- Timestamp:
- Jun 12, 2023, 2:45:32 PM (2 years ago)
- Branches:
- ast-experimental, master
- Children:
- 62d62db
- Parents:
- 34b4268 (diff), 251ce80 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - Location:
- src
- Files:
-
- 24 added
- 3 deleted
- 135 edited
Legend:
- Unmodified
- Added
- Removed
-
src/AST/Attribute.hpp
r34b4268 r24d6572 27 27 class Expr; 28 28 29 /// An entry in an attribute list: `__attribute__(( ... ))` 29 30 class Attribute final : public Node { 30 31 public: -
src/AST/Convert.cpp
r34b4268 r24d6572 559 559 auto stmt = new SuspendStmt(); 560 560 stmt->then = get<CompoundStmt>().accept1( node->then ); 561 switch (node->type) {561 switch (node->kind) { 562 562 case ast::SuspendStmt::None : stmt->type = SuspendStmt::None ; break; 563 563 case ast::SuspendStmt::Coroutine: stmt->type = SuspendStmt::Coroutine; break; … … 565 565 } 566 566 return stmtPostamble( stmt, node ); 567 } 568 569 const ast::WhenClause * visit( const ast::WhenClause * node ) override final { 570 // There is no old-AST WhenClause, so this should never be called. 571 assert( !node ); 572 return nullptr; 567 573 } 568 574 … … 573 579 for ( auto clause : node->clauses ) { 574 580 stmt->clauses.push_back({{ 575 get<Expression>().accept1( clause->target _func),581 get<Expression>().accept1( clause->target ), 576 582 get<Expression>().acceptL( clause->target_args ), 577 583 }, 578 584 get<Statement>().accept1( clause->stmt ), 579 get<Expression>().accept1( clause-> cond ),585 get<Expression>().accept1( clause->when_cond ), 580 586 }); 581 587 } … … 594 600 const ast::WaitForClause * visit( const ast::WaitForClause * node ) override final { 595 601 // There is no old-AST WaitForClause, so this should never be called. 602 assert( !node ); 603 return nullptr; 604 } 605 606 const ast::Stmt * visit( const ast::WaitUntilStmt * node ) override final { 607 // There is no old-AST WaitUntilStmt, so this should never be called. 596 608 assert( !node ); 597 609 return nullptr; … … 1683 1695 GET_ACCEPT_V(attributes, Attribute), 1684 1696 { old->get_funcSpec().val }, 1685 old->type->isVarArgs1697 (old->type->isVarArgs) ? ast::VariableArgs : ast::FixedArgs 1686 1698 }; 1687 1699 … … 1989 2001 GET_ACCEPT_1(else_, Stmt), 1990 2002 GET_ACCEPT_V(initialization, Stmt), 1991 old->isDoWhile,2003 (old->isDoWhile) ? ast::DoWhile : ast::While, 1992 2004 GET_LABELS_V(old->labels) 1993 2005 ); … … 2131 2143 virtual void visit( const SuspendStmt * old ) override final { 2132 2144 if ( inCache( old ) ) return; 2133 ast::SuspendStmt:: Typetype;2145 ast::SuspendStmt::Kind type; 2134 2146 switch (old->type) { 2135 2147 case SuspendStmt::Coroutine: type = ast::SuspendStmt::Coroutine; break; … … 2158 2170 auto clause = new ast::WaitForClause( old->location ); 2159 2171 2160 clause->target _func= GET_ACCEPT_1(clauses[i].target.function, Expr);2172 clause->target = GET_ACCEPT_1(clauses[i].target.function, Expr); 2161 2173 clause->target_args = GET_ACCEPT_V(clauses[i].target.arguments, Expr); 2162 2174 clause->stmt = GET_ACCEPT_1(clauses[i].statement, Stmt); 2163 clause-> cond = GET_ACCEPT_1(clauses[i].condition, Expr);2175 clause->when_cond = GET_ACCEPT_1(clauses[i].condition, Expr); 2164 2176 2165 2177 stmt->clauses.push_back( clause ); -
src/AST/Create.cpp
r34b4268 r24d6572 20 20 #include "AST/Decl.hpp" 21 21 #include "AST/Type.hpp" 22 #include "Common/Iterate.hpp" 22 23 23 24 namespace ast { -
src/AST/Decl.cpp
