improving the compatibility of tuples and polymorphism. 838 % These thunks are generated locally using gcc nested-functions, rather ho siting them to the external scope, so they can easily access local state.827 % These thunks are generated locally using gcc nested-functions, rather hoisting them to the external scope, so they can easily access local state. 839 828 840 829 … … 847 836 As such, @ttype@ variables are also called \newterm{argument packs}. 848 837 849 Like variadic templates, the main way to manipulate @ttype@ polymorphic functions isvia recursion.838 Like variadic templates, @ttype@ polymorphic functions are primarily manipulated via recursion. 850 839 Since nothing is known about a parameter pack by default, assertion parameters are key to doing anything meaningful. 851 840 Unlike variadic templates, @ttype@ polymorphic functions can be separately compiled. 852 For example, a generalized @sum@ function written using @ttype@:841 For example, a generalized @sum@ function: 853 842 \begin{cfa} 854 843 int sum$\(_0\)$() { return 0; } … … 1028 1017 \begin{cquote} 1029 1018 \lstDeleteShortInline@% 1030 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}1031 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\1019 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1020 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 1032 1021 \begin{cfa} 1033 1022 case 2, 10, 34, 42: … … 1040 1029 \lstMakeShortInline@% 1041 1030 \end{cquote} 1042 for a contiguous list:\footnote{gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, because a space is required after a number, otherwise theperiod is a decimal point.}1031 for a contiguous list:\footnote{gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, as a space is required after a number, otherwise the first period is a decimal point.} 1043 1032 \begin{cquote} 1044 1033 \lstDeleteShortInline@% 1045 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}1046 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\1034 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1035 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 1047 1036 \begin{cfa} 1048 1037 case 2~42: … … 1060 1049 \end{cfa} 1061 1050 1062 C allows placement of @case@ clauses \emph{within} statements nested in the @switch@ body ( seeDuff's device~\cite{Duff83});1051 C allows placement of @case@ clauses \emph{within} statements nested in the @switch@ body (called Duff's device~\cite{Duff83}); 1063 1052 \begin{cfa} 1064 1053 switch ( i ) { … … 1071 1060 } 1072 1061 \end{cfa} 1073 \CFA precludes this form of transfer intoa control structure because it causes undefined behaviour, especially with respect to missed initialization, and provides very limited functionality.1062 \CFA precludes this form of transfer \emph{into} a control structure because it causes undefined behaviour, especially with respect to missed initialization, and provides very limited functionality. 1074 1063 1075 1064 C allows placement of declaration within the @switch@ body and unreachable code at the start, resulting in undefined behaviour: … … 1136 1125 \end{figure} 1137 1126 1138 Finally, @fallthrough@ may appear in contexts other than terminating a @case@ clause, and have an explicit transfer label allowing separate cases but common final-code for a set of cases: 1139 \begin{cquote} 1127 Finally, Figure~\ref{f:FallthroughStatement} shows @fallthrough@ may appear in contexts other than terminating a @case@ clause, and have an explicit transfer label allowing separate cases but common final-code for a set of cases. 1128 The target label must be below the @fallthrough@ and may not be nested in a control structure, \ie @fallthrough@ cannot form a loop, and the target label must be at the same or higher level as the containing @case@ clause and located at the same level as a @case@ clause; 1129 the target label may be case @default@, but only associated with the current @switch@/@choose@ statement. 1130 1131 \begin{figure} 1132 \centering 1140 1133 \lstDeleteShortInline@% 1141 1134 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} … … 1159 1152 case 4: 1160 1153 ... `fallthrough common;` 1161 common:1154 `common`: // below fallthrough at same level as case clauses 1162 1155 ... // common code for cases 3 and 4 1163 1156 // implicit break … … 1166 1159 \end{tabular} 1167 1160 \lstMakeShortInline@% 1168 \end{cquote} 1169 The target label may be case @default@. 1170 1171 Collectively, these control-structure enhancements reduce programmer burden and increase readability and safety. 1161 \caption{\lstinline|fallthrough| Statement} 1162 \label{f:FallthroughStatement} 1163 \end{figure} 1172 1164 1173 1165 … … 1299 1291 R r; 1300 1292 ... `resume( r );` ... 1301 ... r.fix // control does returnhere after handler1293 ... r.fix // control returns here after handler 1302 1294 } 1303 1295 `try` { … … 1412 1404 1413 1405 1414 \subsection{\texorpdfstring{\protect\lstinline{with} Clause / Statement}{with Clause /Statement}}1415 \label{s:With ClauseStatement}1406 \subsection{\texorpdfstring{\protect\lstinline{with} Statement}{with Statement}} 1407 \label{s:WithStatement} 1416 1408 1417 1409 Grouping heterogeneous data into \newterm{aggregate}s (structure/union) is a common programming practice, and an aggregate can be further organized into more complex structures, such as arrays and containers: … … 1433 1425 A similar situation occurs in object-oriented programming, \eg \CC: 1434 1426 \begin{C++} 1435 class C{1427 struct S { 1436 1428 char c; $\C{// fields}$ 1437 1429 int i; 1438 1430 double d; 1439 intf() { $\C{// implicit ``this'' aggregate}$1431 void f() { $\C{// implicit ``this'' aggregate}$ 1440 1432 `this->`c; `this->`i; `this->`d; $\C{// access containing fields}$ 1441 1433 } 1442 1434 } 1443 1435 \end{C++} 1444 Object-oriented nesting of member functions in a \lstinline[language=C++]@class @ allows eliding \lstinline[language=C++]@this->@ because of lexical scoping.1436 Object-oriented nesting of member functions in a \lstinline[language=C++]@class/struct@ allows eliding \lstinline[language=C++]@this->@ because of lexical scoping. 1445 1437 However, for other aggregate parameters, qualification is necessary: 1446 1438 \begin{cfa} 1447 1439 struct T { double m, n; }; 1448 int C::f( T & t ) { $\C{// multiple aggregate parameters}$1449 c; i; d; $\C{\color{red}// this- \textgreater.c, this-\textgreater.i, this-\textgreater.d}$1440 int S::f( T & t ) { $\C{// multiple aggregate parameters}$ 1441 c; i; d; $\C{\color{red}// this--{\textgreater}.c, this--{\textgreater}.i, this--{\textgreater}.d}$ 1450 1442 `t.`m; `t.`n; $\C{// must qualify}$ 1451 1443 } … … 1461 1453 with the generality of opening multiple aggregate-parameters: 1462 1454 \begin{cfa} 1463 intf( S & s, T & t ) `with ( s, t )` { $\C{// multiple aggregate parameters}$1455 void f( S & s, T & t ) `with ( s, t )` { $\C{// multiple aggregate parameters}$ 1464 1456 c; i; d; $\C{\color{red}// s.c, s.i, s.d}$ 1465 1457 m; n; $\C{\color{red}// t.m, t.n}$ … … 1527 1519 \begin{cfa} 1528 1520 struct S { int i, j; } sv; 1529 with ( sv ) { $\C{ implicit reference}$1521 with ( sv ) { $\C{// implicit reference}$ 1530 1522 S & sr = sv; 1531 with ( sr ) { $\C{ explicit reference}$1523 with ( sr ) { $\C{// explicit reference}$ 1532 1524 S * sp = &sv; 1533 with ( *sp ) { $\C{ computed reference}$1534 i = 3; j = 4; $\C{\color{red}// sp- {\textgreater}i, sp-{\textgreater}j}$1525 with ( *sp ) { $\C{// computed reference}$ 1526 i = 3; j = 4; $\C{\color{red}// sp--{\textgreater}i, sp--{\textgreater}j}$ 1535 1527 } 1536 1528 i = 2; j = 3; $\C{\color{red}// sr.i, sr.j}$ … … 1539 1531 } 1540 1532 \end{cfa} 1533 1534 Collectively, these control-structure enhancements reduce programmer burden and increase readability and safety. 1541 1535 1542 1536 … … 1582 1576 \begin{cquote} 1583 1577 \lstDeleteShortInline@% 1584 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{\hspace{\parindentlnth}}l@{}}1585 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\1578 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{\hspace{2\parindentlnth}}l@{}} 1579 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 1586 1580 \begin{cfa} 1587 1581 `[5] *` int x1; … … 1598 1592 \begin{cfa} 1599 1593 // array of 5 pointers to int 1600 // pointer to a n array of 5 int1601 // function returning pointer to a n array of 5 int and taking anint1594 // pointer to array of 5 int 1595 // function returning pointer to array of 5 int and taking int 1602 1596 \end{cfa} 1603 1597 \end{tabular} … … 1610 1604 \begin{cquote} 1611 1605 \lstDeleteShortInline@% 1612 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}1613 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\1606 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1607 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 1614 1608 \begin{cfa} 1615 1609 `*` int x, y; … … 1630 1624 \begin{cquote} 1631 1625 \lstDeleteShortInline@% 1632 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{\hspace{\parindentlnth}}l@{}}1633 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{\parindentlnth}}}{\textbf{C}} \\1626 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{\hspace{2\parindentlnth}}l@{}} 1627 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{C}} \\ 1634 1628 \begin{cfa} 1635 1629 [ 5 ] int z; … … 1672 1666 \begin{cquote} 1673 1667 \lstDeleteShortInline@% 1674 \begin{tabular}{@{}l@{\hspace{ 1em}}l@{\hspace{1em}}l@{}}1675 \multicolumn{1}{c@{\hspace{ 1em}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{1em}}}{\textbf{C}} \\1668 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{\hspace{2\parindentlnth}}l@{}} 1669 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{C}} \\ 1676 1670 \begin{cfa} 1677 1671 extern const * const int x; 1678 static const * [ 5] const int y;1672 static const * [5] const int y; 1679 1673 \end{cfa} 1680 1674 & 1681 1675 \begin{cfa} 1682 1676 int extern const * const x; 1683 static const int (* const y)[ 5]1677 static const int (* const y)[5] 1684 1678 \end{cfa} 1685 1679 & … … 1697 1691 \begin{cquote} 1698 1692 \lstDeleteShortInline@% 1699 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}1700 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\1693 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1694 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 1701 1695 \begin{cfa} 1702 1696 y = (* int)x; … … 1715 1709 as well, parameter names are optional, \eg: 1716 1710 \begin{cfa} 1717 [ int x ] f ( /* void */ ); $\C{// returning int with no parameters}$1718 [ int x ] f (...); 1719 [ * int ] g ( int y ); 1720 [ void ] h ( int, char ); 1721 [ * int, int ] j ( int ); $\C{// returning pointer to int and int,with int parameter}$1711 [ int x ] f ( /* void */ ); $\C[2.5in]{// returning int with no parameters}$ 1712 [ int x ] f (...); $\C{// returning int with unknown parameters}$ 1713 [ * int ] g ( int y ); $\C{// returning pointer to int with int parameter}$ 1714 [ void ] h ( int, char ); $\C{// returning no result with int and char parameters}$ 1715 [ * int, int ] j ( int ); $\C{// returning pointer to int and int with int parameter}$ 1722 1716 \end{cfa} 1723 1717 This syntax allows a prototype declaration to be created by cutting and pasting source text from the function-definition header (or vice versa). … … 1725 1719 \begin{cquote} 1726 1720 \lstDeleteShortInline@% 1727 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}1728 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\1721 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 1722 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 1729 1723 \begin{cfa} 1730 1724 [double] foo(), foo( int ), foo( double ) {...} … … 1741 1735 The syntax for pointers to \CFA functions specifies the pointer name on the right, \eg: 1742 1736 \begin{cfa} 1743 * [ int x ] () fp; 1744 * [ * int ] ( int y ) gp; 1745 * [ ] ( int, char ) hp; 1746 * [ * int, int ] ( int ) jp; $\C{// pointer to function returning pointer to int and int,with int parameter}$1737 * [ int x ] () fp; $\C{// pointer to function returning int with no parameters}$ 1738 * [ * int ] ( int y ) gp; $\C{// pointer to function returning pointer to int with int parameter}$ 1739 * [ ] ( int, char ) hp; $\C{// pointer to function returning no result with int and char parameters}$ 1740 * [ * int, int ] ( int ) jp; $\C{// pointer to function returning pointer to int and int with int parameter}$ 1747 1741 \end{cfa} 1748 1742 Note, a function name cannot be specified: 1749 1743 \begin{cfa} 1750 * [ int x ] f () fp; $\C{// function name "f" is disallowed}$1744 * [ int x ] f () fp; $\C{// function name "f" is disallowed}\CRT$ 1751 1745 \end{cfa} 1752 1746 … … 1863 1857 \begin{cfa} 1864 1858 struct S { double x, y; }; 1865 int i, j;1859 int x, y; 1866 1860 void f( int & i, int & j, S & s, int v[] ); 1867 f( 3, i + j, (S){ 1.0, 7.0 }, (int [3]){ 1, 2, 3 } );$\C{// pass rvalue to lvalue \(\Rightarrow\) implicit temporary}$1861 f( 3, x + y, (S){ 1.0, 7.0 }, (int [3]){ 1, 2, 3 } ); $\C{// pass rvalue to lvalue \(\Rightarrow\) implicit temporary}$ 1868 1862 \end{cfa} 1869 1863 This allows complex values to be succinctly and efficiently passed to functions, without the syntactic overhead of explicit definition of a temporary variable or the runtime cost of pass-by-value. … … 1952 1946 1953 1947 One of the strengths (and weaknesses) of C is memory-management control, allowing resource release to be precisely specified versus unknown release with garbage-collected memory-management. 1954 However, this manual approach is oftenverbose, and it is useful to manage resources other than memory (\eg file handles) using the same mechanism as memory.1948 However, this manual approach is verbose, and it is useful to manage resources other than memory (\eg file handles) using the same mechanism as memory. 1955 1949 \CC addresses these issues using Resource Aquisition Is Initialization (RAII), implemented by means of \newterm{constructor} and \newterm{destructor} functions; 1956 1950 \CFA adopts constructors and destructors (and @finally@) to facilitate RAII. … … 2004 1998 { 2005 1999 VLA x, y = { 20, 0x01 }, z = y; $\C{// z points to y}$ 2006 // ?{}( x ); ?{}( y, 20, 0x01 );?{}( z, y );2000 // ?{}( x ); ?{}( y, 20, 0x01 ); ?{}( z, y ); 2007 2001 ^x{}; $\C{// deallocate x}$ 2008 2002 x{}; $\C{// reallocate x}$ … … 2052 2046 \begin{cquote} 2053 2047 \lstDeleteShortInline@% 2054 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{\hspace{\parindentlnth}}l@{}}2048 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{\hspace{2\parindentlnth}}l@{}} 2055 2049 \begin{cfa} 2056 2050 20_`hh` // signed char … … 2105 2099 2106 2100 For readability, it is useful to associate units to scale literals, \eg weight (stone, pound, kilogram) or time (seconds, minutes, hours). 2107 The left of Figure~\ref{f:UserLiteral} shows the \CFA alternative call-syntax ( literal argument before function name), using the backquote, to convert basic literals into user literals.2101 The left of Figure~\ref{f:UserLiteral} shows the \CFA alternative call-syntax (postfix: literal argument before function name), using the backquote, to convert basic literals into user literals. 2108 2102 The backquote is a small character, making the unit (function name) predominate. 2109 2103 For examples, the multi-precision integer-type in Section~\ref{s:MultiPrecisionIntegers} has user literals: … … 2113 2107 y = "12345678901234567890123456789"|`mp| + "12345678901234567890123456789"|`mp|; 2114 2108 \end{cfa} 2115 Because \CFA uses a standard function, all types and literals are applicable, as well as overloading and conversions .2109 Because \CFA uses a standard function, all types and literals are applicable, as well as overloading and conversions, where @?`@ denotes a postfix-function name and @`@ denotes a postfix-function call. 2116 2110 }% 2111 \begin{cquote} 2112 \lstset{language=CFA,moredelim=**[is][\color{red}]{|}{|},deletedelim=**[is][]{`}{`}} 2113 \lstDeleteShortInline@% 2114 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{\hspace{2\parindentlnth}}l@{\hspace{2\parindentlnth}}l@{}} 2115 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{postfix function}} & \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{constant}} & \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{variable/expression}} & \multicolumn{1}{c}{\textbf{postfix pointer}} \\ 2116 \begin{cfa} 2117 int ?`h( int s ); 2118 int ?`h( double s ); 2119 int ?`m( char c ); 2120 int ?`m( const char * s ); 2121 int ?`t( int a, int b, int c ); 2122 \end{cfa} 2123 & 2124 \begin{cfa} 2125 0 `h; 2126 3.5`h; 2127 '1'`m; 2128 "123" "456"`m; 2129 [1,2,3]`t; 2130 \end{cfa} 2131 & 2132 \begin{cfa} 2133 int i = 7; 2134 i`h; 2135 (i + 3)`h; 2136 (i + 3.5)`h; 2137 2138 \end{cfa} 2139 & 2140 \begin{cfa} 2141 int (* ?`p)( int i ); 2142 ?`p = ?`h; 2143 3`p; 2144 i`p; 2145 (i + 3)`p; 2146 \end{cfa} 2147 \end{tabular} 2148 \lstMakeShortInline@% 2149 \end{cquote} 2117 2150 2118 2151 The right of Figure~\ref{f:UserLiteral} shows the equivalent \CC version using the underscore for the call-syntax. … … 2136 2169 return (W){ l.stones + r.stones }; 2137 2170 } 2138 W |?`st|( double w) { return (W){ w }; }2139 W |?`lb|( double w ) { return (W){ w /14.0 }; }2140 W |?`kg|( double w ) { return (W) { w *0.16 }; }2171 W |?`st|(double w) { return (W){ w }; } 2172 W |?`lb|(double w) { return (W){ w/14.0 }; } 2173 W |?`kg|(double w) { return (W){ w*0.16 }; } 2141 2174 2142 2175 … … 2154 2187 \begin{cfa} 2155 2188 struct W { 2156 2157 2158 2189 double stones; 2190 W() { stones = 0.0; } 2191 W( double w ) { stones = w; } 2159 2192 }; 2160 2193 W operator+( W l, W r ) { 2161 2194 return W( l.stones + r.stones ); 2162 2195 } 2163 W |operator"" _st|( unsigned long long int w ) { return W( w); }2164 W |operator"" _lb|( unsigned long long int w ) { return W( w / 14.0); }2165 W |operator"" _kg|( unsigned long long int w ) { return W( w * 0.16); }2166 W |operator"" _st|(long double w ) { return W( w ); }2167 W |operator"" _lb|(long double w ) { return W( w / 14.0 ); }2168 W |operator"" _kg|(long double w ) { return W( w * 0.16 ); }2196 W |operator""_st|(unsigned long long int w) {return W(w); } 2197 W |operator""_lb|(unsigned long long int w) {return W(w/14.0); } 2198 W |operator""_kg|(unsigned long long int w) {return W(w*0.16); } 2199 W |operator""_st|(long double w ) { return W( w ); } 2200 W |operator""_lb|(long double w ) { return W( w / 14.0 ); } 2201 W |operator""_kg|(long double w ) { return W( w * 0.16 ); } 2169 2202 int main() { 2170 2203 W w, heavy = { 20 }; … … 2199 2232 \begin{cquote} 2200 2233 \lstDeleteShortInline@% 2201 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2202 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Usage}} \\2234 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2235 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Usage}} \\ 2203 2236 \begin{cfa} 2204 2237 const short int `MIN` = -32768; … … 2218 2251 \begin{cquote} 2219 2252 \lstDeleteShortInline@% 2220 \lstset{basicstyle=\linespread{0.9}\sf\small} 2221 \begin{tabular}{@{}l@{\hspace{0.5\parindentlnth}}l@{}} 2222 \multicolumn{1}{c@{\hspace{0.5\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 2253 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2254 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 2223 2255 \begin{cfa} 2224 2256 MIN 2257 2225 2258 MAX 2259 2226 2260 PI 2227 2261 E … … 2229 2263 & 2230 2264 \begin{cfa} 2231 SCHAR_MIN, CHAR_MIN, SHRT_MIN, INT_MIN, LONG_MIN, LLONG_MIN, FLT_MIN, DBL_MIN, LDBL_MIN 2232 SCHAR_MAX, UCHAR_MAX, SHRT_MAX, INT_MAX, LONG_MAX, LLONG_MAX, FLT_MAX, DBL_MAX, LDBL_MAX 2265 SCHAR_MIN, CHAR_MIN, SHRT_MIN, INT_MIN, LONG_MIN, LLONG_MIN, 2266 FLT_MIN, DBL_MIN, LDBL_MIN 2267 SCHAR_MAX, UCHAR_MAX, SHRT_MAX, INT_MAX, LONG_MAX, LLONG_MAX, 2268 FLT_MAX, DBL_MAX, LDBL_MAX 2233 2269 M_PI, M_PIl 2234 2270 M_E, M_El … … 2245 2281 \begin{cquote} 2246 2282 \lstDeleteShortInline@% 2247 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2248 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Usage}} \\2283 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2284 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Usage}} \\ 2249 2285 \begin{cfa} 2250 2286 float `log`( float x ); … … 2264 2300 \begin{cquote} 2265 2301 \lstDeleteShortInline@% 2266 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2267 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\2302 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2303 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 2268 2304 \begin{cfa} 2269 2305 log … … 2292 2328 \begin{cquote} 2293 2329 \lstDeleteShortInline@% 2294 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2295 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Usage}} \\2330 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2331 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{Definition}} & \multicolumn{1}{c}{\textbf{Usage}} \\ 2296 2332 \begin{cfa} 2297 2333 unsigned int `abs`( int ); … … 2311 2347 \begin{cquote} 2312 2348 \lstDeleteShortInline@% 2313 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2314 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\2349 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2350 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 2315 2351 \begin{cfa} 2316 2352 abs … … 2331 2367 The following shows one example where \CFA \emph{extends} an existing standard C interface to reduce complexity and provide safety. 2332 2368 C/\Celeven provide a number of complex and overlapping storage-management operation to support the following capabilities: 2333 \begin{description} [topsep=3pt,itemsep=2pt,parsep=0pt]2369 \begin{description}%[topsep=3pt,itemsep=2pt,parsep=0pt] 2334 2370 \item[fill] 2335 2371 an allocation with a specified character. … … 2381 2417 \end{cfa} 2382 2418 \lstDeleteShortInline@% 2383 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2384 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\2419 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2420 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{C}} \\ 2385 2421 \begin{cfa} 2386 2422 ip = alloc(); … … 2403 2439 ip = (int *)malloc( sizeof( int ) ); memset( ip, fill, dim * sizeof( int ) ); 2404 2440 ip = (int *)realloc( ip, 2 * dim * sizeof( int ) ); 2405 ip = (int *)realloc( ip, 4 * dim * sizeof( int ) ); memset( ip, fill, 4 * dim * sizeof( int ) );2406 2441 ip = (int *)realloc( ip, 4 * dim * sizeof( int ) ); 2442 memset( ip, fill, 4 * dim * sizeof( int ) ); 2407 2443 ip = memalign( 16, sizeof( int ) ); 2408 2444 ip = memalign( 16, sizeof( int ) ); memset( ip, fill, sizeof( int ) ); … … 2441 2477 \begin{cquote} 2442 2478 \lstDeleteShortInline@% 2443 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}l@{}}2444 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{\CC}} \\2479 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}l@{}} 2480 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{c}{\textbf{\CC}} \\ 2445 2481 \begin{cfa} 2446 2482 int x = 1, y = 2, z = 3; … … 2525 2561 The \CFA interface wraps GMP functions into operator functions to make programming with multi-precision integers identical to using fixed-sized integers. 2526 2562 The \CFA type name for multi-precision signed-integers is @Int@ and the header file is @gmp@. 2527 The following multi-precision factorial programs contrast using GMP with the \CFA and C interfaces. 2528 \begin{cquote} 2563 Figure~\ref{f:GMPInterface} shows a multi-precision factorial-program contrasting the GMP interface in \CFA and C. 2564 2565 \begin{figure} 2566 \centering 2529 2567 \lstDeleteShortInline@% 2530 \begin{tabular}{@{}l@{\hspace{ \parindentlnth}}@{\hspace{\parindentlnth}}l@{}}2531 \multicolumn{1}{c@{\hspace{ \parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{@{\hspace{\parindentlnth}}c}{\textbf{C}} \\2568 \begin{tabular}{@{}l@{\hspace{2\parindentlnth}}@{\hspace{2\parindentlnth}}l@{}} 2569 \multicolumn{1}{c@{\hspace{2\parindentlnth}}}{\textbf{\CFA}} & \multicolumn{1}{@{\hspace{2\parindentlnth}}c}{\textbf{C}} \\ 2532 2570 \begin{cfa} 2533 2571 #include <gmp> … … 2557 2595 \end{tabular} 2558 2596 \lstMakeShortInline@% 2559 \end{cquote} 2597 \caption{GMP Interface \CFA versus C} 2598 \label{f:GMPInterface} 2599 \end{figure} 2560 2600 2561 2601 … … 2566 2606 In fact, \CFA's features for generic programming can enable faster runtime execution than idiomatic @void *@-based C code. 2567 2607 This claim is demonstrated through a set of generic-code-based micro-benchmarks in C, \CFA, and \CC (see stack implementations in Appendix~\ref{sec:BenchmarkStackImplementation}). 2568 Since all these languages share a subset essentially comprising standard C, maximal-performance benchmarks would show little runtime variance, other thanin length and clarity of source code.2569 A more illustrative benchmarkmeasures the costs of idiomatic usage of each language's features.2570 Figure~\ref{fig:BenchmarkTest} shows the \CFA benchmark tests for a generic stack based on a singly linked-list , a generic pair-data-structure, and a variadic @print@ function similar to that in Section~\ref{sec:variadic-tuples}.2571 The benchmark test is similar for C and \CC.2572 The experiment uses element types @int@ and @pair( _Bool, char)@, and pushes $N=40M$ elements on a generic stack, copies the stack, clears one of the stacks, finds the maximum value in the other stack, and prints $N/2$ (to reduce graph height) constants.2608 Since all these languages share a subset essentially comprising standard C, maximal-performance benchmarks should show little runtime variance, differing only in length and clarity of source code. 2609 A more illustrative comparison measures the costs of idiomatic usage of each language's features. 2610 Figure~\ref{fig:BenchmarkTest} shows the \CFA benchmark tests for a generic stack based on a singly linked-list. 2611 The benchmark test is similar for the other languages. 2612 The experiment uses element types @int@ and @pair(short, char)@, and pushes $N=40M$ elements on a generic stack, copies the stack, clears one of the stacks, and finds the maximum value in the other stack. 2573 2613 2574 2614 \begin{figure} 2575 2615 \begin{cfa}[xleftmargin=3\parindentlnth,aboveskip=0pt,belowskip=0pt] 2576 int main( int argc, char * argv[]) {2616 int main() { 2577 2617 int max = 0, val = 42; 2578 2618 stack( int ) si, ti; 2579 2619 2580 2620 REPEAT_TIMED( "push_int", N, push( si, val ); ) 2581 TIMED( "copy_int", ti = si; )2621 TIMED( "copy_int", ti{ si }; ) 2582 2622 TIMED( "clear_int", clear( si ); ) 2583 2623 REPEAT_TIMED( "pop_int", N, int x = pop( ti ); if ( x > max ) max = x; ) 2584 2624 2585 pair( _Bool, char ) max = { (_Bool)0, '\0' }, val = { (_Bool)1, 'a' };2586 stack( pair( _Bool, char ) ) sp, tp;2625 pair( short, char ) max = { 0h, '\0' }, val = { 42h, 'a' }; 2626 stack( pair( short, char ) ) sp, tp; 2587 2627 2588 2628 REPEAT_TIMED( "push_pair", N, push( sp, val ); ) 2589 TIMED( "copy_pair", tp = sp; )2629 TIMED( "copy_pair", tp{ sp }; ) 2590 2630 TIMED( "clear_pair", clear( sp ); ) 2591 REPEAT_TIMED( "pop_pair", N, pair( _Bool, char) x = pop( tp ); if ( x > max ) max = x; )2631 REPEAT_TIMED( "pop_pair", N, pair(short, char) x = pop( tp ); if ( x > max ) max = x; ) 2592 2632 } 2593 2633 \end{cfa} … … 2600 2640 hence runtime checks are necessary to safely down-cast objects. 2601 2641 The most notable difference among the implementations is in memory layout of generic types: \CFA and \CC inline the stack and pair elements into corresponding list and pair nodes, while C and \CCV lack such a capability and instead must store generic objects via pointers to separately-allocated objects. 2602 For the print benchmark, idiomatic printing is used: the C and \CFA variants used @stdio.h@, while the \CC and \CCV variants used @iostream@; preliminary tests show this distinction has negligible runtime impact. 2603 Note, the C benchmark uses unchecked casts as there is no runtime mechanism to perform such checks, while \CFA and \CC provide type-safety statically. 2642 Note that the C benchmark uses unchecked casts as there is no runtime mechanism to perform such checks, while \CFA and \CC provide type-safety statically. 2604 2643 2605 2644 Figure~\ref{fig:eval} and Table~\ref{tab:eval} show the results of running the benchmark in Figure~\ref{fig:BenchmarkTest} and its C, \CC, and \CCV equivalents. 2606 2645 The graph plots the median of 5 consecutive runs of each program, with an initial warm-up run omitted. 2607 All code is compiled at \texttt{-O2} by gcc or g++ 6. 2.0, with all \CC code compiled as \CCfourteen.2646 All code is compiled at \texttt{-O2} by gcc or g++ 6.3.0, with all \CC code compiled as \CCfourteen. 2608 2647 The benchmarks are run on an Ubuntu 16.04 workstation with 16 GB of RAM and a 6-core AMD FX-6300 CPU with 3.5 GHz maximum clock frequency. 2609 2648 … … 2622 2661 \begin{tabular}{rrrrr} 2623 2662 & \CT{C} & \CT{\CFA} & \CT{\CC} & \CT{\CCV} \\ \hline 2624 maximum memory usage (MB) & 10 001 & 2502 & 2503 & 11253\\2625 source code size (lines) & 247 & 222 & 165 & 339\\2626 redundant type annotations (lines) & 39 & 2 & 2 & 15\\2627 binary size (KB) & 14 & 2 29 & 18 & 38\\2663 maximum memory usage (MB) & 10,001 & 2,502 & 2,503 & 11,253 \\ 2664 source code size (lines) & 196 & 186 & 125 & 290 \\ 2665 redundant type annotations (lines) & 27 & 0 & 2 & 16 \\ 2666 binary size (KB) & 14 & 257 & 14 & 37 \\ 2628 2667 \end{tabular} 2629 2668 \end{table} 2630 2669 2631 2670 The C and \CCV variants are generally the slowest with the largest memory footprint, because of their less-efficient memory layout and the pointer-indirection necessary to implement generic types; 2632 this inefficiency is exacerbated by the second level of generic types in the pair -basedbenchmarks.2633 By contrast, the \CFA and \CC variants run in roughly equivalent time for both the integer and pair of @ _Bool@ and @char@ because the storage layout is equivalent, with the inlined libraries (\ie no separate compilation) and greater maturity of the \CC compiler contributing to its lead.2671 this inefficiency is exacerbated by the second level of generic types in the pair benchmarks. 2672 By contrast, the \CFA and \CC variants run in roughly equivalent time for both the integer and pair of @short@ and @char@ because the storage layout is equivalent, with the inlined libraries (\ie no separate compilation) and greater maturity of the \CC compiler contributing to its lead. 2634 2673 \CCV is slower than C largely due to the cost of runtime type-checking of down-casts (implemented with @dynamic_cast@); 2635 There are two outliers in the graph for \CFA: all prints and pop of @pair@. 2636 Both of these cases result from the complexity of the C-generated polymorphic code, so that the gcc compiler is unable to optimize some dead code and condense nested calls. 2637 A compiler designed for \CFA could easily perform these optimizations. 2674 The outlier in the graph for \CFA, pop @pair@, results from the complexity of the generated-C polymorphic code. 2675 The gcc compiler is unable to optimize some dead code and condense nested calls; a compiler designed for \CFA could easily perform these optimizations. 2638 2676 Finally, the binary size for \CFA is larger because of static linking with the \CFA libraries. 2639 2677 2640 \CFA is also competitive in terms of source code size, measured as a proxy for programmer effort. The line counts in Table~\ref{tab:eval} include implementations of @pair@ and @stack@ types for all four languages for purposes of direct comparison, though it should be noted that \CFA and \CC have pre-written data structures in their standard libraries that programmers would generally use instead. Use of these standard library types has minimal impact on the performance benchmarks, but shrinks the \CFA and \CC benchmarks to 73 and 54 lines, respectively. 2678 \CFA is also competitive in terms of source code size, measured as a proxy for programmer effort. The line counts in Table~\ref{tab:eval} include implementations of @pair@ and @stack@ types for all four languages for purposes of direct comparison, though it should be noted that \CFA and \CC have pre-written data structures in their standard libraries that programmers would generally use instead. Use of these standard library types has minimal impact on the performance benchmarks, but shrinks the \CFA and \CC benchmarks to 39 and 42 lines, respectively. 2679 The difference between the \CFA and \CC line counts is primarily declaration duplication to implement separate compilation; a header-only \CFA library would be similar in length to the \CC version. 2641 2680 On the other hand, C does not have a generic collections-library in its standard distribution, resulting in frequent reimplementation of such collection types by C programmers. 2642 \CCV does not use the \CC standard template library by construction, and in fact includes the definition of @object@ and wrapper classes for @ bool@, @char@, @int@, and @const char *@ in its line count, which inflates this count somewhat, as an actual object-oriented language would include these in the standard library;2681 \CCV does not use the \CC standard template library by construction, and in fact includes the definition of @object@ and wrapper classes for @char@, @short@, and @int@ in its line count, which inflates this count somewhat, as an actual object-oriented language would include these in the standard library; 2643 2682 with their omission, the \CCV line count is similar to C. 2644 2683 We justify the given line count by noting that many object-oriented languages do not allow implementing new interfaces on library types without subclassing or wrapper types, which may be similarly verbose. 2645 2684 2646 Raw line-count, however,is a fairly rough measure of code complexity;2647 another important factor is how much type information the programmer must manually specify, especially where that information is not checked by the compiler.2648 Such unchecked type information produces a heavier documentation burden and increased potential for runtime bugs, and is much less common in \CFA than C, with its manually specified function pointer s arguments and format codes, or \CCV, with its extensive use of un-type-checked downcasts (\eg @object@ to @integer@ when popping a stack, or @object@ to @printable@ when printing the elements of a @pair@).2649 To quantify this , the ``redundant type annotations'' line in Table~\ref{tab:eval} counts the number of lines on which the type of a known variable is re-specified, either as a format specifier, explicit downcast, type-specific function, or by name in a @sizeof@, struct literal, or @new@ expression.2685 Line-count is a fairly rough measure of code complexity; 2686 another important factor is how much type information the programmer must specify manually, especially where that information is not compiler-checked. 2687 Such unchecked type information produces a heavier documentation burden and increased potential for runtime bugs, and is much less common in \CFA than C, with its manually specified function pointer arguments and format codes, or \CCV, with its extensive use of untype-checked downcasts, \eg @object@ to @integer@ when popping a stack. 2688 To quantify this manual typing, the ``redundant type annotations'' line in Table~\ref{tab:eval} counts the number of lines on which the type of a known variable is respecified, either as a format specifier, explicit downcast, type-specific function, or by name in a @sizeof@, struct literal, or @new@ expression. 2650 2689 The \CC benchmark uses two redundant type annotations to create a new stack nodes, while the C and \CCV benchmarks have several such annotations spread throughout their code. 2651 The two instances in which the \CFA benchmark still uses redundant type specifiers are to cast the result of a polymorphic @malloc@ call (the @sizeof@ argument is inferred by the compiler). 2652 These uses are similar to the @new@ expressions in \CC, though the \CFA compiler's type resolver should shortly render even these type casts superfluous. 2690 The \CFA benchmark is able to eliminate all redundant type annotations through use of the polymorphic @alloc@ function discussed in Section~\ref{sec:libraries}. 2653 2691 2654 2692 … … 2658 2696 \subsection{Polymorphism} 2659 2697 2660 \CC is the most similar language to \CFA; 2661 both are extensions to C with source and runtime backwards compatibility. 2662 The fundamental difference is the engineering approach to maintain C compatibility and programmer expectation. 2663 While \CC provides good compatibility with C, it has a steep learning curve for many of its extensions. 2664 For example, polymorphism is provided via three disjoint mechanisms: overloading, inheritance, and templates. 2698 \CC provides three disjoint polymorphic extensions to C: overloading, inheritance, and templates. 2665 2699 The overloading is restricted because resolution does not use the return type, inheritance requires learning object-oriented programming and coping with a restricted nominal-inheritance hierarchy, templates cannot be separately compiled resulting in compilation/code bloat and poor error messages, and determining how these mechanisms interact and which to use is confusing. 2666 2700 In contrast, \CFA has a single facility for polymorphic code supporting type-safe separate-compilation of polymorphic functions and generic (opaque) types, which uniformly leverage the C procedural paradigm. … … 2717 2751 2718 2752 2753 \subsection{C Extensions} 2754 2755 \CC is the best known C-based language, and is similar to \CFA in that both are extensions to C with source and runtime backwards compatibility. 2756 Specific difference between \CFA and \CC have been identified in prior sections, with a final observation that \CFA has equal or fewer tokens to express the same notion in many cases. 2757 The key difference in design philosophies is that \CFA is easier for C programmers to understand by maintaining a procedural paradigm and avoiding complex interactions among extensions. 2758 \CC, on the other hand, has multiple overlapping features (such as the three forms of polymorphism), many of which have complex interactions with its object-oriented design. 2759 As a result, \CC has a steep learning curve for even experienced C programmers, especially when attempting to maintain performance equivalent to C legacy-code. 2760 2761 There are several other C extension-languages with less usage and even more dramatic changes than \CC. 2762 Objective-C and Cyclone are two other extensions to C with different design goals than \CFA, as discussed above. 2763 Other languages extend C with more focused features. 2764 $\mu$\CC~\cite{uC++book}, CUDA~\cite{Nickolls08}, ispc~\cite{Pharr12}, and Sierra~\cite{Leissa14} add concurrent or data-parallel primitives to C or \CC; 2765 data-parallel features have not yet been added to \CFA, but are easily incorporated within its design, while concurrency primitives similar to those in $\mu$\CC have already been added~\cite{Delisle18}. 2766 Finally, CCured~\cite{Necula02} and Ironclad \CC~\cite{DeLozier13} attempt to provide a more memory-safe C by annotating pointer types with garbage collection information; type-checked polymorphism in \CFA covers several of C's memory-safety issues, but more aggressive approaches such as annotating all pointer types with their nullability or requiring runtime garbage collection are contradictory to \CFA's backwards compatibility goals. 2767 2768 2769 \begin{comment} 2719 2770 \subsection{Control Structures / Declarations / Literals} 2720 2771 … … 2734 2785 0/1 Literals \\ 2735 2786 user defined: D, Objective-C 2787 \end{comment} 2736 2788 2737 2789 … … 2748 2800 Finally, we demonstrate that \CFA performance for some idiomatic cases is better than C and close to \CC, showing the design is practically applicable. 2749 2801 2750 There is ongoing work on a wide range of \CFA feature extensions, including arrays with size, runtime type-information, virtual functions, user-defined conversions, concurrent primitives, and modules.2751 (While all examples in the paper compile and run, a public beta-release of \CFA will take another 8--12 months to finalize these additional extensions.) 2752 In addition, there areinteresting future directions for the polymorphism design.2802 There is ongoing work on a wide range of \CFA features, including arrays with size, runtime type-information, virtual functions, user-defined conversions, concurrent primitives, and modules. 2803 While all examples in the paper compile and run, a public beta-release of \CFA will take another 8--12 months to finalize these extensions. 2804 There are also interesting future directions for the polymorphism design. 2753 2805 Notably, \CC template functions trade compile time and code bloat for optimal runtime of individual instantiations of polymorphic functions. 2754 2806 \CFA polymorphic functions use dynamic virtual-dispatch; … … 2761 2813 \section{Acknowledgments} 2762 2814 2763 The authors would like to recognize the design assistance of Glen Ditchfield, Richard Bilson, Thierry Delisle, and Andrew Beach on the features described in this paper, and thank Magnus Madsen for feedback in the writing. 2764 This work is supported through a corporate partnership with Huawei Ltd.\ (\url{http://www.huawei.com}), and Aaron Moss and Peter Buhr are partially funded by the Natural Sciences and Engineering Research Council of Canada. 2765 2766 % the first author's \grantsponsor{NSERC-PGS}{NSERC PGS D}{http://www.nserc-crsng.gc.ca/Students-Etudiants/PG-CS/BellandPostgrad-BelletSuperieures_eng.asp} scholarship. 2767 2768 2769 \bibliographystyle{plain} 2815 The authors would like to recognize the design assistance of Glen Ditchfield, Richard Bilson, Thierry Delisle, Andrew Beach and Brice Dobry on the features described in this paper, and thank Magnus Madsen for feedback on the writing. 2816 This work is supported by a corporate partnership with Huawei Ltd.\ (\url{http://www.huawei.com}), and Aaron Moss and Peter Buhr are partially funded by the Natural Sciences and Engineering Research Council of Canada. 2817 2818 2770 2819 \bibliography{pl} 2771 2820 … … 2776 2825 \label{sec:BenchmarkStackImplementation} 2777 2826 2778 \lstset{basicstyle=\linespread{0.9}\sf\small} 2779 2780 Throughout, @/***/@ designates a counted redundant type annotation. 2827 Throughout, @/***/@ designates a counted redundant type annotation; code reformatted for brevity. 2781 2828 2782 2829 \smallskip\noindent 2830 C 2831 \begin{cfa}[xleftmargin=2\parindentlnth,aboveskip=0pt,belowskip=0pt] 2832 struct stack_node { 2833 void * value; 2834 struct stack_node * next; 2835 }; 2836 struct stack { struct stack_node* head; }; 2837 void clear_stack( struct stack * s, void (*free_el)( void * ) ) { 2838 for ( struct stack_node * next = s->head; next; ) { 2839 struct stack_node * crnt = next; 2840 next = crnt->next; 2841 free_el( crnt->value ); 2842 free( crnt ); 2843 } 2844 s->head = NULL; 2845 } 2846 struct stack new_stack() { return (struct stack){ NULL }; /***/ } 2847 void copy_stack( struct stack * s, const struct stack * t, void * (*copy)( const void * ) ) { 2848 struct stack_node ** crnt = &s->head; 2849 for ( struct stack_node * next = t->head; next; next = next->next ) { 2850 *crnt = malloc( sizeof(struct stack_node) ); /***/ 2851 (*crnt)->value = copy( next->value ); 2852 crnt = &(*crnt)->next; 2853 } 2854 *crnt = NULL; 2855 } 2856 struct stack * assign_stack( struct stack * s, const struct stack * t, 2857 void * (*copy_el)( const void * ), void (*free_el)( void * ) ) { 2858 if ( s->head == t->head ) return s; 2859 clear_stack( s, free_el ); /***/ 2860 copy_stack( s, t, copy_el ); /***/ 2861 return s; 2862 } 2863 _Bool stack_empty( const struct stack * s ) { return s->head == NULL; } 2864 void push_stack( struct stack * s, void * v ) { 2865 struct stack_node * n = malloc( sizeof(struct stack_node) ); /***/ 2866 *n = (struct stack_node){ v, s->head }; /***/ 2867 s->head = n; 2868 } 2869 void * pop_stack( struct stack * s ) { 2870 struct stack_node * n = s->head; 2871 s->head = n->next; 2872 void * v = n->value; 2873 free( n ); 2874 return v; 2875 } 2876 \end{cfa} 2877 2878 \medskip\noindent 2783 2879 \CFA 2784 2880 \begin{cfa}[xleftmargin=2\parindentlnth,aboveskip=0pt,belowskip=0pt] 2785 forall( otype T ) struct stack_node;2786 forall( otype T ) struct stack {2787 stack_node(T) * head;2788 };2789 2881 forall( otype T ) struct stack_node { 2790 2882 T value; 2791 2883 stack_node(T) * next; 2792 2884 }; 2793 forall( otype T) void ?{}( stack(T) & s ) { (s.head){ 0 }; } 2794 forall( otype T) void ?{}( stack(T) & s, stack(T) t ) { 2885 forall( otype T ) struct stack { stack_node(T) * head; }; 2886 forall( otype T ) void clear( stack(T) & s ) with( s ) { 2887 for ( stack_node(T) * next = head; next; ) { 2888 stack_node(T) * crnt = next; 2889 next = crnt->next; 2890 ^(*crnt){}; 2891 free(crnt); 2892 } 2893 head = 0; 2894 } 2895 forall( otype T ) void ?{}( stack(T) & s ) { (s.head){ 0 }; } 2896 forall( otype T ) void ?{}( stack(T) & s, stack(T) t ) { 2795 2897 stack_node(T) ** crnt = &s.head; 2796 2898 for ( stack_node(T) * next = t.head; next; next = next->next ) { 2797 stack_node(T) * new_node = ((stack_node(T)*)malloc()); 2798 (*new_node){ next->value }; /***/ 2799 *crnt = new_node; 2800 stack_node(T) * acrnt = *crnt; 2801 crnt = &acrnt->next; 2899 *crnt = alloc(); 2900 ((*crnt)->value){ next->value }; 2901 crnt = &(*crnt)->next; 2802 2902 } 2803 2903 *crnt = 0; … … 2811 2911 forall( otype T ) void ^?{}( stack(T) & s) { clear( s ); } 2812 2912 forall( otype T ) _Bool empty( const stack(T) & s ) { return s.head == 0; } 2813 forall( otype T ) void push( stack(T) & s, T value ) {2814 stack_node(T) * n ew_node = ((stack_node(T)*)malloc());2815 (*n ew_node){ value, s.head }; /***/2816 s.head = new_node;2817 } 2818 forall( otype T ) T pop( stack(T) & s ) {2819 stack_node(T) * n = s.head;2820 s.head = n->next;2913 forall( otype T ) void push( stack(T) & s, T value ) with( s ) { 2914 stack_node(T) * n = alloc(); 2915 (*n){ value, head }; 2916 head = n; 2917 } 2918 forall( otype T ) T pop( stack(T) & s ) with( s ) { 2919 stack_node(T) * n = head; 2920 head = n->next; 2821 2921 T v = n->value; 2822 delete( n ); 2922 ^(*n){}; 2923 free( n ); 2823 2924 return v; 2824 2925 } 2825 forall( otype T ) void clear( stack(T) & s ) { 2826 for ( stack_node(T) * next = s.head; next; ) { 2827 stack_node(T) * crnt = next; 2828 next = crnt->next; 2829 delete( crnt ); 2926 \end{cfa} 2927 2928 \begin{comment} 2929 forall( otype T ) { 2930 struct stack_node { 2931 T value; 2932 stack_node(T) * next; 2933 }; 2934 struct stack { stack_node(T) * head; }; 2935 void clear( stack(T) & s ) with( s ) { 2936 for ( stack_node(T) * next = head; next; ) { 2937 stack_node(T) * crnt = next; 2938 next = crnt->next; 2939 ^(*crnt){}; 2940 free(crnt); 2941 } 2942 head = 0; 2830 2943 } 2831 s.head = 0; 2832 } 2833 \end{cfa} 2944 void ?{}( stack(T) & s ) { (s.head){ 0 }; } 2945 void ?{}( stack(T) & s, stack(T) t ) { 2946 stack_node(T) ** crnt = &s.head; 2947 for ( stack_node(T) * next = t.head; next; next = next->next ) { 2948 *crnt = alloc(); 2949 ((*crnt)->value){ next->value }; 2950 crnt = &(*crnt)->next; 2951 } 2952 *crnt = 0; 2953 } 2954 stack(T) ?=?( stack(T) & s, stack(T) t ) { 2955 if ( s.head == t.head ) return s; 2956 clear( s ); 2957 s{ t }; 2958 return s; 2959 } 2960 void ^?{}( stack(T) & s) { clear( s ); } 2961 _Bool empty( const stack(T) & s ) { return s.head == 0; } 2962 void push( stack(T) & s, T value ) with( s ) { 2963 stack_node(T) * n = alloc(); 2964 (*n){ value, head }; 2965 head = n; 2966 } 2967 T pop( stack(T) & s ) with( s ) { 2968 stack_node(T) * n = head; 2969 head = n->next; 2970 T v = n->value; 2971 ^(*n){}; 2972 free( n ); 2973 return v; 2974 } 2975 } 2976 \end{comment} 2834 2977 2835 2978 \medskip\noindent 2836 2979 \CC 2837 2980 \begin{cfa}[xleftmargin=2\parindentlnth,aboveskip=0pt,belowskip=0pt] 2838 template<typename T> classstack {2981 template<typename T> struct stack { 2839 2982 struct node { 2840 2983 T value; 2841 2984 node * next; 2842 node( const T & v, node * n = nullptr ) : value( v), next(n) {}2985 node( const T & v, node * n = nullptr ) : value( v ), next( n ) {} 2843 2986 }; 2844 2987 node * head; 2845 void copy(const stack<T>& o) { 2846 node ** crnt = &head; 2847 for ( node * next = o.head;; next; next = next->next ) { 2848 *crnt = new node{ next->value }; /***/ 2849 crnt = &(*crnt)->next; 2850 } 2851 *crnt = nullptr; 2852 } 2853 public: 2854 stack() : head(nullptr) {} 2855 stack(const stack<T>& o) { copy(o); } 2856 stack(stack<T> && o) : head(o.head) { o.head = nullptr; } 2857 ~stack() { clear(); } 2858 stack & operator= (const stack<T>& o) { 2859 if ( this == &o ) return *this; 2860 clear(); 2861 copy(o); 2862 return *this; 2863 } 2864 stack & operator= (stack<T> && o) { 2865 if ( this == &o ) return *this; 2866 head = o.head; 2867 o.head = nullptr; 2868 return *this; 2869 } 2870 bool empty() const { return head == nullptr; } 2871 void push(const T & value) { head = new node{ value, head }; /***/ } 2872 T pop() { 2873 node * n = head; 2874 head = n->next; 2875 T x = std::move(n->value); 2876 delete n; 2877 return x; 2878 } 2988 stack() : head( nullptr ) {} 2989 stack( const stack<T> & o ) { copy( o ); } 2879 2990 void clear() { 2880 2991 for ( node * next = head; next; ) { … … 2885 2996 head = nullptr; 2886 2997 } 2998 void copy( const stack<T> & o ) { 2999 node ** crnt = &head; 3000 for ( node * next = o.head; next; next = next->next ) { 3001 *crnt = new node{ next->value }; /***/ 3002 crnt = &(*crnt)->next; 3003 } 3004 *crnt = nullptr; 3005 } 3006 ~stack() { clear(); } 3007 stack & operator= ( const stack<T> & o ) { 3008 if ( this == &o ) return *this; 3009 clear(); 3010 copy( o ); 3011 return *this; 3012 } 3013 bool empty() const { return head == nullptr; } 3014 void push( const T & value ) { head = new node{ value, head }; /***/ } 3015 T pop() { 3016 node * n = head; 3017 head = n->next; 3018 T v = std::move( n->value ); 3019 delete n; 3020 return v; 3021 } 2887 3022 }; 2888 \end{cfa}2889 2890 \medskip\noindent2891 C2892 \begin{cfa}[xleftmargin=2\parindentlnth,aboveskip=0pt,belowskip=0pt]2893 struct stack_node {2894 void * value;2895 struct stack_node * next;2896 };2897 struct stack new_stack() { return (struct stack){ NULL }; /***/ }2898 void copy_stack(struct stack * s, const struct stack * t, void * (*copy)(const void *)) {2899 struct stack_node ** crnt = &s->head;2900 for ( struct stack_node * next = t->head; next; next = next->next ) {2901 *crnt = malloc(sizeof(struct stack_node)); /***/2902 **crnt = (struct stack_node){ copy(next->value) }; /***/2903 crnt = &(*crnt)->next;2904 }2905 *crnt = 0;2906 }2907 _Bool stack_empty(const struct stack * s) { return s->head == NULL; }2908 void push_stack(struct stack * s, void * value) {2909 struct stack_node * n = malloc(sizeof(struct stack_node)); /***/2910 *n = (struct stack_node){ value, s->head }; /***/2911 s->head = n;2912 }2913 void * pop_stack(struct stack * s) {2914 struct stack_node * n = s->head;2915 s->head = n->next;2916 void * x = n->value;2917 free(n);2918 return x;2919 }2920 void clear_stack(struct stack * s, void (*free_el)(void *)) {2921 for ( struct stack_node * next = s->head; next; ) {2922 struct stack_node * crnt = next;2923 next = crnt->next;2924 free_el(crnt->value);2925 free(crnt);2926 }2927 s->head = NULL;2928 }2929 3023 \end{cfa} 2930 3024 … … 2932 3026 \CCV 2933 3027 \begin{cfa}[xleftmargin=2\parindentlnth,aboveskip=0pt,belowskip=0pt] 2934 stack::node::node( const object & v, node * n ) : value( v.new_copy() ), next( n ) {} 2935 void stack::copy(const stack & o) { 2936 node ** crnt = &head; 2937 for ( node * next = o.head; next; next = next->next ) { 2938 *crnt = new node{ *next->value }; 2939 crnt = &(*crnt)->next; 3028 struct stack { 3029 struct node { 3030 ptr<object> value; 3031 node * next; 3032 node( const object & v, node * n = nullptr ) : value( v.new_copy() ), next( n ) {} 3033 }; 3034 node * head; 3035 void clear() { 3036 for ( node * next = head; next; ) { 3037 node * crnt = next; 3038 next = crnt->next; 3039 delete crnt; 3040 } 3041 head = nullptr; 2940 3042 } 2941 *crnt = nullptr; 2942 } 2943 stack::stack() : head(nullptr) {} 2944 stack::stack(const stack & o) { copy(o); } 2945 stack::stack(stack && o) : head(o.head) { o.head = nullptr; } 2946 stack::~stack() { clear(); } 2947 stack & stack::operator= (const stack & o) { 2948 if ( this == &o ) return *this; 2949 clear(); 2950 copy(o); 2951 return *this; 2952 } 2953 stack & stack::operator= (stack && o) { 2954 if ( this == &o ) return *this; 2955 head = o.head; 2956 o.head = nullptr; 2957 return *this; 2958 } 2959 bool stack::empty() const { return head == nullptr; } 2960 void stack::push(const object & value) { head = new node{ value, head }; /***/ } 2961 ptr<object> stack::pop() { 2962 node * n = head; 2963 head = n->next; 2964 ptr<object> x = std::move(n->value); 2965 delete n; 2966 return x; 2967 } 2968 void stack::clear() { 2969 for ( node * next = head; next; ) { 2970 node * crnt = next; 2971 next = crnt->next; 2972 delete crnt; 3043 void copy( const stack & o ) { 3044 node ** crnt = &head; 3045 for ( node * next = o.head; next; next = next->next ) { 3046 *crnt = new node{ *next->value }; /***/ 3047 crnt = &(*crnt)->next; 3048 } 3049 *crnt = nullptr; 2973 3050 } 2974 head = nullptr; 2975 } 3051 stack() : head( nullptr ) {} 3052 stack( const stack & o ) { copy( o ); } 3053 ~stack() { clear(); } 3054 stack & operator= ( const stack & o ) { 3055 if ( this == &o ) return *this; 3056 clear(); 3057 copy( o ); 3058 return *this; 3059 } 3060 bool empty() const { return head == nullptr; } 3061 void push( const object & value ) { head = new node{ value, head }; /***/ } 3062 ptr<object> pop() { 3063 node * n = head; 3064 head = n->next; 3065 ptr<object> v = std::move( n->value ); 3066 delete n; 3067 return v; 3068 } 3069 }; 2976 3070 \end{cfa} 2977 3071 -
