Ignore:
Timestamp:
Jun 16, 2021, 6:04:40 PM (3 years ago)
Author:
m3zulfiq <m3zulfiq@…>
Branches:
ADT, ast-experimental, enum, forall-pointer-decay, jacob/cs343-translation, master, new-ast-unique-expr, pthread-emulation, qualifiedEnum
Children:
012cfc3
Parents:
3814957
Message:

added benchmark descriptions

File:
1 edited

Legend:

Unmodified
Added
Removed
  • doc/theses/mubeen_zulfiqar_MMath/benchmarks.tex

    r3814957 r32318de  
    133133The aim of micro benchmark suite is to create a set of programs that can evaluate a memory allocator based on the performance matrices described in (FIX ME: local cite). These programs can be taken as a standard to benchmark an allocator's basic goals. These programs give details of an allocator's memory overhead and speed under a certain allocation pattern. The speed of the allocator is benchmarked in different ways. Similarly, false sharing happening in an allocator is also measured in multiple ways. These benchmarks evalute the allocator under a certain allocation pattern which is configurable and can be changed using a few knobs to benchmark observe an allocator's performance under a desired allocation pattern.
    134134
    135 TO DO before writing furthur: Finalize figures
     135Micro Benchmark Suite benchmarks an allocator's performance by allocating dynamic objects and, then, measuring specifc matrices. The benchmark suite evaluates an allocator with a certain allocation pattern. Bnechmarks have different knobs that can be used to change allocation pattern and evaluate an allocator under desired conditions. These can be set by giving commandline arguments to the benchmark on execution.
     136
     137Following is the list of avalable knobs.
     138
     139*** FIX ME: Add knobs items after finalize
    136140
    137141        /subsection Memory Benchmark
     142        Memory benchmark measures memory overhead of an allocator. It allocates a number of dynamic objects. Then, by reading /self/proc/maps, gets the total memory that the allocator has reuested from the OS. Finally, it calculates the memory head by taking the difference between the memory the allocator has requested from the OS and the memory that program has allocated.
     143        *** FIX ME: Insert a figure of above benchmark with description
     144
     145                /subsubsection Relevant Knobs
     146                *** FIX ME: Insert Relevant Knobs
     147
    138148        /subsection Speed Benchmark
     149        Speed benchmark calculates the runtime speed of an allocator's functions (FIX ME: cite allocator routines). It does by measuring the runtime of allocator routines in two different ways.
     150
    139151                /subsubsection Speed Time
     152                The time method does a certain amount of work by calling each routine of the allocator (FIX ME: cite allocator routines) a specific time. It calculates the total time it took to perform this workload. Then, it divides the time it took by the workload and calculates the average time taken by the allocator's routine.
     153                *** FIX ME: Insert a figure of above benchmark with description
     154
     155                        /subsubsubsection Relevant Knobs
     156                        *** FIX ME: Insert Relevant Knobs
     157
    140158                /subsubsection Speed Workload
     159                The worload method uses the opposite approach. It calls the allocator's routines for a specific amount of time and measures how much work was done during that time. Then, similar to the time method, it divides the time by the workload done during that time and calculates the average time taken by the allocator's routine.
     160                *** FIX ME: Insert a figure of above benchmark with description
     161
     162                        /subsubsubsection Relevant Knobs
     163                        *** FIX ME: Insert Relevant Knobs
    141164
    142165        /subsection Cache Scratch
     166        Cache Scratch benchmark measures program induced allocator preserved passive false sharing (FIX ME CITE) in an allocator. It does so in two ways.
     167
    143168                /subsubsection Cache Scratch Time
     169                Cache Scratch Time allocates dynamic objects. Then, it benchmarks program induced allocator preserved passive false sharing (FIX ME CITE) in an allocator by measuring the time it takes to read/write these objects.
     170                *** FIX ME: Insert a figure of above benchmark with description
     171
     172                        /subsubsubsection Relevant Knobs
     173                        *** FIX ME: Insert Relevant Knobs
     174
    144175                /subsubsection Cache Scratch Layout
     176                Cache Scratch Layout also allocates dynamic objects. Then, it benchmarks program induced allocator preserved passive false sharing (FIX ME CITE) by using heap addresses returned by the allocator. It calculates how many objects were allocated to different threads on the same cache line.
     177                *** FIX ME: Insert a figure of above benchmark with description
     178
     179                        /subsubsubsection Relevant Knobs
     180                        *** FIX ME: Insert Relevant Knobs
    145181
    146182        /subsection Cache Thrash
     183        Cache Thrash benchmark measures allocator induced passive false sharing (FIX ME CITE) in an allocator. It also does so in two ways.
     184
    147185                /subsubsection Cache Thrash Time
     186                Cache Thrash Time allocates dynamic objects. Then, it benchmarks allocator induced false sharing (FIX ME CITE) in an allocator by measuring the time it takes to read/write these objects.
     187                *** FIX ME: Insert a figure of above benchmark with description
     188
     189                        /subsubsubsection Relevant Knobs
     190                        *** FIX ME: Insert Relevant Knobs
     191
    148192                /subsubsection Cache Thrash Layout
     193                Cache Thrash Layout also allocates dynamic objects. Then, it benchmarks allocator induced false sharing (FIX ME CITE) by using heap addresses returned by the allocator. It calculates how many objects were allocated to different threads on the same cache line.
     194                *** FIX ME: Insert a figure of above benchmark with description
     195
     196                        /subsubsubsection Relevant Knobs
     197                        *** FIX ME: Insert Relevant Knobs
     198
     199/section Results
     200*** FIX ME: add configuration details of memory allocators
     201
     202        /subsection Memory Benchmark
     203
     204                /subsubsection Relevant Knobs
     205
     206        /subsection Speed Benchmark
     207
     208                /subsubsection Speed Time
     209
     210                        /subsubsubsection Relevant Knobs
     211
     212                /subsubsection Speed Workload
     213
     214                        /subsubsubsection Relevant Knobs
     215
     216        /subsection Cache Scratch
     217
     218                /subsubsection Cache Scratch Time
     219
     220                        /subsubsubsection Relevant Knobs
     221
     222                /subsubsection Cache Scratch Layout
     223
     224                        /subsubsubsection Relevant Knobs
     225
     226        /subsection Cache Thrash
     227
     228                /subsubsection Cache Thrash Time
     229
     230                        /subsubsubsection Relevant Knobs
     231
     232                /subsubsection Cache Thrash Layout
     233
     234                        /subsubsubsection Relevant Knobs
Note: See TracChangeset for help on using the changeset viewer.