r34b4268 r24d6572 20 20 #include <unordered_map> 21 21 22 #include "Common/ utility.h"22 #include "Common/Eval.h" // for eval 23 23 24 24 #include "Fwd.hpp" // for UniqueId … … 57 57 std::vector<ptr<DeclWithType>>&& params, std::vector<ptr<DeclWithType>>&& returns, 58 58 CompoundStmt * stmts, Storage::Classes storage, Linkage::Spec linkage, 59 std::vector<ptr<Attribute>>&& attrs, Function::Specs fs, bool isVarArgs)59 std::vector<ptr<Attribute>>&& attrs, Function::Specs fs, ArgumentFlag isVarArgs ) 60 60 : DeclWithType( loc, name, storage, linkage, std::move(attrs), fs ), 61 61 type_params(std::move(forall)), assertions(), 62 62 params(std::move(params)), returns(std::move(returns)), stmts( stmts ) { 63 FunctionType * ftype = new FunctionType( static_cast<ArgumentFlag>(isVarArgs));63 FunctionType * ftype = new FunctionType( isVarArgs ); 64 64 for (auto & param : this->params) { 65 65 ftype->params.emplace_back(param->get_type()); … … 81 81 std::vector<ptr<DeclWithType>>&& params, std::vector<ptr<DeclWithType>>&& returns, 82 82 CompoundStmt * stmts, Storage::Classes storage, Linkage::Spec linkage, 83 std::vector<ptr<Attribute>>&& attrs, Function::Specs fs, bool isVarArgs)83 std::vector<ptr<Attribute>>&& attrs, Function::Specs fs, ArgumentFlag isVarArgs ) 84 84 : DeclWithType( location, name, storage, linkage, std::move(attrs), fs ), 85 85 type_params( std::move( forall) ), assertions( std::move( assertions ) ), 86 86 params( std::move(params) ), returns( std::move(returns) ), 87 87 type( nullptr ), stmts( stmts ) { 88 FunctionType * type = new FunctionType( (isVarArgs) ? VariableArgs : FixedArgs );88 FunctionType * type = new FunctionType( isVarArgs ); 89 89 for ( auto & param : this->params ) { 90 90 type->params.emplace_back( param->get_type() ); -
src/AST/Decl.hpp
r34b4268 r24d6572 10 10 // Created On : Thu May 9 10:00:00 2019 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Thu Nov 24 9:44:00 202213 // Update Count : 3 412 // Last Modified On : Wed Apr 5 10:42:00 2023 13 // Update Count : 35 14 14 // 15 15 … … 122 122 }; 123 123 124 /// Function variable arguments flag 125 enum ArgumentFlag { FixedArgs, VariableArgs }; 126 124 127 /// Object declaration `int foo()` 125 128 class FunctionDecl : public DeclWithType { … … 144 147 std::vector<ptr<DeclWithType>>&& params, std::vector<ptr<DeclWithType>>&& returns, 145 148 CompoundStmt * stmts, Storage::Classes storage = {}, Linkage::Spec linkage = Linkage::Cforall, 146 std::vector<ptr<Attribute>>&& attrs = {}, Function::Specs fs = {}, bool isVarArgs = false);149 std::vector<ptr<Attribute>>&& attrs = {}, Function::Specs fs = {}, ArgumentFlag isVarArgs = FixedArgs ); 147 150 148 151 FunctionDecl( const CodeLocation & location, const std::string & name, … … 150 153 std::vector<ptr<DeclWithType>>&& params, std::vector<ptr<DeclWithType>>&& returns, 151 154 CompoundStmt * stmts, Storage::Classes storage = {}, Linkage::Spec linkage = Linkage::Cforall, 152 std::vector<ptr<Attribute>>&& attrs = {}, Function::Specs fs = {}, bool isVarArgs = false);155 std::vector<ptr<Attribute>>&& attrs = {}, Function::Specs fs = {}, ArgumentFlag isVarArgs = FixedArgs ); 153 156 154 157 const Type * get_type() const override; … … 313 316 public: 314 317 bool isTyped; // isTyped indicated if the enum has a declaration like: 315 // enum (type_optional) Name {...} 318 // enum (type_optional) Name {...} 316 319 ptr<Type> base; // if isTyped == true && base.get() == nullptr, it is a "void" type enum 317 320 enum class EnumHiding { Visible, Hide } hide; … … 371 374 }; 372 375 376 /// Assembly declaration: `asm ... ( "..." : ... )` 373 377 class AsmDecl : public Decl { 374 378 public: -
src/AST/Expr.cpp