doc/papers/general/evaluation/c-bench.c
rb2fe1c9 r32cab5b 5 5 #include "c-stack.h" 6 6 7 _Bool* new_bool( _Bool b) {8 _Bool* q = malloc(sizeof(_Bool)); /***/9 *q = b;7 char* new_char( char c ) { 8 char* q = malloc(sizeof(char)); /***/ 9 *q = c; 10 10 return q; 11 11 } 12 12 13 char* new_char( char c) {14 char* q = malloc(sizeof(char)); /***/15 *q = c;13 short* new_short( short s ) { 14 short* q = malloc(sizeof(short)); /***/ 15 *q = s; 16 16 return q; 17 17 } … … 23 23 } 24 24 25 void* copy_bool( const void* p ) { return new_bool( *(const _Bool*)p ); } /***/26 25 void* copy_char( const void* p ) { return new_char( *(const char*)p ); } /***/ 26 void* copy_short( const void* p ) { return new_short( *(const short*)p ); } /***/ 27 27 void* copy_int( const void* p ) { return new_int( *(const int*)p ); } /***/ 28 void* copy_pair_bool_char( const void* p ) { return copy_pair( p, copy_bool, copy_char ); } /***/ 29 void free_pair_bool_char( void* p ) { free_pair( p, free, free ); } /***/ 30 31 int cmp_bool( const void* a, const void* b ) { /***/ 32 return *(const _Bool*)a == *(const _Bool*)b ? 0 : *(const _Bool*)a < *(const _Bool*)b ? -1 : 1; 33 } 28 void* copy_pair_short_char( const void* p ) { return copy_pair( p, copy_short, copy_char ); } /***/ 29 void free_pair_short_char( void* p ) { free_pair( p, free, free ); } /***/ 34 30 35 31 int cmp_char( const void* a, const void* b ) { /***/ 36 32 return *(const char*)a == *(const char*)b ? 0 : *(const char*)a < *(const char*)b ? -1 : 1; 33 } 34 35 int cmp_short( const void* a, const void* b ) { /***/ 36 return *(const short*)a == *(const short*)b ? 0 : *(const short*)a < *(const short*)b ? -1 : 1; 37 37 } 38 38 … … 49 49 free(xi); ) 50 50 51 struct pair * maxp = new_pair( new_ bool(0), new_char('\0') ),52 * valp = new_pair( new_ bool(1), new_char('a') );51 struct pair * maxp = new_pair( new_short(0), new_char('\0') ), 52 * valp = new_pair( new_short(42), new_char('a') ); 53 53 struct stack sp = new_stack(), tp; 54 54 55 REPEAT_TIMED( "push_pair", N, push_stack( &sp, copy_pair_ bool_char( valp ) ); )56 TIMED( "copy_pair", copy_stack( &tp, &sp, copy_pair_ bool_char ); /***/ )57 TIMED( "clear_pair", clear_stack( &sp, free_pair_ bool_char ); /***/ )55 REPEAT_TIMED( "push_pair", N, push_stack( &sp, copy_pair_short_char( valp ) ); ) 56 TIMED( "copy_pair", copy_stack( &tp, &sp, copy_pair_short_char ); /***/ ) 57 TIMED( "clear_pair", clear_stack( &sp, free_pair_short_char ); /***/ ) 58 58 REPEAT_TIMED( "pop_pair", N, 59 59 struct pair * xp = pop_stack( &tp ); 60 if ( cmp_pair( xp, maxp, cmp_ bool, cmp_char /***/ ) > 0 ) {61 free_pair_ bool_char( maxp ); /***/60 if ( cmp_pair( xp, maxp, cmp_short, cmp_char /***/ ) > 0 ) { 61 free_pair_short_char( maxp ); /***/ 62 62 maxp = xp; 63 63 } else { 64 free_pair_ bool_char( xp ); /***/64 free_pair_short_char( xp ); /***/ 65 65 } ) 66 free_pair_ bool_char( maxp ); /***/67 free_pair_ bool_char( valp ); /***/66 free_pair_short_char( maxp ); /***/ 67 free_pair_short_char( valp ); /***/ 68 68 } -
doc/papers/general/evaluation/c-stack.c
rb2fe1c9 r32cab5b 3 3 4 4 struct stack_node { 5 void * value;6 struct stack_node * next;5 void * value; 6 struct stack_node * next; 7 7 }; 8 8 9 struct stack new_stack() { return (struct stack){ NULL }; /***/ } 10 11 void copy_stack(struct stack* s, const struct stack* t, void* (*copy)(const void*)) { 12 struct stack_node** crnt = &s->head; 13 for ( struct stack_node* next = t->head; next; next = next->next ) { 14 *crnt = malloc(sizeof(struct stack_node)); /***/ 15 **crnt = (struct stack_node){ copy(next->value) }; /***/ 16 crnt = &(*crnt)->next; 17 } 18 *crnt = 0; 19 } 20 21 void clear_stack(struct stack* s, void (*free_el)(void*)) { 22 for ( struct stack_node* next = s->head; next; ) { 23 struct stack_node* crnt = next; 9 void clear_stack( struct stack * s, void (*free_el)( void * ) ) { 10 for ( struct stack_node * next = s->head; next; ) { 11 struct stack_node * crnt = next; 24 12 next = crnt->next; 25 free_el( crnt->value);26 free( crnt);13 free_el( crnt->value ); 14 free( crnt ); 27 15 } 28 16 s->head = NULL; 29 17 } 30 18 31 _Bool stack_empty(const struct stack* s) { return s->head == NULL;}19 struct stack new_stack() { return (struct stack){ NULL }; /***/ } 32 20 33 void push_stack(struct stack* s, void* value) { 34 struct stack_node* n = malloc(sizeof(struct stack_node)); /***/ 35 *n = (struct stack_node){ value, s->head }; /***/ 21 void copy_stack( struct stack * s, const struct stack * t, void * (*copy)( const void * ) ) { 22 struct stack_node ** crnt = &s->head; 23 for ( struct stack_node * next = t->head; next; next = next->next ) { 24 *crnt = malloc( sizeof(struct stack_node) ); /***/ 25 (*crnt)->value = copy( next->value ); 26 crnt = &(*crnt)->next; 27 } 28 *crnt = NULL; 29 } 30 struct stack * assign_stack( struct stack * s, const struct stack * t, 31 void * (*copy_el)( const void * ), void (*free_el)( void * ) ) { 32 if ( s->head == t->head ) return s; 33 clear_stack( s, free_el ); /***/ 34 copy_stack( s, t, copy_el ); /***/ 35 return s; 36 } 37 38 _Bool stack_empty( const struct stack * s ) { return s->head == NULL; } 39 40 void push_stack( struct stack * s, void * v ) { 41 struct stack_node * n = malloc( sizeof(struct stack_node) ); /***/ 42 *n = (struct stack_node){ v, s->head }; /***/ 36 43 s->head = n; 37 44 } 38 45 39 void * pop_stack(struct stack* s) {40 struct stack_node * n = s->head;46 void * pop_stack( struct stack * s ) { 47 struct stack_node * n = s->head; 41 48 s->head = n->next; 42 void * x= n->value;43 free( n);44 return x;49 void * v = n->value; 50 free( n ); 51 return v; 45 52 } -
doc/papers/general/evaluation/c-stack.h
rb2fe1c9 r32cab5b 8 8 struct stack new_stack(); 9 9 void copy_stack(struct stack* dst, const struct stack* src, void* (*copy)(const void*)); 10 struct stack* assign_stack(struct stack* dst, const struct stack* src, 11 void* (*copy_el)(const void*), void (*free_el)(void*)); 10 12 void clear_stack(struct stack* s, void (*free_el)(void*)); 11 13 -
doc/papers/general/evaluation/cfa-bench.c
rb2fe1c9 r32cab5b 3 3 #include "cfa-pair.h" 4 4 5 int main( int argc, char * argv[]) {5 int main() { 6 6 int max = 0, val = 42; 7 7 stack( int ) si, ti; 8 8 9 9 REPEAT_TIMED( "push_int", N, push( si, val ); ) 10 TIMED( "copy_int", ti = si; )10 TIMED( "copy_int", ti{ si }; ) 11 11 TIMED( "clear_int", clear( si ); ) 12 REPEAT_TIMED( "pop_int", N, 13 int x = pop( ti ); if ( x > max ) max = x; ) 12 REPEAT_TIMED( "pop_int", N, int x = pop( ti ); if ( x > max ) max = x; ) 14 13 15 pair( _Bool, char ) max = { (_Bool)0 /***/, '\0' }, val = { (_Bool)1 /***/, 'a' };16 stack( pair( _Bool, char ) ) sp, tp;14 pair( short, char ) max = { 0h, '\0' }, val = { 42h, 'a' }; 15 stack( pair( short, char ) ) sp, tp; 17 16 18 17 REPEAT_TIMED( "push_pair", N, push( sp, val ); ) 19 TIMED( "copy_pair", tp = sp; )18 TIMED( "copy_pair", tp{ sp }; ) 20 19 TIMED( "clear_pair", clear( sp ); ) 21 REPEAT_TIMED( "pop_pair", N, 22 pair(_Bool, char) x = pop( tp ); if ( x > max ) max = x; ) 20 REPEAT_TIMED( "pop_pair", N, pair(short, char) x = pop( tp ); if ( x > max ) max = x; ) 23 21 } -
doc/papers/general/evaluation/cfa-stack.c
rb2fe1c9 r32cab5b 2 2 #include "cfa-stack.h" 3 3 4 forall( otype T) struct stack_node {4 forall( otype T ) struct stack_node { 5 5 T value; 6 6 stack_node(T) * next; 7 7 }; 8 8 9 forall(otype T) void ?{}( stack(T) & s ) { (s.head){ 0 }; } 9 forall( otype T ) void clear( stack(T) & s ) with( s ) { 10 for ( stack_node(T) * next = head; next; ) { 11 stack_node(T) * crnt = next; 12 next = crnt->next; 13 ^(*crnt){}; 14 free(crnt); 15 } 16 head = 0; 17 } 10 18 11 forall(otype T) void ?{}( stack(T) & s, stack(T) t ) { 19 forall( otype T ) void ?{}( stack(T) & s ) { (s.head){ 0 }; } 20 21 forall( otype T ) void ?{}( stack(T) & s, stack(T) t ) { 12 22 stack_node(T) ** crnt = &s.head; 13 23 for ( stack_node(T) * next = t.head; next; next = next->next ) { 14 stack_node(T)* new_node = (stack_node(T)*)malloc(); /***/ 15 (*new_node){ next->value }; 16 *crnt = new_node; 24 *crnt = alloc(); 25 ((*crnt)->value){ next->value }; 17 26 crnt = &(*crnt)->next; 18 27 } … … 20 29 } 21 30 22 forall( otype T) stack(T) ?=?( stack(T) & s, stack(T) t ) {31 forall( otype T ) stack(T) ?=?( stack(T) & s, stack(T) t ) { 23 32 if ( s.head == t.head ) return s; 24 33 clear( s ); … … 27 36 } 28 37 29 forall( otype T) void ^?{}( stack(T) & s) { clear( s ); }38 forall( otype T ) void ^?{}( stack(T) & s) { clear( s ); } 30 39 31 forall( otype T) _Bool empty( const stack(T) & s ) { return s.head == 0; }40 forall( otype T ) _Bool empty( const stack(T) & s ) { return s.head == 0; } 32 41 33 forall( otype T) void push( stack(T) & s, T value) {34 stack_node(T) * new_node = (stack_node(T)*)malloc(); /***/35 (*n ew_node){ value, s.head };36 s.head = new_node;42 forall( otype T ) void push( stack(T) & s, T value ) with( s ) { 43 stack_node(T) * n = alloc(); 44 (*n){ value, head }; 45 head = n; 37 46 } 38 47 39 forall( otype T) T pop( stack(T) &s ) {40 stack_node(T) * n = s.head;41 s.head = n->next;48 forall( otype T ) T pop( stack(T) & s ) with( s ) { 49 stack_node(T) * n = head; 50 head = n->next; 42 51 T v = n->value; 43 52 ^(*n){}; … … 45 54 return v; 46 55 } 47 48 forall(otype T) void clear( stack(T) & s ) {49 for ( stack_node(T) * next = s.head; next; ) {50 stack_node(T) * crnt = next;51 next = crnt->next;52 ^(*crnt){};53 free(crnt);54 }55 s.head = 0;56 } -
doc/papers/general/evaluation/cfa-stack.h
rb2fe1c9 r32cab5b 1 1 #pragma once 2 2 3 forall( otype T) struct stack_node;4 forall( otype T) struct stack {3 forall( otype T ) struct stack_node; 4 forall( otype T ) struct stack { 5 5 stack_node(T) * head; 6 6 }; 7 7 8 forall( otype T) void ?{}( stack(T) & s );9 forall( otype T) void ?{}( stack(T) & s, stack(T) t );10 forall( otype T) stack(T) ?=?( stack(T) & s, stack(T) t );11 forall( otype T) void ^?{}( stack(T) & s);8 forall( otype T ) void ?{}( stack(T) & s ); 9 forall( otype T ) void ?{}( stack(T) & s, stack(T) t ); 10 forall( otype T ) stack(T) ?=?( stack(T) & s, stack(T) t ); 11 forall( otype T ) void ^?{}( stack(T) & s); 12 12 13 forall( otype T) _Bool empty( const stack(T) & s );14 forall( otype T) void push( stack(T) & s, T value );15 forall( otype T) T pop( stack(T) & s );16 forall( otype T) void clear( stack(T) & s );13 forall( otype T ) _Bool empty( const stack(T) & s ); 14 forall( otype T ) void push( stack(T) & s, T value ); 15 forall( otype T ) T pop( stack(T) & s ); 16 forall( otype T ) void clear( stack(T) & s ); -
doc/papers/general/evaluation/cpp-bench.cpp
rb2fe1c9 r32cab5b 13 13 REPEAT_TIMED( "pop_int", N, maxi = std::max( maxi, ti.pop() ); ) 14 14 15 pair< bool, char> maxp = { false, '\0' }, valp = { true, 'a' };16 stack<pair< bool, char>> sp, tp;15 pair<short, char> maxp = { 0, '\0' }, valp = { 42, 'a' }; 16 stack<pair<short, char>> sp, tp; 17 17 18 18 REPEAT_TIMED( "push_pair", N, sp.push( valp ); ) -
doc/papers/general/evaluation/cpp-stack.hpp
rb2fe1c9 r32cab5b 2 2 #include <utility> 3 3 4 template<typename T> classstack {4 template<typename T> struct stack { 5 5 struct node { 6 6 T value; 7 node* next; 7 node * next; 8 node( const T & v, node * n = nullptr ) : value( v ), next( n ) {} 9 }; 10 node * head; 8 11 9 node( const T& v, node* n = nullptr ) : value(v), next(n) {} 10 }; 11 node* head; 12 stack() : head( nullptr ) {} 13 stack( const stack<T> & o ) { copy( o ); } 12 14 13 void copy(const stack<T>& o) {14 node** crnt = &head;15 for ( node* next = o.head; next; next = next->next ) {16 *crnt = new node{ next->value }; /***/17 crnt = &(*crnt)->next;18 }19 *crnt = nullptr;20 }21 public:22 15 void clear() { 23 for ( node* next = head; next; ) {24 node * crnt = next;16 for ( node * next = head; next; ) { 17 node * crnt = next; 25 18 next = crnt->next; 26 19 delete crnt; … … 29 22 } 30 23 31 stack() : head(nullptr) {} 32 stack(const stack<T>& o) { copy(o); } 33 stack(stack<T>&& o) : head(o.head) { o.head = nullptr; } 24 void copy( const stack<T> & o ) { 25 node ** crnt = &head; 26 for ( node * next = o.head; next; next = next->next ) { 27 *crnt = new node{ next->value }; /***/ 28 crnt = &(*crnt)->next; 29 } 30 *crnt = nullptr; 31 } 32 34 33 ~stack() { clear(); } 35 34 36 stack & operator= (const stack<T>& o) {35 stack & operator= ( const stack<T> & o ) { 37 36 if ( this == &o ) return *this; 38 37 clear(); 39 copy(o); 40 return *this; 41 } 42 43 stack& operator= (stack<T>&& o) { 44 if ( this == &o ) return *this; 45 head = o.head; 46 o.head = nullptr; 38 copy( o ); 47 39 return *this; 48 40 } … … 50 42 bool empty() const { return head == nullptr; } 51 43 52 void push( const T& value) { head = new node{ value, head }; /***/ }44 void push( const T & value ) { head = new node{ value, head }; /***/ } 53 45 54 46 T pop() { 55 node * n = head;47 node * n = head; 56 48 head = n->next; 57 T x = std::move(n->value);49 T v = std::move( n->value ); 58 50 delete n; 59 return x;51 return v; 60 52 } 61 53 }; -
doc/papers/general/evaluation/cpp-vbench.cpp
rb2fe1c9 r32cab5b 13 13 REPEAT_TIMED( "pop_int", N, maxi = std::max( maxi, ti.pop()->as<integer>() ); /***/ ) 14 14 15 ptr<pair> maxp = make<pair>( make< boolean>(false), make<character>('\0') );16 pair valp{ make< boolean>(true), make<character>('a') };15 ptr<pair> maxp = make<pair>( make<short_integer>(0), make<character>('\0') ); 16 pair valp{ make<short_integer>(42), make<character>('a') }; 17 17 stack sp, tp; 18 18 -
doc/papers/general/evaluation/cpp-vstack.cpp
rb2fe1c9 r32cab5b 2 2 #include <utility> 3 3 4 stack::node::node( const object& v, node* n ) : value( v.new_copy() ), next( n ) {} 5 6 void stack::copy(const stack& o) { 7 node** crnt = &head; 8 for ( node* next = o.head; next; next = next->next ) { 9 *crnt = new node{ *next->value }; 10 crnt = &(*crnt)->next; 11 } 12 *crnt = nullptr; 13 } 14 15 stack::stack() : head(nullptr) {} 16 stack::stack(const stack& o) { copy(o); } 17 stack::stack(stack&& o) : head(o.head) { o.head = nullptr; } 18 stack::~stack() { clear(); } 19 20 stack& stack::operator= (const stack& o) { 21 if ( this == &o ) return *this; 22 clear(); 23 copy(o); 24 return *this; 25 } 26 27 stack& stack::operator= (stack&& o) { 28 if ( this == &o ) return *this; 29 head = o.head; 30 o.head = nullptr; 31 return *this; 32 } 4 stack::node::node( const object & v, node * n ) : value( v.new_copy() ), next( n ) {} 33 5 34 6 void stack::clear() { 35 for ( node* next = head; next; ) {36 node * crnt = next;7 for ( node * next = head; next; ) { 8 node * crnt = next; 37 9 next = crnt->next; 38 10 delete crnt; … … 41 13 } 42 14 15 void stack::copy( const stack & o ) { 16 node ** crnt = &head; 17 for ( node * next = o.head; next; next = next->next ) { 18 *crnt = new node{ *next->value }; /***/ 19 crnt = &(*crnt)->next; 20 } 21 *crnt = nullptr; 22 } 23 24 stack::stack() : head( nullptr ) {} 25 stack::stack( const stack & o ) { copy( o ); } 26 stack::~stack() { clear(); } 27 28 stack & stack::operator=( const stack & o ) { 29 if ( this == &o ) return *this; 30 clear(); 31 copy( o ); 32 return *this; 33 } 43 34 44 35 bool stack::empty() const { return head == nullptr; } 45 36 46 void stack::push( const object& value) { head = new node{ value, head }; /***/ }37 void stack::push( const object & value ) { head = new node{ value, head }; /***/ } 47 38 48 39 ptr<object> stack::pop() { 49 node * n = head;40 node * n = head; 50 41 head = n->next; 51 ptr<object> x = std::move(n->value);42 ptr<object> v = std::move( n->value ); 52 43 delete n; 53 return x;44 return v; 54 45 } -
doc/papers/general/evaluation/cpp-vstack.hpp
rb2fe1c9 r32cab5b 2 2 #include "object.hpp" 3 3 4 classstack {4 struct stack { 5 5 struct node { 6 6 ptr<object> value; 7 node* next; 8 9 node( const object& v, node* n = nullptr ); 7 node * next; 8 node( const object & v, node * n = nullptr ); 10 9 }; 11 node* head; 12 13 void copy(const stack& o); 14 public: 15 stack(); 16 stack(const stack& o); 17 stack(stack&& o); 18 ~stack(); 19 stack& operator= (const stack& o); 20 stack& operator= (stack&& o); 10 node * head; 21 11 22 12 void clear(); 13 void copy( const stack & o ); 14 15 stack(); 16 stack( const stack & o ); 17 ~stack(); 18 stack & operator=( const stack& o ); 23 19 bool empty() const; 24 void push( const object& value);20 void push( const object & value ); 25 21 ptr<object> pop(); 26 22 }; -
doc/papers/general/evaluation/object.hpp
rb2fe1c9 r32cab5b 67 67 }; 68 68 69 class boolean : public ordered, public printable {70 bool x;71 public:72 boolean() = default;73 boolean(bool x) : x(x) {}74 boolean(const boolean&) = default;75 boolean(boolean&&) = default;76 ptr<object> new_inst() const override { return make<boolean>(); }77 ptr<object> new_copy() const override { return make<boolean>(*this); }78 boolean& operator= (const boolean& that) {79 x = that.x;80 return *this;81 }82 object& operator= (const object& that) override { return *this = that.as<boolean>(); } /***/83 boolean& operator= (boolean&&) = default;84 ~boolean() override = default;85 86 int cmp(const boolean& that) const { return x == that.x ? 0 : x == false ? -1 : 1; }87 int cmp(const ordered& that) const override { return cmp( that.as<boolean>() ); } /***/88 89 void print(std::ostream& out) const override { out << (x ? "true" : "false"); }90 };91 92 69 class character : public ordered, public printable { 93 70 char x; … … 116 93 }; 117 94 95 class short_integer : public ordered, public printable { 96 short x; 97 public: 98 short_integer() = default; 99 short_integer(short x) : x(x) {} 100 short_integer(const short_integer&) = default; 101 short_integer(short_integer&&) = default; 102 ptr<object> new_inst() const override { return make<short_integer>(); } 103 ptr<object> new_copy() const override { return make<short_integer>(*this); } 104 short_integer& operator= (const short_integer& that) { 105 x = that.x; 106 return *this; 107 } 108 object& operator= (const object& that) override { return *this = that.as<short_integer>(); } /***/ 109 short_integer& operator= (short_integer&&) = default; 110 ~short_integer() override = default; 111 112 int cmp(const short_integer& that) const { return x == that.x ? 0 : x < that.x ? -1 : 1; } 113 int cmp(const ordered& that) const override { return cmp( that.as<short_integer>() ); } /***/ 114 115 void print(std::ostream& out) const override { out << x; } 116 }; 117 118 118 class integer : public ordered, public printable { 119 119 int x; … … 137 137 138 138 void print(std::ostream& out) const override { out << x; } 139 };140 141 class c_string : public printable {142 static constexpr const char* empty = "";143 const char* s;144 public:145 c_string() : s(empty) {}146 c_string(const char* s) : s(s) {}147 c_string(const c_string&) = default;148 c_string(c_string&&) = default;149 ptr<object> new_inst() const override { return make<c_string>(); }150 ptr<object> new_copy() const override { return make<c_string>(s); }151 c_string& operator= (const c_string& that) {152 s = that.s;153 return *this;154 }155 object& operator= (const object& that) override { return *this = that.as<c_string>(); } /***/156 c_string& operator= (c_string&&) = default;157 ~c_string() override = default;158 159 void print(std::ostream& out) const override { out << s; }160 139 }; 161 140 … … 188 167 return y->as<ordered>().cmp( that.y->as<ordered>() ); /***/ 189 168 } 190 int cmp(const ordered& that) const override { return cmp( that.as<pair>() ); } 169 int cmp(const ordered& that) const override { return cmp( that.as<pair>() ); } /***/ 191 170 192 171 void print(std::ostream& out) const override { -
doc/papers/general/evaluation/timing.dat
rb2fe1c9 r32cab5b 1 1 "400 million repetitions" "C" "\\CFA{}" "\\CC{}" "\\CC{obj}" 2 "push\nint" 2976 2225 1522 3266 3 "copy\nnt" 2932 7072 1526 3110 4 "clear\nint" 1380 731 750 1488 5 "pop\nint" 1444 1196 756 5156 6 "push\npair" 3695 2257 953 6840 7 "copy\npair" 6034 6650 994 7224 8 "clear\npair" 2832 848 742 3297 9 "pop\npair" 3009 5348 797 25235 10 2 "push\nint" 3002 2459 1542 3269 3 "copy\nint" 2985 2057 1539 3083 4 "clear\nint" 1374 827 756 1469 5 "pop\nint" 1416 1221 760 5098 6 "push\npair" 4214 2752 950 6873 7 "copy\npair" 6127 2105 987 7293 8 "clear\npair" 2881 885 751 3460 9 "pop\npair" 3046 5434 822 24962 -
doc/papers/general/evaluation/timing.gp
rb2fe1c9 r32cab5b 22 22 SCALE=1000 23 23 set ylabel "seconds" 24 set yrange [0:10] 25 26 set label "25.0" at 7.125,10.5 24 27 25 28 # set datafile separator "," -
doc/refrat/keywords.tex
rb2fe1c9 r32cab5b 11 11 %% Created On : Sun Aug 6 08:17:27 2017 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Wed Aug 30 22:10:10 201714 %% Update Count : 513 %% Last Modified On : Fri Apr 6 15:16:11 2018 14 %% Update Count : 7 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 \begin{tabular}{@{}llllll@{}} 17 17 \begin{tabular}{@{}l@{}} 18 ©_At© \\19 18 ©catch© \\ 20 19 ©catchResume© \\ 21 20 ©choose© \\ 22 21 ©coroutine© \\ 22 ©disable© \\ 23 23 \end{tabular} 24 24 & 25 25 \begin{tabular}{@{}l@{}} 26 ©disable© \\27 26 ©dtype© \\ 28 27 ©enable© \\ 28 ©exception© \\ 29 29 ©fallthrough© \\ 30 30 ©fallthru© \\ … … 35 35 ©forall© \\ 36 36 ©ftype© \\ 37 ©lvalue© \\38 37 ©monitor© \\ 38 ©mutex© \\ 39 39 \end{tabular} 40 40 & 41 41 \begin{tabular}{@{}l@{}} 42 ©mutex© \\43 42 ©one_t© \\ 44 43 ©otype© \\ 45 44 ©throw© \\ 46 45 ©throwResume© \\ 46 ©trait© \\ 47 47 \end{tabular} 48 48 & 49 49 \begin{tabular}{@{}l@{}} 50 ©trait© \\51 50 ©try© \\ 52 51 ©ttype© \\ 53 52 ©virtual© \\ 54 53 ©waitfor© \\ 54 ©when© \\ 55 55 \end{tabular} 56 56 & 57 57 \begin{tabular}{@{}l@{}} 58 ©when© \\59 58 ©with© \\ 60 59 ©zero_t© \\ 60 \\ 61 61 \\ 62 62 \\ -
doc/user/user.tex
rb2fe1c9 r32cab5b 11 11 %% Created On : Wed Apr 6 14:53:29 2016 12 12 %% Last Modified By : Peter A. Buhr 13 %% Last Modified On : Tue Feb 13 08:31:21201814 %% Update Count : 3 16113 %% Last Modified On : Sat Apr 14 19:04:30 2018 14 %% Update Count : 3318 15 15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 16 16 … … 283 283 284 284 double key = 5.0, vals[10] = { /* 10 sorted floating values */ }; 285 double * val = (double *)bsearch( &key, vals, 10, sizeof(vals[0]), comp ); $\C{// search sorted array}$285 double * val = (double *)bsearch( &key, vals, 10, sizeof(vals[0]), comp ); §\C{// search sorted array}§ 286 286 \end{lstlisting} 287 287 which can be augmented simply with a polymorphic, type-safe, \CFA-overloaded wrappers: … … 292 292 293 293 forall( otype T | { int ?<?( T, T ); } ) unsigned int bsearch( T key, const T * arr, size_t size ) { 294 T * result = bsearch( key, arr, size ); $\C{// call first version}$295 return result ? result - arr : size; } $\C{// pointer subtraction includes sizeof(T)}$296 297 double * val = bsearch( 5.0, vals, 10 ); $\C{// selection based on return type}$294 T * result = bsearch( key, arr, size ); §\C{// call first version}§ 295 return result ? result - arr : size; } §\C{// pointer subtraction includes sizeof(T)}§ 296 297 double * val = bsearch( 5.0, vals, 10 ); §\C{// selection based on return type}§ 298 298 int posn = bsearch( 5.0, vals, 10 ); 299 299 \end{lstlisting} … … 353 353 The 1999 C standard plus GNU extensions. 354 354 \item 355 \Indexc[deletekeywords=inline]{-fgnu89-inline}\index{compilation option!-fgnu89-inline@{\lstinline[deletekeywords=inline] $-fgnu89-inline$}}355 \Indexc[deletekeywords=inline]{-fgnu89-inline}\index{compilation option!-fgnu89-inline@{\lstinline[deletekeywords=inline]@-fgnu89-inline@}} 356 356 Use the traditional GNU semantics for inline routines in C99 mode, which allows inline routines in header files. 357 357 \end{description} … … 506 506 507 507 C, \CC, and Java (and many other programming languages) have no exponentiation operator\index{exponentiation!operator}\index{operator!exponentiation}, \ie $x^y$, and instead use a routine, like \Indexc{pow}, to perform the exponentiation operation. 508 \CFA extends the basic operators with the exponentiation operator ©?\?©\index{?\\?@\lstinline $?\?$} and ©?\=?©\index{?\\=?@\lstinline$?\=?$}, as in, ©x \ y© and ©x \= y©, which means $x^y$ and $x \leftarrow x^y$.508 \CFA extends the basic operators with the exponentiation operator ©?\?©\index{?\\?@\lstinline@?\?@} and ©?\=?©\index{?\\=?@\lstinline@?\=?@}, as in, ©x \ y© and ©x \= y©, which means $x^y$ and $x \leftarrow x^y$. 509 509 The priority of the exponentiation operator is between the cast and multiplicative operators, so that ©w * (int)x \ (int)y * z© is parenthesized as ©((w * (((int)x) \ ((int)y))) * z)©. 510 510 … … 524 524 525 525 526 \section{\texorpdfstring{Labelled \ LstKeywordStyle{continue} / \LstKeywordStyle{break}}{Labelled continue / break}}526 \section{\texorpdfstring{Labelled \protect\lstinline@continue@ / \protect\lstinline@break@}{Labelled continue / break}} 527 527 528 528 While C provides ©continue© and ©break© statements for altering control flow, both are restricted to one level of nesting for a particular control structure. 529 529 Unfortunately, this restriction forces programmers to use \Indexc{goto} to achieve the equivalent control-flow for more than one level of nesting. 530 To prevent having to switch to the ©goto©, \CFA extends the \Indexc{continue}\index{continue@\lstinline $continue$!labelled}\index{labelled!continue@©continue©} and \Indexc{break}\index{break@\lstinline $break$!labelled}\index{labelled!break@©break©} with a target label to support static multi-level exit\index{multi-level exit}\index{static multi-level exit}~\cite{Buhr85}, as in Java.530 To prevent having to switch to the ©goto©, \CFA extends the \Indexc{continue}\index{continue@\lstinline@continue@!labelled}\index{labelled!continue@©continue©} and \Indexc{break}\index{break@\lstinline@break@!labelled}\index{labelled!break@©break©} with a target label to support static multi-level exit\index{multi-level exit}\index{static multi-level exit}~\cite{Buhr85}, as in Java. 531 531 For both ©continue© and ©break©, the target label must be directly associated with a ©for©, ©while© or ©do© statement; 532 532 for ©break©, the target label can also be associated with a ©switch©, ©if© or compound (©{}©) statement. … … 613 613 \end{figure} 614 614 615 Both labelled ©continue© and ©break© are a ©goto©\index{goto@\lstinline $goto$!restricted} restricted in the following ways:615 Both labelled ©continue© and ©break© are a ©goto©\index{goto@\lstinline@goto@!restricted} restricted in the following ways: 616 616 \begin{itemize} 617 617 \item … … 629 629 630 630 631 \section{\texorpdfstring{\ LstKeywordStyle{switch}Statement}{switch Statement}}631 \section{\texorpdfstring{\protect\lstinline@switch@ Statement}{switch Statement}} 632 632 633 633 C allows a number of questionable forms for the ©switch© statement: … … 834 834 835 835 836 \section{\texorpdfstring{\ LstKeywordStyle{case}Clause}{case Clause}}836 \section{\texorpdfstring{\protect\lstinline@case@ Clause}{case Clause}} 837 837 838 838 C restricts the ©case© clause of a ©switch© statement to a single value. … … 871 871 \end{tabular} 872 872 \end{cquote} 873 In addition, two forms of subranges are allowed to specify case values: a new \CFA form and an existing GNU C form.\footnote{ 874 The GNU C form \emph{requires} spaces around the ellipse.} 875 \begin{cquote} 876 \begin{tabular}{@{}l@{\hspace{3em}}l@{\hspace{2em}}l@{}} 877 \multicolumn{1}{c@{\hspace{3em}}}{\textbf{\CFA}} & \multicolumn{1}{c@{\hspace{2em}}}{\textbf{GNU C}} \\ 873 In addition, subranges are allowed to specify case values.\footnote{ 874 gcc has the same mechanism but awkward syntax, \lstinline@2 ...42@, because a space is required after a number, otherwise the period is a decimal point.} 878 875 \begin{cfa} 879 876 switch ( i ) { 880 case ®1~5:® 877 case ®1~5:® §\C{// 1, 2, 3, 4, 5}§ 881 878 ... 882 case ®10~15:® 879 case ®10~15:® §\C{// 10, 11, 12, 13, 14, 15}§ 883 880 ... 884 881 } 885 882 \end{cfa} 886 &887 \begin{cfa}888 switch ( i )889 case ®1 ... 5®:890 ...891 case ®10 ... 15®:892 ...893 }894 \end{cfa}895 &896 \begin{cfa}897 898 // 1, 2, 3, 4, 5899 900 // 10, 11, 12, 13, 14, 15901 902 903 \end{cfa}904 \end{tabular}905 \end{cquote}906 883 Lists of subranges are also allowed. 907 884 \begin{cfa} … … 910 887 911 888 912 \section{\texorpdfstring{\LstKeywordStyle{with} Clause / Statement}{with Clause / Statement}} 913 \label{s:WithClauseStatement} 889 \section{\texorpdfstring{\protect\lstinline@with@ Statement}{with Statement}} 890 \label{s:WithStatement} 891 892 Grouping heterogeneous data into \newterm{aggregate}s (structure/union) is a common programming practice, and an aggregate can be further organized into more complex structures, such as arrays and containers: 893 \begin{cfa} 894 struct S { §\C{// aggregate}§ 895 char c; §\C{// fields}§ 896 int i; 897 double d; 898 }; 899 S s, as[10]; 900 \end{cfa} 901 However, functions manipulating aggregates must repeat the aggregate name to access its containing fields: 902 \begin{cfa} 903 void f( S s ) { 904 `s.`c; `s.`i; `s.`d; §\C{// access containing fields}§ 905 } 906 \end{cfa} 907 which extends to multiple levels of qualification for nested aggregates. 908 A similar situation occurs in object-oriented programming, \eg \CC: 909 \begin{C++} 910 struct S { 911 char c; §\C{// fields}§ 912 int i; 913 double d; 914 void f() { §\C{// implicit ``this'' aggregate}§ 915 `this->`c; `this->`i; `this->`d; §\C{// access containing fields}§ 916 } 917 } 918 \end{C++} 919 Object-oriented nesting of member functions in a \lstinline[language=C++]@class/struct@ allows eliding \lstinline[language=C++]$this->$ because of lexical scoping. 920 However, for other aggregate parameters, qualification is necessary: 921 \begin{cfa} 922 struct T { double m, n; }; 923 int S::f( T & t ) { §\C{// multiple aggregate parameters}§ 924 c; i; d; §\C{\color{red}// this--{\textgreater}.c, this--{\textgreater}.i, this--{\textgreater}.d}§ 925 `t.`m; `t.`n; §\C{// must qualify}§ 926 } 927 \end{cfa} 928 929 To simplify the programmer experience, \CFA provides a @with@ statement (see Pascal~\cite[\S~4.F]{Pascal}) to elide aggregate qualification to fields by opening a scope containing the field identifiers. 930 Hence, the qualified fields become variables with the side-effect that it is easier to optimizing field references in a block. 931 \begin{cfa} 932 void f( S & this ) `with ( this )` { §\C{// with statement}§ 933 c; i; d; §\C{\color{red}// this.c, this.i, this.d}§ 934 } 935 \end{cfa} 936 with the generality of opening multiple aggregate-parameters: 937 \begin{cfa} 938 void f( S & s, T & t ) `with ( s, t )` { §\C{// multiple aggregate parameters}§ 939 c; i; d; §\C{\color{red}// s.c, s.i, s.d}§ 940 m; n; §\C{\color{red}// t.m, t.n}§ 941 } 942 \end{cfa} 943 944 In detail, the @with@ statement has the form: 945 \begin{cfa} 946 §\emph{with-statement}§: 947 'with' '(' §\emph{expression-list}§ ')' §\emph{compound-statement}§ 948 \end{cfa} 949 and may appear as the body of a function or nested within a function body. 950 Each expression in the expression-list provides a type and object. 951 The type must be an aggregate type. 952 (Enumerations are already opened.) 953 The object is the implicit qualifier for the open structure-fields. 954 955 All expressions in the expression list are open in parallel within the compound statement. 956 This semantic is different from Pascal, which nests the openings from left to right. 957 The difference between parallel and nesting occurs for fields with the same name and type: 958 \begin{cfa} 959 struct S { int `i`; int j; double m; } s, w; 960 struct T { int `i`; int k; int m; } t, w; 961 with ( s, t ) { 962 j + k; §\C{// unambiguous, s.j + t.k}§ 963 m = 5.0; §\C{// unambiguous, t.m = 5.0}§ 964 m = 1; §\C{// unambiguous, s.m = 1}§ 965 int a = m; §\C{// unambiguous, a = s.i }§ 966 double b = m; §\C{// unambiguous, b = t.m}§ 967 int c = s.i + t.i; §\C{// unambiguous, qualification}§ 968 (double)m; §\C{// unambiguous, cast}§ 969 } 970 \end{cfa} 971 For parallel semantics, both @s.i@ and @t.i@ are visible, so @i@ is ambiguous without qualification; 972 for nested semantics, @t.i@ hides @s.i@, so @i@ implies @t.i@. 973 \CFA's ability to overload variables means fields with the same name but different types are automatically disambiguated, eliminating most qualification when opening multiple aggregates. 974 Qualification or a cast is used to disambiguate. 975 976 There is an interesting problem between parameters and the function-body @with@, \eg: 977 \begin{cfa} 978 void ?{}( S & s, int i ) with ( s ) { §\C{// constructor}§ 979 `s.i = i;` j = 3; m = 5.5; §\C{// initialize fields}§ 980 } 981 \end{cfa} 982 Here, the assignment @s.i = i@ means @s.i = s.i@, which is meaningless, and there is no mechanism to qualify the parameter @i@, making the assignment impossible using the function-body @with@. 983 To solve this problem, parameters are treated like an initialized aggregate: 984 \begin{cfa} 985 struct Params { 986 S & s; 987 int i; 988 } params; 989 \end{cfa} 990 and implicitly opened \emph{after} a function-body open, to give them higher priority: 991 \begin{cfa} 992 void ?{}( S & s, int `i` ) with ( s ) `with( §\emph{\color{red}params}§ )` { 993 s.i = `i`; j = 3; m = 5.5; 994 } 995 \end{cfa} 996 Finally, a cast may be used to disambiguate among overload variables in a @with@ expression: 997 \begin{cfa} 998 with ( w ) { ... } §\C{// ambiguous, same name and no context}§ 999 with ( (S)w ) { ... } §\C{// unambiguous, cast}§ 1000 \end{cfa} 1001 and @with@ expressions may be complex expressions with type reference (see Section~\ref{s:References}) to aggregate: 1002 % \begin{cfa} 1003 % struct S { int i, j; } sv; 1004 % with ( sv ) { §\C{// implicit reference}§ 1005 % S & sr = sv; 1006 % with ( sr ) { §\C{// explicit reference}§ 1007 % S * sp = &sv; 1008 % with ( *sp ) { §\C{// computed reference}§ 1009 % i = 3; j = 4; §\C{\color{red}// sp--{\textgreater}i, sp--{\textgreater}j}§ 1010 % } 1011 % i = 2; j = 3; §\C{\color{red}// sr.i, sr.j}§ 1012 % } 1013 % i = 1; j = 2; §\C{\color{red}// sv.i, sv.j}§ 1014 % } 1015 % \end{cfa} 914 1016 915 1017 In \Index{object-oriented} programming, there is an implicit first parameter, often names \textbf{©self©} or \textbf{©this©}, which is elided. … … 935 1037 \CFA provides a ©with© clause/statement (see Pascal~\cite[\S~4.F]{Pascal}) to elided the "©this.©" by opening a scope containing field identifiers, changing the qualified fields into variables and giving an opportunity for optimizing qualified references. 936 1038 \begin{cfa} 937 int mem( S & this ) ®with this® { §\C{// with clause}§1039 int mem( S & this ) ®with( this )® { §\C{// with clause}§ 938 1040 i = 1; §\C{\color{red}// this.i}§ 939 1041 j = 2; §\C{\color{red}// this.j}§ … … 943 1045 \begin{cfa} 944 1046 struct T { double m, n; }; 945 int mem2( S & this1, T & this2 ) ®with this1, this2® {1047 int mem2( S & this1, T & this2 ) ®with( this1, this2 )® { 946 1048 i = 1; j = 2; 947 1049 m = 1.0; n = 2.0; … … 954 1056 struct S1 { ... } s1; 955 1057 struct S2 { ... } s2; 956 ®with s1® {§\C{// with statement}§1058 ®with( s1 )® { §\C{// with statement}§ 957 1059 // access fields of s1 without qualification 958 1060 ®with s2® { §\C{// nesting}§ … … 971 1073 struct S { int i; int j; double m; } a, c; 972 1074 struct T { int i; int k; int m } b, c; 973 ®with a, b® { 974 j + k; §\C{// unambiguous, unique names define unique types}§ 975 i; §\C{// ambiguous, same name and type}§ 976 a.i + b.i; §\C{// unambiguous, qualification defines unique names}§ 977 m; §\C{// ambiguous, same name and no context to define unique type}§ 978 m = 5.0; §\C{// unambiguous, same name and context defines unique type}§ 979 m = 1; §\C{// unambiguous, same name and context defines unique type}§ 980 } 981 ®with c® { ... } §\C{// ambiguous, same name and no context}§ 982 ®with (S)c® { ... } §\C{// unambiguous, same name and cast defines unique type}§ 983 \end{cfa} 984 1075 with( a, b ) 1076 { 1077 } 1078 \end{cfa} 1079 1080 \begin{comment} 985 1081 The components in the "with" clause 986 1082 … … 1007 1103 the "with" to be implemented because I hate having to type all those object 1008 1104 names for fields. It's a great way to drive people away from the language. 1105 \end{comment} 1009 1106 1010 1107 … … 1595 1692 1596 1693 \item 1597 lvalue to reference conversion: \lstinline[deletekeywords=lvalue] $lvalue-type cv1 T$converts to ©cv2 T &©, which allows implicitly converting variables to references.1694 lvalue to reference conversion: \lstinline[deletekeywords=lvalue]@lvalue-type cv1 T@ converts to ©cv2 T &©, which allows implicitly converting variables to references. 1598 1695 \begin{cfa} 1599 1696 int x, &r = ®x®, f( int & p ); // lvalue variable (int) convert to reference (int &) … … 6361 6458 6362 6459 6460 \section{Time} 6461 \label{s:TimeLib} 6462 6463 6464 %\subsection{\texorpdfstring{\protect\lstinline@Duration@}{Duration}} 6465 \subsection{\texorpdfstring{\LstKeywordStyle{\textmd{Duration}}}{Duration}} 6466 \label{s:Duration} 6467 6468 \leavevmode 6469 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6470 struct Duration { 6471 int64_t tv; §\C{// nanoseconds}§ 6472 }; 6473 6474 void ?{}( Duration & dur ); 6475 void ?{}( Duration & dur, zero_t ); 6476 6477 Duration ?=?( Duration & dur, zero_t ); 6478 6479 Duration +?( Duration rhs ); 6480 Duration ?+?( Duration & lhs, Duration rhs ); 6481 Duration ?+=?( Duration & lhs, Duration rhs ); 6482 6483 Duration -?( Duration rhs ); 6484 Duration ?-?( Duration & lhs, Duration rhs ); 6485 Duration ?-=?( Duration & lhs, Duration rhs ); 6486 6487 Duration ?*?( Duration lhs, int64_t rhs ); 6488 Duration ?*?( int64_t lhs, Duration rhs ); 6489 Duration ?*=?( Duration & lhs, int64_t rhs ); 6490 6491 int64_t ?/?( Duration lhs, Duration rhs ); 6492 Duration ?/?( Duration lhs, int64_t rhs ); 6493 Duration ?/=?( Duration & lhs, int64_t rhs ); 6494 double div( Duration lhs, Duration rhs ); 6495 6496 Duration ?%?( Duration lhs, Duration rhs ); 6497 Duration ?%=?( Duration & lhs, Duration rhs ); 6498 6499 _Bool ?==?( Duration lhs, Duration rhs ); 6500 _Bool ?!=?( Duration lhs, Duration rhs ); 6501 _Bool ?<? ( Duration lhs, Duration rhs ); 6502 _Bool ?<=?( Duration lhs, Duration rhs ); 6503 _Bool ?>? ( Duration lhs, Duration rhs ); 6504 _Bool ?>=?( Duration lhs, Duration rhs ); 6505 6506 _Bool ?==?( Duration lhs, zero_t ); 6507 _Bool ?!=?( Duration lhs, zero_t ); 6508 _Bool ?<? ( Duration lhs, zero_t ); 6509 _Bool ?<=?( Duration lhs, zero_t ); 6510 _Bool ?>? ( Duration lhs, zero_t ); 6511 _Bool ?>=?( Duration lhs, zero_t ); 6512 6513 Duration abs( Duration rhs ); 6514 6515 forall( dtype ostype | ostream( ostype ) ) ostype & ?|?( ostype & os, Duration dur ); 6516 6517 Duration ?`ns( int64_t nsec ); 6518 Duration ?`us( int64_t usec ); 6519 Duration ?`ms( int64_t msec ); 6520 Duration ?`s( int64_t sec ); 6521 Duration ?`s( double sec ); 6522 Duration ?`m( int64_t min ); 6523 Duration ?`m( double min ); 6524 Duration ?`h( int64_t hours ); 6525 Duration ?`h( double hours ); 6526 Duration ?`d( int64_t days ); 6527 Duration ?`d( double days ); 6528 Duration ?`w( int64_t weeks ); 6529 Duration ?`w( double weeks ); 6530 6531 int64_t ?`ns( Duration dur ); 6532 int64_t ?`us( Duration dur ); 6533 int64_t ?`ms( Duration dur ); 6534 int64_t ?`s( Duration dur ); 6535 int64_t ?`m( Duration dur ); 6536 int64_t ?`h( Duration dur ); 6537 int64_t ?`d( Duration dur ); 6538 int64_t ?`w( Duration dur ); 6539 \end{cfa} 6540 6541 6542 %\subsection{\texorpdfstring{\protect\lstinline@\timeval@}{timeval}} 6543 \subsection{\texorpdfstring{\LstKeywordStyle{\textmd{timeval}}}{timeval}} 6544 \label{s:timeval} 6545 6546 \leavevmode 6547 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6548 void ?{}( timeval & t ); 6549 void ?{}( timeval & t, time_t sec, suseconds_t usec ); 6550 void ?{}( timeval & t, time_t sec ); 6551 void ?{}( timeval & t, zero_t ); 6552 void ?{}( timeval & t, Time time ); 6553 6554 timeval ?=?( timeval & t, zero_t ); 6555 timeval ?+?( timeval & lhs, timeval rhs ); 6556 timeval ?-?( timeval & lhs, timeval rhs ); 6557 _Bool ?==?( timeval lhs, timeval rhs ); 6558 _Bool ?!=?( timeval lhs, timeval rhs ); 6559 \end{cfa} 6560 6561 6562 \subsection{\texorpdfstring{\protect\lstinline@timespec@}{timespec}} 6563 \label{s:timespec} 6564 6565 \leavevmode 6566 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6567 void ?{}( timespec & t ); 6568 void ?{}( timespec & t, time_t sec, __syscall_slong_t nsec ); 6569 void ?{}( timespec & t, time_t sec ); 6570 void ?{}( timespec & t, zero_t ); 6571 void ?{}( timespec & t, Time time ); 6572 6573 timespec ?=?( timespec & t, zero_t ); 6574 timespec ?+?( timespec & lhs, timespec rhs ); 6575 timespec ?-?( timespec & lhs, timespec rhs ); 6576 _Bool ?==?( timespec lhs, timespec rhs ); 6577 _Bool ?!=?( timespec lhs, timespec rhs ); 6578 \end{cfa} 6579 6580 6581 \subsection{\texorpdfstring{\protect\lstinline@itimerval@}{itimerval}} 6582 \label{s:itimerval} 6583 6584 \leavevmode 6585 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6586 void ?{}( itimerval & itv, Duration alarm ); 6587 void ?{}( itimerval & itv, Duration alarm, Duration interval ); 6588 \end{cfa} 6589 6590 6591 \subsection{\texorpdfstring{\protect\lstinline@Time@}{Time}} 6592 \label{s:Time} 6593 6594 \leavevmode 6595 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6596 struct Time { 6597 uint64_t tv; §\C{// nanoseconds since UNIX epoch}§ 6598 }; 6599 6600 void ?{}( Time & time ); 6601 void ?{}( Time & time, zero_t ); 6602 void ?{}( Time & time, int year, int month = 0, int day = 0, int hour = 0, int min = 0, int sec = 0, int nsec = 0 ); 6603 Time ?=?( Time & time, zero_t ); 6604 6605 void ?{}( Time & time, timeval t ); 6606 Time ?=?( Time & time, timeval t ); 6607 6608 void ?{}( Time & time, timespec t ); 6609 Time ?=?( Time & time, timespec t ); 6610 6611 Time ?+?( Time & lhs, Duration rhs ) { return (Time)@{ lhs.tv + rhs.tv }; } 6612 Time ?+?( Duration lhs, Time rhs ) { return rhs + lhs; } 6613 Time ?+=?( Time & lhs, Duration rhs ) { lhs = lhs + rhs; return lhs; } 6614 6615 Duration ?-?( Time lhs, Time rhs ) { return (Duration)@{ lhs.tv - rhs.tv }; } 6616 Time ?-?( Time lhs, Duration rhs ) { return (Time)@{ lhs.tv - rhs.tv }; } 6617 Time ?-=?( Time & lhs, Duration rhs ) { lhs = lhs - rhs; return lhs; } 6618 _Bool ?==?( Time lhs, Time rhs ) { return lhs.tv == rhs.tv; } 6619 _Bool ?!=?( Time lhs, Time rhs ) { return lhs.tv != rhs.tv; } 6620 _Bool ?<?( Time lhs, Time rhs ) { return lhs.tv < rhs.tv; } 6621 _Bool ?<=?( Time lhs, Time rhs ) { return lhs.tv <= rhs.tv; } 6622 _Bool ?>?( Time lhs, Time rhs ) { return lhs.tv > rhs.tv; } 6623 _Bool ?>=?( Time lhs, Time rhs ) { return lhs.tv >= rhs.tv; } 6624 6625 forall( dtype ostype | ostream( ostype ) ) ostype & ?|?( ostype & os, Time time ); 6626 6627 char * yy_mm_dd( Time time, char * buf ); 6628 char * ?`ymd( Time time, char * buf ) { // short form 6629 return yy_mm_dd( time, buf ); 6630 } // ymd 6631 6632 char * mm_dd_yy( Time time, char * buf ); 6633 char * ?`mdy( Time time, char * buf ) { // short form 6634 return mm_dd_yy( time, buf ); 6635 } // mdy 6636 6637 char * dd_mm_yy( Time time, char * buf ); 6638 char * ?`dmy( Time time, char * buf ) { // short form 6639 return dd_mm_yy( time, buf );; 6640 } // dmy 6641 6642 size_t strftime( char * buf, size_t size, const char * fmt, Time time ); 6643 \end{cfa} 6644 6645 6646 \section{Clock} 6647 6648 \subsection{C time} 6649 \label{s:Ctime} 6650 6651 \leavevmode 6652 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6653 char * ctime( time_t tp ); 6654 char * ctime_r( time_t tp, char * buf ); 6655 tm * gmtime( time_t tp ); 6656 tm * gmtime_r( time_t tp, tm * result ); 6657 tm * localtime( time_t tp ); 6658 tm * localtime_r( time_t tp, tm * result ); 6659 \end{cfa} 6660 6661 6662 %\subsection{\texorpdfstring{\protect\lstinline@Clock@}{Clock}} 6663 \subsection{\texorpdfstring{\LstKeywordStyle{\textmd{Clock}}}{Clock}} 6664 \label{s:Clock} 6665 6666 \leavevmode 6667 \begin{cfa}[aboveskip=0pt,belowskip=0pt] 6668 struct Clock { 6669 Duration offset; §\C{// for virtual clock: contains offset from real-time}§ 6670 int clocktype; §\C{// implementation only -1 (virtual), CLOCK\_REALTIME}§ 6671 }; 6672 6673 void resetClock( Clock & clk ); 6674 void resetClock( Clock & clk, Duration adj ); 6675 void ?{}( Clock & clk ); 6676 void ?{}( Clock & clk, Duration adj ); 6677 Duration getRes(); 6678 Time getTimeNsec(); §\C{// with nanoseconds}§ 6679 Time getTime(); §\C{// without nanoseconds}§ 6680 Time getTime( Clock & clk ); 6681 Time ?()( Clock & clk ); 6682 timeval getTime( Clock & clk ); 6683 tm getTime( Clock & clk ); 6684 \end{cfa} 6685 6686 6363 6687 \section{Multi-precision Integers} 6364 6688 \label{s:MultiPrecisionIntegers} … … 6658 6982 \end{cfa} 6659 6983 6660 6661 6984 \bibliographystyle{plain} 6662 6985 \bibliography{pl} -
src/CodeGen/CodeGenerator.cc
rb2fe1c9 r32cab5b 203 203 204 204 void CodeGenerator::handleAggregate( AggregateDecl * aggDecl, const std::string & kind ) { 205 genAttributes( aggDecl->get_attributes() );206 207 205 if( ! aggDecl->get_parameters().empty() && ! genC ) { 208 206 // assertf( ! genC, "Aggregate type parameters should not reach code generation." ); … … 213 211 } 214 212 215 output << kind << aggDecl->get_name(); 213 output << kind; 214 genAttributes( aggDecl->get_attributes() ); 215 output << aggDecl->get_name(); 216 216 217 217 if ( aggDecl->has_body() ) { … … 298 298 output << " }"; 299 299 } 300 } 301 302 void CodeGenerator::postvisit( StaticAssertDecl * assertDecl ) { 303 output << "_Static_assert("; 304 assertDecl->condition->accept( *visitor ); 305 output << ", "; 306 assertDecl->message->accept( *visitor ); 307 output << ")"; 300 308 } 301 309 … … 928 936 output << "continue"; 929 937 break; 938 case BranchStmt::FallThrough: 939 case BranchStmt::FallThroughDefault: 940 assertf( ! genC, "fallthru should not reach code generation." ); 941 output << "fallthru"; 942 break; 930 943 } // switch 944 // print branch target for labelled break/continue/fallthru in debug mode 945 if ( ! genC && branchStmt->get_type() != BranchStmt::Goto ) { 946 if ( ! branchStmt->get_target().empty() ) { 947 output << " " << branchStmt->get_target(); 948 } else if ( branchStmt->get_type() == BranchStmt::FallThrough ) { 949 output << " default"; 950 } 951 } 931 952 output << ";"; 932 953 } -
src/CodeGen/CodeGenerator.h
rb2fe1c9 r32cab5b 42 42 void postvisit( FunctionDecl * ); 43 43 void postvisit( ObjectDecl * ); 44 void postvisit( UnionDecl *aggregateDecl ); 45 void postvisit( EnumDecl *aggregateDecl ); 46 void postvisit( TraitDecl *aggregateDecl ); 47 void postvisit( TypedefDecl *typeDecl ); 48 void postvisit( TypeDecl *typeDecl ); 44 void postvisit( UnionDecl * aggregateDecl ); 45 void postvisit( EnumDecl * aggregateDecl ); 46 void postvisit( TraitDecl * aggregateDecl ); 47 void postvisit( TypedefDecl * typeDecl ); 48 void postvisit( TypeDecl * typeDecl ); 49 void postvisit( StaticAssertDecl * assertDecl ); 49 50 50 51 //*** Initializer -
src/CodeGen/OperatorTable.cc
rb2fe1c9 r32cab5b 79 79 } // namespace 80 80 81 bool operatorLookup( std::string funcName, OperatorInfo &info ) {81 bool operatorLookup( const std::string & funcName, OperatorInfo & info ) { 82 82 static bool init = false; 83 83 if ( ! init ) { … … 100 100 return true; 101 101 } // if 102 } 103 104 bool isOperator( const std::string & funcName ) { 105 OperatorInfo info; 106 return operatorLookup( funcName, info ); 102 107 } 103 108 -
src/CodeGen/OperatorTable.h
rb2fe1c9 r32cab5b 41 41 }; 42 42 43 bool operatorLookup( std::string funcName, OperatorInfo &info ); 43 bool isOperator( const std::string & funcName ); 44 bool operatorLookup( const std::string & funcName, OperatorInfo & info ); 44 45 45 46 bool isConstructor( const std::string & ); -
src/Common/Debug.h
rb2fe1c9 r32cab5b 28 28 namespace Debug { 29 29 /// debug codegen a translation unit 30 static inline void codeGen( __attribute__((unused)) const std::list< Declaration * > & translationUnit, __attribute__((unused)) const std::string & label ) {30 static inline void codeGen( __attribute__((unused)) const std::list< Declaration * > & translationUnit, __attribute__((unused)) const std::string & label, __attribute__((unused)) LinkageSpec::Spec linkageFilter = LinkageSpec::Compiler ) { 31 31 #ifdef DEBUG 32 32 std::list< Declaration * > decls; 33 33 34 filter( translationUnit.begin(), translationUnit.end(), back_inserter( decls ), [ ]( Declaration * decl ) {35 return ! LinkageSpec::isBuiltin( decl->get_linkage());34 filter( translationUnit.begin(), translationUnit.end(), back_inserter( decls ), [linkageFilter]( Declaration * decl ) { 35 return ! (decl->linkage & linkageFilter); 36 36 }); 37 37 38 38 std::cerr << "======" << label << "======" << std::endl; 39 CodeGen::generate( decls, std::cerr, false, true );39 CodeGen::generate( decls, std::cerr, true, true ); 40 40 #endif 41 41 } // dump 42 42 43 static inline void treeDump( __attribute__((unused)) const std::list< Declaration * > & translationUnit, __attribute__((unused)) const std::string & label ) {43 static inline void treeDump( __attribute__((unused)) const std::list< Declaration * > & translationUnit, __attribute__((unused)) const std::string & label, __attribute__((unused)) LinkageSpec::Spec linkageFilter = LinkageSpec::Compiler ) { 44 44 #ifdef DEBUG 45 45 std::list< Declaration * > decls; 46 46 47 filter( translationUnit.begin(), translationUnit.end(), back_inserter( decls ), [ ]( Declaration * decl ) {48 return ! LinkageSpec::isBuiltin( decl->get_linkage());47 filter( translationUnit.begin(), translationUnit.end(), back_inserter( decls ), [linkageFilter]( Declaration * decl ) { 48 return ! (decl->linkage & linkageFilter); 49 49 }); 50 50 -
src/Common/ErrorObjects.h
rb2fe1c9 r32cab5b 35 35 class SemanticErrorException : public std::exception { 36 36 public: 37 37 SemanticErrorException() = default; 38 38 SemanticErrorException( CodeLocation location, std::string error ); 39 39 ~SemanticErrorException() throw() {} -
src/Common/PassVisitor.h
rb2fe1c9 r32cab5b 66 66 virtual void visit( TypedefDecl * typeDecl ) override final; 67 67 virtual void visit( AsmDecl * asmDecl ) override final; 68 virtual void visit( StaticAssertDecl * assertDecl ) override final; 68 69 69 70 virtual void visit( CompoundStmt * compoundStmt ) override final; … … 161 162 virtual Declaration * mutate( TypedefDecl * typeDecl ) override final; 162 163 virtual AsmDecl * mutate( AsmDecl * asmDecl ) override final; 164 virtual StaticAssertDecl * mutate( StaticAssertDecl * assertDecl ) override final; 163 165 164 166 virtual CompoundStmt * mutate( CompoundStmt * compoundStmt ) override final; -
src/Common/PassVisitor.impl.h
rb2fe1c9 r32cab5b 685 685 686 686 //-------------------------------------------------------------------------- 687 // StaticAssertDecl 688 template< typename pass_type > 689 void PassVisitor< pass_type >::visit( StaticAssertDecl * node ) { 690 VISIT_START( node ); 691 692 maybeAccept_impl( node->condition, *this ); 693 maybeAccept_impl( node->message , *this ); 694 695 VISIT_END( node ); 696 } 697 698 template< typename pass_type > 699 StaticAssertDecl * PassVisitor< pass_type >::mutate( StaticAssertDecl * node ) { 700 MUTATE_START( node ); 701 702 maybeMutate_impl( node->condition, *this ); 703 maybeMutate_impl( node->message , *this ); 704 705 MUTATE_END( StaticAssertDecl, node ); 706 } 707 708 //-------------------------------------------------------------------------- 687 709 // CompoundStmt 688 710 template< typename pass_type > … … 1490 1512 indexerScopedAccept( node->result, *this ); 1491 1513 maybeAccept_impl ( node->type , *this ); 1492 maybeAccept_impl ( node->member, *this );1493 1514 1494 1515 VISIT_END( node ); … … 1502 1523 indexerScopedMutate( node->result, *this ); 1503 1524 maybeMutate_impl ( node->type , *this ); 1504 maybeMutate_impl ( node->member, *this );1505 1525 1506 1526 MUTATE_END( Expression, node ); -
src/Common/SemanticError.h
rb2fe1c9 r32cab5b 38 38 constexpr const char * const WarningFormats[] = { 39 39 "self assignment of expression: %s", 40 "rvalue to reference conversion of rvalue: %s", 40 41 }; 41 42 42 43 enum class Warning { 43 44 SelfAssignment, 45 RvalueToReferenceConversion, 44 46 NUMBER_OF_WARNINGS, //This MUST be the last warning 45 47 }; … … 50 52 ); 51 53 52 #define SemanticWarning(loc, id, ...) SemanticWarningImpl(loc, id, WarningFormats[(int)id], __VA_ARGS__) 54 // ## used here to allow empty __VA_ARGS__ 55 #define SemanticWarning(loc, id, ...) SemanticWarningImpl(loc, id, WarningFormats[(int)id], ## __VA_ARGS__) 53 56 54 57 void SemanticWarningImpl (CodeLocation loc, Warning warn, const char * const fmt, ...) __attribute__((format(printf, 3, 4))); -
src/ControlStruct/ExceptTranslate.cc
rb2fe1c9 r32cab5b 34 34 #include "SynTree/Statement.h" // for CompoundStmt, CatchStmt, ThrowStmt 35 35 #include "SynTree/Type.h" // for FunctionType, Type, noQualifiers 36 #include "SynTree/ VarExprReplacer.h" // for VarExprReplacer, VarExprReplace...36 #include "SynTree/DeclReplacer.h" // for DeclReplacer 37 37 #include "SynTree/Visitor.h" // for acceptAll 38 38 … … 314 314 // Update variables in the body to point to this local copy. 315 315 { 316 VarExprReplacer::DeclMap mapping;316 DeclReplacer::DeclMap mapping; 317 317 mapping[ handler_decl ] = local_except; 318 VarExprReplacer::replace( handler->body, mapping );318 DeclReplacer::replace( handler->body, mapping ); 319 319 } 320 320 -
src/ControlStruct/MLEMutator.cc
rb2fe1c9 r32cab5b 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Aug 4 11:21:32 201613 // Update Count : 2 0212 // Last Modified On : Thu Mar 8 17:08:25 2018 13 // Update Count : 219 14 14 // 15 15 … … 38 38 } 39 39 namespace { 40 Statement * isLoop( Statement * stmt ) { return dynamic_cast< WhileStmt * >( stmt ) ? stmt : dynamic_cast< ForStmt * >( stmt ) ? stmt : 0; } 41 } 40 bool isLoop( const MLEMutator::Entry & e ) { return dynamic_cast< WhileStmt * >( e.get_controlStructure() ) || dynamic_cast< ForStmt * >( e.get_controlStructure() ); } 41 bool isSwitch( const MLEMutator::Entry & e ) { return dynamic_cast< SwitchStmt *>( e.get_controlStructure() ); } 42 43 bool isBreakTarget( const MLEMutator::Entry & e ) { return isLoop( e ) || isSwitch( e ) || dynamic_cast< CompoundStmt *>( e.get_controlStructure() ); } 44 bool isContinueTarget( const MLEMutator::Entry & e ) { return isLoop( e ); } 45 bool isFallthroughTarget( const MLEMutator::Entry & e ) { return dynamic_cast< CaseStmt *>( e.get_controlStructure() );; } 46 bool isFallthroughDefaultTarget( const MLEMutator::Entry & e ) { return isSwitch( e ); } 47 } // namespace 42 48 43 49 // break labels have to come after the statement they break out of, so mutate a statement, then if they inform us 44 50 // through the breakLabel field tha they need a place to jump to on a break statement, add the break label to the 45 51 // body of statements 46 void MLEMutator::fixBlock( std::list< Statement * > &kids ) { 52 void MLEMutator::fixBlock( std::list< Statement * > &kids, bool caseClause ) { 53 SemanticErrorException errors; 54 47 55 for ( std::list< Statement * >::iterator k = kids.begin(); k != kids.end(); k++ ) { 48 *k = (*k)->acceptMutator(*visitor); 56 if ( caseClause ) { 57 // once a label is seen, it's no longer a valid fallthrough target 58 for ( Label & l : (*k)->labels ) { 59 fallthroughLabels.erase( l ); 60 } 61 } 62 63 // aggregate errors since the PassVisitor mutate loop was unrollled 64 try { 65 *k = (*k)->acceptMutator(*visitor); 66 } catch( SemanticErrorException &e ) { 67 errors.append( e ); 68 } 49 69 50 70 if ( ! get_breakLabel().empty() ) { … … 55 75 } // if 56 76 } // for 77 78 if ( ! errors.isEmpty() ) { 79 throw errors; 80 } 57 81 } 58 82 … … 63 87 Label brkLabel = generator->newLabel("blockBreak", cmpndStmt); 64 88 enclosingControlStructures.push_back( Entry( cmpndStmt, brkLabel ) ); 89 GuardAction( [this]() { enclosingControlStructures.pop_back(); } ); 65 90 } // if 66 91 … … 74 99 set_breakLabel( enclosingControlStructures.back().useBreakExit() ); 75 100 } // if 76 enclosingControlStructures.pop_back();77 101 } // if 78 102 } … … 112 136 if ( isContinue ) { 113 137 // continue target is outermost loop 114 targetEntry = std::find_if( enclosingControlStructures.rbegin(), enclosingControlStructures.rend(), [](Entry &e) { return isLoop( e.get_controlStructure() ); });138 targetEntry = std::find_if( enclosingControlStructures.rbegin(), enclosingControlStructures.rend(), isContinueTarget ); 115 139 } else { 116 // break target is out mostcontrol structure117 if ( enclosingControlStructures.empty() ) SemanticError( branchStmt->location, "'break' outside a loop, switch, or labelled block" );118 targetEntry = enclosingControlStructures.rbegin();140 // break target is outermost loop, switch, or block control structure 141 if ( enclosingControlStructures.empty() ) SemanticError( branchStmt->location, "'break' outside a loop, 'switch', or labelled block" ); 142 targetEntry = std::find_if( enclosingControlStructures.rbegin(), enclosingControlStructures.rend(), isBreakTarget ); 119 143 } // if 120 144 } else { … … 123 147 } // if 124 148 // ensure that selected target is valid 125 if ( targetEntry == enclosingControlStructures.rend() || (isContinue && ! is Loop( targetEntry->get_controlStructure()) ) ) {149 if ( targetEntry == enclosingControlStructures.rend() || (isContinue && ! isContinueTarget( *targetEntry ) ) ) { 126 150 SemanticError( branchStmt->location, toString( (isContinue ? "'continue'" : "'break'"), " target must be an enclosing ", (isContinue ? "loop: " : "control structure: "), originalTarget ) ); 127 151 } // if 128 152 break; 129 153 } 154 case BranchStmt::FallThrough: 155 targetEntry = std::find_if( enclosingControlStructures.rbegin(), enclosingControlStructures.rend(), isFallthroughTarget ); 156 // ensure that selected target is valid 157 if ( targetEntry == enclosingControlStructures.rend() ) { 158 SemanticError( branchStmt->location, "'fallthrough' must be enclosed in a 'switch' or 'choose'" ); 159 } // if 160 if ( branchStmt->get_target() != "" ) { 161 // labelled fallthrough 162 // target must be in the set of valid fallthrough labels 163 if ( ! fallthroughLabels.count( branchStmt->get_target() ) ) { 164 SemanticError( branchStmt->location, toString( "'fallthrough' target must be a later case statement: ", originalTarget ) ); 165 } 166 return new BranchStmt( originalTarget, BranchStmt::Goto ); 167 } 168 break; 169 case BranchStmt::FallThroughDefault: { 170 // fallthrough default 171 targetEntry = std::find_if( enclosingControlStructures.rbegin(), enclosingControlStructures.rend(), isFallthroughDefaultTarget ); 172 173 // ensure that fallthrough is within a switch or choose 174 if ( targetEntry == enclosingControlStructures.rend() ) { 175 SemanticError( branchStmt->location, "'fallthrough' must be enclosed in a 'switch' or 'choose'" ); 176 } // if 177 178 // ensure that switch or choose has a default clause 179 SwitchStmt * switchStmt = strict_dynamic_cast< SwitchStmt * >( targetEntry->get_controlStructure() ); 180 bool foundDefault = false; 181 for ( Statement * stmt : switchStmt->statements ) { 182 CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt ); 183 if ( caseStmt->isDefault() ) { 184 foundDefault = true; 185 } // if 186 } // for 187 if ( ! foundDefault ) { 188 SemanticError( branchStmt->location, "'fallthrough default' must be enclosed in a 'switch' or 'choose' control structure with a 'default' clause" ); 189 } 190 break; 191 } 192 130 193 default: 131 194 assert( false ); … … 142 205 assert( targetEntry->useContExit() != ""); 143 206 exitLabel = targetEntry->useContExit(); 207 break; 208 case BranchStmt::FallThrough: 209 assert( targetEntry->useFallExit() != ""); 210 exitLabel = targetEntry->useFallExit(); 211 break; 212 case BranchStmt::FallThroughDefault: 213 assert( targetEntry->useFallDefaultExit() != ""); 214 exitLabel = targetEntry->useFallDefaultExit(); 215 // check that fallthrough default comes before the default clause 216 if ( ! targetEntry->isFallDefaultValid() ) { 217 SemanticError( branchStmt->location, "'fallthrough default' must precede the 'default' clause" ); 218 } 144 219 break; 145 220 default: … … 187 262 Label contLabel = generator->newLabel("loopContinue", loopStmt); 188 263 enclosingControlStructures.push_back( Entry( loopStmt, brkLabel, contLabel ) ); 264 GuardAction( [this]() { enclosingControlStructures.pop_back(); } ); 189 265 } 190 266 … … 197 273 198 274 // this will take the necessary steps to add definitions of the previous two labels, if they are used. 199 loopStmt->set_body( mutateLoop( loopStmt->get_body(), e ) ); 200 enclosingControlStructures.pop_back(); 275 loopStmt->body = mutateLoop( loopStmt->get_body(), e ); 201 276 return loopStmt; 202 277 } … … 224 299 Label brkLabel = generator->newLabel("blockBreak", ifStmt); 225 300 enclosingControlStructures.push_back( Entry( ifStmt, brkLabel ) ); 301 GuardAction( [this]() { enclosingControlStructures.pop_back(); } ); 226 302 } // if 227 303 } … … 233 309 set_breakLabel( enclosingControlStructures.back().useBreakExit() ); 234 310 } // if 235 enclosingControlStructures.pop_back();236 311 } // if 237 312 return ifStmt; … … 240 315 void MLEMutator::premutate( CaseStmt *caseStmt ) { 241 316 visit_children = false; 317 318 // mark default as seen before visiting its statements to catch default loops 319 if ( caseStmt->isDefault() ) { 320 enclosingControlStructures.back().seenDefault(); 321 } // if 322 242 323 caseStmt->condition = maybeMutate( caseStmt->condition, *visitor ); 243 fixBlock( caseStmt->stmts ); 324 Label fallLabel = generator->newLabel( "fallThrough", caseStmt ); 325 { 326 // ensure that stack isn't corrupted by exceptions in fixBlock 327 auto guard = makeFuncGuard( [&]() { enclosingControlStructures.push_back( Entry( caseStmt, fallLabel ) ); }, [this]() { enclosingControlStructures.pop_back(); } ); 328 329 // empty case statement 330 if( ! caseStmt->stmts.empty() ) { 331 // the parser ensures that all statements in a case are grouped into a block 332 CompoundStmt * block = strict_dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() ); 333 fixBlock( block->kids, true ); 334 335 // add fallthrough label if necessary 336 assert( ! enclosingControlStructures.empty() ); 337 if ( enclosingControlStructures.back().isFallUsed() ) { 338 std::list<Label> ls{ enclosingControlStructures.back().useFallExit() }; 339 caseStmt->stmts.push_back( new NullStmt( ls ) ); 340 } // if 341 } // if 342 } 343 assert( ! enclosingControlStructures.empty() ); 344 assertf( dynamic_cast<SwitchStmt *>( enclosingControlStructures.back().get_controlStructure() ), "Control structure enclosing a case clause must be a switch, but is: %s", toCString( enclosingControlStructures.back().get_controlStructure() ) ); 345 if ( caseStmt->isDefault() ) { 346 if ( enclosingControlStructures.back().isFallDefaultUsed() ) { 347 // add fallthrough default label if necessary 348 std::list<Label> ls{ enclosingControlStructures.back().useFallDefaultExit() }; 349 caseStmt->stmts.push_front( new NullStmt( ls ) ); 350 } // if 351 } // if 244 352 } 245 353 … … 247 355 // generate a label for breaking out of a labeled switch 248 356 Label brkLabel = generator->newLabel("switchBreak", switchStmt); 249 enclosingControlStructures.push_back( Entry(switchStmt, brkLabel) ); 357 auto it = std::find_if( switchStmt->statements.rbegin(), switchStmt->statements.rend(), [](Statement * stmt) { 358 CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt ); 359 return caseStmt->isDefault(); 360 }); 361 CaseStmt * defaultCase = it != switchStmt->statements.rend() ? strict_dynamic_cast<CaseStmt *>( *it ) : nullptr; 362 Label fallDefaultLabel = defaultCase ? generator->newLabel( "fallThroughDefault", defaultCase ) : ""; 363 enclosingControlStructures.push_back( Entry(switchStmt, brkLabel, fallDefaultLabel) ); 364 GuardAction( [this]() { enclosingControlStructures.pop_back(); } ); 365 366 // Collect valid labels for fallthrough. This is initially all labels at the same level as a case statement. 367 // As labels are seen during traversal, they are removed, since fallthrough is not allowed to jump backwards. 368 for ( Statement * stmt : switchStmt->statements ) { 369 CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt ); 370 if ( caseStmt->stmts.empty() ) continue; 371 CompoundStmt * block = dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() ); 372 for ( Statement * stmt : block->kids ) { 373 for ( Label & l : stmt->labels ) { 374 fallthroughLabels.insert( l ); 375 } 376 } 377 } 250 378 } 251 379 … … 272 400 273 401 assert ( enclosingControlStructures.back() == switchStmt ); 274 enclosingControlStructures.pop_back();275 402 return switchStmt; 276 403 } -
src/ControlStruct/MLEMutator.h
rb2fe1c9 r32cab5b 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Jul 22 09:19:59 201713 // Update Count : 3512 // Last Modified On : Thu Mar 8 16:42:32 2018 13 // Update Count : 41 14 14 // 15 15 … … 19 19 #include <map> // for map 20 20 #include <string> // for string 21 #include <set> // for unordered_set 21 22 22 23 #include "Common/PassVisitor.h" … … 29 30 class LabelGenerator; 30 31 31 class MLEMutator : public WithVisitorRef<MLEMutator>, public WithShortCircuiting { 32 class MLEMutator : public WithVisitorRef<MLEMutator>, public WithShortCircuiting, public WithGuards { 33 public: 32 34 class Entry; 33 34 public:35 35 MLEMutator( std::map<Label, Statement *> *t, LabelGenerator *gen = 0 ) : targetTable( t ), breakLabel(std::string("")), generator( gen ) {} 36 36 ~MLEMutator(); … … 52 52 Label &get_breakLabel() { return breakLabel; } 53 53 void set_breakLabel( Label newValue ) { breakLabel = newValue; } 54 private: 54 55 55 class Entry { 56 56 public: 57 explicit Entry( Statement *_loop, Label _breakExit, Label _contExit = Label("") ) : 58 loop( _loop ), breakExit( _breakExit ), contExit( _contExit ), breakUsed(false), contUsed(false) {} 57 // specialized constructors for each combination of statement with labelled break/continue/fallthrough that is valid to cleanup the use cases 58 explicit Entry( ForStmt *stmt, Label breakExit, Label contExit ) : 59 stmt( stmt ), breakExit( breakExit ), contExit( contExit ) {} 59 60 60 bool operator==( const Statement *stmt ) { return loop == stmt; }61 bool operator!=( const Statement *stmt ) { return loop != stmt;}61 explicit Entry( WhileStmt *stmt, Label breakExit, Label contExit ) : 62 stmt( stmt ), breakExit( breakExit ), contExit( contExit ) {} 62 63 63 bool operator==( const Entry &other ) { return loop == other.get_controlStructure(); } 64 explicit Entry( CompoundStmt *stmt, Label breakExit ) : 65 stmt( stmt ), breakExit( breakExit ) {} 64 66 65 Statement *get_controlStructure() const { return loop; } 67 explicit Entry( IfStmt *stmt, Label breakExit ) : 68 stmt( stmt ), breakExit( breakExit ) {} 69 70 explicit Entry( CaseStmt *stmt, Label fallExit ) : 71 stmt( stmt ), fallExit( fallExit ) {} 72 73 explicit Entry( SwitchStmt *stmt, Label breakExit, Label fallDefaultExit ) : 74 stmt( stmt ), breakExit( breakExit ), fallDefaultExit( fallDefaultExit ) {} 75 76 bool operator==( const Statement *other ) { return stmt == other; } 77 bool operator!=( const Statement *other ) { return stmt != other; } 78 79 bool operator==( const Entry &other ) { return stmt == other.get_controlStructure(); } 80 81 Statement *get_controlStructure() const { return stmt; } 66 82 67 83 Label useContExit() { contUsed = true; return contExit; } 68 84 Label useBreakExit() { breakUsed = true; return breakExit; } 85 Label useFallExit() { fallUsed = true; return fallExit; } 86 Label useFallDefaultExit() { fallDefaultUsed = true; return fallDefaultExit; } 69 87 70 88 bool isContUsed() const { return contUsed; } 71 89 bool isBreakUsed() const { return breakUsed; } 90 bool isFallUsed() const { return fallUsed; } 91 bool isFallDefaultUsed() const { return fallDefaultUsed; } 92 void seenDefault() { fallDefaultValid = false; } 93 bool isFallDefaultValid() const { return fallDefaultValid; } 72 94 private: 73 Statement *loop; 74 Label breakExit, contExit; 75 bool breakUsed, contUsed; 95 Statement *stmt; 96 Label breakExit, contExit, fallExit, fallDefaultExit; 97 bool breakUsed = false, contUsed = false, fallUsed = false, fallDefaultUsed = false; 98 bool fallDefaultValid = true; 76 99 }; 77 100 101 private: 78 102 std::map< Label, Statement * > *targetTable; 103 std::set< Label > fallthroughLabels; 79 104 std::list< Entry > enclosingControlStructures; 80 105 Label breakLabel; … … 87 112 Statement * posthandleLoopStmt( LoopClass * loopStmt ); 88 113 89 void fixBlock( std::list< Statement * > &kids );114 void fixBlock( std::list< Statement * > &kids, bool caseClause = false ); 90 115 }; 91 116 } // namespace ControlStruct -
src/GenPoly/GenPoly.cc
rb2fe1c9 r32cab5b 100 100 if ( dynamic_cast< TypeInstType * >( type ) ) { 101 101 return type; 102 } else if ( ArrayType * arrayType = dynamic_cast< ArrayType * >( type ) ) { 103 return isPolyType( arrayType->base, env ); 102 104 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { 103 105 if ( hasPolyParams( structType->get_parameters(), env ) ) return type; … … 115 117 return type; 116 118 } 119 } else if ( ArrayType * arrayType = dynamic_cast< ArrayType * >( type ) ) { 120 return isPolyType( arrayType->base, tyVars, env ); 117 121 } else if ( StructInstType *structType = dynamic_cast< StructInstType* >( type ) ) { 118 122 if ( hasPolyParams( structType->get_parameters(), tyVars, env ) ) return type; -
src/GenPoly/Lvalue.cc
rb2fe1c9 r32cab5b 45 45 Expression * mkDeref( Expression * arg ) { 46 46 if ( SymTab::dereferenceOperator ) { 47 // note: reference depth can be arbitrarily deep here, so peel off the outermost pointer/reference, not just pointer because they are effecitvely equivalent in this pass 47 48 VariableExpr * deref = new VariableExpr( SymTab::dereferenceOperator ); 48 49 deref->result = new PointerType( Type::Qualifiers(), deref->result ); … … 59 60 } 60 61 61 struct ReferenceConversions final {62 struct ReferenceConversions final : public WithStmtsToAdd { 62 63 Expression * postmutate( CastExpr * castExpr ); 63 64 Expression * postmutate( AddressExpr * addrExpr ); … … 114 115 } 115 116 116 void convertLvalue( std::list< Declaration* > & translationUnit ) {117 void convertLvalue( std::list< Declaration* > & translationUnit ) { 117 118 PassVisitor<ReferenceConversions> refCvt; 118 119 PassVisitor<ReferenceTypeElimination> elim; … … 150 151 // use type of return variable rather than expr result type, since it may have been changed to a pointer type 151 152 FunctionType * ftype = GenPoly::getFunctionType( func->get_type() ); 152 Type * ret = ftype-> get_returnVals().empty() ? nullptr : ftype->get_returnVals().front()->get_type();153 return func-> get_linkage()== LinkageSpec::Intrinsic && dynamic_cast<ReferenceType *>( ret );153 Type * ret = ftype->returnVals.empty() ? nullptr : ftype->returnVals.front()->get_type(); 154 return func->linkage == LinkageSpec::Intrinsic && dynamic_cast<ReferenceType *>( ret ); 154 155 } 155 156 } … … 160 161 if ( isIntrinsicReference( appExpr ) ) { 161 162 // eliminate reference types from intrinsic applications - now they return lvalues 162 Type * result = appExpr-> get_result();163 appExpr-> set_result( result->stripReferences()->clone());164 appExpr-> get_result()->set_lvalue( true );163 Type * result = appExpr->result; 164 appExpr->result = result->stripReferences()->clone(); 165 appExpr->result->set_lvalue( true ); 165 166 if ( ! inIntrinsic ) { 166 167 // when not in an intrinsic function, add a cast to 167 168 // don't add cast when in an intrinsic function, since they already have the cast 168 169 Expression * ret = new CastExpr( appExpr, result ); 169 ret->set_env( appExpr->get_env() ); 170 appExpr->set_env( nullptr ); 170 std::swap( ret->env, appExpr->env ); 171 171 return ret; 172 172 } … … 187 187 assertf( ftype, "Function declaration does not have function type." ); 188 188 // can be of differing lengths only when function is variadic 189 assertf( ftype-> get_parameters().size() == appExpr->get_args().size() || ftype->get_isVarArgs(), "ApplicationExpr args do not match formal parameter type." );189 assertf( ftype->parameters.size() == appExpr->args.size() || ftype->isVarArgs, "ApplicationExpr args do not match formal parameter type." ); 190 190 191 191 192 192 unsigned int i = 0; 193 const unsigned int end = ftype-> get_parameters().size();194 for ( auto p : unsafe_group_iterate( appExpr-> get_args(), ftype->get_parameters()) ) {193 const unsigned int end = ftype->parameters.size(); 194 for ( auto p : unsafe_group_iterate( appExpr->args, ftype->parameters ) ) { 195 195 if (i == end) break; 196 196 Expression *& arg = std::get<0>( p ); … … 198 198 PRINT( 199 199 std::cerr << "pair<0>: " << arg << std::endl; 200 std::cerr << " -- " << arg->result << std::endl; 200 201 std::cerr << "pair<1>: " << formal << std::endl; 201 202 ) 202 203 if ( dynamic_cast<ReferenceType*>( formal ) ) { 203 if ( isIntrinsicReference( arg ) ) { // do not combine conditions, because that changes the meaning of the else if 204 if ( function->get_linkage() != LinkageSpec::Intrinsic ) { // intrinsic functions that turn pointers into references 205 // if argument is dereference or array subscript, the result isn't REALLY a reference, so it's not necessary to fix the argument 206 PRINT( 207 std::cerr << "===is intrinsic arg in non-intrinsic call - adding address" << std::endl; 208 ) 209 arg = new AddressExpr( arg ); 210 } 211 } else if ( function->get_linkage() == LinkageSpec::Intrinsic ) { 212 // std::cerr << "===adding deref to arg" << std::endl; 213 // if the parameter is a reference, add a dereference to the reference-typed argument. 214 Type * baseType = InitTweak::getPointerBase( arg->get_result() ); 215 assertf( baseType, "parameter is reference, arg must be pointer or reference: %s", toString( arg->get_result() ).c_str() ); 204 PRINT( 205 std::cerr << "===formal is reference" << std::endl; 206 ) 207 // TODO: it's likely that the second condition should be ... && ! isIntrinsicReference( arg ), but this requires investigation. 208 if ( function->get_linkage() != LinkageSpec::Intrinsic && isIntrinsicReference( arg ) ) { 209 // if argument is dereference or array subscript, the result isn't REALLY a reference, but non-intrinsic functions expect a reference: take address 210 PRINT( 211 std::cerr << "===is intrinsic arg in non-intrinsic call - adding address" << std::endl; 212 ) 213 arg = new AddressExpr( arg ); 214 } else if ( function->get_linkage() == LinkageSpec::Intrinsic && arg->result->referenceDepth() != 0 ) { 215 // argument is a 'real' reference, but function expects a C lvalue: add a dereference to the reference-typed argument 216 PRINT( 217 std::cerr << "===is non-intrinsic arg in intrinsic call - adding deref to arg" << std::endl; 218 ) 219 Type * baseType = InitTweak::getPointerBase( arg->result ); 220 assertf( baseType, "parameter is reference, arg must be pointer or reference: %s", toString( arg->result ).c_str() ); 216 221 PointerType * ptrType = new PointerType( Type::Qualifiers(), baseType->clone() ); 217 delete arg-> get_result();222 delete arg->result; 218 223 arg->set_result( ptrType ); 219 224 arg = mkDeref( arg ); 225 assertf( arg->result->referenceDepth() == 0, "Reference types should have been eliminated from intrinsic function calls, but weren't: %s", toCString( arg->result ) ); 220 226 } 221 227 } … … 249 255 Expression * AddrRef::postmutate( AddressExpr * addrExpr ) { 250 256 if ( refDepth == 0 ) { 251 if ( ! isIntrinsicReference( addrExpr-> get_arg()) ) {257 if ( ! isIntrinsicReference( addrExpr->arg ) ) { 252 258 // try to avoid ?[?] 253 refDepth = addrExpr-> get_arg()->get_result()->referenceDepth();259 refDepth = addrExpr->arg->result->referenceDepth(); 254 260 } 255 261 } … … 280 286 // pointer casts in the right places. 281 287 282 // conversion to reference type 283 if ( ReferenceType * refType = dynamic_cast< ReferenceType * >( castExpr->get_result() ) ) { 284 (void)refType; 285 if ( ReferenceType * otherRef = dynamic_cast< ReferenceType * >( castExpr->get_arg()->get_result() ) ) { 286 // nothing to do if casting from reference to reference. 287 (void)otherRef; 288 PRINT( std::cerr << "convert reference to reference -- nop" << std::endl; ) 289 if ( isIntrinsicReference( castExpr->get_arg() ) ) { 290 Expression * callExpr = castExpr->get_arg(); 291 PRINT( 292 std::cerr << "but arg is deref -- &" << std::endl; 293 std::cerr << callExpr << std::endl; 294 ) 295 callExpr = new AddressExpr( callExpr ); // this doesn't work properly for multiple casts 296 delete callExpr->get_result(); 297 callExpr->set_result( refType->clone() ); 298 // move environment out to new top-level 299 callExpr->set_env( castExpr->get_env() ); 300 castExpr->set_arg( nullptr ); 301 castExpr->set_env( nullptr ); 302 delete castExpr; 303 return callExpr; 304 } 305 int depth1 = refType->referenceDepth(); 306 int depth2 = otherRef->referenceDepth(); 307 int diff = depth1-depth2; 308 if ( diff == 0 ) { 309 // conversion between references of the same depth 310 assertf( depth1 == depth2, "non-intrinsic reference with cast of reference to reference not yet supported: %d %d %s", depth1, depth2, toString( castExpr ).c_str() ); 311 PRINT( std::cerr << castExpr << std::endl; ) 312 return castExpr; 313 } else if ( diff < 0 ) { 314 // conversion from reference to reference with less depth (e.g. int && -> int &): add dereferences 315 Expression * ret = castExpr->arg; 316 for ( int i = 0; i < diff; ++i ) { 317 ret = mkDeref( ret ); 318 } 319 ret->env = castExpr->env; 320 delete ret->result; 321 ret->result = castExpr->result; 322 ret->result->set_lvalue( true ); // ensure result is lvalue 323 castExpr->env = nullptr; 324 castExpr->arg = nullptr; 325 castExpr->result = nullptr; 326 delete castExpr; 327 return ret; 328 } else if ( diff > 0 ) { 329 // conversion from reference to reference with more depth (e.g. int & -> int &&): add address-of 330 Expression * ret = castExpr->arg; 331 for ( int i = 0; i < diff; ++i ) { 332 ret = new AddressExpr( ret ); 333 } 334 ret->env = castExpr->env; 335 delete ret->result; 336 ret->result = castExpr->result; 337 castExpr->env = nullptr; 338 castExpr->arg = nullptr; 339 castExpr->result = nullptr; 340 delete castExpr; 341 return ret; 342 } 343 344 assertf( depth1 == depth2, "non-intrinsic reference with cast of reference to reference not yet supported: %d %d %s", depth1, depth2, toString( castExpr ).c_str() ); 345 PRINT( std::cerr << castExpr << std::endl; ) 288 // Note: reference depth difference is the determining factor in what code is run, rather than whether something is 289 // reference type or not, since conversion still needs to occur when both types are references that differ in depth. 290 291 Type * destType = castExpr->result; 292 Type * srcType = castExpr->arg->result; 293 int depth1 = destType->referenceDepth(); 294 int depth2 = srcType->referenceDepth(); 295 int diff = depth1 - depth2; 296 297 if ( diff > 0 && ! srcType->get_lvalue() ) { 298 // rvalue to reference conversion -- introduce temporary 299 // know that reference depth of cast argument is 0, need to introduce n temporaries for reference depth of n, e.g. 300 // (int &&&)3; 301 // becomes 302 // int __ref_tmp_0 = 3; 303 // int & __ref_tmp_1 = _&_ref_tmp_0; 304 // int && __ref_tmp_2 = &__ref_tmp_1; 305 // &__ref_tmp_2; 306 // the last & comes from the remaining reference conversion code 307 SemanticWarning( castExpr->arg->location, Warning::RvalueToReferenceConversion, toCString( castExpr->arg ) ); 308 309 static UniqueName tempNamer( "__ref_tmp_" ); 310 ObjectDecl * temp = ObjectDecl::newObject( tempNamer.newName(), castExpr->arg->result->clone(), new SingleInit( castExpr->arg ) ); 311 PRINT( std::cerr << "made temp: " << temp << std::endl; ) 312 stmtsToAddBefore.push_back( new DeclStmt( temp ) ); 313 for ( int i = 0; i < depth1-1; i++ ) { // xxx - maybe this should be diff-1? check how this works with reference type for srcType 314 ObjectDecl * newTemp = ObjectDecl::newObject( tempNamer.newName(), new ReferenceType( Type::Qualifiers(), temp->type->clone() ), new SingleInit( new AddressExpr( new VariableExpr( temp ) ) ) ); 315 PRINT( std::cerr << "made temp" << i << ": " << newTemp << std::endl; ) 316 stmtsToAddBefore.push_back( new DeclStmt( newTemp ) ); 317 temp = newTemp; 318 } 319 // update diff so that remaining code works out correctly 320 castExpr->arg = new VariableExpr( temp ); 321 PRINT( std::cerr << "update cast to: " << castExpr << std::endl; ) 322 srcType = castExpr->arg->result; 323 depth2 = srcType->referenceDepth(); 324 diff = depth1 - depth2; 325 assert( diff == 1 ); 326 } 327 328 // handle conversion between different depths 329 PRINT ( 330 if ( depth1 || depth2 ) { 331 std::cerr << "destType: " << destType << " / srcType: " << srcType << std::endl; 332 std::cerr << "depth: " << depth1 << " / " << depth2 << std::endl; 333 } 334 ) 335 if ( diff > 0 ) { 336 // conversion to type with more depth (e.g. int & -> int &&): add address-of for each level of difference 337 Expression * ret = castExpr->arg; 338 for ( int i = 0; i < diff; ++i ) { 339 ret = new AddressExpr( ret ); 340 } 341 if ( srcType->get_lvalue() && srcType->get_qualifiers() != strict_dynamic_cast<ReferenceType *>( destType )->base->get_qualifiers() ) { 342 // must keep cast if cast-to type is different from the actual type 343 castExpr->arg = ret; 346 344 return castExpr; 347 } else if ( castExpr->arg->result->get_lvalue() ) { 348 // conversion from lvalue to reference 349 // xxx - keep cast, but turn into pointer cast?? 350 // xxx - memory 351 PRINT( 352 std::cerr << "convert lvalue to reference -- &" << std::endl; 353 std::cerr << castExpr->arg << std::endl; 354 ) 355 AddressExpr * ret = new AddressExpr( castExpr->arg ); 356 if ( refType->base->get_qualifiers() != castExpr->arg->result->get_qualifiers() ) { 357 // must keep cast if cast-to type is different from the actual type 358 castExpr->arg = ret; 359 return castExpr; 360 } 361 ret->env = castExpr->env; 362 delete ret->result; 363 ret->result = castExpr->result; 364 castExpr->env = nullptr; 365 castExpr->arg = nullptr; 366 castExpr->result = nullptr; 367 delete castExpr; 368 return ret; 369 } else { 370 // rvalue to reference conversion -- introduce temporary 371 } 372 assertf( false, "Only conversions to reference from lvalue are currently supported: %s", toString( castExpr ).c_str() ); 373 } else if ( ReferenceType * refType = dynamic_cast< ReferenceType * >( castExpr->arg->result ) ) { 374 (void)refType; 375 // conversion from reference to rvalue 376 PRINT( 377 std::cerr << "convert reference to rvalue -- *" << std::endl; 378 std::cerr << "was = " << castExpr << std::endl; 379 ) 345 } 346 ret->env = castExpr->env; 347 delete ret->result; 348 ret->result = castExpr->result; 349 castExpr->env = nullptr; 350 castExpr->arg = nullptr; 351 castExpr->result = nullptr; 352 delete castExpr; 353 return ret; 354 } else if ( diff < 0 ) { 355 // conversion to type with less depth (e.g. int && -> int &): add dereferences for each level of difference 356 diff = -diff; // care only about magnitude now 380 357 Expression * ret = castExpr->arg; 381 TypeSubstitution * env = castExpr->env; 382 castExpr->set_env( nullptr ); 383 if ( ! isIntrinsicReference( ret ) ) { 384 // dereference if not already dereferenced 358 for ( int i = 0; i < diff; ++i ) { 385 359 ret = mkDeref( ret ); 386 360 } 387 if ( ResolvExpr::typesCompatibleIgnoreQualifiers( castExpr->result, castExpr->arg->result->stripReferences(), SymTab::Indexer() ) ) { 388 // can remove cast if types are compatible, changing expression type to value type 389 ret->result = castExpr->result->clone(); 390 ret->result->set_lvalue( true ); // ensure result is lvalue 391 castExpr->arg = nullptr; 392 delete castExpr; 393 } else { 361 if ( ! ResolvExpr::typesCompatibleIgnoreQualifiers( destType->stripReferences(), srcType->stripReferences(), SymTab::Indexer() ) ) { 394 362 // must keep cast if types are different 395 363 castExpr->arg = ret; 396 ret = castExpr; 397 } 398 ret->set_env( env ); 399 PRINT( std::cerr << "now: " << ret << std::endl; ) 400 return ret; 401 } 402 return castExpr; 364 return castExpr; 365 } 366 ret->env = castExpr->env; 367 delete ret->result; 368 ret->result = castExpr->result; 369 ret->result->set_lvalue( true ); // ensure result is lvalue 370 castExpr->env = nullptr; 371 castExpr->arg = nullptr; 372 castExpr->result = nullptr; 373 delete castExpr; 374 return ret; 375 } else { 376 assert( diff == 0 ); 377 // conversion between references of the same depth 378 return castExpr; 379 } 403 380 } 404 381 405 382 Type * ReferenceTypeElimination::postmutate( ReferenceType * refType ) { 406 Type * base = refType-> get_base();383 Type * base = refType->base; 407 384 Type::Qualifiers qualifiers = refType->get_qualifiers(); 408 refType-> set_base( nullptr );385 refType->base = nullptr; 409 386 delete refType; 410 387 return new PointerType( qualifiers, base ); … … 414 391 Expression * GeneralizedLvalue::applyTransformation( Expression * expr, Expression * arg, Func mkExpr ) { 415 392 if ( CommaExpr * commaExpr = dynamic_cast< CommaExpr * >( arg ) ) { 416 Expression * arg1 = commaExpr-> get_arg1()->clone();417 Expression * arg2 = commaExpr-> get_arg2()->clone();393 Expression * arg1 = commaExpr->arg1->clone(); 394 Expression * arg2 = commaExpr->arg2->clone(); 418 395 Expression * ret = new CommaExpr( arg1, mkExpr( arg2 )->acceptMutator( *visitor ) ); 419 ret-> set_env( expr->get_env() );420 expr-> set_env( nullptr );396 ret->env = expr->env; 397 expr->env = nullptr; 421 398 delete expr; 422 399 return ret; 423 400 } else if ( ConditionalExpr * condExpr = dynamic_cast< ConditionalExpr * >( arg ) ) { 424 Expression * arg1 = condExpr-> get_arg1()->clone();425 Expression * arg2 = condExpr-> get_arg2()->clone();426 Expression * arg3 = condExpr-> get_arg3()->clone();401 Expression * arg1 = condExpr->arg1->clone(); 402 Expression * arg2 = condExpr->arg2->clone(); 403 Expression * arg3 = condExpr->arg3->clone(); 427 404 ConditionalExpr * ret = new ConditionalExpr( arg1, mkExpr( arg2 )->acceptMutator( *visitor ), mkExpr( arg3 )->acceptMutator( *visitor ) ); 428 ret-> set_env( expr->get_env() );429 expr-> set_env( nullptr );405 ret->env = expr->env; 406 expr->env = nullptr; 430 407 delete expr; 431 408 … … 436 413 AssertionSet needAssertions, haveAssertions; 437 414 OpenVarSet openVars; 438 unify( ret-> get_arg2()->get_result(), ret->get_arg3()->get_result(), newEnv, needAssertions, haveAssertions, openVars, SymTab::Indexer(), commonType );439 ret-> set_result( commonType ? commonType : ret->get_arg2()->get_result()->clone());415 unify( ret->arg2->result, ret->arg3->result, newEnv, needAssertions, haveAssertions, openVars, SymTab::Indexer(), commonType ); 416 ret->result = commonType ? commonType : ret->arg2->result->clone(); 440 417 return ret; 441 418 } … … 444 421 445 422 Expression * GeneralizedLvalue::postmutate( MemberExpr * memExpr ) { 446 return applyTransformation( memExpr, memExpr-> get_aggregate(), [=]( Expression * aggr ) { return new MemberExpr( memExpr->get_member(), aggr ); } );423 return applyTransformation( memExpr, memExpr->aggregate, [=]( Expression * aggr ) { return new MemberExpr( memExpr->member, aggr ); } ); 447 424 } 448 425 449 426 Expression * GeneralizedLvalue::postmutate( AddressExpr * addrExpr ) { 450 return applyTransformation( addrExpr, addrExpr-> get_arg(), []( Expression * arg ) { return new AddressExpr( arg ); } );427 return applyTransformation( addrExpr, addrExpr->arg, []( Expression * arg ) { return new AddressExpr( arg ); } ); 451 428 } 452 429 453 430 Expression * CollapseAddrDeref::postmutate( AddressExpr * addrExpr ) { 454 Expression * arg = addrExpr-> get_arg();431 Expression * arg = addrExpr->arg; 455 432 if ( isIntrinsicReference( arg ) ) { 456 433 std::string fname = InitTweak::getFunctionName( arg ); … … 458 435 Expression *& arg0 = InitTweak::getCallArg( arg, 0 ); 459 436 Expression * ret = arg0; 460 ret->set_env( addrExpr-> get_env());437 ret->set_env( addrExpr->env ); 461 438 arg0 = nullptr; 462 addrExpr-> set_env( nullptr );439 addrExpr->env = nullptr; 463 440 delete addrExpr; 464 441 return ret; … … 487 464 // } 488 465 if ( AddressExpr * addrExpr = dynamic_cast< AddressExpr * >( arg ) ) { 489 Expression * ret = addrExpr-> get_arg();490 ret-> set_env( appExpr->get_env() );491 addrExpr-> set_arg( nullptr );492 appExpr-> set_env( nullptr );466 Expression * ret = addrExpr->arg; 467 ret->env = appExpr->env; 468 addrExpr->arg = nullptr; 469 appExpr->env = nullptr; 493 470 delete appExpr; 494 471 return ret; -
src/Makefile.in
rb2fe1c9 r32cab5b 249 249 SynTree/driver_cfa_cpp-TypeSubstitution.$(OBJEXT) \ 250 250 SynTree/driver_cfa_cpp-Attribute.$(OBJEXT) \ 251 SynTree/driver_cfa_cpp- VarExprReplacer.$(OBJEXT) \251 SynTree/driver_cfa_cpp-DeclReplacer.$(OBJEXT) \ 252 252 Tuples/driver_cfa_cpp-TupleAssignment.$(OBJEXT) \ 253 253 Tuples/driver_cfa_cpp-TupleExpansion.$(OBJEXT) \ … … 526 526 SynTree/NamedTypeDecl.cc SynTree/TypeDecl.cc \ 527 527 SynTree/Initializer.cc SynTree/TypeSubstitution.cc \ 528 SynTree/Attribute.cc SynTree/ VarExprReplacer.cc \528 SynTree/Attribute.cc SynTree/DeclReplacer.cc \ 529 529 Tuples/TupleAssignment.cc Tuples/TupleExpansion.cc \ 530 530 Tuples/Explode.cc Virtual/ExpandCasts.cc … … 912 912 SynTree/driver_cfa_cpp-Attribute.$(OBJEXT): SynTree/$(am__dirstamp) \ 913 913 SynTree/$(DEPDIR)/$(am__dirstamp) 914 SynTree/driver_cfa_cpp- VarExprReplacer.$(OBJEXT): \914 SynTree/driver_cfa_cpp-DeclReplacer.$(OBJEXT): \ 915 915 SynTree/$(am__dirstamp) SynTree/$(DEPDIR)/$(am__dirstamp) 916 916 Tuples/$(am__dirstamp): … … 1039 1039 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-CompoundStmt.Po@am__quote@ 1040 1040 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-Constant.Po@am__quote@ 1041 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Po@am__quote@ 1041 1042 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-DeclStmt.Po@am__quote@ 1042 1043 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-Declaration.Po@am__quote@ … … 1060 1061 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-TypeofType.Po@am__quote@ 1061 1062 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-VarArgsType.Po@am__quote@ 1062 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Po@am__quote@1063 1063 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-VoidType.Po@am__quote@ 1064 1064 @AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-ZeroOneType.Po@am__quote@ … … 2498 2498 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp-Attribute.obj `if test -f 'SynTree/Attribute.cc'; then $(CYGPATH_W) 'SynTree/Attribute.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/Attribute.cc'; fi` 2499 2499 2500 SynTree/driver_cfa_cpp- VarExprReplacer.o: SynTree/VarExprReplacer.cc2501 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SynTree/driver_cfa_cpp- VarExprReplacer.o -MD -MP -MF SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Tpo -c -o SynTree/driver_cfa_cpp-VarExprReplacer.o `test -f 'SynTree/VarExprReplacer.cc' || echo '$(srcdir)/'`SynTree/VarExprReplacer.cc2502 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SynTree/$(DEPDIR)/driver_cfa_cpp- VarExprReplacer.Tpo SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Po2503 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SynTree/ VarExprReplacer.cc' object='SynTree/driver_cfa_cpp-VarExprReplacer.o' libtool=no @AMDEPBACKSLASH@2504 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 2505 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp- VarExprReplacer.o `test -f 'SynTree/VarExprReplacer.cc' || echo '$(srcdir)/'`SynTree/VarExprReplacer.cc2506 2507 SynTree/driver_cfa_cpp- VarExprReplacer.obj: SynTree/VarExprReplacer.cc2508 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SynTree/driver_cfa_cpp- VarExprReplacer.obj -MD -MP -MF SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Tpo -c -o SynTree/driver_cfa_cpp-VarExprReplacer.obj `if test -f 'SynTree/VarExprReplacer.cc'; then $(CYGPATH_W) 'SynTree/VarExprReplacer.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/VarExprReplacer.cc'; fi`2509 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SynTree/$(DEPDIR)/driver_cfa_cpp- VarExprReplacer.Tpo SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Po2510 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SynTree/ VarExprReplacer.cc' object='SynTree/driver_cfa_cpp-VarExprReplacer.obj' libtool=no @AMDEPBACKSLASH@2511 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 2512 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp- VarExprReplacer.obj `if test -f 'SynTree/VarExprReplacer.cc'; then $(CYGPATH_W) 'SynTree/VarExprReplacer.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/VarExprReplacer.cc'; fi`2500 SynTree/driver_cfa_cpp-DeclReplacer.o: SynTree/DeclReplacer.cc 2501 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SynTree/driver_cfa_cpp-DeclReplacer.o -MD -MP -MF SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Tpo -c -o SynTree/driver_cfa_cpp-DeclReplacer.o `test -f 'SynTree/DeclReplacer.cc' || echo '$(srcdir)/'`SynTree/DeclReplacer.cc 2502 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Tpo SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Po 2503 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SynTree/DeclReplacer.cc' object='SynTree/driver_cfa_cpp-DeclReplacer.o' libtool=no @AMDEPBACKSLASH@ 2504 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 2505 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp-DeclReplacer.o `test -f 'SynTree/DeclReplacer.cc' || echo '$(srcdir)/'`SynTree/DeclReplacer.cc 2506 2507 SynTree/driver_cfa_cpp-DeclReplacer.obj: SynTree/DeclReplacer.cc 2508 @am__fastdepCXX_TRUE@ $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SynTree/driver_cfa_cpp-DeclReplacer.obj -MD -MP -MF SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Tpo -c -o SynTree/driver_cfa_cpp-DeclReplacer.obj `if test -f 'SynTree/DeclReplacer.cc'; then $(CYGPATH_W) 'SynTree/DeclReplacer.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/DeclReplacer.cc'; fi` 2509 @am__fastdepCXX_TRUE@ $(AM_V_at)$(am__mv) SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Tpo SynTree/$(DEPDIR)/driver_cfa_cpp-DeclReplacer.Po 2510 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ $(AM_V_CXX)source='SynTree/DeclReplacer.cc' object='SynTree/driver_cfa_cpp-DeclReplacer.obj' libtool=no @AMDEPBACKSLASH@ 2511 @AMDEP_TRUE@@am__fastdepCXX_FALSE@ DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 2512 @am__fastdepCXX_FALSE@ $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp-DeclReplacer.obj `if test -f 'SynTree/DeclReplacer.cc'; then $(CYGPATH_W) 'SynTree/DeclReplacer.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/DeclReplacer.cc'; fi` 2513 2513 2514 2514 Tuples/driver_cfa_cpp-TupleAssignment.o: Tuples/TupleAssignment.cc -
src/Parser/DeclarationNode.cc
rb2fe1c9 r32cab5b 71 71 attr.expr = nullptr; 72 72 attr.type = nullptr; 73 74 assert.condition = nullptr; 75 assert.message = nullptr; 73 76 } 74 77 … … 88 91 // asmName, no delete, passed to next stage 89 92 delete initializer; 93 94 delete assert.condition; 95 delete assert.message; 90 96 } 91 97 … … 117 123 newnode->attr.expr = maybeClone( attr.expr ); 118 124 newnode->attr.type = maybeClone( attr.type ); 125 126 newnode->assert.condition = maybeClone( assert.condition ); 127 newnode->assert.message = maybeClone( assert.message ); 119 128 return newnode; 120 129 } // DeclarationNode::clone … … 434 443 return newnode; 435 444 } 445 446 DeclarationNode * DeclarationNode::newStaticAssert( ExpressionNode * condition, Expression * message ) { 447 DeclarationNode * newnode = new DeclarationNode; 448 newnode->assert.condition = condition; 449 newnode->assert.message = message; 450 return newnode; 451 } 452 436 453 437 454 void appendError( string & dst, const string & src ) { … … 1052 1069 } // if 1053 1070 1071 if ( assert.condition ) { 1072 return new StaticAssertDecl( maybeBuild< Expression >( assert.condition ), strict_dynamic_cast< ConstantExpr * >( maybeClone( assert.message ) ) ); 1073 } 1074 1054 1075 // SUE's cannot have function specifiers, either 1055 1076 // -
src/Parser/ExpressionNode.cc
rb2fe1c9 r32cab5b 10 10 // Created On : Sat May 16 13:17:07 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Mar 3 18:22:33201813 // Update Count : 79612 // Last Modified On : Thu Mar 22 11:57:39 2018 13 // Update Count : 801 14 14 // 15 15 … … 94 94 } // checkLNInt 95 95 96 static void sepNumeric( string & str, string & units ) {97 string::size_type posn = str.find_first_of( "`" );98 if ( posn != string::npos ) {99 units = "?" + str.substr( posn ); // extract units100 str.erase( posn ); // remove units101 } // if102 } // sepNumeric103 104 96 Expression * build_constantInteger( string & str ) { 105 97 static const BasicType::Kind kind[2][6] = { … … 108 100 { BasicType::ShortUnsignedInt, BasicType::UnsignedChar, BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt, BasicType::UnsignedInt128, }, 109 101 }; 110 111 string units;112 sepNumeric( str, units ); // separate constant from units113 102 114 103 bool dec = true, Unsigned = false; // decimal, unsigned constant … … 232 221 } // if 233 222 CLEANUP: 234 if ( units.length() != 0 ) {235 ret = new UntypedExpr( new NameExpr( units ), { ret } );236 } // if237 223 238 224 delete &str; // created by lex … … 268 254 }; 269 255 270 string units;271 sepNumeric( str, units ); // separate constant from units272 273 256 bool complx = false; // real, complex 274 257 int size = 1; // 0 => float, 1 => double, 2 => long double … … 303 286 if ( lnth != -1 ) { // explicit length ? 304 287 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[complx][size] ) ); 305 } // if306 if ( units.length() != 0 ) {307 ret = new UntypedExpr( new NameExpr( units ), { ret } );308 288 } // if 309 289 -
src/Parser/ParseNode.h
rb2fe1c9 r32cab5b 246 246 static DeclarationNode * newAttribute( std::string *, ExpressionNode * expr = nullptr ); // gcc attributes 247 247 static DeclarationNode * newAsmStmt( StatementNode * stmt ); // gcc external asm statement 248 static DeclarationNode * newStaticAssert( ExpressionNode * condition, Expression * message ); 248 249 249 250 DeclarationNode(); … … 313 314 Attr_t attr; 314 315 316 struct StaticAssert_t { 317 ExpressionNode * condition; 318 Expression * message; 319 }; 320 StaticAssert_t assert; 321 315 322 BuiltinType builtin; 316 323 … … 392 399 393 400 Statement * build_if( IfCtl * ctl, StatementNode * then_stmt, StatementNode * else_stmt ); 394 Statement * build_switch( ExpressionNode * ctl, StatementNode * stmt );401 Statement * build_switch( bool isSwitch, ExpressionNode * ctl, StatementNode * stmt ); 395 402 Statement * build_case( ExpressionNode * ctl ); 396 403 Statement * build_default(); -
src/Parser/StatementNode.cc
rb2fe1c9 r32cab5b 10 10 // Created On : Sat May 16 14:59:41 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Sep 1 23:25:23 201713 // Update Count : 34 612 // Last Modified On : Thu Mar 8 14:31:32 2018 13 // Update Count : 348 14 14 // 15 15 … … 116 116 } 117 117 118 Statement *build_switch( ExpressionNode *ctl, StatementNode *stmt ) {118 Statement *build_switch( bool isSwitch, ExpressionNode *ctl, StatementNode *stmt ) { 119 119 std::list< Statement * > branches; 120 120 buildMoveList< Statement, StatementNode >( stmt, branches ); 121 if ( ! isSwitch ) { // choose statement 122 for ( Statement * stmt : branches ) { 123 CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt ); 124 if ( ! caseStmt->stmts.empty() ) { // code after "case" => end of case list 125 CompoundStmt * block = strict_dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() ); 126 block->kids.push_back( new BranchStmt( "", BranchStmt::Break ) ); 127 } // if 128 } // for 129 } // if 121 130 // branches.size() == 0 for switch (...) {}, i.e., no declaration or statements 122 131 return new SwitchStmt( maybeMoveBuild< Expression >(ctl), branches ); -
src/Parser/lex.ll
rb2fe1c9 r32cab5b 10 10 * Created On : Sat Sep 22 08:58:10 2001 11 11 * Last Modified By : Peter A. Buhr 12 * Last Modified On : Sat Mar 3 18:38:16201813 * Update Count : 6 4012 * Last Modified On : Fri Apr 6 15:16:15 2018 13 * Update Count : 670 14 14 */ 15 15 … … 54 54 55 55 void rm_underscore() { 56 // Remove underscores in numeric constant by copying the non-underscore characters to the front of the string.56 // SKULLDUGGERY: remove underscores (ok to shorten?) 57 57 yyleng = 0; 58 for ( int i = 0; yytext[i] != '\0'; i += 1 ) { 59 if ( yytext[i] == '`' ) { 60 // copy user suffix 61 for ( ; yytext[i] != '\0'; i += 1 ) { 62 yytext[yyleng] = yytext[i]; 63 yyleng += 1; 64 } // for 65 break; 66 } // if 58 for ( int i = 0; yytext[i] != '\0'; i += 1 ) { // copying non-underscore characters to front of string 67 59 if ( yytext[i] != '_' ) { 68 60 yytext[yyleng] = yytext[i]; … … 71 63 } // for 72 64 yytext[yyleng] = '\0'; 73 } 65 } // rm_underscore 74 66 75 67 // Stop warning due to incorrectly generated flex code. … … 90 82 attr_identifier "@"{identifier} 91 83 92 user_suffix_opt ("`"{identifier})?93 94 84 // numeric constants, CFA: '_' in constant 95 85 hex_quad {hex}("_"?{hex}){3} 96 86 size_opt (8|16|32|64|128)? 97 87 length ("ll"|"LL"|[lL]{size_opt})|("hh"|"HH"|[hH]) 98 integer_suffix_opt ("_"?(([uU]({length}?[iI]?)|([iI]{length}))|([iI]({length}?[uU]?)|([uU]{length}))|({length}([iI]?[uU]?)|([uU][iI]))|[zZ]))? {user_suffix_opt}88 integer_suffix_opt ("_"?(([uU]({length}?[iI]?)|([iI]{length}))|([iI]({length}?[uU]?)|([uU]{length}))|({length}([iI]?[uU]?)|([uU][iI]))|[zZ]))? 99 89 100 90 octal_digits ({octal})|({octal}({octal}|"_")*{octal}) … … 118 108 floating_length ([fFdDlL]|[lL]{floating_size}) 119 109 floating_suffix ({floating_length}?[iI]?)|([iI]{floating_length}) 120 floating_suffix_opt ("_"?({floating_suffix}|"DL"))? {user_suffix_opt}110 floating_suffix_opt ("_"?({floating_suffix}|"DL"))? 121 111 decimal_digits ({decimal})|({decimal}({decimal}|"_")*{decimal}) 122 112 floating_decimal {decimal_digits}"."{exponent}?{floating_suffix_opt} … … 125 115 126 116 binary_exponent "_"?[pP]"_"?[+-]?{decimal_digits} 127 hex_floating_suffix_opt ("_"?({floating_suffix}))? {user_suffix_opt}117 hex_floating_suffix_opt ("_"?({floating_suffix}))? 128 118 hex_floating_fraction ({hex_digits}?"."{hex_digits})|({hex_digits}".") 129 119 hex_floating_constant {hex_prefix}(({hex_floating_fraction}{binary_exponent})|({hex_digits}{binary_exponent})){hex_floating_suffix_opt} … … 208 198 __asm { KEYWORD_RETURN(ASM); } // GCC 209 199 __asm__ { KEYWORD_RETURN(ASM); } // GCC 210 _At { KEYWORD_RETURN(AT); } // CFA211 200 _Atomic { KEYWORD_RETURN(ATOMIC); } // C11 212 201 __attribute { KEYWORD_RETURN(ATTRIBUTE); } // GCC … … 239 228 exception { KEYWORD_RETURN(EXCEPTION); } // CFA 240 229 extern { KEYWORD_RETURN(EXTERN); } 230 fallthrough { KEYWORD_RETURN(FALLTHROUGH); } // CFA 241 231 fallthru { KEYWORD_RETURN(FALLTHRU); } // CFA 242 fallthrough { KEYWORD_RETURN(FALLTHROUGH); } // CFA243 232 finally { KEYWORD_RETURN(FINALLY); } // CFA 244 233 float { KEYWORD_RETURN(FLOAT); } … … 270 259 __builtin_offsetof { KEYWORD_RETURN(OFFSETOF); } // GCC 271 260 one_t { NUMERIC_RETURN(ONE_T); } // CFA 261 or { QKEYWORD_RETURN(WOR); } // CFA 272 262 otype { KEYWORD_RETURN(OTYPE); } // CFA 273 263 register { KEYWORD_RETURN(REGISTER); } … … 306 296 __volatile__ { KEYWORD_RETURN(VOLATILE); } // GCC 307 297 waitfor { KEYWORD_RETURN(WAITFOR); } 308 or { QKEYWORD_RETURN(WOR); } // CFA309 298 when { KEYWORD_RETURN(WHEN); } 310 299 while { KEYWORD_RETURN(WHILE); } … … 314 303 /* identifier */ 315 304 {identifier} { IDENTIFIER_RETURN(); } 305 "`"{identifier}"`" { // CFA 306 yytext[yyleng - 1] = '\0'; yytext += 1; // SKULLDUGGERY: remove backquotes (ok to shorten?) 307 IDENTIFIER_RETURN(); 308 } 316 309 {attr_identifier} { ATTRIBUTE_RETURN(); } 317 "`" { BEGIN BKQUOTE; }318 <BKQUOTE>{identifier} { IDENTIFIER_RETURN(); }319 <BKQUOTE>"`" { BEGIN 0; }320 310 321 311 /* numeric constants */ … … 332 322 ({cwide_prefix}[_]?)?['] { BEGIN QUOTE; rm_underscore(); strtext = new string( yytext, yyleng ); } 333 323 <QUOTE>[^'\\\n]* { strtext->append( yytext, yyleng ); } 334 <QUOTE>['\n] {user_suffix_opt}{ BEGIN 0; strtext->append( yytext, yyleng ); RETURN_STR(CHARACTERconstant); }324 <QUOTE>['\n] { BEGIN 0; strtext->append( yytext, yyleng ); RETURN_STR(CHARACTERconstant); } 335 325 /* ' stop editor highlighting */ 336 326 … … 338 328 ({swide_prefix}[_]?)?["] { BEGIN STRING; rm_underscore(); strtext = new string( yytext, yyleng ); } 339 329 <STRING>[^"\\\n]* { strtext->append( yytext, yyleng ); } 340 <STRING>["\n] {user_suffix_opt}{ BEGIN 0; strtext->append( yytext, yyleng ); RETURN_STR(STRINGliteral); }330 <STRING>["\n] { BEGIN 0; strtext->append( yytext, yyleng ); RETURN_STR(STRINGliteral); } 341 331 /* " stop editor highlighting */ 342 332 … … 348 338 /* punctuation */ 349 339 "@" { ASCIIOP_RETURN(); } 340 "`" { ASCIIOP_RETURN(); } 350 341 "[" { ASCIIOP_RETURN(); } 351 342 "]" { ASCIIOP_RETURN(); } … … 412 403 "?"({op_unary_pre_post}|"()"|"[?]"|"{}") { IDENTIFIER_RETURN(); } 413 404 "^?{}" { IDENTIFIER_RETURN(); } 414 "?`"{identifier} { IDENTIFIER_RETURN(); } // unitoperator405 "?`"{identifier} { IDENTIFIER_RETURN(); } // postfix operator 415 406 "?"{op_binary_over}"?" { IDENTIFIER_RETURN(); } // binary 416 407 /* -
src/Parser/parser.yy