r34b4268 r24d6572 30 30 #include "Common/SemanticError.h" 31 31 #include "GenPoly/Lvalue.h" // for referencesPermissable 32 #include "ResolvExpr/ typeops.h"// for extractResultType32 #include "ResolvExpr/Unify.h" // for extractResultType 33 33 #include "Tuples/Tuples.h" // for makeTupleType 34 34 -
src/AST/Expr.hpp
r34b4268 r24d6572 256 256 }; 257 257 258 /// A name qualified by a namespace or type. 258 259 class QualifiedNameExpr final : public Expr { 259 260 public: … … 261 262 std::string name; 262 263 263 QualifiedNameExpr( const CodeLocation & loc, const Decl * d, const std::string & n ) 264 QualifiedNameExpr( const CodeLocation & loc, const Decl * d, const std::string & n ) 264 265 : Expr( loc ), type_decl( d ), name( n ) {} 265 266 … … 631 632 }; 632 633 634 /// A name that refers to a generic dimension parameter. 633 635 class DimensionExpr final : public Expr { 634 636 public: … … 920 922 }; 921 923 922 923 924 } 924 925 -
src/AST/Fwd.hpp
r34b4268 r24d6572 15 15 16 16 #pragma once 17 18 template<typename> struct bitfield; 17 19 18 20 #include "AST/Node.hpp" … … 56 58 class FinallyClause; 57 59 class SuspendStmt; 60 class WhenClause; 58 61 class WaitForStmt; 59 62 class WaitForClause; 63 class WaitUntilStmt; 60 64 class WithStmt; 61 65 class DeclStmt; … … 147 151 class TranslationGlobal; 148 152 153 // For the following types, only use the using type. 154 namespace CV { 155 struct qualifier_flags; 156 using Qualifiers = bitfield<qualifier_flags>; 149 157 } 158 namespace Function { 159 struct spec_flags; 160 using Specs = bitfield<spec_flags>; 161 } 162 namespace Storage { 163 struct class_flags; 164 using Classes = bitfield<class_flags>; 165 } 166 namespace Linkage { 167 struct spec_flags; 168 using Spec = bitfield<spec_flags>; 169 } 170 171 } -
src/AST/Init.hpp
r34b4268 r24d6572 117 117 ptr<Init> init; 118 118 119 ConstructorInit( 119 ConstructorInit( 120 120 const CodeLocation & loc, const Stmt * ctor, const Stmt * dtor, const Init * init ) 121 121 : Init( loc, MaybeConstruct ), ctor( ctor ), dtor( dtor ), init( init ) {} -
src/AST/Inspect.cpp
r34b4268 r24d6572 10 10 // Created On : Fri Jun 24 13:16:31 2022 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Oct 3 11:04:00 202213 // Update Count : 312 // Last Modified On : Fri Apr 14 15:09:00 2023 13 // Update Count : 4 14 14 // 15 15 … … 168 168 } 169 169 170 bool isUnnamedBitfield( const ast::ObjectDecl * obj ) { 171 return obj && obj->name.empty() && obj->bitfieldWidth; 172 } 173 170 174 } // namespace ast -
src/AST/Inspect.hpp
r34b4268 r24d6572 10 10 // Created On : Fri Jun 24 13:16:31 2022 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr Sep 22 13:44:00 202213 // Update Count : 212 // Last Modified On : Fri Apr 14 15:09:00 2023 13 // Update Count : 3 14 14 // 15 15 … … 38 38 const ApplicationExpr * isIntrinsicCallExpr( const Expr * expr ); 39 39 40 /// Returns true if obj's name is the empty string and it has a bitfield width. 41 bool isUnnamedBitfield( const ObjectDecl * obj ); 42 40 43 } -
src/AST/Node.cpp
r34b4268 r24d6572 174 174 template class ast::ptr_base< ast::FinallyClause, ast::Node::ref_type::weak >; 175 175 template class ast::ptr_base< ast::FinallyClause, ast::Node::ref_type::strong >; 176 template class ast::ptr_base< ast::WhenClause, ast::Node::ref_type::weak >; 177 template class ast::ptr_base< ast::WhenClause, ast::Node::ref_type::strong >; 176 178 template class ast::ptr_base< ast::WaitForStmt, ast::Node::ref_type::weak >; 177 179 template class ast::ptr_base< ast::WaitForStmt, ast::Node::ref_type::strong >; 178 180 template class ast::ptr_base< ast::WaitForClause, ast::Node::ref_type::weak >; 179 181 template class ast::ptr_base< ast::WaitForClause, ast::Node::ref_type::strong >; 182 template class ast::ptr_base< ast::WaitUntilStmt, ast::Node::ref_type::weak >; 183 template class ast::ptr_base< ast::WaitUntilStmt, ast::Node::ref_type::strong >; 180 184 template class ast::ptr_base< ast::WithStmt, ast::Node::ref_type::weak >; 181 185 template class ast::ptr_base< ast::WithStmt, ast::Node::ref_type::strong >; -