rb2fe1c9 r32cab5b 10 10 // Created On : Sat Sep 1 20:22:55 2001 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 22 17:48:54 201813 // Update Count : 3 02812 // Last Modified On : Wed Mar 28 17:52:24 2018 13 // Update Count : 3130 14 14 // 15 15 … … 126 126 } // if 127 127 } // rebindForall 128 129 NameExpr * build_postfix_name( const string * name ) { 130 NameExpr * new_name = build_varref( new string( "?`" + *name ) ); 131 delete name; 132 return new_name; 133 } // build_postfix_name 128 134 129 135 bool forall = false; // aggregate have one or more forall qualifiers ? … … 254 260 %type<sn> statement_decl statement_decl_list statement_list_nodecl 255 261 %type<sn> selection_statement 256 %type<sn> switch_clause_list_opt switch_clause_list choose_clause_list_opt choose_clause_list262 %type<sn> switch_clause_list_opt switch_clause_list 257 263 %type<en> case_value 258 264 %type<sn> case_clause case_value_list case_label case_label_list 259 %type<sn> fall_through fall_through_opt260 265 %type<sn> iteration_statement jump_statement 261 266 %type<sn> expression_statement asm_statement … … 481 486 | '(' compound_statement ')' // GCC, lambda expression 482 487 { $$ = new ExpressionNode( new StmtExpr( dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >($2) ) ) ); } 488 | constant '`' IDENTIFIER // CFA, postfix call 489 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), $1 ) ); } 490 | string_literal '`' IDENTIFIER // CFA, postfix call 491 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), new ExpressionNode( $1 ) ) ); } 492 | IDENTIFIER '`' IDENTIFIER // CFA, postfix call 493 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), new ExpressionNode( build_varref( $1 ) ) ) ); } 494 | tuple '`' IDENTIFIER // CFA, postfix call 495 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $3 ) ), $1 ) ); } 496 | '(' comma_expression ')' '`' IDENTIFIER // CFA, postfix call 497 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_postfix_name( $5 ) ), $2 ) ); } 483 498 | type_name '.' no_attr_identifier // CFA, nested type 484 { SemanticError( yylloc, "Qualified names are currently unimplemented." ); $$ = nullptr; } // FIX ME499 { SemanticError( yylloc, "Qualified names are currently unimplemented." ); $$ = nullptr; } 485 500 | type_name '.' '[' push field_list pop ']' // CFA, nested type / tuple field selector 486 { SemanticError( yylloc, "Qualified names are currently unimplemented." ); $$ = nullptr; } // FIX ME501 { SemanticError( yylloc, "Qualified names are currently unimplemented." ); $$ = nullptr; } 487 502 | GENERIC '(' assignment_expression ',' generic_assoc_list ')' // C11 488 { SemanticError( yylloc, "_Generic is currently unimplemented." ); $$ = nullptr; } // FIX ME503 { SemanticError( yylloc, "_Generic is currently unimplemented." ); $$ = nullptr; } 489 504 ; 490 505 … … 535 550 | '(' type_no_function ')' '{' initializer_list comma_opt '}' // C99, compound-literal 536 551 { $$ = new ExpressionNode( build_compoundLiteral( $2, new InitializerNode( $5, true ) ) ); } 552 | '(' type_no_function ')' '@' '{' initializer_list comma_opt '}' // CFA, explicit C compound-literal 553 { $$ = new ExpressionNode( build_compoundLiteral( $2, (new InitializerNode( $6, true ))->set_maybeConstructed( false ) ) ); } 537 554 | '^' primary_expression '{' argument_expression_list '}' // CFA 538 555 { … … 670 687 | '(' type_no_function ')' cast_expression 671 688 { $$ = new ExpressionNode( build_cast( $2, $4 ) ); } 689 | '(' COROUTINE '&' ')' cast_expression // CFA 690 { SemanticError( yylloc, "coroutine cast is currently unimplemented." ); $$ = nullptr; } 691 | '(' THREAD '&' ')' cast_expression // CFA 692 { SemanticError( yylloc, "monitor cast is currently unimplemented." ); $$ = nullptr; } 693 | '(' MONITOR '&' ')' cast_expression // CFA 694 { SemanticError( yylloc, "thread cast is currently unimplemented." ); $$ = nullptr; } 672 695 // VIRTUAL cannot be opt because of look ahead issues 673 | '(' VIRTUAL ')' cast_expression 696 | '(' VIRTUAL ')' cast_expression // CFA 674 697 { $$ = new ExpressionNode( new VirtualCastExpr( maybeMoveBuild< Expression >( $4 ), maybeMoveBuildType( nullptr ) ) ); } 675 | '(' VIRTUAL type_no_function ')' cast_expression 698 | '(' VIRTUAL type_no_function ')' cast_expression // CFA 676 699 { $$ = new ExpressionNode( new VirtualCastExpr( maybeMoveBuild< Expression >( $5 ), maybeMoveBuildType( $3 ) ) ); } 677 700 // | '(' type_no_function ')' tuple … … 765 788 | logical_OR_expression '?' comma_expression ':' conditional_expression 766 789 { $$ = new ExpressionNode( build_cond( $1, $3, $5 ) ); } 767 // FIX ME: this hackcomputes $1 twice790 // FIX ME: computes $1 twice 768 791 | logical_OR_expression '?' /* empty */ ':' conditional_expression // GCC, omitted first operand 769 792 { $$ = new ExpressionNode( build_cond( $1, $1, $4 ) ); } … … 780 803 { $$ = new ExpressionNode( build_binary_val( $2, $1, $3 ) ); } 781 804 | unary_expression '=' '{' initializer_list comma_opt '}' 782 { SemanticError( yylloc, "Initializer assignment is currently unimplemented." ); $$ = nullptr; } // FIX ME805 { SemanticError( yylloc, "Initializer assignment is currently unimplemented." ); $$ = nullptr; } 783 806 ; 784 807 … … 850 873 | exception_statement 851 874 | enable_disable_statement 852 { SemanticError( yylloc, "enable/disable statement is currently unimplemented." ); $$ = nullptr; } // FIX ME875 { SemanticError( yylloc, "enable/disable statement is currently unimplemented." ); $$ = nullptr; } 853 876 | asm_statement 854 877 ; … … 917 940 { $$ = new StatementNode( build_if( $4, $6, $8 ) ); } 918 941 | SWITCH '(' comma_expression ')' case_clause 919 { $$ = new StatementNode( build_switch( $3, $5 ) ); }942 { $$ = new StatementNode( build_switch( true, $3, $5 ) ); } 920 943 | SWITCH '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt '}' // CFA 921 944 { 922 StatementNode *sw = new StatementNode( build_switch( $3, $8 ) );945 StatementNode *sw = new StatementNode( build_switch( true, $3, $8 ) ); 923 946 // The semantics of the declaration list is changed to include associated initialization, which is performed 924 947 // *before* the transfer to the appropriate case clause by hoisting the declarations into a compound … … 929 952 } 930 953 | CHOOSE '(' comma_expression ')' case_clause // CFA 931 { $$ = new StatementNode( build_switch( $3, $5 ) ); }932 | CHOOSE '(' comma_expression ')' '{' push declaration_list_opt choose_clause_list_opt '}' // CFA933 { 934 StatementNode *sw = new StatementNode( build_switch( $3, $8 ) );954 { $$ = new StatementNode( build_switch( false, $3, $5 ) ); } 955 | CHOOSE '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt '}' // CFA 956 { 957 StatementNode *sw = new StatementNode( build_switch( false, $3, $8 ) ); 935 958 $$ = $7 ? new StatementNode( build_compound( (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw; 936 959 } … … 970 993 ; 971 994 995 //label_list_opt: 996 // // empty 997 // | identifier_or_type_name ':' 998 // | label_list_opt identifier_or_type_name ':' 999 // ; 1000 972 1001 case_label_list: // CFA 973 1002 case_label … … 990 1019 | switch_clause_list case_label_list statement_list_nodecl 991 1020 { $$ = (StatementNode *)( $1->set_last( $2->append_last_case( new StatementNode( build_compound( $3 ) ) ) ) ); } 992 ;993 994 choose_clause_list_opt: // CFA995 // empty996 { $$ = nullptr; }997 | choose_clause_list998 ;999 1000 choose_clause_list: // CFA1001 case_label_list fall_through1002 { $$ = $1->append_last_case( $2 ); }1003 | case_label_list statement_list_nodecl fall_through_opt1004 { $$ = $1->append_last_case( new StatementNode( build_compound( (StatementNode *)$2->set_last( $3 ) ) ) ); }1005 | choose_clause_list case_label_list fall_through1006 { $$ = (StatementNode *)( $1->set_last( $2->append_last_case( $3 ))); }1007 | choose_clause_list case_label_list statement_list_nodecl fall_through_opt1008 { $$ = (StatementNode *)( $1->set_last( $2->append_last_case( new StatementNode( build_compound( (StatementNode *)$3->set_last( $4 ) ) ) ) ) ); }1009 ;1010 1011 fall_through_opt: // CFA1012 // empty1013 { $$ = new StatementNode( build_branch( BranchStmt::Break ) ); } // insert implicit break1014 | fall_through1015 ;1016 1017 fall_through_name: // CFA1018 FALLTHRU1019 | FALLTHROUGH1020 ;1021 1022 fall_through: // CFA1023 fall_through_name1024 { $$ = nullptr; }1025 | fall_through_name ';'1026 { $$ = nullptr; }1027 1021 ; 1028 1022 … … 1050 1044 // whereas normal operator precedence yields goto (*i)+3; 1051 1045 { $$ = new StatementNode( build_computedgoto( $3 ) ); } 1046 // A semantic check is required to ensure fallthru appears only in the body of a choose statement. 1047 | fall_through_name ';' // CFA 1048 { $$ = new StatementNode( build_branch( BranchStmt::FallThrough ) ); } 1049 | fall_through_name identifier_or_type_name ';' // CFA 1050 { $$ = new StatementNode( build_branch( $2, BranchStmt::FallThrough ) ); } 1051 | fall_through_name DEFAULT ';' // CFA 1052 { $$ = new StatementNode( build_branch( BranchStmt::FallThroughDefault ) ); } 1052 1053 | CONTINUE ';' 1053 1054 // A semantic check is required to ensure this statement appears only in the body of an iteration statement. … … 1067 1068 { $$ = new StatementNode( build_return( $2 ) ); } 1068 1069 | RETURN '{' initializer_list comma_opt '}' 1069 { SemanticError( yylloc, "Initializer return is currently unimplemented." ); $$ = nullptr; } // FIX ME1070 { SemanticError( yylloc, "Initializer return is currently unimplemented." ); $$ = nullptr; } 1070 1071 | THROW assignment_expression_opt ';' // handles rethrow 1071 1072 { $$ = new StatementNode( build_throw( $2 ) ); } … … 1076 1077 ; 1077 1078 1079 fall_through_name: // CFA 1080 FALLTHRU 1081 | FALLTHROUGH 1082 ; 1083 1078 1084 with_statement: 1079 1085 WITH '(' tuple_expression_list ')' statement … … 1086 1092 mutex_statement: 1087 1093 MUTEX '(' argument_expression_list ')' statement 1088 { SemanticError( yylloc, "Mutex statement is currently unimplemented." ); $$ = nullptr; } // FIX ME1094 { SemanticError( yylloc, "Mutex statement is currently unimplemented." ); $$ = nullptr; } 1089 1095 ; 1090 1096 1091 1097 when_clause: 1092 WHEN '(' comma_expression ')' 1093 { $$ = $3; } 1098 WHEN '(' comma_expression ')' { $$ = $3; } 1094 1099 ; 1095 1100 … … 1115 1120 1116 1121 timeout: 1117 TIMEOUT '(' comma_expression ')' 1118 { $$ = $3; } 1122 TIMEOUT '(' comma_expression ')' { $$ = $3; } 1119 1123 ; 1120 1124 … … 1159 1163 //empty 1160 1164 { $$ = nullptr; } 1161 | ';' conditional_expression 1162 { $$ = $2; } 1165 | ';' conditional_expression { $$ = $2; } 1163 1166 ; 1164 1167 1165 1168 handler_key: 1166 CATCH 1167 { $$ = CatchStmt::Terminate; } 1168 | CATCHRESUME 1169 { $$ = CatchStmt::Resume; } 1169 CATCH { $$ = CatchStmt::Terminate; } 1170 | CATCHRESUME { $$ = CatchStmt::Resume; } 1170 1171 ; 1171 1172 1172 1173 finally_clause: 1173 FINALLY compound_statement 1174 { 1175 $$ = new StatementNode( build_finally( $2 ) ); 1176 } 1174 FINALLY compound_statement { $$ = new StatementNode( build_finally( $2 ) ); } 1177 1175 ; 1178 1176 … … 1316 1314 static_assert: 1317 1315 STATICASSERT '(' constant_expression ',' string_literal ')' ';' // C11 1318 { SemanticError( yylloc, "Static assert is currently unimplemented." ); $$ = nullptr; } // FIX ME1316 { $$ = DeclarationNode::newStaticAssert( $3, $5 ); } 1319 1317 1320 1318 // C declaration syntax is notoriously confusing and error prone. Cforall provides its own type, variable and function … … 2413 2411 $$ = $2; 2414 2412 } 2415 | forall'{' external_definition_list '}' // CFA, namespace2413 | type_qualifier_list '{' external_definition_list '}' // CFA, namespace 2416 2414 ; 2417 2415 -
src/ResolvExpr/CommonType.cc
rb2fe1c9 r32cab5b 28 28 29 29 // #define DEBUG 30 #ifdef DEBUG 31 #define PRINT(x) x 32 #else 33 #define PRINT(x) 34 #endif 30 35 31 36 namespace ResolvExpr { … … 70 75 // need unify to bind type variables 71 76 if ( unify( t1, t2, env, have, need, newOpen, indexer, common ) ) { 72 // std::cerr << "unify success: " << widenFirst << " " << widenSecond << std::endl; 77 PRINT( 78 std::cerr << "unify success: " << widenFirst << " " << widenSecond << std::endl; 79 ) 73 80 if ( (widenFirst || t2->get_qualifiers() <= t1->get_qualifiers()) && (widenSecond || t1->get_qualifiers() <= t2->get_qualifiers()) ) { 74 // std::cerr << "widen okay" << std::endl; 81 PRINT( 82 std::cerr << "widen okay" << std::endl; 83 ) 75 84 common->get_qualifiers() |= t1->get_qualifiers(); 76 85 common->get_qualifiers() |= t2->get_qualifiers(); … … 78 87 } 79 88 } 80 // std::cerr << "exact unify failed: " << t1 << " " << t2 << std::endl; 89 PRINT( 90 std::cerr << "exact unify failed: " << t1 << " " << t2 << std::endl; 91 ) 81 92 return nullptr; 82 93 } … … 94 105 // special case where one type has a reference depth of 1 larger than the other 95 106 if ( diff > 0 || diff < 0 ) { 96 // std::cerr << "reference depth diff: " << diff << std::endl; 107 PRINT( 108 std::cerr << "reference depth diff: " << diff << std::endl; 109 ) 97 110 Type * result = nullptr; 98 111 ReferenceType * ref1 = dynamic_cast< ReferenceType * >( type1 ); … … 109 122 if ( result && ref1 ) { 110 123 // formal is reference, so result should be reference 111 // std::cerr << "formal is reference; result should be reference" << std::endl; 124 PRINT( 125 std::cerr << "formal is reference; result should be reference" << std::endl; 126 ) 112 127 result = new ReferenceType( ref1->get_qualifiers(), result ); 113 128 } 114 // std::cerr << "common type of reference [" << type1 << "] and [" << type2 << "] is [" << result << "]" << std::endl; 129 PRINT( 130 std::cerr << "common type of reference [" << type1 << "] and [" << type2 << "] is [" << result << "]" << std::endl; 131 ) 115 132 return result; 116 133 } -
src/ResolvExpr/ConversionCost.cc
rb2fe1c9 r32cab5b 275 275 // xxx - not positive this is correct, but appears to allow casting int => enum 276 276 cost = Cost::unsafe; 277 } else if ( dynamic_cast< ZeroType* >( dest ) != nullptr || dynamic_cast< OneType* >( dest ) != nullptr ) { 278 cost = Cost::unsafe; 279 } // if 277 } // if 278 // no cases for zero_t/one_t because it should not be possible to convert int, etc. to zero_t/one_t. 280 279 } 281 280 … … 309 308 // assignResult == 0 means Cost::Infinity 310 309 } // if 311 } else if ( dynamic_cast< ZeroType * >( dest ) ) { 312 cost = Cost::unsafe; 310 // case case for zero_t because it should not be possible to convert pointers to zero_t. 313 311 } // if 314 312 } -
src/ResolvExpr/Resolver.cc
rb2fe1c9 r32cab5b 59 59 void previsit( TypeDecl *typeDecl ); 60 60 void previsit( EnumDecl * enumDecl ); 61 void previsit( StaticAssertDecl * assertDecl ); 61 62 62 63 void previsit( ArrayType * at ); … … 361 362 GuardValue( inEnumDecl ); 362 363 inEnumDecl = true; 364 } 365 366 void Resolver::previsit( StaticAssertDecl * assertDecl ) { 367 findIntegralExpression( assertDecl->condition, indexer ); 363 368 } 364 369 -
src/SymTab/Validate.cc
rb2fe1c9 r32cab5b 89 89 void previsit( StructDecl * aggregateDecl ); 90 90 void previsit( UnionDecl * aggregateDecl ); 91 void previsit( StaticAssertDecl * assertDecl ); 91 92 92 93 private: … … 147 148 void previsit( ObjectDecl * object ); 148 149 void previsit( FunctionDecl * func ); 150 void previsit( FunctionType * ftype ); 149 151 void previsit( StructDecl * aggrDecl ); 150 152 void previsit( UnionDecl * aggrDecl ); … … 296 298 } 297 299 298 bool isStructOrUnion( Declaration *decl ) {299 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) ;300 bool shouldHoist( Declaration *decl ) { 301 return dynamic_cast< StructDecl * >( decl ) || dynamic_cast< UnionDecl * >( decl ) || dynamic_cast< StaticAssertDecl * >( decl ); 300 302 } 301 303 … … 310 312 } // if 311 313 // Always remove the hoisted aggregate from the inner structure. 312 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, isStructOrUnion, false ); } );314 GuardAction( [aggregateDecl]() { filter( aggregateDecl->members, shouldHoist, false ); } ); 313 315 } 314 316 … … 328 330 if ( inst->baseUnion ) { 329 331 declsToAddBefore.push_front( inst->baseUnion ); 332 } 333 } 334 335 void HoistStruct::previsit( StaticAssertDecl * assertDecl ) { 336 if ( parentAggr ) { 337 declsToAddBefore.push_back( assertDecl ); 330 338 } 331 339 } … … 626 634 627 635 void ForallPointerDecay::previsit( ObjectDecl *object ) { 628 forallFixer( object->type->forall, object );629 if ( PointerType *pointer = dynamic_cast< PointerType * >( object->type) ) {630 forallFixer( pointer->base->forall, object);631 } // if636 // ensure that operator names only apply to functions or function pointers 637 if ( CodeGen::isOperator( object->name ) && ! dynamic_cast< FunctionType * >( object->type->stripDeclarator() ) ) { 638 SemanticError( object->location, toCString( "operator ", object->name.c_str(), " is not a function or function pointer." ) ); 639 } 632 640 object->fixUniqueId(); 633 641 } 634 642 635 643 void ForallPointerDecay::previsit( FunctionDecl *func ) { 636 forallFixer( func->type->forall, func );637 644 func->fixUniqueId(); 645 } 646 647 void ForallPointerDecay::previsit( FunctionType * ftype ) { 648 forallFixer( ftype->forall, ftype ); 638 649 } 639 650 -
src/SynTree/CompoundStmt.cc
rb2fe1c9 r32cab5b 23 23 #include "Statement.h" // for CompoundStmt, Statement, DeclStmt 24 24 #include "SynTree/Label.h" // for Label 25 #include "SynTree/ VarExprReplacer.h" // for VarExprReplacer, VarExprReplace...25 #include "SynTree/DeclReplacer.h" // for DeclReplacer 26 26 27 27 using std::string; … … 49 49 // recursively execute this routine. There may be more efficient ways of doing 50 50 // this. 51 VarExprReplacer::DeclMap declMap;51 DeclReplacer::DeclMap declMap; 52 52 std::list< Statement * >::const_iterator origit = other.kids.begin(); 53 53 for ( Statement * s : kids ) { … … 64 64 } 65 65 if ( ! declMap.empty() ) { 66 VarExprReplacer::replace( this, declMap );66 DeclReplacer::replace( this, declMap ); 67 67 } 68 68 } -
src/SynTree/Declaration.cc
rb2fe1c9 r32cab5b 81 81 82 82 83 StaticAssertDecl::StaticAssertDecl( Expression * condition, ConstantExpr * message ) : Declaration( "", Type::StorageClasses(), LinkageSpec::C ), condition( condition ), message( message ) { 84 } 85 86 StaticAssertDecl::StaticAssertDecl( const StaticAssertDecl & other ) : Declaration( other ), condition( maybeClone( other.condition ) ), message( maybeClone( other.message ) ) { 87 } 88 89 StaticAssertDecl::~StaticAssertDecl() { 90 delete condition; 91 delete message; 92 } 93 94 void StaticAssertDecl::print( std::ostream &os, Indenter indent ) const { 95 os << "Static Assert with condition: "; 96 condition->print( os, indent+1 ); 97 os << std::endl << indent << "and message: "; 98 message->print( os, indent+1 ); 99 os << std::endl; 100 } 101 102 void StaticAssertDecl::printShort( std::ostream &os, Indenter indent ) const { 103 print( os, indent ); 104 } 105 83 106 // Local Variables: // 84 107 // tab-width: 4 // -
src/SynTree/Declaration.h
rb2fe1c9 r32cab5b 365 365 }; 366 366 367 class StaticAssertDecl : public Declaration { 368 public: 369 Expression * condition; 370 ConstantExpr * message; // string literal 371 372 StaticAssertDecl( Expression * condition, ConstantExpr * message ); 373 StaticAssertDecl( const StaticAssertDecl & other ); 374 virtual ~StaticAssertDecl(); 375 376 virtual StaticAssertDecl * clone() const override { return new StaticAssertDecl( *this ); } 377 virtual void accept( Visitor &v ) override { v.visit( this ); } 378 virtual StaticAssertDecl * acceptMutator( Mutator &m ) override { return m.mutate( this ); } 379 virtual void print( std::ostream &os, Indenter indent = {} ) const override; 380 virtual void printShort( std::ostream &os, Indenter indent = {} ) const override; 381 }; 382 367 383 std::ostream & operator<<( std::ostream & os, const TypeDecl::Data & data ); 368 384 -
src/SynTree/FunctionDecl.cc
rb2fe1c9 r32cab5b 26 26 #include "Statement.h" // for CompoundStmt 27 27 #include "Type.h" // for Type, FunctionType, Type::FuncSpecif... 28 #include " VarExprReplacer.h"28 #include "DeclReplacer.h" 29 29 30 30 extern bool translation_unit_nomain; … … 41 41 : Parent( other ), type( maybeClone( other.type ) ), statements( maybeClone( other.statements ) ) { 42 42 43 VarExprReplacer::DeclMap declMap;43 DeclReplacer::DeclMap declMap; 44 44 for ( auto p : group_iterate( other.type->parameters, type->parameters ) ) { 45 45 declMap[ std::get<0>(p) ] = std::get<1>(p); … … 49 49 } 50 50 if ( ! declMap.empty() ) { 51 VarExprReplacer::replace( this, declMap );51 DeclReplacer::replace( this, declMap ); 52 52 } 53 53 cloneAll( other.withExprs, withExprs ); -
src/SynTree/Mutator.h
rb2fe1c9 r32cab5b 34 34 virtual Declaration * mutate( TypedefDecl * typeDecl ) = 0; 35 35 virtual AsmDecl * mutate( AsmDecl * asmDecl ) = 0; 36 virtual StaticAssertDecl * mutate( StaticAssertDecl * assertDecl ) = 0; 36 37 37 38 virtual CompoundStmt * mutate( CompoundStmt * compoundStmt ) = 0; -
src/SynTree/Statement.cc
rb2fe1c9 r32cab5b 34 34 Statement::Statement( const std::list<Label> & labels ) : labels( labels ) {} 35 35 36 void Statement::print( std::ostream & os, Indenter ) const {36 void Statement::print( std::ostream & os, Indenter indent ) const { 37 37 if ( ! labels.empty() ) { 38 os << "Labels: {";38 os << indent << "... Labels: {"; 39 39 for ( const Label & l : labels ) { 40 40 os << l << ","; … … 223 223 224 224 void CaseStmt::print( std::ostream &os, Indenter indent ) const { 225 if ( isDefault() ) os << "Default ";225 if ( isDefault() ) os << indent << "Default "; 226 226 else { 227 os << "Case ";227 os << indent << "Case "; 228 228 condition->print( os, indent ); 229 229 } // if … … 231 231 232 232 for ( Statement * stmt : stmts ) { 233 os << indent+1; 233 234 stmt->print( os, indent+1 ); 234 235 } … … 478 479 } 479 480 480 void NullStmt::print( std::ostream &os, Indenter ) const {481 void NullStmt::print( std::ostream &os, Indenter indent ) const { 481 482 os << "Null Statement" << endl; 483 Statement::print( os, indent ); 482 484 } 483 485 -
src/SynTree/Statement.h
rb2fe1c9 r32cab5b 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Sep 3 20:46:46 201713 // Update Count : 7 712 // Last Modified On : Thu Mar 8 14:53:02 2018 13 // Update Count : 78 14 14 // 15 15 … … 255 255 class BranchStmt : public Statement { 256 256 public: 257 enum Type { Goto = 0, Break, Continue };257 enum Type { Goto = 0, Break, Continue, FallThrough, FallThroughDefault }; 258 258 259 259 // originalTarget kept for error messages. -
src/SynTree/SynTree.h
rb2fe1c9 r32cab5b 38 38 class TypedefDecl; 39 39 class AsmDecl; 40 class StaticAssertDecl; 40 41 41 42 class Statement; -
src/SynTree/TypeSubstitution.cc
rb2fe1c9 r32cab5b 149 149 return inst; 150 150 } else { 151 /// std::cerr << "found " << inst->get_name() << ", replacing with "; 152 /// i->second->print( std::cerr ); 153 /// std::cerr << std::endl; 151 // cut off infinite loop for the case where a type is bound to itself. 152 // Note: this does not prevent cycles in the general case, so it may be necessary to do something more sophisticated here. 153 // TODO: investigate preventing type variables from being bound to themselves in the first place. 154 if ( TypeInstType * replacement = dynamic_cast< TypeInstType * >( i->second ) ) { 155 if ( inst->name == replacement->name ) { 156 return inst; 157 } 158 } 159 // std::cerr << "found " << inst->name << ", replacing with " << i->second << std::endl; 154 160 subCount++; 155 161 Type * newtype = i->second->clone(); 156 162 newtype->get_qualifiers() |= inst->get_qualifiers(); 157 163 delete inst; 158 return newtype; 164 // Note: need to recursively apply substitution to the new type because normalize does not substitute bound vars, but bound vars must be substituted when not in freeOnly mode. 165 return newtype->acceptMutator( *visitor ); 159 166 } // if 160 167 } -
src/SynTree/TypeSubstitution.h
rb2fe1c9 r32cab5b 129 129 130 130 // definitition must happen after PassVisitor is included so that WithGuards can be used 131 struct TypeSubstitution::Substituter : public WithGuards {131 struct TypeSubstitution::Substituter : public WithGuards, public WithVisitorRef<Substituter> { 132 132 Substituter( TypeSubstitution & sub, bool freeOnly ) : sub( sub ), freeOnly( freeOnly ) {} 133 133 -
src/SynTree/Visitor.h
rb2fe1c9 r32cab5b 36 36 virtual void visit( TypedefDecl * typeDecl ) = 0; 37 37 virtual void visit( AsmDecl * asmDecl ) = 0; 38 virtual void visit( StaticAssertDecl * assertDecl ) = 0; 38 39 39 40 virtual void visit( CompoundStmt * compoundStmt ) = 0; -
src/SynTree/module.mk
rb2fe1c9 r32cab5b 48 48 SynTree/TypeSubstitution.cc \ 49 49 SynTree/Attribute.cc \ 50 SynTree/ VarExprReplacer.cc50 SynTree/DeclReplacer.cc 51 51 -
src/benchmark/bench.h
rb2fe1c9 r32cab5b 10 10 #if defined(__cforall) 11 11 } 12 #include <bits/cfatime.h>12 //#include <bits/cfatime.h> 13 13 #endif 14 14 -
src/libcfa/Makefile.am
rb2fe1c9 r32cab5b 11 11 ## Created On : Sun May 31 08:54:01 2015 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Fri Feb 9 15:51:24 201814 ## Update Count : 2 2313 ## Last Modified On : Thu Apr 12 14:38:34 2018 14 ## Update Count : 231 15 15 ############################################################################### 16 16 … … 46 46 CC = ${abs_top_srcdir}/src/driver/cfa 47 47 48 headers = fstream iostream iterator limits rational stdlib \48 headers = fstream iostream iterator limits rational time stdlib \ 49 49 containers/maybe containers/pair containers/result containers/vector 50 50 … … 100 100 math \ 101 101 gmp \ 102 time_t.h \ 103 clock \ 102 104 bits/align.h \ 103 bits/cfatime.h \104 105 bits/containers.h \ 105 106 bits/defs.h \ -
src/libcfa/Makefile.in
rb2fe1c9 r32cab5b 150 150 am__libcfa_d_a_SOURCES_DIST = libcfa-prelude.c interpose.c \ 151 151 bits/debug.c fstream.c iostream.c iterator.c limits.c \ 152 rational.c stdlib.c containers/maybe.c containers/pair.c \153 containers/ result.c containers/vector.c \152 rational.c time.c stdlib.c containers/maybe.c \ 153 containers/pair.c containers/result.c containers/vector.c \ 154 154 concurrency/coroutine.c concurrency/thread.c \ 155 155 concurrency/kernel.c concurrency/monitor.c assert.c \ … … 165 165 libcfa_d_a-iostream.$(OBJEXT) libcfa_d_a-iterator.$(OBJEXT) \ 166 166 libcfa_d_a-limits.$(OBJEXT) libcfa_d_a-rational.$(OBJEXT) \ 167 libcfa_d_a- stdlib.$(OBJEXT) \167 libcfa_d_a-time.$(OBJEXT) libcfa_d_a-stdlib.$(OBJEXT) \ 168 168 containers/libcfa_d_a-maybe.$(OBJEXT) \ 169 169 containers/libcfa_d_a-pair.$(OBJEXT) \ … … 184 184 libcfa_a_LIBADD = 185 185 am__libcfa_a_SOURCES_DIST = libcfa-prelude.c interpose.c bits/debug.c \ 186 fstream.c iostream.c iterator.c limits.c rational.c stdlib.c \ 187 containers/maybe.c containers/pair.c containers/result.c \ 188 containers/vector.c concurrency/coroutine.c \ 189 concurrency/thread.c concurrency/kernel.c \ 190 concurrency/monitor.c assert.c exception.c virtual.c \ 191 concurrency/CtxSwitch-@MACHINE_TYPE@.S concurrency/alarm.c \ 192 concurrency/invoke.c concurrency/preemption.c 186 fstream.c iostream.c iterator.c limits.c rational.c time.c \ 187 stdlib.c containers/maybe.c containers/pair.c \ 188 containers/result.c containers/vector.c \ 189 concurrency/coroutine.c concurrency/thread.c \ 190 concurrency/kernel.c concurrency/monitor.c assert.c \ 191 exception.c virtual.c concurrency/CtxSwitch-@MACHINE_TYPE@.S \ 192 concurrency/alarm.c concurrency/invoke.c \ 193 concurrency/preemption.c 193 194 @BUILD_CONCURRENCY_TRUE@am__objects_5 = concurrency/libcfa_a-coroutine.$(OBJEXT) \ 194 195 @BUILD_CONCURRENCY_TRUE@ concurrency/libcfa_a-thread.$(OBJEXT) \ … … 197 198 am__objects_6 = libcfa_a-fstream.$(OBJEXT) libcfa_a-iostream.$(OBJEXT) \ 198 199 libcfa_a-iterator.$(OBJEXT) libcfa_a-limits.$(OBJEXT) \ 199 libcfa_a-rational.$(OBJEXT) libcfa_a- stdlib.$(OBJEXT) \200 containers/libcfa_a-maybe.$(OBJEXT) \200 libcfa_a-rational.$(OBJEXT) libcfa_a-time.$(OBJEXT) \ 201 libcfa_a-stdlib.$(OBJEXT) containers/libcfa_a-maybe.$(OBJEXT) \ 201 202 containers/libcfa_a-pair.$(OBJEXT) \ 202 203 containers/libcfa_a-result.$(OBJEXT) \ … … 260 261 esac 261 262 am__nobase_cfa_include_HEADERS_DIST = fstream iostream iterator limits \ 262 rational stdlib containers/maybe containers/pair \263 rational time stdlib containers/maybe containers/pair \ 263 264 containers/result containers/vector concurrency/coroutine \ 264 265 concurrency/thread concurrency/kernel concurrency/monitor \ 265 ${shell find stdhdr -type f -printf "%p "} math gmp \266 bits/align.h bits/cfatime.h bits/containers.h bits/defs.h \267 bits/ debug.h bits/locks.h concurrency/invoke.h266 ${shell find stdhdr -type f -printf "%p "} math gmp time_t.h \ 267 clock bits/align.h bits/containers.h bits/defs.h bits/debug.h \ 268 bits/locks.h concurrency/invoke.h 268 269 HEADERS = $(nobase_cfa_include_HEADERS) 269 270 am__tagged_files = $(HEADERS) $(SOURCES) $(TAGS_FILES) $(LISP) … … 419 420 EXTRA_FLAGS = -g -Wall -Wno-unused-function -imacros libcfa-prelude.c @CFA_FLAGS@ 420 421 AM_CCASFLAGS = @CFA_FLAGS@ 421 headers = fstream iostream iterator limits rational stdlib \422 headers = fstream iostream iterator limits rational time stdlib \ 422 423 containers/maybe containers/pair containers/result \ 423 424 containers/vector $(am__append_3) … … 436 437 math \ 437 438 gmp \ 439 time_t.h \ 440 clock \ 438 441 bits/align.h \ 439 bits/cfatime.h \440 442 bits/containers.h \ 441 443 bits/defs.h \ … … 611 613 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-rational.Po@am__quote@ 612 614 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-stdlib.Po@am__quote@ 615 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-time.Po@am__quote@ 613 616 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_a-virtual.Po@am__quote@ 614 617 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-assert.Po@am__quote@ … … 622 625 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-rational.Po@am__quote@ 623 626 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-stdlib.Po@am__quote@ 627 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-time.Po@am__quote@ 624 628 @AMDEP_TRUE@@am__include@ @am__quote@./$(DEPDIR)/libcfa_d_a-virtual.Po@am__quote@ 625 629 @AMDEP_TRUE@@am__include@ @am__quote@bits/$(DEPDIR)/libcfa_a-debug.Po@am__quote@ … … 786 790 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-rational.obj `if test -f 'rational.c'; then $(CYGPATH_W) 'rational.c'; else $(CYGPATH_W) '$(srcdir)/rational.c'; fi` 787 791 792 libcfa_d_a-time.o: time.c 793 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libcfa_d_a-time.o -MD -MP -MF $(DEPDIR)/libcfa_d_a-time.Tpo -c -o libcfa_d_a-time.o `test -f 'time.c' || echo '$(srcdir)/'`time.c 794 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_d_a-time.Tpo $(DEPDIR)/libcfa_d_a-time.Po 795 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='time.c' object='libcfa_d_a-time.o' libtool=no @AMDEPBACKSLASH@ 796 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 797 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-time.o `test -f 'time.c' || echo '$(srcdir)/'`time.c 798 799 libcfa_d_a-time.obj: time.c 800 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libcfa_d_a-time.obj -MD -MP -MF $(DEPDIR)/libcfa_d_a-time.Tpo -c -o libcfa_d_a-time.obj `if test -f 'time.c'; then $(CYGPATH_W) 'time.c'; else $(CYGPATH_W) '$(srcdir)/time.c'; fi` 801 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_d_a-time.Tpo $(DEPDIR)/libcfa_d_a-time.Po 802 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='time.c' object='libcfa_d_a-time.obj' libtool=no @AMDEPBACKSLASH@ 803 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 804 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -c -o libcfa_d_a-time.obj `if test -f 'time.c'; then $(CYGPATH_W) 'time.c'; else $(CYGPATH_W) '$(srcdir)/time.c'; fi` 805 788 806 libcfa_d_a-stdlib.o: stdlib.c 789 807 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_d_a_CFLAGS) $(CFLAGS) -MT libcfa_d_a-stdlib.o -MD -MP -MF $(DEPDIR)/libcfa_d_a-stdlib.Tpo -c -o libcfa_d_a-stdlib.o `test -f 'stdlib.c' || echo '$(srcdir)/'`stdlib.c … … 1079 1097 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1080 1098 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-rational.obj `if test -f 'rational.c'; then $(CYGPATH_W) 'rational.c'; else $(CYGPATH_W) '$(srcdir)/rational.c'; fi` 1099 1100 libcfa_a-time.o: time.c 1101 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libcfa_a-time.o -MD -MP -MF $(DEPDIR)/libcfa_a-time.Tpo -c -o libcfa_a-time.o `test -f 'time.c' || echo '$(srcdir)/'`time.c 1102 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_a-time.Tpo $(DEPDIR)/libcfa_a-time.Po 1103 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='time.c' object='libcfa_a-time.o' libtool=no @AMDEPBACKSLASH@ 1104 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1105 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-time.o `test -f 'time.c' || echo '$(srcdir)/'`time.c 1106 1107 libcfa_a-time.obj: time.c 1108 @am__fastdepCC_TRUE@ $(AM_V_CC)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -MT libcfa_a-time.obj -MD -MP -MF $(DEPDIR)/libcfa_a-time.Tpo -c -o libcfa_a-time.obj `if test -f 'time.c'; then $(CYGPATH_W) 'time.c'; else $(CYGPATH_W) '$(srcdir)/time.c'; fi` 1109 @am__fastdepCC_TRUE@ $(AM_V_at)$(am__mv) $(DEPDIR)/libcfa_a-time.Tpo $(DEPDIR)/libcfa_a-time.Po 1110 @AMDEP_TRUE@@am__fastdepCC_FALSE@ $(AM_V_CC)source='time.c' object='libcfa_a-time.obj' libtool=no @AMDEPBACKSLASH@ 1111 @AMDEP_TRUE@@am__fastdepCC_FALSE@ DEPDIR=$(DEPDIR) $(CCDEPMODE) $(depcomp) @AMDEPBACKSLASH@ 1112 @am__fastdepCC_FALSE@ $(AM_V_CC@am__nodep@)$(CC) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(libcfa_a_CFLAGS) $(CFLAGS) -c -o libcfa_a-time.obj `if test -f 'time.c'; then $(CYGPATH_W) 'time.c'; else $(CYGPATH_W) '$(srcdir)/time.c'; fi` 1081 1113 1082 1114 libcfa_a-stdlib.o: stdlib.c -
src/libcfa/bits/locks.h
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Oct 31 15:14:38 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Dec 8 16:02:22 201713 // Update Count : 112 // Last Modified On : Fri Mar 30 18:18:13 2018 13 // Update Count : 9 14 14 // 15 15 … … 64 64 65 65 extern void yield( unsigned int ); 66 extern thread_local struct thread_desc * volatile this_thread;67 extern thread_local struct processor * volatile this_processor;68 66 69 67 static inline void ?{}( __spinlock_t & this ) { … … 76 74 if( result ) { 77 75 disable_interrupts(); 78 __cfaabi_dbg_debug_do(79 this.prev_name = caller;80 this.prev_thrd = this_thread;81 )76 // __cfaabi_dbg_debug_do( 77 // this.prev_name = caller; 78 // this.prev_thrd = TL_GET( this_thread ); 79 // ) 82 80 } 83 81 return result; … … 107 105 } 108 106 disable_interrupts(); 109 __cfaabi_dbg_debug_do(110 this.prev_name = caller;111 this.prev_thrd = this_thread;112 )107 // __cfaabi_dbg_debug_do( 108 // this.prev_name = caller; 109 // this.prev_thrd = TL_GET( this_thread ); 110 // ) 113 111 } 114 112 -
src/libcfa/concurrency/alarm.c
rb2fe1c9 r32cab5b 10 10 // Created On : Fri Jun 2 11:31:25 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jul 21 22:35:18 201713 // Update Count : 112 // Last Modified On : Mon Apr 9 13:36:18 2018 13 // Update Count : 61 14 14 // 15 15 … … 26 26 #include "preemption.h" 27 27 28 29 static inline void ?{}( itimerval & this, __cfa_time_t * alarm ) with( this ) {30 it_value.tv_sec = alarm->val / (1`cfa_s).val; // seconds31 it_value.tv_usec = max( (alarm->val % (1`cfa_s).val) / (1`cfa_us).val, 1000 ); // microseconds32 it_interval.tv_sec = 0;33 it_interval.tv_usec = 0;34 }35 36 static inline void ?{}( __cfa_time_t & this, timespec * curr ) {37 uint64_t secs = curr->tv_sec;38 uint64_t nsecs = curr->tv_nsec;39 this.val = from_s(secs).val + nsecs;40 }41 42 28 //============================================================================================= 43 29 // Clock logic 44 30 //============================================================================================= 45 31 46 __cfa_time_t__kernel_get_time() {32 Time __kernel_get_time() { 47 33 timespec curr; 48 clock_gettime( CLOCK_ REALTIME, &curr );49 return ( __cfa_time_t){ &curr };34 clock_gettime( CLOCK_MONOTONIC_RAW, &curr ); // CLOCK_REALTIME 35 return (Time){ curr }; 50 36 } 51 37 52 void __kernel_set_timer( __cfa_time_t alarm ) { 53 itimerval val = { &alarm }; 54 setitimer( ITIMER_REAL, &val, NULL ); 38 void __kernel_set_timer( Duration alarm ) { 39 setitimer( ITIMER_REAL, &(itimerval){ alarm }, NULL ); 55 40 } 56 41 … … 59 44 //============================================================================================= 60 45 61 void ?{}( alarm_node_t & this, thread_desc * thrd, __cfa_time_t alarm = 0`cfa_s, __cfa_time_t period = 0`cfa_s) with( this ) {46 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period ) with( this ) { 62 47 this.thrd = thrd; 63 48 this.alarm = alarm; … … 68 53 } 69 54 70 void ?{}( alarm_node_t & this, processor * proc, __cfa_time_t alarm = 0`cfa_s, __cfa_time_t period = 0`cfa_s) with( this ) {55 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ) with( this ) { 71 56 this.proc = proc; 72 57 this.alarm = alarm; -
src/libcfa/concurrency/alarm.h
rb2fe1c9 r32cab5b 10 10 // Created On : Fri Jun 2 11:31:25 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Jul 22 09:59:27 201713 // Update Count : 312 // Last Modified On : Mon Mar 26 16:25:41 2018 13 // Update Count : 11 14 14 // 15 15 … … 21 21 #include <assert.h> 22 22 23 #include " bits/cfatime.h"23 #include "time" 24 24 25 25 struct thread_desc; … … 30 30 //============================================================================================= 31 31 32 __cfa_time_t__kernel_get_time();33 void __kernel_set_timer( __cfa_time_talarm );32 Time __kernel_get_time(); 33 void __kernel_set_timer( Duration alarm ); 34 34 35 35 //============================================================================================= … … 38 38 39 39 struct alarm_node_t { 40 __cfa_time_t alarm;// time when alarm goes off41 __cfa_time_t period;// if > 0 => period of alarm40 Time alarm; // time when alarm goes off 41 Duration period; // if > 0 => period of alarm 42 42 alarm_node_t * next; // intrusive link list field 43 43 … … 53 53 typedef alarm_node_t ** __alarm_it_t; 54 54 55 void ?{}( alarm_node_t & this, thread_desc * thrd, __cfa_time_t alarm = 0`cfa_s, __cfa_time_t period = 0`cfa_s);56 void ?{}( alarm_node_t & this, processor * proc, __cfa_time_t alarm = 0`cfa_s, __cfa_time_t period = 0`cfa_s);55 void ?{}( alarm_node_t & this, thread_desc * thrd, Time alarm, Duration period ); 56 void ?{}( alarm_node_t & this, processor * proc, Time alarm, Duration period ); 57 57 void ^?{}( alarm_node_t & this ); 58 58 -
src/libcfa/concurrency/coroutine
rb2fe1c9 r32cab5b 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed Aug 30 07:58:29 201713 // Update Count : 312 // Last Modified On : Fri Mar 30 18:23:45 2018 13 // Update Count : 8 14 14 // 15 15 … … 60 60 } 61 61 62 // Get current coroutine63 extern thread_local coroutine_desc * volatile this_coroutine;64 65 62 // Private wrappers for context switch and stack creation 66 63 extern void CoroutineCtxSwitch(coroutine_desc * src, coroutine_desc * dst); … … 69 66 // Suspend implementation inlined for performance 70 67 static inline void suspend() { 71 coroutine_desc * src = this_coroutine;// optimization68 coroutine_desc * src = TL_GET( this_coroutine ); // optimization 72 69 73 70 assertf( src->last != 0, … … 86 83 forall(dtype T | is_coroutine(T)) 87 84 static inline void resume(T & cor) { 88 coroutine_desc * src = this_coroutine;// optimization85 coroutine_desc * src = TL_GET( this_coroutine ); // optimization 89 86 coroutine_desc * dst = get_coroutine(cor); 90 87 … … 111 108 112 109 static inline void resume(coroutine_desc * dst) { 113 coroutine_desc * src = this_coroutine;// optimization110 coroutine_desc * src = TL_GET( this_coroutine ); // optimization 114 111 115 112 // not resuming self ? -
src/libcfa/concurrency/coroutine.c
rb2fe1c9 r32cab5b 10 10 // Created On : Mon Nov 28 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 8 16:10:31201813 // Update Count : 412 // Last Modified On : Fri Mar 30 17:20:57 2018 13 // Update Count : 9 14 14 // 15 15 … … 99 99 // Wrapper for co 100 100 void CoroutineCtxSwitch(coroutine_desc* src, coroutine_desc* dst) { 101 verify( preemption_state.enabled || this_processor->do_terminate );101 verify( TL_GET( preemption_state ).enabled || TL_GET( this_processor )->do_terminate ); 102 102 disable_interrupts(); 103 103 … … 106 106 107 107 // set new coroutine that task is executing 108 this_coroutine = dst;108 TL_SET( this_coroutine, dst ); 109 109 110 110 // context switch to specified coroutine … … 117 117 118 118 enable_interrupts( __cfaabi_dbg_ctx ); 119 verify( preemption_state.enabled || this_processor->do_terminate );119 verify( TL_GET( preemption_state ).enabled || TL_GET( this_processor )->do_terminate ); 120 120 } //ctxSwitchDirect 121 121 … … 172 172 173 173 void __leave_coroutine(void) { 174 coroutine_desc * src = this_coroutine;// optimization174 coroutine_desc * src = TL_GET( this_coroutine ); // optimization 175 175 176 176 assertf( src->starter != 0, -
src/libcfa/concurrency/invoke.h
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Jan 17 12:27:26 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 9 14:41:55201813 // Update Count : 612 // Last Modified On : Fri Mar 30 22:33:59 2018 13 // Update Count : 30 14 14 // 15 15 … … 17 17 #include "bits/defs.h" 18 18 #include "bits/locks.h" 19 20 #define TL_GET( member ) kernelThreadData.member 21 #define TL_SET( member, value ) kernelThreadData.member = value; 19 22 20 23 #ifdef __cforall … … 30 33 static inline struct thread_desc * & get_next( struct thread_desc & this ); 31 34 static inline struct __condition_criterion_t * & get_next( struct __condition_criterion_t & this ); 35 36 extern thread_local struct KernelThreadData { 37 struct coroutine_desc * volatile this_coroutine; 38 struct thread_desc * volatile this_thread; 39 struct processor * volatile this_processor; 40 41 struct { 42 volatile unsigned short disable_count; 43 volatile bool enabled; 44 volatile bool in_progress; 45 } preemption_state; 46 } kernelThreadData; 32 47 } 48 49 static inline struct coroutine_desc * volatile active_coroutine() { return TL_GET( this_coroutine ); } 50 static inline struct thread_desc * volatile active_thread() { return TL_GET( this_thread ); } 51 static inline struct processor * volatile active_processor() { return TL_GET( this_processor ); } 33 52 #endif 34 53 35 54 struct coStack_t { 36 // size of stack 37 size_t size; 38 39 // pointer to stack 40 void *storage; 41 42 // stack grows towards stack limit 43 void *limit; 44 45 // base of stack 46 void *base; 47 48 // address of cfa_context_t 49 void *context; 50 51 // address of top of storage 52 void *top; 53 54 // whether or not the user allocated the stack 55 bool userStack; 55 size_t size; // size of stack 56 void * storage; // pointer to stack 57 void * limit; // stack grows towards stack limit 58 void * base; // base of stack 59 void * context; // address of cfa_context_t 60 void * top; // address of top of storage 61 bool userStack; // whether or not the user allocated the stack 56 62 }; 57 63 … … 59 65 60 66 struct coroutine_desc { 61 // stack information of the coroutine 62 struct coStack_t stack; 63 64 // textual name for coroutine/task, initialized by uC++ generated code 65 const char *name; 66 67 // copy of global UNIX variable errno 68 int errno_; 69 70 // current execution status for coroutine 71 enum coroutine_state state; 72 73 // first coroutine to resume this one 74 struct coroutine_desc * starter; 75 76 // last coroutine to resume this one 77 struct coroutine_desc * last; 67 struct coStack_t stack; // stack information of the coroutine 68 const char * name; // textual name for coroutine/task, initialized by uC++ generated code 69 int errno_; // copy of global UNIX variable errno 70 enum coroutine_state state; // current execution status for coroutine 71 struct coroutine_desc * starter; // first coroutine to resume this one 72 struct coroutine_desc * last; // last coroutine to resume this one 78 73 }; 79 74 -
src/libcfa/concurrency/kernel
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Jul 22 09:58:39 201713 // Update Count : 212 // Last Modified On : Tue Apr 10 14:46:49 2018 13 // Update Count : 10 14 14 // 15 15 … … 19 19 20 20 #include "invoke.h" 21 #include " bits/cfatime.h"21 #include "time_t.h" 22 22 23 23 extern "C" { … … 49 49 50 50 // Preemption rate on this cluster 51 __cfa_time_tpreemption_rate;51 Duration preemption_rate; 52 52 }; 53 53 54 extern __cfa_time_tdefault_preemption();54 extern Duration default_preemption(); 55 55 56 56 void ?{} (cluster & this); -
src/libcfa/concurrency/kernel.c
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Feb 8 23:52:19201813 // Update Count : 512 // Last Modified On : Mon Apr 9 16:11:46 2018 13 // Update Count : 24 14 14 // 15 15 … … 25 25 26 26 //CFA Includes 27 #include "time" 27 28 #include "kernel_private.h" 28 29 #include "preemption.h" … … 52 53 // Global state 53 54 54 thread_local coroutine_desc * volatile this_coroutine;55 thread_local thread_desc * volatile this_thread;56 thread_local processor * volatile this_processor;57 58 55 // volatile thread_local bool preemption_in_progress = 0; 59 56 // volatile thread_local bool preemption_enabled = false; 60 57 // volatile thread_local unsigned short disable_preempt_count = 1; 61 58 62 volatile thread_local __cfa_kernel_preemption_state_t preemption_state = { false, false, 1 }; 59 thread_local struct KernelThreadData kernelThreadData = { 60 NULL, 61 NULL, 62 NULL, 63 { 1, false, false } 64 }; 63 65 64 66 //----------------------------------------------------------------------------- … … 172 174 terminate(&this); 173 175 verify(this.do_terminate); 174 verify( this_processor!= &this);176 verify(TL_GET( this_processor ) != &this); 175 177 P( terminated ); 176 verify( this_processor!= &this);178 verify(TL_GET( this_processor ) != &this); 177 179 pthread_join( kernel_thread, NULL ); 178 180 } … … 213 215 if(readyThread) 214 216 { 215 verify( ! preemption_state.enabled );217 verify( ! TL_GET( preemption_state ).enabled ); 216 218 217 219 runThread(this, readyThread); 218 220 219 verify( ! preemption_state.enabled );221 verify( ! TL_GET( preemption_state ).enabled ); 220 222 221 223 //Some actions need to be taken from the kernel … … 249 251 250 252 //Update global state 251 this_thread = dst;253 TL_SET( this_thread, dst ); 252 254 253 255 // Context Switch to the thread … … 257 259 258 260 void returnToKernel() { 259 coroutine_desc * proc_cor = get_coroutine( this_processor->runner);260 coroutine_desc * thrd_cor = this_thread->curr_cor = this_coroutine;261 coroutine_desc * proc_cor = get_coroutine(TL_GET( this_processor )->runner); 262 coroutine_desc * thrd_cor = TL_GET( this_thread )->curr_cor = TL_GET( this_coroutine ); 261 263 ThreadCtxSwitch(thrd_cor, proc_cor); 262 264 } … … 266 268 void finishRunning(processor * this) with( this->finish ) { 267 269 if( action_code == Release ) { 268 verify( ! preemption_state.enabled );270 verify( ! TL_GET( preemption_state ).enabled ); 269 271 unlock( *lock ); 270 272 } … … 273 275 } 274 276 else if( action_code == Release_Schedule ) { 275 verify( ! preemption_state.enabled );277 verify( ! TL_GET( preemption_state ).enabled ); 276 278 unlock( *lock ); 277 279 ScheduleThread( thrd ); 278 280 } 279 281 else if( action_code == Release_Multi ) { 280 verify( ! preemption_state.enabled );282 verify( ! TL_GET( preemption_state ).enabled ); 281 283 for(int i = 0; i < lock_count; i++) { 282 284 unlock( *locks[i] ); … … 307 309 void * CtxInvokeProcessor(void * arg) { 308 310 processor * proc = (processor *) arg; 309 this_processor = proc;310 this_coroutine = NULL;311 this_thread = NULL;312 preemption_state.enabled = false;313 preemption_state.disable_count = 1;311 TL_SET( this_processor, proc ); 312 TL_SET( this_coroutine, NULL ); 313 TL_SET( this_thread, NULL ); 314 TL_GET( preemption_state ).enabled = false; 315 TL_GET( preemption_state ).disable_count = 1; 314 316 // SKULLDUGGERY: We want to create a context for the processor coroutine 315 317 // which is needed for the 2-step context switch. However, there is no reason … … 323 325 324 326 //Set global state 325 this_coroutine = get_coroutine(proc->runner);326 this_thread = NULL;327 TL_SET( this_coroutine, get_coroutine(proc->runner) ); 328 TL_SET( this_thread, NULL ); 327 329 328 330 //We now have a proper context from which to schedule threads … … 352 354 353 355 void kernel_first_resume(processor * this) { 354 coroutine_desc * src = this_coroutine;356 coroutine_desc * src = TL_GET( this_coroutine ); 355 357 coroutine_desc * dst = get_coroutine(this->runner); 356 358 357 verify( ! preemption_state.enabled );359 verify( ! TL_GET( preemption_state ).enabled ); 358 360 359 361 create_stack(&dst->stack, dst->stack.size); 360 362 CtxStart(&this->runner, CtxInvokeCoroutine); 361 363 362 verify( ! preemption_state.enabled );364 verify( ! TL_GET( preemption_state ).enabled ); 363 365 364 366 dst->last = src; … … 369 371 370 372 // set new coroutine that task is executing 371 this_coroutine = dst;373 TL_SET( this_coroutine, dst ); 372 374 373 375 // SKULLDUGGERY normally interrupts are enable before leaving a coroutine ctxswitch. … … 386 388 src->state = Active; 387 389 388 verify( ! preemption_state.enabled );390 verify( ! TL_GET( preemption_state ).enabled ); 389 391 } 390 392 … … 392 394 // Scheduler routines 393 395 void ScheduleThread( thread_desc * thrd ) { 394 // if( ! thrd ) return;396 // if( ! thrd ) return; 395 397 verify( thrd ); 396 398 verify( thrd->self_cor.state != Halted ); 397 399 398 verify( ! preemption_state.enabled );400 verify( ! TL_GET( preemption_state ).enabled ); 399 401 400 402 verifyf( thrd->next == NULL, "Expected null got %p", thrd->next ); 401 403 402 with( * this_processor->cltr ) {404 with( *TL_GET( this_processor )->cltr ) { 403 405 lock ( ready_queue_lock __cfaabi_dbg_ctx2 ); 404 406 append( ready_queue, thrd ); … … 406 408 } 407 409 408 verify( ! preemption_state.enabled );410 verify( ! TL_GET( preemption_state ).enabled ); 409 411 } 410 412 411 413 thread_desc * nextThread(cluster * this) with( *this ) { 412 verify( ! preemption_state.enabled );414 verify( ! TL_GET( preemption_state ).enabled ); 413 415 lock( ready_queue_lock __cfaabi_dbg_ctx2 ); 414 416 thread_desc * head = pop_head( ready_queue ); 415 417 unlock( ready_queue_lock ); 416 verify( ! preemption_state.enabled );418 verify( ! TL_GET( preemption_state ).enabled ); 417 419 return head; 418 420 } … … 420 422 void BlockInternal() { 421 423 disable_interrupts(); 422 verify( ! preemption_state.enabled );424 verify( ! TL_GET( preemption_state ).enabled ); 423 425 returnToKernel(); 424 verify( ! preemption_state.enabled );426 verify( ! TL_GET( preemption_state ).enabled ); 425 427 enable_interrupts( __cfaabi_dbg_ctx ); 426 428 } … … 428 430 void BlockInternal( __spinlock_t * lock ) { 429 431 disable_interrupts(); 430 this_processor->finish.action_code = Release;431 this_processor->finish.lock = lock;432 433 verify( ! preemption_state.enabled );432 TL_GET( this_processor )->finish.action_code = Release; 433 TL_GET( this_processor )->finish.lock = lock; 434 435 verify( ! TL_GET( preemption_state ).enabled ); 434 436 returnToKernel(); 435 verify( ! preemption_state.enabled );437 verify( ! TL_GET( preemption_state ).enabled ); 436 438 437 439 enable_interrupts( __cfaabi_dbg_ctx ); … … 440 442 void BlockInternal( thread_desc * thrd ) { 441 443 disable_interrupts(); 442 this_processor->finish.action_code = Schedule;443 this_processor->finish.thrd = thrd;444 445 verify( ! preemption_state.enabled );444 TL_GET( this_processor )->finish.action_code = Schedule; 445 TL_GET( this_processor )->finish.thrd = thrd; 446 447 verify( ! TL_GET( preemption_state ).enabled ); 446 448 returnToKernel(); 447 verify( ! preemption_state.enabled );449 verify( ! TL_GET( preemption_state ).enabled ); 448 450 449 451 enable_interrupts( __cfaabi_dbg_ctx ); … … 453 455 assert(thrd); 454 456 disable_interrupts(); 455 this_processor->finish.action_code = Release_Schedule;456 this_processor->finish.lock = lock;457 this_processor->finish.thrd = thrd;458 459 verify( ! preemption_state.enabled );457 TL_GET( this_processor )->finish.action_code = Release_Schedule; 458 TL_GET( this_processor )->finish.lock = lock; 459 TL_GET( this_processor )->finish.thrd = thrd; 460 461 verify( ! TL_GET( preemption_state ).enabled ); 460 462 returnToKernel(); 461 verify( ! preemption_state.enabled );463 verify( ! TL_GET( preemption_state ).enabled ); 462 464 463 465 enable_interrupts( __cfaabi_dbg_ctx ); … … 466 468 void BlockInternal(__spinlock_t * locks [], unsigned short count) { 467 469 disable_interrupts(); 468 this_processor->finish.action_code = Release_Multi;469 this_processor->finish.locks = locks;470 this_processor->finish.lock_count = count;471 472 verify( ! preemption_state.enabled );470 TL_GET( this_processor )->finish.action_code = Release_Multi; 471 TL_GET( this_processor )->finish.locks = locks; 472 TL_GET( this_processor )->finish.lock_count = count; 473 474 verify( ! TL_GET( preemption_state ).enabled ); 473 475 returnToKernel(); 474 verify( ! preemption_state.enabled );476 verify( ! TL_GET( preemption_state ).enabled ); 475 477 476 478 enable_interrupts( __cfaabi_dbg_ctx ); … … 479 481 void BlockInternal(__spinlock_t * locks [], unsigned short lock_count, thread_desc * thrds [], unsigned short thrd_count) { 480 482 disable_interrupts(); 481 this_processor->finish.action_code = Release_Multi_Schedule;482 this_processor->finish.locks = locks;483 this_processor->finish.lock_count = lock_count;484 this_processor->finish.thrds = thrds;485 this_processor->finish.thrd_count = thrd_count;486 487 verify( ! preemption_state.enabled );483 TL_GET( this_processor )->finish.action_code = Release_Multi_Schedule; 484 TL_GET( this_processor )->finish.locks = locks; 485 TL_GET( this_processor )->finish.lock_count = lock_count; 486 TL_GET( this_processor )->finish.thrds = thrds; 487 TL_GET( this_processor )->finish.thrd_count = thrd_count; 488 489 verify( ! TL_GET( preemption_state ).enabled ); 488 490 returnToKernel(); 489 verify( ! preemption_state.enabled );491 verify( ! TL_GET( preemption_state ).enabled ); 490 492 491 493 enable_interrupts( __cfaabi_dbg_ctx ); … … 493 495 494 496 void LeaveThread(__spinlock_t * lock, thread_desc * thrd) { 495 verify( ! preemption_state.enabled );496 this_processor->finish.action_code = thrd ? Release_Schedule : Release;497 this_processor->finish.lock = lock;498 this_processor->finish.thrd = thrd;497 verify( ! TL_GET( preemption_state ).enabled ); 498 TL_GET( this_processor )->finish.action_code = thrd ? Release_Schedule : Release; 499 TL_GET( this_processor )->finish.lock = lock; 500 TL_GET( this_processor )->finish.thrd = thrd; 499 501 500 502 returnToKernel(); … … 507 509 // Kernel boot procedures 508 510 void kernel_startup(void) { 509 verify( ! preemption_state.enabled );511 verify( ! TL_GET( preemption_state ).enabled ); 510 512 __cfaabi_dbg_print_safe("Kernel : Starting\n"); 511 513 … … 531 533 532 534 //initialize the global state variables 533 this_processor = mainProcessor;534 this_thread = mainThread;535 this_coroutine = &mainThread->self_cor;535 TL_SET( this_processor, mainProcessor ); 536 TL_SET( this_thread, mainThread ); 537 TL_SET( this_coroutine, &mainThread->self_cor ); 536 538 537 539 // Enable preemption … … 545 547 // context. Hence, the main thread does not begin through CtxInvokeThread, like all other threads. The trick here is that 546 548 // mainThread is on the ready queue when this call is made. 547 kernel_first_resume( this_processor);549 kernel_first_resume( TL_GET( this_processor ) ); 548 550 549 551 … … 552 554 __cfaabi_dbg_print_safe("Kernel : Started\n--------------------------------------------------\n\n"); 553 555 554 verify( ! preemption_state.enabled );556 verify( ! TL_GET( preemption_state ).enabled ); 555 557 enable_interrupts( __cfaabi_dbg_ctx ); 556 verify( preemption_state.enabled );558 verify( TL_GET( preemption_state ).enabled ); 557 559 } 558 560 … … 560 562 __cfaabi_dbg_print_safe("\n--------------------------------------------------\nKernel : Shutting down\n"); 561 563 562 verify( preemption_state.enabled );564 verify( TL_GET( preemption_state ).enabled ); 563 565 disable_interrupts(); 564 verify( ! preemption_state.enabled );566 verify( ! TL_GET( preemption_state ).enabled ); 565 567 566 568 // SKULLDUGGERY: Notify the mainProcessor it needs to terminates. … … 602 604 603 605 // first task to abort ? 604 if ( ! kernel_abort_called ) { // not first task to abort ?606 if ( ! kernel_abort_called ) { // not first task to abort ? 605 607 kernel_abort_called = true; 606 608 unlock( kernel_abort_lock ); … … 617 619 } 618 620 619 return this_thread;621 return TL_GET( this_thread ); 620 622 } 621 623 … … 626 628 __cfaabi_dbg_bits_write( abort_text, len ); 627 629 628 if ( thrd != this_coroutine) {629 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", this_coroutine->name, this_coroutine);630 if ( get_coroutine(thrd) != TL_GET( this_coroutine ) ) { 631 len = snprintf( abort_text, abort_text_size, " in coroutine %.256s (%p).\n", TL_GET( this_coroutine )->name, TL_GET( this_coroutine ) ); 630 632 __cfaabi_dbg_bits_write( abort_text, len ); 631 633 } … … 636 638 637 639 int kernel_abort_lastframe( void ) __attribute__ ((__nothrow__)) { 638 return get_coroutine( this_thread) == get_coroutine(mainThread) ? 4 : 2;640 return get_coroutine(TL_GET( this_thread )) == get_coroutine(mainThread) ? 4 : 2; 639 641 } 640 642 … … 666 668 if ( count < 0 ) { 667 669 // queue current task 668 append( waiting, (thread_desc *) this_thread);670 append( waiting, (thread_desc *)TL_GET( this_thread ) ); 669 671 670 672 // atomically release spin lock and block -
src/libcfa/concurrency/kernel_private.h
rb2fe1c9 r32cab5b 10 10 // Created On : Mon Feb 13 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Jul 22 09:58:09 201713 // Update Count : 212 // Last Modified On : Thu Mar 29 14:06:40 2018 13 // Update Count : 3 14 14 // 15 15 … … 66 66 extern event_kernel_t * event_kernel; 67 67 68 extern thread_local coroutine_desc * volatile this_coroutine;69 extern thread_local thread_desc * volatile this_thread;70 extern thread_local processor * volatile this_processor;68 //extern thread_local coroutine_desc * volatile this_coroutine; 69 //extern thread_local thread_desc * volatile this_thread; 70 //extern thread_local processor * volatile this_processor; 71 71 72 72 // extern volatile thread_local bool preemption_in_progress; -
src/libcfa/concurrency/monitor.c
rb2fe1c9 r32cab5b 10 10 // Created On : Thd Feb 23 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 16 14:49:53201813 // Update Count : 512 // Last Modified On : Fri Mar 30 14:30:26 2018 13 // Update Count : 9 14 14 // 15 15 … … 85 85 // Lock the monitor spinlock 86 86 lock( this->lock __cfaabi_dbg_ctx2 ); 87 thread_desc * thrd = this_thread;87 thread_desc * thrd = TL_GET( this_thread ); 88 88 89 89 __cfaabi_dbg_print_safe( "Kernel : %10p Entering mon %p (%p)\n", thrd, this, this->owner); … … 134 134 // Lock the monitor spinlock 135 135 lock( this->lock __cfaabi_dbg_ctx2 ); 136 thread_desc * thrd = this_thread;136 thread_desc * thrd = TL_GET( this_thread ); 137 137 138 138 __cfaabi_dbg_print_safe( "Kernel : %10p Entering dtor for mon %p (%p)\n", thrd, this, this->owner); … … 168 168 169 169 // Create the node specific to this wait operation 170 wait_ctx_primed( this_thread, 0 )170 wait_ctx_primed( TL_GET( this_thread ), 0 ) 171 171 172 172 // Some one else has the monitor, wait for him to finish and then run … … 179 179 __cfaabi_dbg_print_safe( "Kernel : blocking \n" ); 180 180 181 wait_ctx( this_thread, 0 )181 wait_ctx( TL_GET( this_thread ), 0 ) 182 182 this->dtor_node = &waiter; 183 183 … … 199 199 lock( this->lock __cfaabi_dbg_ctx2 ); 200 200 201 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", this_thread, this, this->owner);202 203 verifyf( this_thread == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", this_thread, this->owner, this->recursion, this );201 __cfaabi_dbg_print_safe( "Kernel : %10p Leaving mon %p (%p)\n", TL_GET( this_thread ), this, this->owner); 202 203 verifyf( TL_GET( this_thread ) == this->owner, "Expected owner to be %p, got %p (r: %i, m: %p)", TL_GET( this_thread ), this->owner, this->recursion, this ); 204 204 205 205 // Leaving a recursion level, decrement the counter … … 227 227 void __leave_dtor_monitor_desc( monitor_desc * this ) { 228 228 __cfaabi_dbg_debug_do( 229 if( this_thread!= this->owner ) {230 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, this_thread, this->owner);229 if( TL_GET( this_thread ) != this->owner ) { 230 abort( "Destroyed monitor %p has inconsistent owner, expected %p got %p.\n", this, TL_GET( this_thread ), this->owner); 231 231 } 232 232 if( this->recursion != 1 ) { … … 297 297 298 298 // Save previous thread context 299 this.prev = this_thread->monitors;299 this.prev = TL_GET( this_thread )->monitors; 300 300 301 301 // Update thread context (needed for conditions) 302 ( this_thread->monitors){m, count, func};302 (TL_GET( this_thread )->monitors){m, count, func}; 303 303 304 304 // __cfaabi_dbg_print_safe( "MGUARD : enter %d\n", count); … … 322 322 323 323 // Restore thread context 324 this_thread->monitors = this.prev;324 TL_GET( this_thread )->monitors = this.prev; 325 325 } 326 326 … … 332 332 333 333 // Save previous thread context 334 this.prev = this_thread->monitors;334 this.prev = TL_GET( this_thread )->monitors; 335 335 336 336 // Update thread context (needed for conditions) 337 ( this_thread->monitors){m, 1, func};337 (TL_GET( this_thread )->monitors){m, 1, func}; 338 338 339 339 __enter_monitor_dtor( this.m, func ); … … 346 346 347 347 // Restore thread context 348 this_thread->monitors = this.prev;348 TL_GET( this_thread )->monitors = this.prev; 349 349 } 350 350 … … 386 386 387 387 // Create the node specific to this wait operation 388 wait_ctx( this_thread, user_info );388 wait_ctx( TL_GET( this_thread ), user_info ); 389 389 390 390 // Append the current wait operation to the ones already queued on the condition … … 425 425 //Some more checking in debug 426 426 __cfaabi_dbg_debug_do( 427 thread_desc * this_thrd = this_thread;427 thread_desc * this_thrd = TL_GET( this_thread ); 428 428 if ( this.monitor_count != this_thrd->monitors.size ) { 429 429 abort( "Signal on condition %p made with different number of monitor(s), expected %zi got %zi", &this, this.monitor_count, this_thrd->monitors.size ); … … 473 473 474 474 // Create the node specific to this wait operation 475 wait_ctx_primed( this_thread, 0 )475 wait_ctx_primed( TL_GET( this_thread ), 0 ) 476 476 477 477 //save contexts … … 566 566 567 567 // Create the node specific to this wait operation 568 wait_ctx_primed( this_thread, 0 );568 wait_ctx_primed( TL_GET( this_thread ), 0 ); 569 569 570 570 // Save monitor states … … 612 612 613 613 // Create the node specific to this wait operation 614 wait_ctx_primed( this_thread, 0 );614 wait_ctx_primed( TL_GET( this_thread ), 0 ); 615 615 616 616 monitor_save; … … 618 618 619 619 for( __lock_size_t i = 0; i < count; i++) { 620 verify( monitors[i]->owner == this_thread);620 verify( monitors[i]->owner == TL_GET( this_thread ) ); 621 621 } 622 622 … … 812 812 813 813 static inline void brand_condition( condition & this ) { 814 thread_desc * thrd = this_thread;814 thread_desc * thrd = TL_GET( this_thread ); 815 815 if( !this.monitors ) { 816 816 // __cfaabi_dbg_print_safe( "Branding\n" ); -
src/libcfa/concurrency/preemption.c
rb2fe1c9 r32cab5b 10 10 // Created On : Mon Jun 5 14:20:42 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Feb 9 16:38:13201813 // Update Count : 1412 // Last Modified On : Mon Apr 9 13:52:39 2018 13 // Update Count : 36 14 14 // 15 15 … … 23 23 } 24 24 25 #include "bits/cfatime.h"26 25 #include "bits/signal.h" 27 26 28 27 #if !defined(__CFA_DEFAULT_PREEMPTION__) 29 #define __CFA_DEFAULT_PREEMPTION__ 10` cfa_ms28 #define __CFA_DEFAULT_PREEMPTION__ 10`ms 30 29 #endif 31 30 32 __cfa_time_tdefault_preemption() __attribute__((weak)) {31 Duration default_preemption() __attribute__((weak)) { 33 32 return __CFA_DEFAULT_PREEMPTION__; 34 33 } … … 78 77 79 78 // Get next expired node 80 static inline alarm_node_t * get_expired( alarm_list_t * alarms, __cfa_time_tcurrtime ) {79 static inline alarm_node_t * get_expired( alarm_list_t * alarms, Time currtime ) { 81 80 if( !alarms->head ) return NULL; // If no alarms return null 82 81 if( alarms->head->alarm >= currtime ) return NULL; // If alarms head not expired return null … … 88 87 alarm_node_t * node = NULL; // Used in the while loop but cannot be declared in the while condition 89 88 alarm_list_t * alarms = &event_kernel->alarms; // Local copy for ease of reading 90 __cfa_time_t currtime = __kernel_get_time();// Check current time once so we everything "happens at once"89 Time currtime = __kernel_get_time(); // Check current time once so we everything "happens at once" 91 90 92 91 //Loop throught every thing expired … … 102 101 103 102 // Check if this is a periodic alarm 104 __cfa_time_tperiod = node->period;103 Duration period = node->period; 105 104 if( period > 0 ) { 106 105 node->alarm = currtime + period; // Alarm is periodic, add currtime to it (used cached current time) … … 117 116 118 117 // Update the preemption of a processor and notify interested parties 119 void update_preemption( processor * this, __cfa_time_tduration ) {118 void update_preemption( processor * this, Duration duration ) { 120 119 alarm_node_t * alarm = this->preemption_alarm; 121 120 122 121 // Alarms need to be enabled 123 if ( duration > 0 && ! alarm->set ) {122 if ( duration > 0 && ! alarm->set ) { 124 123 alarm->alarm = __kernel_get_time() + duration; 125 124 alarm->period = duration; 126 125 register_self( alarm ); 127 126 } 128 // Zero dura ction but alarm is set127 // Zero duration but alarm is set 129 128 else if ( duration == 0 && alarm->set ) { 130 129 unregister_self( alarm ); … … 150 149 // Disable interrupts by incrementing the counter 151 150 void disable_interrupts() { 152 preemption_state.enabled = false;153 __attribute__((unused)) unsigned short new_val = preemption_state.disable_count + 1;154 preemption_state.disable_count = new_val;151 TL_GET( preemption_state ).enabled = false; 152 __attribute__((unused)) unsigned short new_val = TL_GET( preemption_state ).disable_count + 1; 153 TL_GET( preemption_state ).disable_count = new_val; 155 154 verify( new_val < 65_000u ); // If this triggers someone is disabling interrupts without enabling them 156 155 } … … 159 158 // If counter reaches 0, execute any pending CtxSwitch 160 159 void enable_interrupts( __cfaabi_dbg_ctx_param ) { 161 processor * proc = this_processor;// Cache the processor now since interrupts can start happening after the atomic add162 thread_desc * thrd = this_thread;// Cache the thread now since interrupts can start happening after the atomic add163 164 unsigned short prev = preemption_state.disable_count;165 preemption_state.disable_count -= 1;160 processor * proc = TL_GET( this_processor ); // Cache the processor now since interrupts can start happening after the atomic add 161 thread_desc * thrd = TL_GET( this_thread ); // Cache the thread now since interrupts can start happening after the atomic add 162 163 unsigned short prev = TL_GET( preemption_state ).disable_count; 164 TL_GET( preemption_state ).disable_count -= 1; 166 165 verify( prev != 0u ); // If this triggers someone is enabled already enabled interruptsverify( prev != 0u ); 167 166 168 167 // Check if we need to prempt the thread because an interrupt was missed 169 168 if( prev == 1 ) { 170 preemption_state.enabled = true;169 TL_GET( preemption_state ).enabled = true; 171 170 if( proc->pending_preemption ) { 172 171 proc->pending_preemption = false; … … 182 181 // Don't execute any pending CtxSwitch even if counter reaches 0 183 182 void enable_interrupts_noPoll() { 184 unsigned short prev = preemption_state.disable_count;185 preemption_state.disable_count -= 1;183 unsigned short prev = TL_GET( preemption_state ).disable_count; 184 TL_GET( preemption_state ).disable_count -= 1; 186 185 verifyf( prev != 0u, "Incremented from %u\n", prev ); // If this triggers someone is enabled already enabled interrupts 187 186 if( prev == 1 ) { 188 preemption_state.enabled = true;187 TL_GET( preemption_state ).enabled = true; 189 188 } 190 189 } … … 236 235 // If false : preemption is unsafe and marked as pending 237 236 static inline bool preemption_ready() { 238 bool ready = preemption_state.enabled && !preemption_state.in_progress; // Check if preemption is safe239 this_processor->pending_preemption = !ready;// Adjust the pending flag accordingly237 bool ready = TL_GET( preemption_state ).enabled && !TL_GET( preemption_state ).in_progress; // Check if preemption is safe 238 TL_GET( this_processor )->pending_preemption = !ready; // Adjust the pending flag accordingly 240 239 return ready; 241 240 } … … 251 250 252 251 // Start with preemption disabled until ready 253 preemption_state.enabled = false;254 preemption_state.disable_count = 1;252 TL_GET( preemption_state ).enabled = false; 253 TL_GET( preemption_state ).disable_count = 1; 255 254 256 255 // Initialize the event kernel … … 291 290 // Used by thread to control when they want to receive preemption signals 292 291 void ?{}( preemption_scope & this, processor * proc ) { 293 (this.alarm){ proc, 0`cfa_s, 0`cfa_s };292 (this.alarm){ proc, (Time){ 0 }, 0`s }; 294 293 this.proc = proc; 295 294 this.proc->preemption_alarm = &this.alarm; … … 301 300 disable_interrupts(); 302 301 303 update_preemption( this.proc, 0` cfa_s );302 update_preemption( this.proc, 0`s ); 304 303 } 305 304 … … 317 316 // before the kernel thread has even started running. When that happens an iterrupt 318 317 // we a null 'this_processor' will be caught, just ignore it. 319 if(! this_processor) return;318 if(!TL_GET( this_processor )) return; 320 319 321 320 choose(sfp->si_value.sival_int) { 322 321 case PREEMPT_NORMAL : ;// Normal case, nothing to do here 323 case PREEMPT_TERMINATE: verify( this_processor->do_terminate);322 case PREEMPT_TERMINATE: verify(TL_GET( this_processor )->do_terminate); 324 323 default: 325 324 abort( "internal error, signal value is %d", sfp->si_value.sival_int ); … … 331 330 __cfaabi_dbg_print_buffer_decl( " KERNEL: preempting core %p (%p).\n", this_processor, this_thread); 332 331 333 preemption_state.in_progress = true;// Sync flag : prevent recursive calls to the signal handler332 TL_GET( preemption_state ).in_progress = true; // Sync flag : prevent recursive calls to the signal handler 334 333 signal_unblock( SIGUSR1 ); // We are about to CtxSwitch out of the signal handler, let other handlers in 335 preemption_state.in_progress = false;// Clear the in progress flag334 TL_GET( preemption_state ).in_progress = false; // Clear the in progress flag 336 335 337 336 // Preemption can occur here 338 337 339 BlockInternal( (thread_desc*) this_thread );// Do the actual CtxSwitch338 BlockInternal( (thread_desc*)TL_GET( this_thread ) ); // Do the actual CtxSwitch 340 339 } 341 340 -
src/libcfa/concurrency/preemption.h
rb2fe1c9 r32cab5b 10 10 // Created On : Mon Jun 5 14:20:42 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jul 21 22:34:25 201713 // Update Count : 112 // Last Modified On : Fri Mar 23 17:18:53 2018 13 // Update Count : 2 14 14 // 15 15 … … 21 21 void kernel_start_preemption(); 22 22 void kernel_stop_preemption(); 23 void update_preemption( processor * this, __cfa_time_tduration );23 void update_preemption( processor * this, Duration duration ); 24 24 void tick_preemption(); 25 25 -
src/libcfa/concurrency/thread
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Jul 22 09:59:40 201713 // Update Count : 312 // Last Modified On : Thu Mar 29 14:07:11 2018 13 // Update Count : 4 14 14 // 15 15 … … 52 52 } 53 53 54 extern thread_local thread_desc * volatile this_thread;54 //extern thread_local thread_desc * volatile this_thread; 55 55 56 56 forall( dtype T | is_thread(T) ) -
src/libcfa/concurrency/thread.c
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Jan 17 12:27:26 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Jul 21 22:34:46 201713 // Update Count : 112 // Last Modified On : Fri Mar 30 17:19:52 2018 13 // Update Count : 8 14 14 // 15 15 … … 26 26 } 27 27 28 extern volatile thread_local processor * this_processor;28 //extern volatile thread_local processor * this_processor; 29 29 30 30 //----------------------------------------------------------------------------- … … 75 75 coroutine_desc* thrd_c = get_coroutine(this); 76 76 thread_desc * thrd_h = get_thread (this); 77 thrd_c->last = this_coroutine;77 thrd_c->last = TL_GET( this_coroutine ); 78 78 79 79 // __cfaabi_dbg_print_safe("Thread start : %p (t %p, c %p)\n", this, thrd_c, thrd_h); … … 81 81 disable_interrupts(); 82 82 create_stack(&thrd_c->stack, thrd_c->stack.size); 83 this_coroutine = thrd_c;83 TL_SET( this_coroutine, thrd_c ); 84 84 CtxStart(&this, CtxInvokeThread); 85 85 assert( thrd_c->last->stack.context ); … … 92 92 extern "C" { 93 93 void __finish_creation(void) { 94 coroutine_desc* thrd_c = this_coroutine;94 coroutine_desc* thrd_c = TL_GET( this_coroutine ); 95 95 ThreadCtxSwitch( thrd_c, thrd_c->last ); 96 96 } … … 98 98 99 99 void yield( void ) { 100 verify( preemption_state.enabled );101 BlockInternal( this_thread);102 verify( preemption_state.enabled );100 verify( TL_GET( preemption_state ).enabled ); 101 BlockInternal( TL_GET( this_thread ) ); 102 verify( TL_GET( preemption_state ).enabled ); 103 103 } 104 104 … … 116 116 // set new coroutine that the processor is executing 117 117 // and context switch to it 118 this_coroutine = dst;118 TL_SET( this_coroutine, dst ); 119 119 assert( src->stack.context ); 120 120 CtxSwitch( src->stack.context, dst->stack.context ); 121 this_coroutine = src;121 TL_SET( this_coroutine, src ); 122 122 123 123 // set state of new coroutine to active -
src/libcfa/iostream
rb2fe1c9 r32cab5b 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Thu Jan 25 13:08:39201813 // Update Count : 1 4912 // Last Modified On : Thu Apr 12 14:34:37 2018 13 // Update Count : 150 14 14 // 15 15 … … 159 159 forall( dtype istype | istream( istype ) ) istype & ?|?( istype &, _Istream_cstrC ); 160 160 161 162 #include <time_t.h> // Duration (constructors) / Time (constructors) 163 164 forall( dtype ostype | ostream( ostype ) ) ostype & ?|?( ostype & os, Duration dur ); 165 forall( dtype ostype | ostream( ostype ) ) ostype & ?|?( ostype & os, Time time ); 166 167 161 168 // Local Variables: // 162 169 // mode: c // -
src/libcfa/stdlib.c
rb2fe1c9 r32cab5b 99 99 char * eeptr; 100 100 re = strtof( sptr, &eeptr ); 101 if ( sptr == *eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }101 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; } 102 102 im = strtof( eeptr, &eeptr ); 103 if ( sptr == *eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; }103 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; } 104 104 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0f + 0.0f * _Complex_I; } 105 105 return re + im * _Complex_I; … … 110 110 char * eeptr; 111 111 re = strtod( sptr, &eeptr ); 112 if ( sptr == *eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }112 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; } 113 113 im = strtod( eeptr, &eeptr ); 114 if ( sptr == *eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; }114 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; } 115 115 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0 + 0.0 * _Complex_I; } 116 116 return re + im * _Complex_I; … … 121 121 char * eeptr; 122 122 re = strtold( sptr, &eeptr ); 123 if ( sptr == *eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }123 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; } 124 124 im = strtold( eeptr, &eeptr ); 125 if ( sptr == *eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; }125 if ( sptr == eeptr ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; } 126 126 if ( *eeptr != 'i' ) { if ( eptr != 0 ) *eptr = eeptr; return 0.0L + 0.0L * _Complex_I; } 127 127 return re + im * _Complex_I; -
src/tests/.expect/attributes.x64.txt
rb2fe1c9 r32cab5b 3 3 L: __attribute__ ((unused)) ((void)1); 4 4 } 5 __attribute__ ((unused)) struct__anonymous0 {5 struct __attribute__ ((unused)) __anonymous0 { 6 6 }; 7 7 static inline void ___constructor__F_R13s__anonymous0_autogen___1(struct __anonymous0 *___dst__R13s__anonymous0_1); … … 20 20 return ___ret__13s__anonymous0_1; 21 21 } 22 __attribute__ ((unused)) structAgn1;23 __attribute__ ((unused)) structAgn2 {22 struct __attribute__ ((unused)) Agn1; 23 struct __attribute__ ((unused)) Agn2 { 24 24 }; 25 25 static inline void ___constructor__F_R5sAgn2_autogen___1(struct Agn2 *___dst__R5sAgn2_1); … … 45 45 __E2__C5eAgn3_1, 46 46 }; 47 __attribute__ ((unused)) struct__anonymous2;48 __attribute__ ((unused)) struct__anonymous3;47 struct __attribute__ ((unused)) __anonymous2; 48 struct __attribute__ ((unused)) __anonymous3; 49 49 struct Fdl { 50 50 __attribute__ ((unused)) signed int __f1__i_1; … … 314 314 ((void)sizeof(__attribute__ ((unused,unused,unused)) signed int (*)[10])); 315 315 ((void)sizeof(__attribute__ ((unused,unused,unused)) signed int ())); 316 __attribute__ ((unused)) struct__anonymous4 {316 struct __attribute__ ((unused)) __anonymous4 { 317 317 signed int __i__i_2; 318 318 }; -
src/tests/.expect/attributes.x86.txt
rb2fe1c9 r32cab5b 3 3 L: __attribute__ ((unused)) ((void)1); 4 4 } 5 __attribute__ ((unused)) struct__anonymous0 {5 struct __attribute__ ((unused)) __anonymous0 { 6 6 }; 7 7 static inline void ___constructor__F_R13s__anonymous0_autogen___1(struct __anonymous0 *___dst__R13s__anonymous0_1); … … 20 20 return ___ret__13s__anonymous0_1; 21 21 } 22 __attribute__ ((unused)) structAgn1;23 __attribute__ ((unused)) structAgn2 {22 struct __attribute__ ((unused)) Agn1; 23 struct __attribute__ ((unused)) Agn2 { 24 24 }; 25 25 static inline void ___constructor__F_R5sAgn2_autogen___1(struct Agn2 *___dst__R5sAgn2_1); … … 45 45 __E2__C5eAgn3_1, 46 46 }; 47 __attribute__ ((unused)) struct__anonymous2;48 __attribute__ ((unused)) struct__anonymous3;47 struct __attribute__ ((unused)) __anonymous2; 48 struct __attribute__ ((unused)) __anonymous3; 49 49 struct Fdl { 50 50 __attribute__ ((unused)) signed int __f1__i_1; … … 314 314 ((void)sizeof(__attribute__ ((unused,unused,unused)) signed int (*)[10])); 315 315 ((void)sizeof(__attribute__ ((unused,unused,unused)) signed int ())); 316 __attribute__ ((unused)) struct__anonymous4 {316 struct __attribute__ ((unused)) __anonymous4 { 317 317 signed int __i__i_2; 318 318 }; -
src/tests/.expect/literals.x64.txt
rb2fe1c9 r32cab5b 122 122 struct _Istream_cstrC __cstr__F15s_Istream_cstrC_Pci__1(char *__anonymous_object1340, signed int __size__i_1); 123 123 void *___operator_bitor__A0_1_0_0___fail__PFi_Rd0___eof__PFi_Rd0___open__PF_Rd0PCc___close__PF_Rd0___read__PFRd0_Rd0PcUl___ungetc__PFRd0_Rd0c___fmt__PFi_Rd0PCc__FRd0_Rd015s_Istream_cstrC__1(__attribute__ ((unused)) signed int (*__fail__PFi_R7tistype__1)(void *__anonymous_object1341), __attribute__ ((unused)) signed int (*__eof__PFi_R7tistype__1)(void *__anonymous_object1342), __attribute__ ((unused)) void (*__open__PF_R7tistypePCc__1)(void *__is__R7tistype_1, const char *__name__PCc_1), __attribute__ ((unused)) void (*__close__PF_R7tistype__1)(void *__is__R7tistype_1), __attribute__ ((unused)) void *(*__read__PFR7tistype_R7tistypePcUl__1)(void *__anonymous_object1343, char *__anonymous_object1344, unsigned long int __anonymous_object1345), __attribute__ ((unused)) void *(*__ungetc__PFR7tistype_R7tistypec__1)(void *__anonymous_object1346, char __anonymous_object1347), __attribute__ ((unused)) signed int (*__fmt__PFi_R7tistypePCc__1)(void *__anonymous_object1348, const char *__fmt__PCc_1, ...), void *__anonymous_object1349, struct _Istream_cstrC __anonymous_object1350); 124 struct Duration { 125 signed long int __tv__l_1; 126 }; 127 static inline void ___constructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1); 128 static inline void ___constructor__F_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1); 129 static inline void ___destructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1); 130 static inline struct Duration ___operator_assign__F9sDuration_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1); 131 static inline void ___constructor__F_R9sDurationl_autogen___1(struct Duration *___dst__R9sDuration_1, signed long int __tv__l_1); 132 static inline void ___constructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1){ 133 ((void)((*___dst__R9sDuration_1).__tv__l_1) /* ?{} */); 134 } 135 static inline void ___constructor__F_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1){ 136 ((void)((*___dst__R9sDuration_1).__tv__l_1=___src__9sDuration_1.__tv__l_1) /* ?{} */); 137 } 138 static inline void ___destructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1){ 139 ((void)((*___dst__R9sDuration_1).__tv__l_1) /* ^?{} */); 140 } 141 static inline struct Duration ___operator_assign__F9sDuration_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1){ 142 struct Duration ___ret__9sDuration_1; 143 ((void)((*___dst__R9sDuration_1).__tv__l_1=___src__9sDuration_1.__tv__l_1)); 144 ((void)___constructor__F_R9sDuration9sDuration_autogen___1((&___ret__9sDuration_1), (*___dst__R9sDuration_1))); 145 return ___ret__9sDuration_1; 146 } 147 static inline void ___constructor__F_R9sDurationl_autogen___1(struct Duration *___dst__R9sDuration_1, signed long int __tv__l_1){ 148 ((void)((*___dst__R9sDuration_1).__tv__l_1=__tv__l_1) /* ?{} */); 149 } 150 static inline void ___constructor__F_R9sDuration__1(struct Duration *__dur__R9sDuration_1){ 151 ((void)((*__dur__R9sDuration_1).__tv__l_1) /* ?{} */); 152 ((void)((*__dur__R9sDuration_1).__tv__l_1=((signed long int )0))); 153 } 154 static inline void ___constructor__F_R9sDurationZ__1(struct Duration *__dur__R9sDuration_1, long int __anonymous_object1351){ 155 ((void)((*__dur__R9sDuration_1).__tv__l_1) /* ?{} */); 156 ((void)((*__dur__R9sDuration_1).__tv__l_1=((signed long int )0))); 157 } 158 struct Time { 159 unsigned long int __tv__Ul_1; 160 }; 161 static inline void ___constructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1); 162 static inline void ___constructor__F_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1); 163 static inline void ___destructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1); 164 static inline struct Time ___operator_assign__F5sTime_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1); 165 static inline void ___constructor__F_R5sTimeUl_autogen___1(struct Time *___dst__R5sTime_1, unsigned long int __tv__Ul_1); 166 static inline void ___constructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1){ 167 ((void)((*___dst__R5sTime_1).__tv__Ul_1) /* ?{} */); 168 } 169 static inline void ___constructor__F_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1){ 170 ((void)((*___dst__R5sTime_1).__tv__Ul_1=___src__5sTime_1.__tv__Ul_1) /* ?{} */); 171 } 172 static inline void ___destructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1){ 173 ((void)((*___dst__R5sTime_1).__tv__Ul_1) /* ^?{} */); 174 } 175 static inline struct Time ___operator_assign__F5sTime_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1){ 176 struct Time ___ret__5sTime_1; 177 ((void)((*___dst__R5sTime_1).__tv__Ul_1=___src__5sTime_1.__tv__Ul_1)); 178 ((void)___constructor__F_R5sTime5sTime_autogen___1((&___ret__5sTime_1), (*___dst__R5sTime_1))); 179 return ___ret__5sTime_1; 180 } 181 static inline void ___constructor__F_R5sTimeUl_autogen___1(struct Time *___dst__R5sTime_1, unsigned long int __tv__Ul_1){ 182 ((void)((*___dst__R5sTime_1).__tv__Ul_1=__tv__Ul_1) /* ?{} */); 183 } 184 static inline void ___constructor__F_R5sTime__1(struct Time *__time__R5sTime_1){ 185 ((void)((*__time__R5sTime_1).__tv__Ul_1) /* ?{} */); 186 ((void)((*__time__R5sTime_1).__tv__Ul_1=((unsigned long int )0))); 187 } 188 static inline void ___constructor__F_R5sTimeZ__1(struct Time *__time__R5sTime_1, long int __anonymous_object1352){ 189 ((void)((*__time__R5sTime_1).__tv__Ul_1) /* ?{} */); 190 ((void)((*__time__R5sTime_1).__tv__Ul_1=((unsigned long int )0))); 191 } 192 void *___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd09sDuration__1(__attribute__ ((unused)) _Bool (*__sepPrt__PFb_R7tostype__1)(void *__anonymous_object1353), __attribute__ ((unused)) void (*__sepReset__PF_R7tostype__1)(void *__anonymous_object1354), __attribute__ ((unused)) void (*__sepReset__PF_R7tostypeb__1)(void *__anonymous_object1355, _Bool __anonymous_object1356), __attribute__ ((unused)) const char *(*__sepGetCur__PFPCc_R7tostype__1)(void *__anonymous_object1357), __attribute__ ((unused)) void (*__sepSetCur__PF_R7tostypePCc__1)(void *__anonymous_object1358, const char *__anonymous_object1359), __attribute__ ((unused)) _Bool (*__getNL__PFb_R7tostype__1)(void *__anonymous_object1360), __attribute__ ((unused)) void (*__setNL__PF_R7tostypeb__1)(void *__anonymous_object1361, _Bool __anonymous_object1362), __attribute__ ((unused)) void (*__sepOn__PF_R7tostype__1)(void *__anonymous_object1363), __attribute__ ((unused)) void (*__sepOff__PF_R7tostype__1)(void *__anonymous_object1364), __attribute__ ((unused)) _Bool (*__sepDisable__PFb_R7tostype__1)(void *__anonymous_object1365), __attribute__ ((unused)) _Bool (*__sepEnable__PFb_R7tostype__1)(void *__anonymous_object1366), __attribute__ ((unused)) const char *(*__sepGet__PFPCc_R7tostype__1)(void *__anonymous_object1367), __attribute__ ((unused)) void (*__sepSet__PF_R7tostypePCc__1)(void *__anonymous_object1368, const char *__anonymous_object1369), __attribute__ ((unused)) const char *(*__sepGetTuple__PFPCc_R7tostype__1)(void *__anonymous_object1370), __attribute__ ((unused)) void (*__sepSetTuple__PF_R7tostypePCc__1)(void *__anonymous_object1371, const char *__anonymous_object1372), __attribute__ ((unused)) signed int (*__fail__PFi_R7tostype__1)(void *__anonymous_object1373), __attribute__ ((unused)) signed int (*__flush__PFi_R7tostype__1)(void *__anonymous_object1374), __attribute__ ((unused)) void (*__open__PF_R7tostypePCcPCc__1)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1), __attribute__ ((unused)) void (*__close__PF_R7tostype__1)(void *__os__R7tostype_1), __attribute__ ((unused)) void *(*__write__PFR7tostype_R7tostypePCcUl__1)(void *__anonymous_object1375, const char *__anonymous_object1376, unsigned long int __anonymous_object1377), __attribute__ ((unused)) signed int (*__fmt__PFi_R7tostypePCc__1)(void *__anonymous_object1378, const char *__fmt__PCc_1, ...), void *__os__R7tostype_1, struct Duration __dur__9sDuration_1); 193 void *___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd05sTime__1(__attribute__ ((unused)) _Bool (*__sepPrt__PFb_R7tostype__1)(void *__anonymous_object1379), __attribute__ ((unused)) void (*__sepReset__PF_R7tostype__1)(void *__anonymous_object1380), __attribute__ ((unused)) void (*__sepReset__PF_R7tostypeb__1)(void *__anonymous_object1381, _Bool __anonymous_object1382), __attribute__ ((unused)) const char *(*__sepGetCur__PFPCc_R7tostype__1)(void *__anonymous_object1383), __attribute__ ((unused)) void (*__sepSetCur__PF_R7tostypePCc__1)(void *__anonymous_object1384, const char *__anonymous_object1385), __attribute__ ((unused)) _Bool (*__getNL__PFb_R7tostype__1)(void *__anonymous_object1386), __attribute__ ((unused)) void (*__setNL__PF_R7tostypeb__1)(void *__anonymous_object1387, _Bool __anonymous_object1388), __attribute__ ((unused)) void (*__sepOn__PF_R7tostype__1)(void *__anonymous_object1389), __attribute__ ((unused)) void (*__sepOff__PF_R7tostype__1)(void *__anonymous_object1390), __attribute__ ((unused)) _Bool (*__sepDisable__PFb_R7tostype__1)(void *__anonymous_object1391), __attribute__ ((unused)) _Bool (*__sepEnable__PFb_R7tostype__1)(void *__anonymous_object1392), __attribute__ ((unused)) const char *(*__sepGet__PFPCc_R7tostype__1)(void *__anonymous_object1393), __attribute__ ((unused)) void (*__sepSet__PF_R7tostypePCc__1)(void *__anonymous_object1394, const char *__anonymous_object1395), __attribute__ ((unused)) const char *(*__sepGetTuple__PFPCc_R7tostype__1)(void *__anonymous_object1396), __attribute__ ((unused)) void (*__sepSetTuple__PF_R7tostypePCc__1)(void *__anonymous_object1397, const char *__anonymous_object1398), __attribute__ ((unused)) signed int (*__fail__PFi_R7tostype__1)(void *__anonymous_object1399), __attribute__ ((unused)) signed int (*__flush__PFi_R7tostype__1)(void *__anonymous_object1400), __attribute__ ((unused)) void (*__open__PF_R7tostypePCcPCc__1)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1), __attribute__ ((unused)) void (*__close__PF_R7tostype__1)(void *__os__R7tostype_1), __attribute__ ((unused)) void *(*__write__PFR7tostype_R7tostypePCcUl__1)(void *__anonymous_object1401, const char *__anonymous_object1402, unsigned long int __anonymous_object1403), __attribute__ ((unused)) signed int (*__fmt__PFi_R7tostypePCc__1)(void *__anonymous_object1404, const char *__fmt__PCc_1, ...), void *__os__R7tostype_1, struct Time __time__5sTime_1); 124 194 enum __anonymous0 { 125 195 __sepSize__C13e__anonymous0_1 = 16, … … 401 471 402 472 } 403 _Bool __sepPrt__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 351);404 void __sepReset__F_R9sofstream__1(struct ofstream *__anonymous_object1 352);405 void __sepReset__F_R9sofstreamb__1(struct ofstream *__anonymous_object1 353, _Bool __anonymous_object1354);406 const char *__sepGetCur__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1 355);407 void __sepSetCur__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 356, const char *__anonymous_object1357);408 _Bool __getNL__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 358);409 void __setNL__F_R9sofstreamb__1(struct ofstream *__anonymous_object1 359, _Bool __anonymous_object1360);410 void __sepOn__F_R9sofstream__1(struct ofstream *__anonymous_object1 361);411 void __sepOff__F_R9sofstream__1(struct ofstream *__anonymous_object1 362);412 _Bool __sepDisable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 363);413 _Bool __sepEnable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 364);414 const char *__sepGet__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1 365);415 void __sepSet__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 366, const char *__anonymous_object1367);416 const char *__sepGetTuple__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1 368);417 void __sepSetTuple__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 369, const char *__anonymous_object1370);418 signed int __fail__Fi_R9sofstream__1(struct ofstream *__anonymous_object1 371);419 signed int __flush__Fi_R9sofstream__1(struct ofstream *__anonymous_object1 372);420 void __open__F_R9sofstreamPCcPCc__1(struct ofstream *__anonymous_object1 373, const char *__name__PCc_1, const char *__mode__PCc_1);421 void __open__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 374, const char *__name__PCc_1);422 void __close__F_R9sofstream__1(struct ofstream *__anonymous_object1 375);423 struct ofstream *__write__FR9sofstream_R9sofstreamPCcUl__1(struct ofstream *__anonymous_object1 376, const char *__data__PCc_1, unsigned long int __size__Ul_1);424 signed int __fmt__Fi_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 377, const char *__fmt__PCc_1, ...);473 _Bool __sepPrt__Fb_R9sofstream__1(struct ofstream *__anonymous_object1405); 474 void __sepReset__F_R9sofstream__1(struct ofstream *__anonymous_object1406); 475 void __sepReset__F_R9sofstreamb__1(struct ofstream *__anonymous_object1407, _Bool __anonymous_object1408); 476 const char *__sepGetCur__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1409); 477 void __sepSetCur__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1410, const char *__anonymous_object1411); 478 _Bool __getNL__Fb_R9sofstream__1(struct ofstream *__anonymous_object1412); 479 void __setNL__F_R9sofstreamb__1(struct ofstream *__anonymous_object1413, _Bool __anonymous_object1414); 480 void __sepOn__F_R9sofstream__1(struct ofstream *__anonymous_object1415); 481 void __sepOff__F_R9sofstream__1(struct ofstream *__anonymous_object1416); 482 _Bool __sepDisable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1417); 483 _Bool __sepEnable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1418); 484 const char *__sepGet__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1419); 485 void __sepSet__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1420, const char *__anonymous_object1421); 486 const char *__sepGetTuple__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1422); 487 void __sepSetTuple__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1423, const char *__anonymous_object1424); 488 signed int __fail__Fi_R9sofstream__1(struct ofstream *__anonymous_object1425); 489 signed int __flush__Fi_R9sofstream__1(struct ofstream *__anonymous_object1426); 490 void __open__F_R9sofstreamPCcPCc__1(struct ofstream *__anonymous_object1427, const char *__name__PCc_1, const char *__mode__PCc_1); 491 void __open__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1428, const char *__name__PCc_1); 492 void __close__F_R9sofstream__1(struct ofstream *__anonymous_object1429); 493 struct ofstream *__write__FR9sofstream_R9sofstreamPCcUl__1(struct ofstream *__anonymous_object1430, const char *__data__PCc_1, unsigned long int __size__Ul_1); 494 signed int __fmt__Fi_R9sofstreamPCc__1(struct ofstream *__anonymous_object1431, const char *__fmt__PCc_1, ...); 425 495 void ___constructor__F_R9sofstream__1(struct ofstream *__os__R9sofstream_1); 426 496 void ___constructor__F_R9sofstreamPCcPCc__1(struct ofstream *__os__R9sofstream_1, const char *__name__PCc_1, const char *__mode__PCc_1); … … 461 531 struct ifstream *__read__FR9sifstream_R9sifstreamPcUl__1(struct ifstream *__is__R9sifstream_1, char *__data__Pc_1, unsigned long int __size__Ul_1); 462 532 struct ifstream *__ungetc__FR9sifstream_R9sifstreamc__1(struct ifstream *__is__R9sifstream_1, char __c__c_1); 463 signed int __fmt__Fi_R9sifstreamPCc__1(struct ifstream *__anonymous_object1 378, const char *__fmt__PCc_1, ...);533 signed int __fmt__Fi_R9sifstreamPCc__1(struct ifstream *__anonymous_object1432, const char *__fmt__PCc_1, ...); 464 534 void ___constructor__F_R9sifstream__1(struct ifstream *__is__R9sifstream_1); 465 535 void ___constructor__F_R9sifstreamPCcPCc__1(struct ifstream *__is__R9sifstream_1, const char *__name__PCc_1, const char *__mode__PCc_1); … … 471 541 struct ofstream *_tmp_cp_ret4; 472 542 __attribute__ ((unused)) struct ofstream *_thunk0(struct ofstream *_p0){ 473 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 379))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1380))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1381, _Bool __anonymous_object1382))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1383))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1384, const char *__anonymous_object1385))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1386))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1387, _Bool __anonymous_object1388))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1389))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1390))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1391))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1392))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1393))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1394, const char *__anonymous_object1395))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1396))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1397, const char *__anonymous_object1398))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1399))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1400))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1401, const char *__anonymous_object1402, unsigned long int __anonymous_object1403))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1404, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));474 } 475 ((void)(((void)(_tmp_cp_ret4=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object14 05))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1406))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1407, _Bool __anonymous_object1408))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1409))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1410, const char *__anonymous_object1411))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1412))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1413, _Bool __anonymous_object1414))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1415))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1416))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1417))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1418))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1419))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1420, const char *__anonymous_object1421))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1422))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1423, const char *__anonymous_object1424))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1425))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1426))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1427, const char *__anonymous_object1428, unsigned long int __anonymous_object1429))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1430, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret3=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0c__1(((_Bool (*)(void *__anonymous_object1431))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1432))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1433, _Bool __anonymous_object1434))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1435))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1436, const char *__anonymous_object1437))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1438))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1439, _Bool __anonymous_object1440))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1441))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1442))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1443))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1444))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1445))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1446, const char *__anonymous_object1447))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1448))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1449, const char *__anonymous_object1450))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1451))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1452))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1453, const char *__anonymous_object1454, unsigned long int __anonymous_object1455))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1456, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret2=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1457))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1458))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1459, _Bool __anonymous_object1460))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1461))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1462, const char *__anonymous_object1463))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1464))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1465, _Bool __anonymous_object1466))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1467))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1468))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1469))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1470))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1471))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1472, const char *__anonymous_object1473))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1474))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1475, const char *__anonymous_object1476))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1477))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1478))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1479, const char *__anonymous_object1480, unsigned long int __anonymous_object1481))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1482, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "char ")))) , _tmp_cp_ret2)), __v__c_1)))) , _tmp_cp_ret3)), ((void *(*)(void *__anonymous_object1483))(&_thunk0)))))) , _tmp_cp_ret4));543 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1433))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1434))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1435, _Bool __anonymous_object1436))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1437))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1438, const char *__anonymous_object1439))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1440))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1441, _Bool __anonymous_object1442))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1443))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1444))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1445))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1446))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1447))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1448, const char *__anonymous_object1449))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1450))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1451, const char *__anonymous_object1452))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1453))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1454))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1455, const char *__anonymous_object1456, unsigned long int __anonymous_object1457))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1458, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 544 } 545 ((void)(((void)(_tmp_cp_ret4=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1459))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1460))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1461, _Bool __anonymous_object1462))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1463))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1464, const char *__anonymous_object1465))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1466))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1467, _Bool __anonymous_object1468))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1469))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1470))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1471))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1472))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1473))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1474, const char *__anonymous_object1475))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1476))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1477, const char *__anonymous_object1478))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1479))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1480))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1481, const char *__anonymous_object1482, unsigned long int __anonymous_object1483))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1484, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret3=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0c__1(((_Bool (*)(void *__anonymous_object1485))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1486))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1487, _Bool __anonymous_object1488))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1489))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1490, const char *__anonymous_object1491))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1492))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1493, _Bool __anonymous_object1494))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1495))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1496))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1497))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1498))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1499))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1500, const char *__anonymous_object1501))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1502))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1503, const char *__anonymous_object1504))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1505))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1506))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1507, const char *__anonymous_object1508, unsigned long int __anonymous_object1509))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1510, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret2=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1511))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1512))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1513, _Bool __anonymous_object1514))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1515))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1516, const char *__anonymous_object1517))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1518))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1519, _Bool __anonymous_object1520))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1521))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1522))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1523))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1524))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1525))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1526, const char *__anonymous_object1527))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1528))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1529, const char *__anonymous_object1530))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1531))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1532))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1533, const char *__anonymous_object1534, unsigned long int __anonymous_object1535))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1536, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "char ")))) , _tmp_cp_ret2)), __v__c_1)))) , _tmp_cp_ret3)), ((void *(*)(void *__anonymous_object1537))(&_thunk0)))))) , _tmp_cp_ret4)); 476 546 } 477 547 void __f__F_Sc__1(signed char __v__Sc_1){ … … 480 550 struct ofstream *_tmp_cp_ret7; 481 551 __attribute__ ((unused)) struct ofstream *_thunk1(struct ofstream *_p0){ 482 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 484))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1485))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1486, _Bool __anonymous_object1487))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1488))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1489, const char *__anonymous_object1490))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1491))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1492, _Bool __anonymous_object1493))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1494))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1495))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1496))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1497))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1498))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1499, const char *__anonymous_object1500))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1501))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1502, const char *__anonymous_object1503))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1504))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1505))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1506, const char *__anonymous_object1507, unsigned long int __anonymous_object1508))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1509, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));483 } 484 ((void)(((void)(_tmp_cp_ret7=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object15 10))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1511))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1512, _Bool __anonymous_object1513))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1514))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1515, const char *__anonymous_object1516))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1517))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1518, _Bool __anonymous_object1519))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1520))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1521))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1522))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1523))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1524))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1525, const char *__anonymous_object1526))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1527))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1528, const char *__anonymous_object1529))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1530))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1531))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1532, const char *__anonymous_object1533, unsigned long int __anonymous_object1534))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1535, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret6=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Sc__1(((_Bool (*)(void *__anonymous_object1536))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1537))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1538, _Bool __anonymous_object1539))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1540))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1541, const char *__anonymous_object1542))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1543))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1544, _Bool __anonymous_object1545))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1546))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1547))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1548))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1549))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1550))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1551, const