src/AST/Node.hpp
r34b4268 r24d6572 19 19 #include <cstddef> // for nullptr_t 20 20 #include <iosfwd> 21 #include <type_traits> // for remove_reference22 21 23 22 #include "Common/ErrorObjects.h" // for SemanticErrorException … … 36 35 Node(const Node&) : strong_count(0), weak_count(0) {} 37 36 Node(Node&&) : strong_count(0), weak_count(0) {} 38 Node& operator= 39 Node& operator= 37 Node& operator=(const Node&) = delete; 38 Node& operator=(Node&&) = delete; 40 39 virtual ~Node() {} 41 40 -
src/AST/ParseNode.hpp
r34b4268 r24d6572 40 40 template<typename node_t> 41 41 friend node_t * mutate(const node_t * node); 42 template<typename node_t> 43 friend node_t * shallowCopy(const node_t * node); 42 44 }; 43 45 -
src/AST/Pass.hpp
r34b4268 r24d6572 66 66 // 67 67 // Other Special Members: 68 // | beginScope - A method with no parameters or return value, called each time the 69 // visitor enters a block. 70 // | endScope - A method with no parameters or return value, called each time the 71 // visitor leaves a block. 68 72 // | result - Either a method that takes no parameters or a field. If a method (or 69 73 // callable field) get_result calls it, otherwise the value is returned. … … 82 86 { 83 87 // After the pass is constructed, check if it wants the have a pointer to the wrapping visitor 84 type * const * visitor = __pass::visitor( core, 0);85 if (visitor) {88 type * const * visitor = __pass::visitor( core, 0 ); 89 if ( visitor ) { 86 90 *const_cast<type **>( visitor ) = this; 87 91 } … … 94 98 95 99 /// If the core defines a result, call it if possible, otherwise return it. 96 inline auto get_result() -> decltype( __pass:: get_result( core, '0' ) ) {97 return __pass:: get_result( core, '0' );100 inline auto get_result() -> decltype( __pass::result::get( core, '0' ) ) { 101 return __pass::result::get( core, '0' ); 98 102 } 99 103 … … 158 162 const ast::FinallyClause * visit( const ast::FinallyClause * ) override final; 159 163 const ast::Stmt * visit( const ast::SuspendStmt * ) override final; 164 const ast::WhenClause * visit( const ast::WhenClause * ) override final; 160 165 const ast::Stmt * visit( const ast::WaitForStmt * ) override final; 161 166 const ast::WaitForClause * visit( const ast::WaitForClause * ) override final; 167 const ast::Stmt * visit( const ast::WaitUntilStmt * ) override final; 162 168 const ast::Decl * visit( const ast::WithStmt * ) override final; 163 169 const ast::NullStmt * visit( const ast::NullStmt * ) override final; -
src/AST/Pass.impl.hpp
r34b4268 r24d6572 20 20 #include <unordered_map> 21 21 22 #include "AST/Copy.hpp" 22 23 #include "AST/TranslationUnit.hpp" 23 24 #include "AST/TypeSubstitution.hpp" … … 45 46 46 47 #ifdef PEDANTIC_PASS_ASSERT 47 #define __pedantic_pass_assert(...) assert 48 #define __pedantic_pass_assert(...) assert(__VA_ARGS__) 48 49 #define __pedantic_pass_assertf(...) assertf(__VA_ARGS__) 49 50 #else … … 124 125 return !new_val.empty(); 125 126 } 126 }127 128 template< typename node_t >129 template< typename object_t, typename super_t, typename field_t >130 void __pass::result1< node_t >::apply( object_t * object, field_t super_t::* field ) {131 object->*field = value;132 127 } 133 128 … … 233 228 234 229 return {true, compound}; 235 }236 237 template< template <class...