char *__anonymous_object1552))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1553))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1554, const char *__anonymous_object1555))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1556))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1557))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1558, const char *__anonymous_object1559, unsigned long int __anonymous_object1560))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1561, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret5=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1562))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1563))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1564, _Bool __anonymous_object1565))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1566))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1567, const char *__anonymous_object1568))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1569))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1570, _Bool __anonymous_object1571))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1572))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1573))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1574))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1575))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1576))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1577, const char *__anonymous_object1578))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1579))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1580, const char *__anonymous_object1581))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1582))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1583))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1584, const char *__anonymous_object1585, unsigned long int __anonymous_object1586))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1587, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed char ")))) , _tmp_cp_ret5)), __v__Sc_1)))) , _tmp_cp_ret6)), ((void *(*)(void *__anonymous_object1588))(&_thunk1)))))) , _tmp_cp_ret7));552 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1538))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1539))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1540, _Bool __anonymous_object1541))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1542))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1543, const char *__anonymous_object1544))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1545))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1546, _Bool __anonymous_object1547))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1548))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1549))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1550))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1551))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1552))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1553, const char *__anonymous_object1554))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1555))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1556, const char *__anonymous_object1557))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1558))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1559))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1560, const char *__anonymous_object1561, unsigned long int __anonymous_object1562))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1563, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 553 } 554 ((void)(((void)(_tmp_cp_ret7=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1564))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1565))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1566, _Bool __anonymous_object1567))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1568))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1569, const char *__anonymous_object1570))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1571))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1572, _Bool __anonymous_object1573))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1574))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1575))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1576))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1577))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1578))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1579, const char *__anonymous_object1580))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1581))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1582, const char *__anonymous_object1583))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1584))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1585))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1586, const char *__anonymous_object1587, unsigned long int __anonymous_object1588))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1589, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret6=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Sc__1(((_Bool (*)(void *__anonymous_object1590))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1591))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1592, _Bool __anonymous_object1593))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1594))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1595, const char *__anonymous_object1596))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1597))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1598, _Bool __anonymous_object1599))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1600))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1601))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1602))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1603))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1604))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1605, const char *__anonymous_object1606))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1607))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1608, const char *__anonymous_object1609))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1610))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1611))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1612, const char *__anonymous_object1613, unsigned long int __anonymous_object1614))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1615, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret5=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1616))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1617))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1618, _Bool __anonymous_object1619))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1620))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1621, const char *__anonymous_object1622))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1623))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1624, _Bool __anonymous_object1625))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1626))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1627))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1628))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1629))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1630))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1631, const char *__anonymous_object1632))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1633))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1634, const char *__anonymous_object1635))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1636))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1637))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1638, const char *__anonymous_object1639, unsigned long int __anonymous_object1640))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1641, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed char ")))) , _tmp_cp_ret5)), __v__Sc_1)))) , _tmp_cp_ret6)), ((void *(*)(void *__anonymous_object1642))(&_thunk1)))))) , _tmp_cp_ret7)); 485 555 } 486 556 void __f__F_Uc__1(unsigned char __v__Uc_1){ … … 489 559 struct ofstream *_tmp_cp_ret10; 490 560 __attribute__ ((unused)) struct ofstream *_thunk2(struct ofstream *_p0){ 491 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 589))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1590))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1591, _Bool __anonymous_object1592))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1593))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1594, const char *__anonymous_object1595))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1596))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1597, _Bool __anonymous_object1598))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1599))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1600))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1601))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1602))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1603))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1604, const char *__anonymous_object1605))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1606))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1607, const char *__anonymous_object1608))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1609))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1610))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1611, const char *__anonymous_object1612, unsigned long int __anonymous_object1613))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1614, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));492 } 493 ((void)(((void)(_tmp_cp_ret10=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object16 15))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1616))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1617, _Bool __anonymous_object1618))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1619))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1620, const char *__anonymous_object1621))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1622))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1623, _Bool __anonymous_object1624))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1625))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1626))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1627))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1628))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1629))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1630, const char *__anonymous_object1631))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1632))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1633, const char *__anonymous_object1634))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1635))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1636))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1637, const char *__anonymous_object1638, unsigned long int __anonymous_object1639))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1640, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret9=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Uc__1(((_Bool (*)(void *__anonymous_object1641))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1642))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1643, _Bool __anonymous_object1644))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1645))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1646, const char *__anonymous_object1647))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1648))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1649, _Bool __anonymous_object1650))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1651))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1652))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1653))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1654))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1655))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1656, const char *__anonymous_object1657))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1658))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1659, const char *__anonymous_object1660))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1661))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1662))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1663, const char *__anonymous_object1664, unsigned long int __anonymous_object1665))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1666, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret8=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1667))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1668))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1669, _Bool __anonymous_object1670))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1671))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1672, const char *__anonymous_object1673))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1674))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1675, _Bool __anonymous_object1676))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1677))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1678))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1679))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1680))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1681))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1682, const char *__anonymous_object1683))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1684))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1685, const char *__anonymous_object1686))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1687))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1688))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1689, const char *__anonymous_object1690, unsigned long int __anonymous_object1691))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1692, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned char ")))) , _tmp_cp_ret8)), __v__Uc_1)))) , _tmp_cp_ret9)), ((void *(*)(void *__anonymous_object1693))(&_thunk2)))))) , _tmp_cp_ret10));561 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1643))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1644))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1645, _Bool __anonymous_object1646))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1647))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1648, const char *__anonymous_object1649))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1650))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1651, _Bool __anonymous_object1652))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1653))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1654))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1655))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1656))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1657))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1658, const char *__anonymous_object1659))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1660))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1661, const char *__anonymous_object1662))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1663))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1664))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1665, const char *__anonymous_object1666, unsigned long int __anonymous_object1667))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1668, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 562 } 563 ((void)(((void)(_tmp_cp_ret10=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1669))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1670))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1671, _Bool __anonymous_object1672))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1673))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1674, const char *__anonymous_object1675))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1676))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1677, _Bool __anonymous_object1678))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1679))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1680))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1681))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1682))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1683))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1684, const char *__anonymous_object1685))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1686))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1687, const char *__anonymous_object1688))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1689))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1690))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1691, const char *__anonymous_object1692, unsigned long int __anonymous_object1693))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1694, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret9=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Uc__1(((_Bool (*)(void *__anonymous_object1695))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1696))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1697, _Bool __anonymous_object1698))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1699))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1700, const char *__anonymous_object1701))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1702))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1703, _Bool __anonymous_object1704))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1705))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1706))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1707))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1708))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1709))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1710, const char *__anonymous_object1711))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1712))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1713, const char *__anonymous_object1714))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1715))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1716))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1717, const char *__anonymous_object1718, unsigned long int __anonymous_object1719))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1720, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret8=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1721))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1722))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1723, _Bool __anonymous_object1724))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1725))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1726, const char *__anonymous_object1727))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1728))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1729, _Bool __anonymous_object1730))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1731))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1732))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1733))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1734))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1735))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1736, const char *__anonymous_object1737))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1738))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1739, const char *__anonymous_object1740))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1741))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1742))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1743, const char *__anonymous_object1744, unsigned long int __anonymous_object1745))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1746, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned char ")))) , _tmp_cp_ret8)), __v__Uc_1)))) , _tmp_cp_ret9)), ((void *(*)(void *__anonymous_object1747))(&_thunk2)))))) , _tmp_cp_ret10)); 494 564 } 495 565 void __f__F_s__1(signed short int __v__s_1){ … … 498 568 struct ofstream *_tmp_cp_ret13; 499 569 __attribute__ ((unused)) struct ofstream *_thunk3(struct ofstream *_p0){ 500 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 694))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1695))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1696, _Bool __anonymous_object1697))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1698))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1699, const char *__anonymous_object1700))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1701))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1702, _Bool __anonymous_object1703))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1704))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1705))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1706))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1707))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1708))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1709, const char *__anonymous_object1710))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1711))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1712, const char *__anonymous_object1713))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1714))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1715))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1716, const char *__anonymous_object1717, unsigned long int __anonymous_object1718))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1719, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));501 } 502 ((void)(((void)(_tmp_cp_ret13=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object17 20))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1721))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1722, _Bool __anonymous_object1723))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1724))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1725, const char *__anonymous_object1726))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1727))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1728, _Bool __anonymous_object1729))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1730))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1731))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1732))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1733))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1734))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1735, const char *__anonymous_object1736))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1737))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1738, const char *__anonymous_object1739))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1740))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1741))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1742, const char *__anonymous_object1743, unsigned long int __anonymous_object1744))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1745, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret12=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0s__1(((_Bool (*)(void *__anonymous_object1746))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1747))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1748, _Bool __anonymous_object1749))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1750))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1751, const char *__anonymous_object1752))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1753))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1754, _Bool __anonymous_object1755))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1756))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1757))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1758))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1759))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1760))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1761, const char *__anonymous_object1762))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1763))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1764, const char *__anonymous_object1765))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1766))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1767))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1768, const char *__anonymous_object1769, unsigned long int __anonymous_object1770))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1771, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret11=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1772))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1773))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1774, _Bool __anonymous_object1775))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1776))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1777, const char *__anonymous_object1778))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1779))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1780, _Bool __anonymous_object1781))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1782))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1783))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1784))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1785))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1786))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1787, const char *__anonymous_object1788))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1789))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1790, const char *__anonymous_object1791))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1792))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1793))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1794, const char *__anonymous_object1795, unsigned long int __anonymous_object1796))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1797, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed short int")))) , _tmp_cp_ret11)), __v__s_1)))) , _tmp_cp_ret12)), ((void *(*)(void *__anonymous_object1798))(&_thunk3)))))) , _tmp_cp_ret13));570 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1748))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1749))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1750, _Bool __anonymous_object1751))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1752))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1753, const char *__anonymous_object1754))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1755))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1756, _Bool __anonymous_object1757))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1758))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1759))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1760))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1761))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1762))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1763, const char *__anonymous_object1764))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1765))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1766, const char *__anonymous_object1767))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1768))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1769))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1770, const char *__anonymous_object1771, unsigned long int __anonymous_object1772))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1773, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 571 } 572 ((void)(((void)(_tmp_cp_ret13=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1774))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1775))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1776, _Bool __anonymous_object1777))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1778))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1779, const char *__anonymous_object1780))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1781))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1782, _Bool __anonymous_object1783))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1784))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1785))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1786))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1787))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1788))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1789, const char *__anonymous_object1790))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1791))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1792, const char *__anonymous_object1793))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1794))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1795))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1796, const char *__anonymous_object1797, unsigned long int __anonymous_object1798))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1799, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret12=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0s__1(((_Bool (*)(void *__anonymous_object1800))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1801))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1802, _Bool __anonymous_object1803))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1804))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1805, const char *__anonymous_object1806))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1807))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1808, _Bool __anonymous_object1809))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1810))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1811))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1812))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1813))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1814))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1815, const char *__anonymous_object1816))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1817))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1818, const char *__anonymous_object1819))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1820))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1821))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1822, const char *__anonymous_object1823, unsigned long int __anonymous_object1824))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1825, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret11=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1826))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1827))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1828, _Bool __anonymous_object1829))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1830))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1831, const char *__anonymous_object1832))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1833))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1834, _Bool __anonymous_object1835))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1836))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1837))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1838))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1839))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1840))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1841, const char *__anonymous_object1842))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1843))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1844, const char *__anonymous_object1845))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1846))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1847))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1848, const char *__anonymous_object1849, unsigned long int __anonymous_object1850))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1851, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed short int")))) , _tmp_cp_ret11)), __v__s_1)))) , _tmp_cp_ret12)), ((void *(*)(void *__anonymous_object1852))(&_thunk3)))))) , _tmp_cp_ret13)); 503 573 } 504 574 void __f__F_Us__1(unsigned short int __v__Us_1){ … … 507 577 struct ofstream *_tmp_cp_ret16; 508 578 __attribute__ ((unused)) struct ofstream *_thunk4(struct ofstream *_p0){ 509 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 799))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1800))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1801, _Bool __anonymous_object1802))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1803))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1804, const char *__anonymous_object1805))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1806))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1807, _Bool __anonymous_object1808))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1809))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1810))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1811))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1812))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1813))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1814, const char *__anonymous_object1815))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1816))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1817, const char *__anonymous_object1818))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1819))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1820))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1821, const char *__anonymous_object1822, unsigned long int __anonymous_object1823))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1824, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));510 } 511 ((void)(((void)(_tmp_cp_ret16=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object18 25))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1826))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1827, _Bool __anonymous_object1828))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1829))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1830, const char *__anonymous_object1831))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1832))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1833, _Bool __anonymous_object1834))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1835))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1836))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1837))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1838))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1839))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1840, const char *__anonymous_object1841))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1842))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1843, const char *__anonymous_object1844))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1845))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1846))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1847, const char *__anonymous_object1848, unsigned long int __anonymous_object1849))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1850, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret15=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Us__1(((_Bool (*)(void *__anonymous_object1851))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1852))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1853, _Bool __anonymous_object1854))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1855))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1856, const char *__anonymous_object1857))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1858))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1859, _Bool __anonymous_object1860))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1861))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1862))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1863))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1864))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1865))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1866, const char *__anonymous_object1867))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1868))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1869, const char *__anonymous_object1870))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1871))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1872))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1873, const char *__anonymous_object1874, unsigned long int __anonymous_object1875))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1876, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret14=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1877))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1878))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1879, _Bool __anonymous_object1880))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1881))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1882, const char *__anonymous_object1883))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1884))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1885, _Bool __anonymous_object1886))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1887))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1888))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1889))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1890))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1891))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1892, const char *__anonymous_object1893))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1894))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1895, const char *__anonymous_object1896))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1897))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1898))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1899, const char *__anonymous_object1900, unsigned long int __anonymous_object1901))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1902, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned short int")))) , _tmp_cp_ret14)), __v__Us_1)))) , _tmp_cp_ret15)), ((void *(*)(void *__anonymous_object1903))(&_thunk4)))))) , _tmp_cp_ret16));579 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1853))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1854))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1855, _Bool __anonymous_object1856))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1857))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1858, const char *__anonymous_object1859))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1860))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1861, _Bool __anonymous_object1862))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1863))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1864))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1865))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1866))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1867))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1868, const char *__anonymous_object1869))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1870))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1871, const char *__anonymous_object1872))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1873))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1874))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1875, const char *__anonymous_object1876, unsigned long int __anonymous_object1877))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1878, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 580 } 581 ((void)(((void)(_tmp_cp_ret16=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1879))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1880))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1881, _Bool __anonymous_object1882))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1883))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1884, const char *__anonymous_object1885))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1886))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1887, _Bool __anonymous_object1888))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1889))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1890))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1891))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1892))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1893))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1894, const char *__anonymous_object1895))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1896))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1897, const char *__anonymous_object1898))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1899))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1900))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1901, const char *__anonymous_object1902, unsigned long int __anonymous_object1903))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1904, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret15=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Us__1(((_Bool (*)(void *__anonymous_object1905))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1906))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1907, _Bool __anonymous_object1908))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1909))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1910, const char *__anonymous_object1911))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1912))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1913, _Bool __anonymous_object1914))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1915))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1916))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1917))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1918))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1919))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1920, const char *__anonymous_object1921))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1922))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1923, const char *__anonymous_object1924))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1925))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1926))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1927, const char *__anonymous_object1928, unsigned long int __anonymous_object1929))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1930, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret14=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1931))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1932))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1933, _Bool __anonymous_object1934))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1935))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1936, const char *__anonymous_object1937))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1938))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1939, _Bool __anonymous_object1940))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1941))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1942))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1943))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1944))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1945))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1946, const char *__anonymous_object1947))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1948))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1949, const char *__anonymous_object1950))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1951))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1952))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1953, const char *__anonymous_object1954, unsigned long int __anonymous_object1955))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1956, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned short int")))) , _tmp_cp_ret14)), __v__Us_1)))) , _tmp_cp_ret15)), ((void *(*)(void *__anonymous_object1957))(&_thunk4)))))) , _tmp_cp_ret16)); 512 582 } 513 583 void __f__F_Ul__1(unsigned long int __v__Ul_1){ … … 516 586 struct ofstream *_tmp_cp_ret19; 517 587 __attribute__ ((unused)) struct ofstream *_thunk5(struct ofstream *_p0){ 518 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object19 04))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1905))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1906, _Bool __anonymous_object1907))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1908))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1909, const char *__anonymous_object1910))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1911))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1912, _Bool __anonymous_object1913))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1914))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1915))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1916))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1917))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1918))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1919, const char *__anonymous_object1920))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1921))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1922, const char *__anonymous_object1923))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1924))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1925))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1926, const char *__anonymous_object1927, unsigned long int __anonymous_object1928))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1929, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));519 } 520 ((void)(((void)(_tmp_cp_ret19=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object19 30))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1931))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1932, _Bool __anonymous_object1933))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1934))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1935, const char *__anonymous_object1936))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1937))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1938, _Bool __anonymous_object1939))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1940))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1941))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1942))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1943))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1944))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1945, const char *__anonymous_object1946))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1947))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1948, const char *__anonymous_object1949))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1950))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1951))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1952, const char *__anonymous_object1953, unsigned long int __anonymous_object1954))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1955, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret18=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Ul__1(((_Bool (*)(void *__anonymous_object1956))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1957))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1958, _Bool __anonymous_object1959))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1960))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1961, const char *__anonymous_object1962))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1963))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1964, _Bool __anonymous_object1965))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1966))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1967))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1968))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1969))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1970))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1971, const char *__anonymous_object1972))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1973))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1974, const char *__anonymous_object1975))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1976))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1977))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1978, const char *__anonymous_object1979, unsigned long int __anonymous_object1980))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1981, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret17=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1982))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1983))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1984, _Bool __anonymous_object1985))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1986))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1987, const char *__anonymous_object1988))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1989))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1990, _Bool __anonymous_object1991))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1992))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1993))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1994))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1995))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1996))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1997, const char *__anonymous_object1998))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1999))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2000, const char *__anonymous_object2001))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2002))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2003))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2004, const char *__anonymous_object2005, unsigned long int __anonymous_object2006))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2007, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "size_t")))) , _tmp_cp_ret17)), __v__Ul_1)))) , _tmp_cp_ret18)), ((void *(*)(void *__anonymous_object2008))(&_thunk5)))))) , _tmp_cp_ret19));588 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1958))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1959))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1960, _Bool __anonymous_object1961))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1962))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1963, const char *__anonymous_object1964))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1965))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1966, _Bool __anonymous_object1967))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1968))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1969))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1970))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1971))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1972))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1973, const char *__anonymous_object1974))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1975))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1976, const char *__anonymous_object1977))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1978))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1979))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1980, const char *__anonymous_object1981, unsigned long int __anonymous_object1982))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1983, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 589 } 590 ((void)(((void)(_tmp_cp_ret19=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1984))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1985))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1986, _Bool __anonymous_object1987))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1988))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1989, const char *__anonymous_object1990))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1991))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1992, _Bool __anonymous_object1993))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1994))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1995))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1996))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1997))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1998))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1999, const char *__anonymous_object2000))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object2001))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2002, const char *__anonymous_object2003))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2004))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2005))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2006, const char *__anonymous_object2007, unsigned long int __anonymous_object2008))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2009, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret18=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Ul__1(((_Bool (*)(void *__anonymous_object2010))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2011))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object2012, _Bool __anonymous_object2013))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object2014))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2015, const char *__anonymous_object2016))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object2017))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2018, _Bool __anonymous_object2019))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object2020))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object2021))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2022))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2023))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object2024))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2025, const char *__anonymous_object2026))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object2027))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2028, const char *__anonymous_object2029))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2030))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2031))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2032, const char *__anonymous_object2033, unsigned long int __anonymous_object2034))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2035, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret17=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object2036))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2037))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object2038, _Bool __anonymous_object2039))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object2040))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2041, const char *__anonymous_object2042))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object2043))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2044, _Bool __anonymous_object2045))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object2046))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object2047))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2048))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2049))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object2050))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2051, const char *__anonymous_object2052))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object2053))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2054, const char *__anonymous_object2055))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2056))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2057))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2058, const char *__anonymous_object2059, unsigned long int __anonymous_object2060))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2061, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "size_t")))) , _tmp_cp_ret17)), __v__Ul_1)))) , _tmp_cp_ret18)), ((void *(*)(void *__anonymous_object2062))(&_thunk5)))))) , _tmp_cp_ret19)); 521 591 } 522 592 signed int __main__Fi___1(){ -
src/tests/.expect/literals.x86.txt
rb2fe1c9 r32cab5b 122 122 struct _Istream_cstrC __cstr__F15s_Istream_cstrC_Pci__1(char *__anonymous_object1340, signed int __size__i_1); 123 123 void *___operator_bitor__A0_1_0_0___fail__PFi_Rd0___eof__PFi_Rd0___open__PF_Rd0PCc___close__PF_Rd0___read__PFRd0_Rd0PcUl___ungetc__PFRd0_Rd0c___fmt__PFi_Rd0PCc__FRd0_Rd015s_Istream_cstrC__1(__attribute__ ((unused)) signed int (*__fail__PFi_R7tistype__1)(void *__anonymous_object1341), __attribute__ ((unused)) signed int (*__eof__PFi_R7tistype__1)(void *__anonymous_object1342), __attribute__ ((unused)) void (*__open__PF_R7tistypePCc__1)(void *__is__R7tistype_1, const char *__name__PCc_1), __attribute__ ((unused)) void (*__close__PF_R7tistype__1)(void *__is__R7tistype_1), __attribute__ ((unused)) void *(*__read__PFR7tistype_R7tistypePcUl__1)(void *__anonymous_object1343, char *__anonymous_object1344, unsigned long int __anonymous_object1345), __attribute__ ((unused)) void *(*__ungetc__PFR7tistype_R7tistypec__1)(void *__anonymous_object1346, char __anonymous_object1347), __attribute__ ((unused)) signed int (*__fmt__PFi_R7tistypePCc__1)(void *__anonymous_object1348, const char *__fmt__PCc_1, ...), void *__anonymous_object1349, struct _Istream_cstrC __anonymous_object1350); 124 struct Duration { 125 signed long long int __tv__q_1; 126 }; 127 static inline void ___constructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1); 128 static inline void ___constructor__F_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1); 129 static inline void ___destructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1); 130 static inline struct Duration ___operator_assign__F9sDuration_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1); 131 static inline void ___constructor__F_R9sDurationq_autogen___1(struct Duration *___dst__R9sDuration_1, signed long long int __tv__q_1); 132 static inline void ___constructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1){ 133 ((void)((*___dst__R9sDuration_1).__tv__q_1) /* ?{} */); 134 } 135 static inline void ___constructor__F_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1){ 136 ((void)((*___dst__R9sDuration_1).__tv__q_1=___src__9sDuration_1.__tv__q_1) /* ?{} */); 137 } 138 static inline void ___destructor__F_R9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1){ 139 ((void)((*___dst__R9sDuration_1).__tv__q_1) /* ^?{} */); 140 } 141 static inline struct Duration ___operator_assign__F9sDuration_R9sDuration9sDuration_autogen___1(struct Duration *___dst__R9sDuration_1, struct Duration ___src__9sDuration_1){ 142 struct Duration ___ret__9sDuration_1; 143 ((void)((*___dst__R9sDuration_1).__tv__q_1=___src__9sDuration_1.__tv__q_1)); 144 ((void)___constructor__F_R9sDuration9sDuration_autogen___1((&___ret__9sDuration_1), (*___dst__R9sDuration_1))); 145 return ___ret__9sDuration_1; 146 } 147 static inline void ___constructor__F_R9sDurationq_autogen___1(struct Duration *___dst__R9sDuration_1, signed long long int __tv__q_1){ 148 ((void)((*___dst__R9sDuration_1).__tv__q_1=__tv__q_1) /* ?{} */); 149 } 150 static inline void ___constructor__F_R9sDuration__1(struct Duration *__dur__R9sDuration_1){ 151 ((void)((*__dur__R9sDuration_1).__tv__q_1) /* ?{} */); 152 ((void)((*__dur__R9sDuration_1).__tv__q_1=((signed long long int )0))); 153 } 154 static inline void ___constructor__F_R9sDurationZ__1(struct Duration *__dur__R9sDuration_1, long int __anonymous_object1351){ 155 ((void)((*__dur__R9sDuration_1).__tv__q_1) /* ?{} */); 156 ((void)((*__dur__R9sDuration_1).__tv__q_1=((signed long long int )0))); 157 } 158 struct Time { 159 unsigned long long int __tv__Uq_1; 160 }; 161 static inline void ___constructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1); 162 static inline void ___constructor__F_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1); 163 static inline void ___destructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1); 164 static inline struct Time ___operator_assign__F5sTime_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1); 165 static inline void ___constructor__F_R5sTimeUq_autogen___1(struct Time *___dst__R5sTime_1, unsigned long long int __tv__Uq_1); 166 static inline void ___constructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1){ 167 ((void)((*___dst__R5sTime_1).__tv__Uq_1) /* ?{} */); 168 } 169 static inline void ___constructor__F_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1){ 170 ((void)((*___dst__R5sTime_1).__tv__Uq_1=___src__5sTime_1.__tv__Uq_1) /* ?{} */); 171 } 172 static inline void ___destructor__F_R5sTime_autogen___1(struct Time *___dst__R5sTime_1){ 173 ((void)((*___dst__R5sTime_1).__tv__Uq_1) /* ^?{} */); 174 } 175 static inline struct Time ___operator_assign__F5sTime_R5sTime5sTime_autogen___1(struct Time *___dst__R5sTime_1, struct Time ___src__5sTime_1){ 176 struct Time ___ret__5sTime_1; 177 ((void)((*___dst__R5sTime_1).__tv__Uq_1=___src__5sTime_1.__tv__Uq_1)); 178 ((void)___constructor__F_R5sTime5sTime_autogen___1((&___ret__5sTime_1), (*___dst__R5sTime_1))); 179 return ___ret__5sTime_1; 180 } 181 static inline void ___constructor__F_R5sTimeUq_autogen___1(struct Time *___dst__R5sTime_1, unsigned long long int __tv__Uq_1){ 182 ((void)((*___dst__R5sTime_1).__tv__Uq_1=__tv__Uq_1) /* ?{} */); 183 } 184 static inline void ___constructor__F_R5sTime__1(struct Time *__time__R5sTime_1){ 185 ((void)((*__time__R5sTime_1).__tv__Uq_1) /* ?{} */); 186 ((void)((*__time__R5sTime_1).__tv__Uq_1=((unsigned long long int )0))); 187 } 188 static inline void ___constructor__F_R5sTimeZ__1(struct Time *__time__R5sTime_1, long int __anonymous_object1352){ 189 ((void)((*__time__R5sTime_1).__tv__Uq_1) /* ?{} */); 190 ((void)((*__time__R5sTime_1).__tv__Uq_1=((unsigned long long int )0))); 191 } 192 void *___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd09sDuration__1(__attribute__ ((unused)) _Bool (*__sepPrt__PFb_R7tostype__1)(void *__anonymous_object1353), __attribute__ ((unused)) void (*__sepReset__PF_R7tostype__1)(void *__anonymous_object1354), __attribute__ ((unused)) void (*__sepReset__PF_R7tostypeb__1)(void *__anonymous_object1355, _Bool __anonymous_object1356), __attribute__ ((unused)) const char *(*__sepGetCur__PFPCc_R7tostype__1)(void *__anonymous_object1357), __attribute__ ((unused)) void (*__sepSetCur__PF_R7tostypePCc__1)(void *__anonymous_object1358, const char *__anonymous_object1359), __attribute__ ((unused)) _Bool (*__getNL__PFb_R7tostype__1)(void *__anonymous_object1360), __attribute__ ((unused)) void (*__setNL__PF_R7tostypeb__1)(void *__anonymous_object1361, _Bool __anonymous_object1362), __attribute__ ((unused)) void (*__sepOn__PF_R7tostype__1)(void *__anonymous_object1363), __attribute__ ((unused)) void (*__sepOff__PF_R7tostype__1)(void *__anonymous_object1364), __attribute__ ((unused)) _Bool (*__sepDisable__PFb_R7tostype__1)(void *__anonymous_object1365), __attribute__ ((unused)) _Bool (*__sepEnable__PFb_R7tostype__1)(void *__anonymous_object1366), __attribute__ ((unused)) const char *(*__sepGet__PFPCc_R7tostype__1)(void *__anonymous_object1367), __attribute__ ((unused)) void (*__sepSet__PF_R7tostypePCc__1)(void *__anonymous_object1368, const char *__anonymous_object1369), __attribute__ ((unused)) const char *(*__sepGetTuple__PFPCc_R7tostype__1)(void *__anonymous_object1370), __attribute__ ((unused)) void (*__sepSetTuple__PF_R7tostypePCc__1)(void *__anonymous_object1371, const char *__anonymous_object1372), __attribute__ ((unused)) signed int (*__fail__PFi_R7tostype__1)(void *__anonymous_object1373), __attribute__ ((unused)) signed int (*__flush__PFi_R7tostype__1)(void *__anonymous_object1374), __attribute__ ((unused)) void (*__open__PF_R7tostypePCcPCc__1)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1), __attribute__ ((unused)) void (*__close__PF_R7tostype__1)(void *__os__R7tostype_1), __attribute__ ((unused)) void *(*__write__PFR7tostype_R7tostypePCcUl__1)(void *__anonymous_object1375, const char *__anonymous_object1376, unsigned long int __anonymous_object1377), __attribute__ ((unused)) signed int (*__fmt__PFi_R7tostypePCc__1)(void *__anonymous_object1378, const char *__fmt__PCc_1, ...), void *__os__R7tostype_1, struct Duration __dur__9sDuration_1); 193 void *___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd05sTime__1(__attribute__ ((unused)) _Bool (*__sepPrt__PFb_R7tostype__1)(void *__anonymous_object1379), __attribute__ ((unused)) void (*__sepReset__PF_R7tostype__1)(void *__anonymous_object1380), __attribute__ ((unused)) void (*__sepReset__PF_R7tostypeb__1)(void *__anonymous_object1381, _Bool __anonymous_object1382), __attribute__ ((unused)) const char *(*__sepGetCur__PFPCc_R7tostype__1)(void *__anonymous_object1383), __attribute__ ((unused)) void (*__sepSetCur__PF_R7tostypePCc__1)(void *__anonymous_object1384, const char *__anonymous_object1385), __attribute__ ((unused)) _Bool (*__getNL__PFb_R7tostype__1)(void *__anonymous_object1386), __attribute__ ((unused)) void (*__setNL__PF_R7tostypeb__1)(void *__anonymous_object1387, _Bool __anonymous_object1388), __attribute__ ((unused)) void (*__sepOn__PF_R7tostype__1)(void *__anonymous_object1389), __attribute__ ((unused)) void (*__sepOff__PF_R7tostype__1)(void *__anonymous_object1390), __attribute__ ((unused)) _Bool (*__sepDisable__PFb_R7tostype__1)(void *__anonymous_object1391), __attribute__ ((unused)) _Bool (*__sepEnable__PFb_R7tostype__1)(void *__anonymous_object1392), __attribute__ ((unused)) const char *(*__sepGet__PFPCc_R7tostype__1)(void *__anonymous_object1393), __attribute__ ((unused)) void (*__sepSet__PF_R7tostypePCc__1)(void *__anonymous_object1394, const char *__anonymous_object1395), __attribute__ ((unused)) const char *(*__sepGetTuple__PFPCc_R7tostype__1)(void *__anonymous_object1396), __attribute__ ((unused)) void (*__sepSetTuple__PF_R7tostypePCc__1)(void *__anonymous_object1397, const char *__anonymous_object1398), __attribute__ ((unused)) signed int (*__fail__PFi_R7tostype__1)(void *__anonymous_object1399), __attribute__ ((unused)) signed int (*__flush__PFi_R7tostype__1)(void *__anonymous_object1400), __attribute__ ((unused)) void (*__open__PF_R7tostypePCcPCc__1)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1), __attribute__ ((unused)) void (*__close__PF_R7tostype__1)(void *__os__R7tostype_1), __attribute__ ((unused)) void *(*__write__PFR7tostype_R7tostypePCcUl__1)(void *__anonymous_object1401, const char *__anonymous_object1402, unsigned long int __anonymous_object1403), __attribute__ ((unused)) signed int (*__fmt__PFi_R7tostypePCc__1)(void *__anonymous_object1404, const char *__fmt__PCc_1, ...), void *__os__R7tostype_1, struct Time __time__5sTime_1); 124 194 enum __anonymous0 { 125 195 __sepSize__C13e__anonymous0_1 = 16, … … 401 471 402 472 } 403 _Bool __sepPrt__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 351);404 void __sepReset__F_R9sofstream__1(struct ofstream *__anonymous_object1 352);405 void __sepReset__F_R9sofstreamb__1(struct ofstream *__anonymous_object1 353, _Bool __anonymous_object1354);406 const char *__sepGetCur__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1 355);407 void __sepSetCur__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 356, const char *__anonymous_object1357);408 _Bool __getNL__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 358);409 void __setNL__F_R9sofstreamb__1(struct ofstream *__anonymous_object1 359, _Bool __anonymous_object1360);410 void __sepOn__F_R9sofstream__1(struct ofstream *__anonymous_object1 361);411 void __sepOff__F_R9sofstream__1(struct ofstream *__anonymous_object1 362);412 _Bool __sepDisable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 363);413 _Bool __sepEnable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1 364);414 const char *__sepGet__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1 365);415 void __sepSet__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 366, const char *__anonymous_object1367);416 const char *__sepGetTuple__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1 368);417 void __sepSetTuple__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 369, const char *__anonymous_object1370);418 signed int __fail__Fi_R9sofstream__1(struct ofstream *__anonymous_object1 371);419 signed int __flush__Fi_R9sofstream__1(struct ofstream *__anonymous_object1 372);420 void __open__F_R9sofstreamPCcPCc__1(struct ofstream *__anonymous_object1 373, const char *__name__PCc_1, const char *__mode__PCc_1);421 void __open__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 374, const char *__name__PCc_1);422 void __close__F_R9sofstream__1(struct ofstream *__anonymous_object1 375);423 struct ofstream *__write__FR9sofstream_R9sofstreamPCcUl__1(struct ofstream *__anonymous_object1 376, const char *__data__PCc_1, unsigned long int __size__Ul_1);424 signed int __fmt__Fi_R9sofstreamPCc__1(struct ofstream *__anonymous_object1 377, const char *__fmt__PCc_1, ...);473 _Bool __sepPrt__Fb_R9sofstream__1(struct ofstream *__anonymous_object1405); 474 void __sepReset__F_R9sofstream__1(struct ofstream *__anonymous_object1406); 475 void __sepReset__F_R9sofstreamb__1(struct ofstream *__anonymous_object1407, _Bool __anonymous_object1408); 476 const char *__sepGetCur__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1409); 477 void __sepSetCur__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1410, const char *__anonymous_object1411); 478 _Bool __getNL__Fb_R9sofstream__1(struct ofstream *__anonymous_object1412); 479 void __setNL__F_R9sofstreamb__1(struct ofstream *__anonymous_object1413, _Bool __anonymous_object1414); 480 void __sepOn__F_R9sofstream__1(struct ofstream *__anonymous_object1415); 481 void __sepOff__F_R9sofstream__1(struct ofstream *__anonymous_object1416); 482 _Bool __sepDisable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1417); 483 _Bool __sepEnable__Fb_R9sofstream__1(struct ofstream *__anonymous_object1418); 484 const char *__sepGet__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1419); 485 void __sepSet__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1420, const char *__anonymous_object1421); 486 const char *__sepGetTuple__FPCc_R9sofstream__1(struct ofstream *__anonymous_object1422); 487 void __sepSetTuple__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1423, const char *__anonymous_object1424); 488 signed int __fail__Fi_R9sofstream__1(struct ofstream *__anonymous_object1425); 489 signed int __flush__Fi_R9sofstream__1(struct ofstream *__anonymous_object1426); 490 void __open__F_R9sofstreamPCcPCc__1(struct ofstream *__anonymous_object1427, const char *__name__PCc_1, const char *__mode__PCc_1); 491 void __open__F_R9sofstreamPCc__1(struct ofstream *__anonymous_object1428, const char *__name__PCc_1); 492 void __close__F_R9sofstream__1(struct ofstream *__anonymous_object1429); 493 struct ofstream *__write__FR9sofstream_R9sofstreamPCcUl__1(struct ofstream *__anonymous_object1430, const char *__data__PCc_1, unsigned long int __size__Ul_1); 494 signed int __fmt__Fi_R9sofstreamPCc__1(struct ofstream *__anonymous_object1431, const char *__fmt__PCc_1, ...); 425 495 void ___constructor__F_R9sofstream__1(struct ofstream *__os__R9sofstream_1); 426 496 void ___constructor__F_R9sofstreamPCcPCc__1(struct ofstream *__os__R9sofstream_1, const char *__name__PCc_1, const char *__mode__PCc_1); … … 461 531 struct ifstream *__read__FR9sifstream_R9sifstreamPcUl__1(struct ifstream *__is__R9sifstream_1, char *__data__Pc_1, unsigned long int __size__Ul_1); 462 532 struct ifstream *__ungetc__FR9sifstream_R9sifstreamc__1(struct ifstream *__is__R9sifstream_1, char __c__c_1); 463 signed int __fmt__Fi_R9sifstreamPCc__1(struct ifstream *__anonymous_object1 378, const char *__fmt__PCc_1, ...);533 signed int __fmt__Fi_R9sifstreamPCc__1(struct ifstream *__anonymous_object1432, const char *__fmt__PCc_1, ...); 464 534 void ___constructor__F_R9sifstream__1(struct ifstream *__is__R9sifstream_1); 465 535 void ___constructor__F_R9sifstreamPCcPCc__1(struct ifstream *__is__R9sifstream_1, const char *__name__PCc_1, const char *__mode__PCc_1); … … 471 541 struct ofstream *_tmp_cp_ret4; 472 542 __attribute__ ((unused)) struct ofstream *_thunk0(struct ofstream *_p0){ 473 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 379))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1380))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1381, _Bool __anonymous_object1382))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1383))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1384, const char *__anonymous_object1385))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1386))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1387, _Bool __anonymous_object1388))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1389))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1390))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1391))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1392))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1393))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1394, const char *__anonymous_object1395))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1396))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1397, const char *__anonymous_object1398))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1399))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1400))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1401, const char *__anonymous_object1402, unsigned long int __anonymous_object1403))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1404, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));474 } 475 ((void)(((void)(_tmp_cp_ret4=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object14 05))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1406))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1407, _Bool __anonymous_object1408))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1409))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1410, const char *__anonymous_object1411))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1412))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1413, _Bool __anonymous_object1414))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1415))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1416))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1417))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1418))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1419))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1420, const char *__anonymous_object1421))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1422))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1423, const char *__anonymous_object1424))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1425))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1426))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1427, const char *__anonymous_object1428, unsigned long int __anonymous_object1429))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1430, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret3=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0c__1(((_Bool (*)(void *__anonymous_object1431))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1432))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1433, _Bool __anonymous_object1434))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1435))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1436, const char *__anonymous_object1437))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1438))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1439, _Bool __anonymous_object1440))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1441))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1442))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1443))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1444))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1445))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1446, const char *__anonymous_object1447))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1448))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1449, const char *__anonymous_object1450))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1451))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1452))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1453, const char *__anonymous_object1454, unsigned long int __anonymous_object1455))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1456, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret2=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1457))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1458))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1459, _Bool __anonymous_object1460))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1461))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1462, const char *__anonymous_object1463))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1464))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1465, _Bool __anonymous_object1466))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1467))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1468))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1469))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1470))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1471))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1472, const char *__anonymous_object1473))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1474))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1475, const char *__anonymous_object1476))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1477))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1478))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1479, const char *__anonymous_object1480, unsigned long int __anonymous_object1481))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1482, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "char ")))) , _tmp_cp_ret2)), __v__c_1)))) , _tmp_cp_ret3)), ((void *(*)(void *__anonymous_object1483))(&_thunk0)))))) , _tmp_cp_ret4));543 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1433))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1434))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1435, _Bool __anonymous_object1436))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1437))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1438, const char *__anonymous_object1439))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1440))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1441, _Bool __anonymous_object1442))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1443))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1444))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1445))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1446))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1447))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1448, const char *__anonymous_object1449))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1450))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1451, const char *__anonymous_object1452))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1453))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1454))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1455, const char *__anonymous_object1456, unsigned long int __anonymous_object1457))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1458, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 544 } 545 ((void)(((void)(_tmp_cp_ret4=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1459))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1460))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1461, _Bool __anonymous_object1462))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1463))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1464, const char *__anonymous_object1465))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1466))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1467, _Bool __anonymous_object1468))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1469))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1470))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1471))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1472))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1473))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1474, const char *__anonymous_object1475))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1476))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1477, const char *__anonymous_object1478))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1479))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1480))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1481, const char *__anonymous_object1482, unsigned long int __anonymous_object1483))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1484, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret3=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0c__1(((_Bool (*)(void *__anonymous_object1485))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1486))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1487, _Bool __anonymous_object1488))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1489))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1490, const char *__anonymous_object1491))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1492))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1493, _Bool __anonymous_object1494))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1495))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1496))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1497))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1498))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1499))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1500, const char *__anonymous_object1501))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1502))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1503, const char *__anonymous_object1504))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1505))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1506))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1507, const char *__anonymous_object1508, unsigned long int __anonymous_object1509))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1510, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret2=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1511))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1512))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1513, _Bool __anonymous_object1514))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1515))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1516, const char *__anonymous_object1517))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1518))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1519, _Bool __anonymous_object1520))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1521))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1522))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1523))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1524))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1525))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1526, const char *__anonymous_object1527))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1528))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1529, const char *__anonymous_object1530))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1531))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1532))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1533, const char *__anonymous_object1534, unsigned long int __anonymous_object1535))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1536, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "char ")))) , _tmp_cp_ret2)), __v__c_1)))) , _tmp_cp_ret3)), ((void *(*)(void *__anonymous_object1537))(&_thunk0)))))) , _tmp_cp_ret4)); 476 546 } 477 547 void __f__F_Sc__1(signed char __v__Sc_1){ … … 480 550 struct ofstream *_tmp_cp_ret7; 481 551 __attribute__ ((unused)) struct ofstream *_thunk1(struct ofstream *_p0){ 482 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 484))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1485))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1486, _Bool __anonymous_object1487))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1488))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1489, const char *__anonymous_object1490))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1491))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1492, _Bool __anonymous_object1493))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1494))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1495))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1496))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1497))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1498))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1499, const char *__anonymous_object1500))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1501))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1502, const char *__anonymous_object1503))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1504))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1505))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1506, const char *__anonymous_object1507, unsigned long int __anonymous_object1508))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1509, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));483 } 484 ((void)(((void)(_tmp_cp_ret7=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object15 10))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1511))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1512, _Bool __anonymous_object1513))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1514))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1515, const char *__anonymous_object1516))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1517))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1518, _Bool __anonymous_object1519))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1520))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1521))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1522))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1523))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1524))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1525, const char *__anonymous_object1526))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1527))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1528, const char *__anonymous_object1529))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1530))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1531))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1532, const char *__anonymous_object1533, unsigned long int __anonymous_object1534))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1535, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret6=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Sc__1(((_Bool (*)(void *__anonymous_object1536))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1537))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1538, _Bool __anonymous_object1539))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1540))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1541, const char *__anonymous_object1542))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1543))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1544, _Bool __anonymous_object1545))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1546))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1547))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1548))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1549))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1550))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1551, const char *__anonymous_object1552))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1553))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1554, const char *__anonymous_object1555))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1556))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1557))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1558, const char *__anonymous_object1559, unsigned long int __anonymous_object1560))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1561, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret5=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1562))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1563))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1564, _Bool __anonymous_object1565))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1566))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1567, const char *__anonymous_object1568))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1569))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1570, _Bool __anonymous_object1571))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1572))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1573))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1574))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1575))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1576))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1577, const char *__anonymous_object1578))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1579))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1580, const char *__anonymous_object1581))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1582))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1583))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1584, const char *__anonymous_object1585, unsigned long int __anonymous_object1586))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1587, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed char ")))) , _tmp_cp_ret5)), __v__Sc_1)))) , _tmp_cp_ret6)), ((void *(*)(void *__anonymous_object1588))(&_thunk1)))))) , _tmp_cp_ret7));552 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1538))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1539))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1540, _Bool __anonymous_object1541))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1542))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1543, const char *__anonymous_object1544))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1545))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1546, _Bool __anonymous_object1547))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1548))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1549))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1550))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1551))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1552))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1553, const char *__anonymous_object1554))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1555))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1556, const char *__anonymous_object1557))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1558))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1559))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1560, const char *__anonymous_object1561, unsigned long int __anonymous_object1562))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1563, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 553 } 554 ((void)(((void)(_tmp_cp_ret7=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1564))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1565))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1566, _Bool __anonymous_object1567))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1568))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1569, const char *__anonymous_object1570))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1571))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1572, _Bool __anonymous_object1573))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1574))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1575))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1576))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1577))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1578))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1579, const char *__anonymous_object1580))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1581))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1582, const char *__anonymous_object1583))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1584))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1585))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1586, const char *__anonymous_object1587, unsigned long int __anonymous_object1588))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1589, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret6=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Sc__1(((_Bool (*)(void *__anonymous_object1590))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1591))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1592, _Bool __anonymous_object1593))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1594))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1595, const char *__anonymous_object1596))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1597))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1598, _Bool __anonymous_object1599))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1600))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1601))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1602))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1603))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1604))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1605, const char *__anonymous_object1606))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1607))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1608, const char *__anonymous_object1609))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1610))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1611))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1612, const char *__anonymous_object1613, unsigned long int __anonymous_object1614))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1615, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret5=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1616))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1617))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1618, _Bool __anonymous_object1619))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1620))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1621, const char *__anonymous_object1622))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1623))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1624, _Bool __anonymous_object1625))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1626))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1627))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1628))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1629))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1630))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1631, const char *__anonymous_object1632))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1633))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1634, const char *__anonymous_object1635))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1636))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1637))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1638, const char *__anonymous_object1639, unsigned long int __anonymous_object1640))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1641, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed char ")))) , _tmp_cp_ret5)), __v__Sc_1)))) , _tmp_cp_ret6)), ((void *(*)(void *__anonymous_object1642))(&_thunk1)))))) , _tmp_cp_ret7)); 485 555 } 486 556 void __f__F_Uc__1(unsigned char __v__Uc_1){ … … 489 559 struct ofstream *_tmp_cp_ret10; 490 560 __attribute__ ((unused)) struct ofstream *_thunk2(struct ofstream *_p0){ 491 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 589))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1590))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1591, _Bool __anonymous_object1592))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1593))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1594, const char *__anonymous_object1595))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1596))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1597, _Bool __anonymous_object1598))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1599))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1600))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1601))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1602))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1603))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1604, const char *__anonymous_object1605))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1606))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1607, const char *__anonymous_object1608))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1609))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1610))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1611, const char *__anonymous_object1612, unsigned long int __anonymous_object1613))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1614, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));492 } 493 ((void)(((void)(_tmp_cp_ret10=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object16 15))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1616))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1617, _Bool __anonymous_object1618))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1619))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1620, const char *__anonymous_object1621))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1622))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1623, _Bool __anonymous_object1624))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1625))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1626))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1627))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1628))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1629))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1630, const char *__anonymous_object1631))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1632))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1633, const char *__anonymous_object1634))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1635))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1636))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1637, const char *__anonymous_object1638, unsigned long int __anonymous_object1639))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1640, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret9=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Uc__1(((_Bool (*)(void *__anonymous_object1641))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1642))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1643, _Bool __anonymous_object1644))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1645))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1646, const char *__anonymous_object1647))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1648))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1649, _Bool __anonymous_object1650))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1651))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1652))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1653))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1654))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1655))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1656, const char *__anonymous_object1657))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1658))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1659, const char *__anonymous_object1660))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1661))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1662))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1663, const char *__anonymous_object1664, unsigned long int __anonymous_object1665))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1666, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret8=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1667))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1668))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1669, _Bool __anonymous_object1670))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1671))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1672, const char *__anonymous_object1673))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1674))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1675, _Bool __anonymous_object1676))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1677))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1678))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1679))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1680))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1681))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1682, const char *__anonymous_object1683))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1684))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1685, const char *__anonymous_object1686))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1687))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1688))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1689, const char *__anonymous_object1690, unsigned long int __anonymous_object1691))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1692, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned char ")))) , _tmp_cp_ret8)), __v__Uc_1)))) , _tmp_cp_ret9)), ((void *(*)(void *__anonymous_object1693))(&_thunk2)))))) , _tmp_cp_ret10));561 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1643))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1644))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1645, _Bool __anonymous_object1646))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1647))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1648, const char *__anonymous_object1649))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1650))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1651, _Bool __anonymous_object1652))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1653))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1654))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1655))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1656))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1657))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1658, const char *__anonymous_object1659))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1660))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1661, const char *__anonymous_object1662))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1663))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1664))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1665, const char *__anonymous_object1666, unsigned long int __anonymous_object1667))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1668, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 562 } 563 ((void)(((void)(_tmp_cp_ret10=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1669))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1670))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1671, _Bool __anonymous_object1672))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1673))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1674, const char *__anonymous_object1675))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1676))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1677, _Bool __anonymous_object1678))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1679))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1680))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1681))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1682))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1683))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1684, const char *__anonymous_object1685))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1686))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1687, const char *__anonymous_object1688))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1689))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1690))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1691, const char *__anonymous_object1692, unsigned long int __anonymous_object1693))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1694, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret9=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Uc__1(((_Bool (*)(void *__anonymous_object1695))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1696))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1697, _Bool __anonymous_object1698))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1699))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1700, const char *__anonymous_object1701))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1702))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1703, _Bool __anonymous_object1704))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1705))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1706))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1707))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1708))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1709))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1710, const char *__anonymous_object1711))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1712))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1713, const char *__anonymous_object1714))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1715))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1716))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1717, const char *__anonymous_object1718, unsigned long int __anonymous_object1719))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1720, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret8=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1721))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1722))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1723, _Bool __anonymous_object1724))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1725))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1726, const char *__anonymous_object1727))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1728))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1729, _Bool __anonymous_object1730))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1731))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1732))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1733))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1734))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1735))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1736, const char *__anonymous_object1737))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1738))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1739, const char *__anonymous_object1740))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1741))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1742))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1743, const char *__anonymous_object1744, unsigned long int __anonymous_object1745))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1746, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned char ")))) , _tmp_cp_ret8)), __v__Uc_1)))) , _tmp_cp_ret9)), ((void *(*)(void *__anonymous_object1747))(&_thunk2)))))) , _tmp_cp_ret10)); 494 564 } 495 565 void __f__F_s__1(signed short int __v__s_1){ … … 498 568 struct ofstream *_tmp_cp_ret13; 499 569 __attribute__ ((unused)) struct ofstream *_thunk3(struct ofstream *_p0){ 500 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 694))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1695))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1696, _Bool __anonymous_object1697))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1698))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1699, const char *__anonymous_object1700))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1701))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1702, _Bool __anonymous_object1703))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1704))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1705))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1706))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1707))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1708))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1709, const char *__anonymous_object1710))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1711))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1712, const char *__anonymous_object1713))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1714))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1715))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1716, const char *__anonymous_object1717, unsigned long int __anonymous_object1718))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1719, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));501 } 502 ((void)(((void)(_tmp_cp_ret13=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object17 20))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1721))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1722, _Bool __anonymous_object1723))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1724))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1725, const char *__anonymous_object1726))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1727))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1728, _Bool __anonymous_object1729))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1730))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1731))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1732))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1733))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1734))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1735, const char *__anonymous_object1736))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1737))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1738, const char *__anonymous_object1739))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1740))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1741))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1742, const char *__anonymous_object1743, unsigned long int __anonymous_object1744))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1745, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret12=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0s__1(((_Bool (*)(void *__anonymous_object1746))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1747))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1748, _Bool __anonymous_object1749))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1750))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1751, const char *__anonymous_object1752))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1753))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1754, _Bool __anonymous_object1755))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1756))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1757))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1758))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1759))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1760))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1761, const char *__anonymous_object1762))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1763))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1764, const char *__anonymous_object1765))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1766))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1767))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1768, const char *__anonymous_object1769, unsigned long int __anonymous_object1770))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1771, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret11=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1772))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1773))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1774, _Bool __anonymous_object1775))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1776))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1777, const char *__anonymous_object1778))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1779))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1780, _Bool __anonymous_object1781))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1782))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1783))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1784))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1785))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1786))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1787, const char *__anonymous_object1788))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1789))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1790, const char *__anonymous_object1791))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1792))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1793))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1794, const char *__anonymous_object1795, unsigned long int __anonymous_object1796))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1797, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed short int")))) , _tmp_cp_ret11)), __v__s_1)))) , _tmp_cp_ret12)), ((void *(*)(void *__anonymous_object1798))(&_thunk3)))))) , _tmp_cp_ret13));570 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1748))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1749))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1750, _Bool __anonymous_object1751))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1752))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1753, const char *__anonymous_object1754))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1755))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1756, _Bool __anonymous_object1757))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1758))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1759))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1760))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1761))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1762))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1763, const char *__anonymous_object1764))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1765))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1766, const char *__anonymous_object1767))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1768))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1769))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1770, const char *__anonymous_object1771, unsigned long int __anonymous_object1772))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1773, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 571 } 572 ((void)(((void)(_tmp_cp_ret13=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1774))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1775))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1776, _Bool __anonymous_object1777))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1778))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1779, const char *__anonymous_object1780))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1781))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1782, _Bool __anonymous_object1783))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1784))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1785))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1786))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1787))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1788))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1789, const char *__anonymous_object1790))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1791))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1792, const char *__anonymous_object1793))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1794))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1795))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1796, const char *__anonymous_object1797, unsigned long int __anonymous_object1798))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1799, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret12=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0s__1(((_Bool (*)(void *__anonymous_object1800))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1801))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1802, _Bool __anonymous_object1803))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1804))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1805, const char *__anonymous_object1806))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1807))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1808, _Bool __anonymous_object1809))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1810))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1811))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1812))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1813))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1814))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1815, const char *__anonymous_object1816))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1817))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1818, const char *__anonymous_object1819))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1820))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1821))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1822, const char *__anonymous_object1823, unsigned long int __anonymous_object1824))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1825, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret11=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1826))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1827))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1828, _Bool __anonymous_object1829))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1830))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1831, const char *__anonymous_object1832))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1833))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1834, _Bool __anonymous_object1835))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1836))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1837))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1838))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1839))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1840))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1841, const char *__anonymous_object1842))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1843))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1844, const char *__anonymous_object1845))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1846))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1847))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1848, const char *__anonymous_object1849, unsigned long int __anonymous_object1850))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1851, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "signed short int")))) , _tmp_cp_ret11)), __v__s_1)))) , _tmp_cp_ret12)), ((void *(*)(void *__anonymous_object1852))(&_thunk3)))))) , _tmp_cp_ret13)); 503 573 } 504 574 void __f__F_Us__1(unsigned short int __v__Us_1){ … … 507 577 struct ofstream *_tmp_cp_ret16; 508 578 __attribute__ ((unused)) struct ofstream *_thunk4(struct ofstream *_p0){ 509 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1 799))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1800))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1801, _Bool __anonymous_object1802))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1803))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1804, const char *__anonymous_object1805))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1806))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1807, _Bool __anonymous_object1808))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1809))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1810))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1811))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1812))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1813))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1814, const char *__anonymous_object1815))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1816))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1817, const char *__anonymous_object1818))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1819))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1820))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1821, const char *__anonymous_object1822, unsigned long int __anonymous_object1823))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1824, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));510 } 511 ((void)(((void)(_tmp_cp_ret16=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object18 25))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1826))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1827, _Bool __anonymous_object1828))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1829))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1830, const char *__anonymous_object1831))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1832))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1833, _Bool __anonymous_object1834))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1835))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1836))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1837))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1838))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1839))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1840, const char *__anonymous_object1841))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1842))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1843, const char *__anonymous_object1844))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1845))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1846))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1847, const char *__anonymous_object1848, unsigned long int __anonymous_object1849))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1850, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret15=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Us__1(((_Bool (*)(void *__anonymous_object1851))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1852))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1853, _Bool __anonymous_object1854))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1855))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1856, const char *__anonymous_object1857))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1858))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1859, _Bool __anonymous_object1860))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1861))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1862))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1863))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1864))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1865))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1866, const char *__anonymous_object1867))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1868))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1869, const char *__anonymous_object1870))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1871))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1872))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1873, const char *__anonymous_object1874, unsigned long int __anonymous_object1875))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1876, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret14=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1877))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1878))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1879, _Bool __anonymous_object1880))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1881))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1882, const char *__anonymous_object1883))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1884))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1885, _Bool __anonymous_object1886))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1887))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1888))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1889))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1890))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1891))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1892, const char *__anonymous_object1893))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1894))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1895, const char *__anonymous_object1896))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1897))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1898))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1899, const char *__anonymous_object1900, unsigned long int __anonymous_object1901))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1902, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned short int")))) , _tmp_cp_ret14)), __v__Us_1)))) , _tmp_cp_ret15)), ((void *(*)(void *__anonymous_object1903))(&_thunk4)))))) , _tmp_cp_ret16));579 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1853))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1854))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1855, _Bool __anonymous_object1856))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1857))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1858, const char *__anonymous_object1859))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1860))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1861, _Bool __anonymous_object1862))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1863))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1864))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1865))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1866))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1867))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1868, const char *__anonymous_object1869))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1870))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1871, const char *__anonymous_object1872))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1873))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1874))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1875, const char *__anonymous_object1876, unsigned long int __anonymous_object1877))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1878, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 580 } 581 ((void)(((void)(_tmp_cp_ret16=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1879))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1880))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1881, _Bool __anonymous_object1882))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1883))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1884, const char *__anonymous_object1885))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1886))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1887, _Bool __anonymous_object1888))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1889))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1890))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1891))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1892))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1893))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1894, const char *__anonymous_object1895))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1896))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1897, const char *__anonymous_object1898))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1899))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1900))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1901, const char *__anonymous_object1902, unsigned long int __anonymous_object1903))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1904, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret15=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Us__1(((_Bool (*)(void *__anonymous_object1905))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1906))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1907, _Bool __anonymous_object1908))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1909))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1910, const char *__anonymous_object1911))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1912))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1913, _Bool __anonymous_object1914))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1915))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1916))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1917))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1918))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1919))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1920, const char *__anonymous_object1921))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1922))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1923, const char *__anonymous_object1924))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1925))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1926))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1927, const char *__anonymous_object1928, unsigned long int __anonymous_object1929))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1930, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret14=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1931))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1932))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1933, _Bool __anonymous_object1934))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1935))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1936, const char *__anonymous_object1937))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1938))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1939, _Bool __anonymous_object1940))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1941))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1942))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1943))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1944))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1945))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1946, const char *__anonymous_object1947))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1948))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1949, const char *__anonymous_object1950))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1951))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1952))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1953, const char *__anonymous_object1954, unsigned long int __anonymous_object1955))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1956, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "unsigned short int")))) , _tmp_cp_ret14)), __v__Us_1)))) , _tmp_cp_ret15)), ((void *(*)(void *__anonymous_object1957))(&_thunk4)))))) , _tmp_cp_ret16)); 512 582 } 513 583 void __f__F_Ui__1(unsigned int __v__Ui_1){ … … 516 586 struct ofstream *_tmp_cp_ret19; 517 587 __attribute__ ((unused)) struct ofstream *_thunk5(struct ofstream *_p0){ 518 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object19 04))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1905))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1906, _Bool __anonymous_object1907))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1908))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1909, const char *__anonymous_object1910))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1911))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1912, _Bool __anonymous_object1913))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1914))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1915))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1916))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1917))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1918))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1919, const char *__anonymous_object1920))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1921))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1922, const char *__anonymous_object1923))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1924))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1925))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1926, const char *__anonymous_object1927, unsigned long int __anonymous_object1928))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1929, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0));519 } 520 ((void)(((void)(_tmp_cp_ret19=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object19 30))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1931))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1932, _Bool __anonymous_object1933))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1934))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1935, const char *__anonymous_object1936))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1937))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1938, _Bool __anonymous_object1939))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1940))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1941))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1942))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1943))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1944))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1945, const char *__anonymous_object1946))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1947))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1948, const char *__anonymous_object1949))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1950))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1951))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1952, const char *__anonymous_object1953, unsigned long int __anonymous_object1954))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1955, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret18=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Ui__1(((_Bool (*)(void *__anonymous_object1956))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1957))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1958, _Bool __anonymous_object1959))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1960))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1961, const char *__anonymous_object1962))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1963))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1964, _Bool __anonymous_object1965))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1966))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1967))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1968))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1969))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1970))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1971, const char *__anonymous_object1972))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1973))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1974, const char *__anonymous_object1975))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1976))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1977))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1978, const char *__anonymous_object1979, unsigned long int __anonymous_object1980))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1981, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret17=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object1982))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1983))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1984, _Bool __anonymous_object1985))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1986))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1987, const char *__anonymous_object1988))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1989))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1990, _Bool __anonymous_object1991))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1992))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1993))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1994))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1995))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1996))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1997, const char *__anonymous_object1998))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1999))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2000, const char *__anonymous_object2001))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2002))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2003))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2004, const char *__anonymous_object2005, unsigned long int __anonymous_object2006))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2007, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "size_t")))) , _tmp_cp_ret17)), __v__Ui_1)))) , _tmp_cp_ret18)), ((void *(*)(void *__anonymous_object2008))(&_thunk5)))))) , _tmp_cp_ret19));588 return __endl__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0__1(((_Bool (*)(void *__anonymous_object1958))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1959))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1960, _Bool __anonymous_object1961))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1962))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1963, const char *__anonymous_object1964))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1965))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1966, _Bool __anonymous_object1967))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1968))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1969))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1970))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1971))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1972))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1973, const char *__anonymous_object1974))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object1975))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1976, const char *__anonymous_object1977))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object1978))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object1979))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object1980, const char *__anonymous_object1981, unsigned long int __anonymous_object1982))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object1983, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)_p0)); 589 } 590 ((void)(((void)(_tmp_cp_ret19=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PFRd0_Rd0___1(((_Bool (*)(void *__anonymous_object1984))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1985))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object1986, _Bool __anonymous_object1987))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object1988))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1989, const char *__anonymous_object1990))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object1991))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object1992, _Bool __anonymous_object1993))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object1994))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object1995))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1996))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object1997))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object1998))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object1999, const char *__anonymous_object2000))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object2001))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2002, const char *__anonymous_object2003))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2004))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2005))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2006, const char *__anonymous_object2007, unsigned long int __anonymous_object2008))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2009, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret18=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0Ui__1(((_Bool (*)(void *__anonymous_object2010))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2011))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object2012, _Bool __anonymous_object2013))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object2014))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2015, const char *__anonymous_object2016))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object2017))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2018, _Bool __anonymous_object2019))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object2020))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object2021))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2022))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2023))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object2024))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2025, const char *__anonymous_object2026))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object2027))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2028, const char *__anonymous_object2029))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2030))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2031))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2032, const char *__anonymous_object2033, unsigned long int __anonymous_object2034))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2035, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)(((void)(_tmp_cp_ret17=((struct ofstream *)___operator_bitor__A0_1_0_0___sepPrt__PFb_Rd0___sepReset__PF_Rd0___sepReset__PF_Rd0b___sepGetCur__PFPCc_Rd0___sepSetCur__PF_Rd0PCc___getNL__PFb_Rd0___setNL__PF_Rd0b___sepOn__PF_Rd0___sepOff__PF_Rd0___sepDisable__PFb_Rd0___sepEnable__PFb_Rd0___sepGet__PFPCc_Rd0___sepSet__PF_Rd0PCc___sepGetTuple__PFPCc_Rd0___sepSetTuple__PF_Rd0PCc___fail__PFi_Rd0___flush__PFi_Rd0___open__PF_Rd0PCcPCc___close__PF_Rd0___write__PFRd0_Rd0PCcUl___fmt__PFi_Rd0PCc__FRd0_Rd0PCc__1(((_Bool (*)(void *__anonymous_object2036))__sepPrt__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2037))__sepReset__F_R9sofstream__1), ((void (*)(void *__anonymous_object2038, _Bool __anonymous_object2039))__sepReset__F_R9sofstreamb__1), ((const char *(*)(void *__anonymous_object2040))__sepGetCur__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2041, const char *__anonymous_object2042))__sepSetCur__F_R9sofstreamPCc__1), ((_Bool (*)(void *__anonymous_object2043))__getNL__Fb_R9sofstream__1), ((void (*)(void *__anonymous_object2044, _Bool __anonymous_object2045))__setNL__F_R9sofstreamb__1), ((void (*)(void *__anonymous_object2046))__sepOn__F_R9sofstream__1), ((void (*)(void *__anonymous_object2047))__sepOff__F_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2048))__sepDisable__Fb_R9sofstream__1), ((_Bool (*)(void *__anonymous_object2049))__sepEnable__Fb_R9sofstream__1), ((const char *(*)(void *__anonymous_object2050))__sepGet__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2051, const char *__anonymous_object2052))__sepSet__F_R9sofstreamPCc__1), ((const char *(*)(void *__anonymous_object2053))__sepGetTuple__FPCc_R9sofstream__1), ((void (*)(void *__anonymous_object2054, const char *__anonymous_object2055))__sepSetTuple__F_R9sofstreamPCc__1), ((signed int (*)(void *__anonymous_object2056))__fail__Fi_R9sofstream__1), ((signed int (*)(void *__anonymous_object2057))__flush__Fi_R9sofstream__1), ((void (*)(void *__os__R7tostype_1, const char *__name__PCc_1, const char *__mode__PCc_1))__open__F_R9sofstreamPCcPCc__1), ((void (*)(void *__os__R7tostype_1))__close__F_R9sofstream__1), ((void *(*)(void *__anonymous_object2058, const char *__anonymous_object2059, unsigned long int __anonymous_object2060))__write__FR9sofstream_R9sofstreamPCcUl__1), ((signed int (*)(void *__anonymous_object2061, const char *__fmt__PCc_1, ...))__fmt__Fi_R9sofstreamPCc__1), ((void *)__sout__R9sofstream_1), "size_t")))) , _tmp_cp_ret17)), __v__Ui_1)))) , _tmp_cp_ret18)), ((void *(*)(void *__anonymous_object2062))(&_thunk5)))))) , _tmp_cp_ret19)); 521 591 } 522 592 signed int __main__Fi___1(){ -
src/tests/.expect/references.txt
rb2fe1c9 r32cab5b 4 4 13 1 12 5 5 14 14 6 x = 6 ; x2 = 789 7 x = 6 ; x2 = 999 8 x = 12345 ; x2 = 999 9 x = 22222 ; x2 = 999 6 10 Default constructing a Y 7 11 Copy constructing a Y … … 28 32 Destructing a Y 29 33 Destructing a Y 34 3 3 35 3 36 3 37 3 9 { 1, 7 }, [1, 2, 3] 30 38 Destructing a Y 31 39 Destructing a Y -
src/tests/Makefile.am
rb2fe1c9 r32cab5b 110 110 ${CC} ${AM_CFLAGS} ${CFLAGS} -DERR1 ${<} -o ${@} 111 111 112 fallthrough-ERROR: fallthrough.c @CFA_BINDIR@/@CFA_NAME@ 113 ${CC} ${AM_CFLAGS} ${CFLAGS} -DERR1 ${<} -o ${@} 114 112 115 # Constructor/destructor tests 113 116 raii/dtor-early-exit-ERR1: raii/dtor-early-exit.c @CFA_BINDIR@/@CFA_NAME@ -
src/tests/Makefile.in
rb2fe1c9 r32cab5b 787 787 ${CC} ${AM_CFLAGS} ${CFLAGS} -DERR1 ${<} -o ${@} 788 788 789 fallthrough-ERROR: fallthrough.c @CFA_BINDIR@/@CFA_NAME@ 790 ${CC} ${AM_CFLAGS} ${CFLAGS} -DERR1 ${<} -o ${@} 791 789 792 # Constructor/destructor tests 790 793 raii/dtor-early-exit-ERR1: raii/dtor-early-exit.c @CFA_BINDIR@/@CFA_NAME@ -
src/tests/concurrent/examples/datingService.c
rb2fe1c9 r32cab5b 8 8 // Created On : Mon Oct 30 12:56:20 2017 9 9 // Last Modified By : Peter A. Buhr 10 // Last Modified On : Tue Jan 2 12:19:01201811 // Update Count : 2 210 // Last Modified On : Wed Mar 14 22:48:40 2018 11 // Update Count : 23 12 12 // 13 13 … … 88 88 int main() { 89 89 DatingService TheExchange; 90 Girl * girls[NoOfPairs];91 Boy * boys[NoOfPairs];90 Girl * girls[NoOfPairs]; 91 Boy * boys[NoOfPairs]; 92 92 93 93 srandom( /*getpid()*/ 103 ); -
src/tests/concurrent/preempt.c
rb2fe1c9 r32cab5b 1 1 #include <kernel> 2 2 #include <thread> 3 #include <time> 3 4 4 5 #ifndef PREEMPTION_RATE 5 #define PREEMPTION_RATE 10 _000ul6 #define PREEMPTION_RATE 10`ms 6 7 #endif 7 8 8 unsigned intdefault_preemption() {9 Duration default_preemption() { 9 10 return PREEMPTION_RATE; 10 11 } -
src/tests/concurrent/signal/barge.c
rb2fe1c9 r32cab5b 16 16 17 17 #ifndef PREEMPTION_RATE 18 #define PREEMPTION_RATE 10 _000ul18 #define PREEMPTION_RATE 10`ms 19 19 #endif 20 20 21 unsigned intdefault_preemption() {21 Duration default_preemption() { 22 22 return 0; 23 23 } -
src/tests/concurrent/signal/block.c
rb2fe1c9 r32cab5b 12 12 #include <stdlib> 13 13 #include <thread> 14 15 #include <time.h> 14 #include <time> 16 15 17 16 #ifdef LONG_TEST … … 22 21 23 22 #ifndef PREEMPTION_RATE 24 #define PREEMPTION_RATE 10 _000ul23 #define PREEMPTION_RATE 10`ms 25 24 #endif 26 25 27 unsigned intdefault_preemption() {26 Duration default_preemption() { 28 27 return PREEMPTION_RATE; 29 28 } … … 51 50 //------------------------------------------------------------------------------ 52 51 void wait_op( global_data_t & mutex a, global_data_t & mutex b, unsigned i ) { 53 wait( cond, (uintptr_t)this_thread);52 wait( cond, (uintptr_t)active_thread() ); 54 53 55 54 yield( random( 10 ) ); … … 60 59 } 61 60 62 a.last_thread = b.last_thread = this_thread;61 a.last_thread = b.last_thread = active_thread(); 63 62 64 63 yield( random( 10 ) ); … … 76 75 yield( random( 10 ) ); 77 76 78 [a.last_thread, b.last_thread, a.last_signaller, b.last_signaller] = this_thread;77 [a.last_thread, b.last_thread, a.last_signaller, b.last_signaller] = active_thread(); 79 78 80 79 if( !is_empty( cond ) ) { … … 106 105 //------------------------------------------------------------------------------ 107 106 void barge_op( global_data_t & mutex a ) { 108 a.last_thread = this_thread;107 a.last_thread = active_thread(); 109 108 } 110 109 -
src/tests/concurrent/signal/disjoint.c
rb2fe1c9 r32cab5b 3 3 #include <monitor> 4 4 #include <thread> 5 6 #include <time.h> 5 #include <time> 7 6 8 7 #ifdef LONG_TEST … … 13 12 14 13 #ifndef PREEMPTION_RATE 15 #define PREEMPTION_RATE 10 _000ul14 #define PREEMPTION_RATE 10`ms 16 15 #endif 17 16 18 unsigned intdefault_preemption() {17 Duration default_preemption() { 19 18 return PREEMPTION_RATE; 20 19 } -
src/tests/concurrent/signal/wait.c
rb2fe1c9 r32cab5b 10 10 #include <stdlib> 11 11 #include <thread> 12 13 #include <time.h> 12 #include <time> 14 13 15 14 #ifdef LONG_TEST … … 20 19 21 20 #ifndef PREEMPTION_RATE 22 #define PREEMPTION_RATE 10 _000ul21 #define PREEMPTION_RATE 10`ms 23 22 #endif 24 23 25 unsigned intdefault_preemption() {24 Duration default_preemption() { 26 25 return PREEMPTION_RATE; 27 26 } -
src/tests/concurrent/waitfor/simple.c
rb2fe1c9 r32cab5b 10 10 11 11 #ifndef PREEMPTION_RATE 12 #define PREEMPTION_RATE 10 _000ul12 #define PREEMPTION_RATE 10`ms 13 13 #endif 14 14 15 unsigned intdefault_preemption() {15 Duration default_preemption() { 16 16 return PREEMPTION_RATE; 17 17 } -
src/tests/coroutine/fibonacci.c
rb2fe1c9 r32cab5b 10 10 // Created On : Thu Jun 8 07:29:37 2017 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : T ue Dec 5 22:27:54 201713 // Update Count : 1 412 // Last Modified On : Thu Mar 22 22:45:44 2018 13 // Update Count : 15 14 14 // 15 15 … … 21 21 void ?{}( Fibonacci & fib ) with( fib ) { fn = 0; } 22 22 23 // main automatically called on first resume 23 24 void main( Fibonacci & fib ) with( fib ) { 24 25 int fn1, fn2; // retained between resumes 25 26 fn = 0; fn1 = fn; // 1st case 26 fn = 0; fn1 = fn; // 1st case 27 27 suspend(); // restart last resume 28 29 fn = 1; fn2 = fn1; fn1 = fn; // 2nd case 28 fn = 1; fn2 = fn1; fn1 = fn; // 2nd case 30 29 suspend(); // restart last resume 31 32 30 for ( ;; ) { 33 31 fn = fn1 + fn2; fn2 = fn1; fn1 = fn; // general case -
src/tests/minmax.c
rb2fe1c9 r32cab5b 7 7 // minmax.c -- 8 8 // 9 // Author : Richard C. Bilson9 // Author : Peter A. Buhr 10 10 // Created On : Wed May 27 17:56:53 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Feb 29 23:45:16 201613 // Update Count : 4912 // Last Modified On : Tue Apr 10 17:29:09 2018 13 // Update Count : 50 14 14 // 15 15 -
src/tests/operators.c
rb2fe1c9 r32cab5b 27 27 a(b); 28 28 a + b; 29 struct accumulator ?+?; // why not, eh?30 a + b;31 29 } 32 30 -
src/tests/preempt_longrun/create.c
rb2fe1c9 r32cab5b 5 5 6 6 #ifndef PREEMPTION_RATE 7 #define PREEMPTION_RATE 10 _000ul7 #define PREEMPTION_RATE 10`ms 8 8 #endif 9 9 10 unsigned intdefault_preemption() {10 Duration default_preemption() { 11 11 return PREEMPTION_RATE; 12 12 } -
src/tests/preempt_longrun/enter.c
rb2fe1c9 r32cab5b 6 6 7 7 #ifndef PREEMPTION_RATE 8 #define PREEMPTION_RATE 10 _000ul8 #define PREEMPTION_RATE 10`ms 9 9 #endif 10 10 11 unsigned intdefault_preemption() {11 Duration default_preemption() { 12 12 return PREEMPTION_RATE; 13 13 } -
src/tests/preempt_longrun/enter3.c
rb2fe1c9 r32cab5b 6 6 7 7 #ifndef PREEMPTION_RATE 8 #define PREEMPTION_RATE 10 _000ul8 #define PREEMPTION_RATE 10`ms 9 9 #endif 10 10 11 unsigned intdefault_preemption() {11 Duration default_preemption() { 12 12 return PREEMPTION_RATE; 13 13 } -
src/tests/preempt_longrun/processor.c
rb2fe1c9 r32cab5b 5 5 6 6 #ifndef PREEMPTION_RATE 7 #define PREEMPTION_RATE 10 _000ul7 #define PREEMPTION_RATE 10`ms 8 8 #endif 9 9 10 unsigned intdefault_preemption() {10 Duration default_preemption() { 11 11 return PREEMPTION_RATE; 12 12 } -
src/tests/preempt_longrun/stack.c
rb2fe1c9 r32cab5b 5 5 6 6 #ifndef PREEMPTION_RATE 7 #define PREEMPTION_RATE 10 _000ul7 #define PREEMPTION_RATE 10`ms 8 8 #endif 9 9 10 unsigned intdefault_preemption() {10 Duration default_preemption() { 11 11 return PREEMPTION_RATE; 12 12 } -
src/tests/preempt_longrun/yield.c
rb2fe1c9 r32cab5b 9 9 10 10 #ifndef PREEMPTION_RATE 11 #define PREEMPTION_RATE 10 _000ul11 #define PREEMPTION_RATE 10`ms 12 12 #endif 13 13 14 unsigned intdefault_preemption() {14 Duration default_preemption() { 15 15 return PREEMPTION_RATE; 16 16 } -
src/tests/references.c
rb2fe1c9 r32cab5b 46 46 47 47 int main() { 48 int x = 123456, *p1 = &x, **p2 = &p1, ***p3 = &p2,48 int x = 123456, x2 = 789, *p1 = &x, **p2 = &p1, ***p3 = &p2, 49 49 &r1 = x, &&r2 = r1, &&&r3 = r2; 50 50 ***p3 = 3; // change x … … 52 52 *p3 = &p1; // change p2 53 53 int y = 0, z = 11, & ar[3] = { x, y, z }; // initialize array of references 54 // &ar[1] = &z; // change reference array element 55 // typeof( ar[1] ) p; // is int, i.e., the type of referenced object 56 // typeof( &ar[1] ) q; // is int &, i.e., the type of reference 57 // sizeof( ar[1] ) == sizeof( int ); // is true, i.e., the size of referenced object 58 // sizeof( &ar[1] ) == sizeof( int *); // is true, i.e., the size of a reference 54 59 60 ((int*&)&r3) = &x; // change r1, (&*)**r3 61 x = 3; 55 62 // test that basic reference properties are true - r1 should be an alias for x 56 63 printf("%d %d %d\n", x, r1, &x == &r1); … … 68 75 printf("%d %d\n", r1, x); 69 76 77 ((int&)r3) = 6; // change x, ***r3 78 printf("x = %d ; x2 = %d\n", x, x2); // check that x was changed 79 ((int*&)&r3) = &x2; // change r1 to refer to x2, (&*)**r3 80 ((int&)r3) = 999; // modify x2 81 printf("x = %d ; x2 = %d\n", x, x2); // check that x2 was changed 82 ((int**&)&&r3) = p2; // change r2, (&(&*)*)*r3 83 ((int&)r3) = 12345; // modify x 84 printf("x = %d ; x2 = %d\n", x, x2); // check that x was changed 85 ((int***&)&&&r3) = p3; // change r3 to p3, (&(&(&*)*)*)r3 86 ((int&)r3) = 22222; // modify x 87 printf("x = %d ; x2 = %d\n", x, x2); // check that x was changed 88 70 89 // test that reference members are not implicitly constructed/destructed/assigned 71 90 X x1, x2 = x1; … … 76 95 &z1.r = &z1r; 77 96 &z2.r = &z2r; 97 78 98 z1 = z2; 99 100 // test rvalue-to-reference conversion 101 { 102 struct S { double x, y; }; 103 void f( int & i, int & j, S & s, int v[] ) { 104 printf("%d %d { %g, %g }, [%d, %d, %d]\n", i, j, s.[x, y], v[0], v[1], v[2]); 105 } 106 void g(int & i) { printf("%d\n", i); } 107 void h(int &&& i) { printf("%d\n", i); } 108 109 int &&& r = 3; // rvalue to reference 110 int i = r; 111 printf("%d %d\n", i, r); // both 3 112 113 g( 3 ); // rvalue to reference 114 h( (int &&&)3 ); // rvalue to reference 115 116 int a = 5, b = 4; 117 f( 3, a + b, (S){ 1.0, 7.0 }, (int [3]){ 1, 2, 3 } ); // two rvalue to reference 118 } 79 119 } 80 120 -
src/tests/switch.c
rb2fe1c9 r32cab5b 10 10 // Created On : Tue Jul 12 06:50:22 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Aug 26 10:14:21 201713 // Update Count : 3 312 // Last Modified On : Thu Mar 8 07:33:05 2018 13 // Update Count : 36 14 14 // 15 15 … … 87 87 S s; 88 88 case 19: 89 case 'A' ...'Z':90 case 0 ... 6:89 case 'A'...'Z': 90 case 0 ...6: // space required, or lexed as decimal point 91 91 case 20, 30, 40: 92 92 i = 3; … … 96 96 case 8~10: 97 97 f( 3 ); 98 fallthru 98 fallthru; 99 99 case 'd': 100 100 j = 5; -
tools/prettyprinter/Makefile.am
rb2fe1c9 r32cab5b 11 11 ## Created On : Wed Jun 28 12:07:10 2017 12 12 ## Last Modified By : Peter A. Buhr 13 ## Last Modified On : Wed Jun 28 23:11:56 201714 ## Update Count : 1513 ## Last Modified On : Mon Apr 16 09:43:23 2018 14 ## Update Count : 20 15 15 ############################################################################### 16 16 -
tools/prettyprinter/lex.ll
rb2fe1c9 r32cab5b 10 10 * Created On : Sat Dec 15 11:45:59 2001 11 11 * Last Modified By : Peter A. Buhr 12 * Last Modified On : Tue Aug 29 17:33:36 201713 * Update Count : 2 6812 * Last Modified On : Sun Apr 15 21:28:33 2018 13 * Update Count : 271 14 14 */ 15 15 … … 50 50 <INITIAL,C_CODE>"/*" { // C style comments */ 51 51 #if defined(DEBUG_ALL) | defined(DEBUG_COMMENT) 52 52 cerr << "\"/*\" : " << yytext << endl; 53 53 #endif 54 55 56 54 if ( YYSTATE == C_CODE ) code_str += yytext; 55 else comment_str += yytext; 56 yy_push_state(C_COMMENT); 57 57 } 58 58 <C_COMMENT>(.|"\n") { // C style comments 59 59 #if defined(DEBUG_ALL) | defined(DEBUG_COMMENT) 60 60 cerr << "<C_COMMENT>(.|\\n) : " << yytext << endl; 61 61 #endif 62 63 62 if ( yy_top_state() == C_CODE ) code_str += yytext; 63 else comment_str += yytext; 64 64 } 65 65 <C_COMMENT>"*/" { // C style comments … … 123 123 <C_CODE>"%}" { RETURN_TOKEN( RCURL ) } 124 124 125 ^"%union" { RETURN_TOKEN( UNION ) } 126 ^"%start" { RETURN_TOKEN( START ) } 127 ^"%token" { RETURN_TOKEN( TOKEN ) } 128 ^"%type" { RETURN_TOKEN( TYPE ) } 129 ^"%left" { RETURN_TOKEN( LEFT ) } 130 ^"%right" { RETURN_TOKEN( RIGHT ) } 131 ^"%nonassoc" { RETURN_TOKEN( NONASSOC ) } 132 ^"%precedence" { RETURN_TOKEN( PRECEDENCE ) } 125 ^"%define"[^\n]*"\n" { RETURN_TOKEN( DEFINE ) } 126 ^"%expect" { RETURN_TOKEN( EXPECT ) } 127 ^"%left" { RETURN_TOKEN( LEFT ) } 128 ^"%locations" { RETURN_TOKEN( LOCATIONS ) } 129 ^"%nonassoc" { RETURN_TOKEN( NONASSOC ) } 130 ^"%precedence" { RETURN_TOKEN( PRECEDENCE ) } 133 131 ^"%pure_parser" { RETURN_TOKEN( PURE_PARSER ) } 132 ^"%right" { RETURN_TOKEN( RIGHT ) } 134 133 ^"%semantic_parser" { RETURN_TOKEN( SEMANTIC_PARSER ) } 135 ^"%expect" { RETURN_TOKEN( EXPECT ) } 136 ^"%thong" { RETURN_TOKEN( THONG ) } 134 ^"%start" { RETURN_TOKEN( START ) } 135 ^"%thong" { RETURN_TOKEN( THONG ) } 136 ^"%token" { RETURN_TOKEN( TOKEN ) } 137 ^"%type" { RETURN_TOKEN( TYPE ) } 138 ^"%union" { RETURN_TOKEN( UNION ) } 137 139 138 "%prec" 140 "%prec" { RETURN_TOKEN( PREC ) } 139 141 140 {integer} 141 [']{c_char}['] 142 {identifier} 142 {integer} { RETURN_TOKEN( INTEGER ); } 143 [']{c_char}['] { RETURN_TOKEN( CHARACTER ); } 144 {identifier} { RETURN_TOKEN( IDENTIFIER ); } 143 145 144 146 <C_CODE>["]{s_char}*["] { // hide braces "{}" in strings … … 160 162 %% 161 163 void lexC(void) { 162 164 BEGIN(C_CODE); 163 165 } 164 166 165 167 string lexYacc(void) { 166 167 168 169 170 168 BEGIN(INITIAL); 169 //cerr << "CODE: " << endl << code_str << endl; 170 string temp( code_str ); 171 code_str = ""; 172 return temp; 171 173 } 172 174 -
tools/prettyprinter/parser.yy
rb2fe1c9 r32cab5b 10 10 // Created On : Sat Dec 15 13:44:21 2001 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Tue Aug 29 16:34:10 201713 // Update Count : 10 4712 // Last Modified On : Sun Apr 15 21:40:30 2018 13 // Update Count : 1052 14 14 // 15 15 … … 61 61 %token<tokenp> CODE // C code 62 62 63 %token<tokenp> START // %start 64 %token<tokenp> UNION // %union 65 %token<tokenp> TOKEN // %token 63 %token<tokenp> DEFINE // %define 64 %token<tokenp> EXPECT // %expect 66 65 %token<tokenp> LEFT // %left 67 %token<tokenp> RIGHT // %right66 %token<tokenp> LOCATIONS // %locations 68 67 %token<tokenp> NONASSOC // %nonassoc 69 68 %token<tokenp> PRECEDENCE // %precedence 69 %token<tokenp> PURE_PARSER // %pure_parser 70 %token<tokenp> RIGHT // %right 71 %token<tokenp> SEMANTIC_PARSER // %semantic_parser 72 %token<tokenp> START // %start 73 %token<tokenp> THONG // %thong 74 %token<tokenp> TOKEN // %token 70 75 %token<tokenp> TYPE // %type 71 %token<tokenp> PURE_PARSER // %pure_parser 72 %token<tokenp> SEMANTIC_PARSER // %semantic_parser 73 %token<tokenp> EXPECT // %expect 74 %token<tokenp> THONG // %thong 76 %token<tokenp> UNION // %union 75 77 76 78 %token<tokenp> PREC // %prec 77 79 78 %token END_TERMINALS// ALL TERMINAL TOKEN NAMES MUST APPEAR BEFORE THIS80 %token END_TERMINALS // ALL TERMINAL TOKEN NAMES MUST APPEAR BEFORE THIS 79 81 80 82 %type<tokenp> sections 81 %token _SECTIONS83 %token _SECTIONS 82 84 %type<tokenp> mark 83 85 %type<tokenp> defsection_opt 84 %token _DEFSECTION_OPT86 %token _DEFSECTION_OPT 85 87 %type<tokenp> declarations 86 88 %type<tokenp> literalblock 87 %token _LITERALBLOCK89 %token _LITERALBLOCK 88 90 %type<tokenp> declaration 89 %token _DECLARATION91 %token _DECLARATION 90 92 %type<tokenp> union 91 93 %type<tokenp> rword 92 94 %type<tokenp> tag_opt 93 %token _TAG_OPT95 %token _TAG_OPT 94 96 %type<tokenp> namenolist 95 %token _NAMENOLIST97 %token _NAMENOLIST 96 98 %type<tokenp> nameno 97 %token _NAMENO99 %token _NAMENO 98 100 %type<tokenp> namelist 99 %token _NAMELIST101 %token _NAMELIST 100 102 %type<tokenp> name 101 103 %type<tokenp> rulesection 102 %token _RULESECTION104 %token _RULESECTION 103 105 %type<tokenp> rules 104 %token _RULE106 %token _RULE 105 107 %type<tokenp> lhs 106 %token _LHS108 %token _LHS 107 109 %type<tokenp> rhs 108 %token _RHS110 %token _RHS 109 111 %type<tokenp> prod 110 112 %type<tokenp> prec 111 %token _PREC113 %token _PREC 112 114 %type<tokenp> action 113 %token _ACTION115 %token _ACTION 114 116 %type<tokenp> usersection_opt 115 %token _USERSECTION_OPT117 %token _USERSECTION_OPT 116 118 %type<tokenp> ccode_opt 117 119 %type<tokenp> blocks … … 234 236 $$ = $1; 235 237 } 238 | DEFINE // bison 239 | LOCATIONS 236 240 | THONG // bison 237 241 ; -
tools/prettyprinter/test.y
rb2fe1c9 r32cab5b 6 6 7 7 /* adsad2 */ 8 8 %locations 9 %define parse.error verbose 9 10 %% 10 11
Note:
See TracChangeset
for help on using the changeset viewer.