> class container_t >238 template< typename object_t, typename super_t, typename field_t >239 void __pass::resultNstmt<container_t>::apply(object_t * object, field_t super_t::* field) {240 auto & container = object->*field;241 __pedantic_pass_assert( container.size() <= values.size() );242 243 auto cit = enumerate(container).begin();244 245 container_t<ptr<Stmt>> nvals;246 for (delta & d : values) {247 if ( d.is_old ) {248 __pedantic_pass_assert( cit.idx <= d.old_idx );249 std::advance( cit, d.old_idx - cit.idx );250 nvals.push_back( std::move( (*cit).val) );251 } else {252 nvals.push_back( std::move(d.new_val) );253 }254 }255 256 container = std::move(nvals);257 }258 259 template< template <class...> class container_t >260 template< template <class...> class incontainer_t >261 void __pass::resultNstmt< container_t >::take_all( incontainer_t<ptr<Stmt>> * stmts ) {262 if (!stmts || stmts->empty()) return;263 264 std::transform(stmts->begin(), stmts->end(), std::back_inserter( values ),265 [](ast::ptr<ast::Stmt>& stmt) -> delta {266 return delta( stmt.release(), -1, false );267 });268 stmts->clear();269 differs = true;270 }271 272 template< template<class...> class container_t >273 template< template<class...> class incontainer_t >274 void __pass::resultNstmt< container_t >::take_all( incontainer_t<ptr<Decl>> * decls ) {275 if (!decls || decls->empty()) return;276 277 std::transform(decls->begin(), decls->end(), std::back_inserter( values ),278 [](ast::ptr<ast::Decl>& decl) -> delta {279 auto loc = decl->location;280 auto stmt = new DeclStmt( loc, decl.release() );281 return delta( stmt, -1, false );282 });283 decls->clear();284 differs = true;285 230 } 286 231 … … 352 297 353 298 return new_kids; 354 }355 356 template< template <class...> class container_t, typename node_t >357 template< typename object_t, typename super_t, typename field_t >358 void __pass::resultN<container_t, node_t>::apply(object_t * object, field_t super_t::* field) {359 auto & container = object->*field;360 __pedantic_pass_assert( container.size() == values.size() );361 362 for(size_t i = 0; i < container.size(); i++) {363 // Take all the elements that are different in 'values'364 // and swap them into 'container'365 if( values[i] != nullptr ) swap(container[i], values[i]);366 }367 368 // Now the original containers should still have the unchanged values369 // but also contain the new values370 299 } 371 300 … … 836 765 if ( enterScope ) { 837 766 __pass::symtab::enter(core, 0); 838 __pass::scope::enter(core, 0);839 767 } 840 768 }, [this, leaveScope = !this->atFunctionTop]() { 841 769 if ( leaveScope ) { 842 770 __pass::symtab::leave(core, 0); 843 __pass::scope::leave(core, 0);844 771 } 845 772 }); … … 1067 994 1068 995 //-------------------------------------------------------------------------- 996 // WhenClause 997 template< typename core_t > 998 const ast::WhenClause * ast::Pass< core_t >::visit( const ast::WhenClause * node ) { 999 VISIT_START( node ); 1000 1001 if ( __visit_children() ) { 1002 maybe_accept( node, &WhenClause::target ); 1003 maybe_accept( node, &WhenClause::stmt ); 1004 maybe_accept( node, &WhenClause::when_cond ); 1005 } 1006 1007 VISIT_END( WhenClause, node ); 1008 } 1009 1010 //-------------------------------------------------------------------------- 1069 1011 // WaitForStmt 1070 1012 template< typename core_t > … … 1091 1033 1092 1034 if ( __visit_children() ) { 1093 maybe_accept( node, &WaitForClause::target _func);1035 maybe_accept( node, &WaitForClause::target ); 1094 1036 maybe_accept( node, &WaitForClause::target_args ); 1095 1037 maybe_accept( node, &WaitForClause::stmt ); 1096 maybe_accept( node, &WaitForClause:: cond );1038 maybe_accept( node, &WaitForClause::when_cond ); 1097 1039 } 1098 1040 1099 1041 VISIT_END( WaitForClause, node ); 1042 } 1043 1044 //-------------------------------------------------------------------------- 1045 // WaitUntilStmt 1046 template< typename core_t > 1047 const ast::Stmt * ast::Pass< core_t >::visit( const ast::WaitUntilStmt * node ) { 1048 VISIT_START( node ); 1049 1050 if ( __visit_children() ) { 1051 maybe_accept( node, &WaitUntilStmt::clauses ); 1052 maybe_accept( node, &WaitUntilStmt::timeout_time ); 1053 maybe_accept( node, &WaitUntilStmt::timeout_stmt ); 1054 maybe_accept( node, &WaitUntilStmt::timeout_cond ); 1055 maybe_accept( node, &WaitUntilStmt::else_stmt ); 1056 maybe_accept( node, &WaitUntilStmt::else_cond ); 1057 } 1058 1059 VISIT_END( Stmt, node ); 1100 1060 } 1101 1061 … … 2043 2003 if ( __visit_children() ) { 2044 2004 maybe_accept( node, &TupleType::types ); 2045 maybe_accept( node, &TupleType::members );2046 2005 } 2047 2006 … … 2205 2164 } 2206 2165 2166 #undef __pedantic_pass_assertf 2167 #undef __pedantic_pass_assert 2207 2168 #undef VISIT_START 2208 2169 #undef VISIT_END -
src/AST/Pass.proto.hpp
r34b4268 r24d6572 17 17 // IWYU pragma: private, include "Pass.hpp" 18 18 19 #include "Common/Iterate.hpp" 19 20 #include "Common/Stats/Heap.h" 20 21 21 namespace ast { 22 template<typename core_t> 23 class Pass; 24 25 class TranslationUnit; 26 27 struct PureVisitor; 28 29 template<typename node_t> 30 node_t * deepCopy( const node_t * localRoot ); 31 32 namespace __pass { 33 typedef std::function<void( void * )> cleanup_func_t; 34 typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t; 35 36 37 // boolean reference that may be null 38 // either refers to a boolean value or is null and returns true 39 class bool_ref { 40 public: 41 bool_ref() = default; 42 ~bool_ref() = default; 43 44 operator bool() { return m_ref ? *m_ref : true; } 45 bool operator=( bool val ) { assert(m_ref); return *m_ref = val; } 46 47 private: 48 49 friend class visit_children_guard; 50 51 bool * set( bool * val ) { 52 bool * prev = m_ref; 53 m_ref = val; 54 return prev; 55 } 56 57 bool * m_ref = nullptr; 22 template<typename core_t> class Pass; 23 class TranslationUnit; 24 struct PureVisitor; 25 template<typename node_t> node_t * deepCopy( const node_t * ); 26 } 27 28 #ifdef PEDANTIC_PASS_ASSERT 29 #define __pedantic_pass_assert(...) assert(__VA_ARGS__) 30 #define __pedantic_pass_assertf(...) assertf(__VA_ARGS__) 31 #else 32 #define __pedantic_pass_assert(...) 33 #define __pedantic_pass_assertf(...) 34 #endif 35 36 namespace ast::__pass { 37 38 typedef std::function<void( void * )> cleanup_func_t; 39 typedef std::function<void( cleanup_func_t, void * )> at_cleanup_t; 40 41 // boolean reference that may be null 42 // either refers to a boolean value or is null and returns true 43 class bool_ref { 44 public: 45 bool_ref() = default; 46 ~bool_ref() = default; 47 48 operator bool() { return m_ref ? *m_ref : true; } 49 bool operator=( bool val ) { assert(m_ref); return *m_ref = val; } 50 51 private: 52 53 friend class visit_children_guard; 54 55 bool * set( bool * val ) { 56 bool * prev = m_ref; 57 m_ref = val; 58 return prev; 59 } 60 61 bool * m_ref = nullptr; 62 }; 63 64 // Implementation of the guard value 65 // Created inside the visit scope 66 class guard_value { 67 public: 68 /// Push onto the cleanup 69 guard_value( at_cleanup_t * at_cleanup ) { 70 if( at_cleanup ) { 71 *at_cleanup = [this]( cleanup_func_t && func, void* val ) { 72 push( std::move( func ), val ); 73 }; 74 } 75 } 76 77 ~guard_value() { 78 while( !cleanups.empty() ) { 79 auto& cleanup = cleanups.top(); 80 cleanup.func( cleanup.val ); 81 cleanups.pop(); 82 } 83 } 84 85 void push( cleanup_func_t && func, void* val ) { 86 cleanups.emplace( std::move(func), val ); 87 } 88 89 private: 90 struct cleanup_t { 91 cleanup_func_t func; 92 void * val; 93 94 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {} 58 95 }; 59 96 60 // Implementation of the guard value 61 // Created inside the visit scope 62 class guard_value { 63 public: 64 /// Push onto the cleanup 65 guard_value( at_cleanup_t * at_cleanup ) { 66 if( at_cleanup ) { 67 *at_cleanup = [this]( cleanup_func_t && func, void* val ) { 68 push( std::move( func ), val ); 69 }; 97 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups; 98 }; 99 100 // Guard structure implementation for whether or not children should be visited 101 class visit_children_guard { 102 public: 103 104 visit_children_guard( bool_ref * ref ) 105 : m_val ( true ) 106 , m_prev( ref ? ref->set( &m_val ) : nullptr ) 107 , m_ref ( ref ) 108 {} 109 110 ~visit_children_guard() { 111 if( m_ref ) { 112 m_ref->set( m_prev ); 113 } 114 } 115 116 operator bool() { return m_val; } 117 118 private: 119 bool m_val; 120 bool * m_prev; 121 bool_ref * m_ref; 122 }; 123 124 /// "Short hand" to check if this is a valid previsit function 125 /// Mostly used to make the static_assert look (and print) prettier 126 template<typename core_t, typename node_t> 127 struct is_valid_previsit { 128 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) ); 129 130 static constexpr bool value = std::is_void< ret_t >::value || 131 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value; 132 }; 133 134 /// The result is a single node. 135 template< typename node_t > 136 struct result1 { 137 bool differs = false; 138 const node_t * value = nullptr; 139 140 template< typename object_t, typename super_t, typename field_t > 141 void apply( object_t * object, field_t super_t::* field ) { 142 object->*field = value; 143 } 144 }; 145 146 /// The result is a container of statements. 147 template< template<class...> class container_t > 148 struct resultNstmt { 149 /// The delta/change on a single node. 150 struct delta { 151 ptr<Stmt> new_val; 152 ssize_t old_idx; 153 bool is_old; 154 155 delta(const Stmt * s, ssize_t i, bool old) : 156 new_val(s), old_idx(i), is_old(old) {} 157 }; 158 159 bool differs = false; 160 container_t< delta > values; 161 162 template< typename object_t, typename super_t, typename field_t > 163 void apply( object_t * object, field_t super_t::* field ) { 164 field_t & container = object->*field; 165 __pedantic_pass_assert( container.size() <= values.size() ); 166 167 auto cit = enumerate(container).begin(); 168 169 container_t<ptr<Stmt>> nvals; 170 for ( delta & d : values ) { 171 if ( d.is_old ) { 172 __pedantic_pass_assert( cit.idx <= d.old_idx ); 173 std::advance( cit, d.old_idx - cit.idx ); 174 nvals.push_back( std::move( (*cit).val ) ); 175 } else { 176 nvals.push_back( std::move( d.new_val ) ); 70 177 } 71 178 } 72 179 73 ~guard_value() { 74 while( !cleanups.empty() ) { 75 auto& cleanup = cleanups.top(); 76 cleanup.func( cleanup.val ); 77 cleanups.pop(); 78 } 79 } 80 81 void push( cleanup_func_t && func, void* val ) { 82 cleanups.emplace( std::move(func), val ); 83 } 84 85 private: 86 struct cleanup_t { 87 cleanup_func_t func; 88 void * val; 89 90 cleanup_t( cleanup_func_t&& func, void * val ) : func(func), val(val) {} 91 }; 92 93 std::stack< cleanup_t, std::vector<cleanup_t> > cleanups; 94 }; 95 96 // Guard structure implementation for whether or not children should be visited 97 class visit_children_guard { 98 public: 99 100 visit_children_guard( bool_ref * ref ) 101 : m_val ( true ) 102 , m_prev( ref ? ref->set( &m_val ) : nullptr ) 103 , m_ref ( ref ) 104 {} 105 106 ~visit_children_guard() { 107 if( m_ref ) { 108 m_ref->set( m_prev ); 109 } 110 } 111 112 operator bool() { return m_val; } 113 114 private: 115 bool m_val; 116 bool * m_prev; 117 bool_ref * m_ref; 118 }; 119 120 /// "Short hand" to check if this is a valid previsit function 121 /// Mostly used to make the static_assert look (and print) prettier 180 container = std::move(nvals); 181 } 182 183 template< template<class...> class incontainer_t > 184 void take_all( incontainer_t<ptr<Stmt>> * stmts ) { 185 if ( !stmts || stmts->empty() ) return; 186 187 std::transform( stmts->begin(), stmts->end(), std::back_inserter( values ), 188 [](ast::ptr<ast::Stmt>& stmt) -> delta { 189 return delta( stmt.release(), -1, false ); 190 }); 191 stmts->clear(); 192 differs = true; 193 } 194 195 template< template<class...> class incontainer_t > 196 void take_all( incontainer_t<ptr<Decl>> * decls ) { 197 if ( !decls || decls->empty() ) return; 198 199 std::transform( decls->begin(), decls->end(), std::back_inserter( values ), 200 [](ast::ptr<ast::Decl>& decl) -> delta { 201 ast::Decl const * d = decl.release(); 202 return delta( new DeclStmt( d->location, d ), -1, false ); 203 }); 204 decls->clear(); 205 differs = true; 206 } 207 }; 208 209 /// The result is a container of nodes. 210 template< template<class...> class container_t, typename node_t > 211 struct resultN { 212 bool differs = false; 213 container_t<ptr<node_t>> values; 214 215 template< typename object_t, typename super_t, typename field_t > 216 void apply( object_t * object, field_t super_t::* field ) { 217 field_t & container = object->*field; 218 __pedantic_pass_assert( container.size() == values.size() ); 219 220 for ( size_t i = 0; i < container.size(); ++i ) { 221 // Take all the elements that are different in 'values' 222 // and swap them into 'container' 223 if ( values[i] != nullptr ) swap(container[i], values[i]); 224 } 225 // Now the original containers should still have the unchanged values 226 // but also contain the new values. 227 } 228 }; 229 230 /// Used by previsit implementation 231 /// We need to reassign the result to 'node', unless the function 232 /// returns void, then we just leave 'node' unchanged 233 template<bool is_void> 234 struct __assign; 235 236 template<> 237 struct __assign<true> { 122 238 template<typename core_t, typename node_t> 123 struct is_valid_previsit { 124 using ret_t = decltype( std::declval<core_t*>()->previsit( std::declval<const node_t *>() ) ); 125 126 static constexpr bool value = std::is_void< ret_t >::value || 127 std::is_base_of<const node_t, typename std::remove_pointer<ret_t>::type >::value; 128 }; 129 130 /// The result is a single node. 131 template< typename node_t > 132 struct result1 { 133 bool differs = false; 134 const node_t * value = nullptr; 135 136 template< typename object_t, typename super_t, typename field_t > 137 void apply( object_t *, field_t super_t::* field ); 138 }; 139 140 /// The result is a container of statements. 141 template< template<class...> class container_t > 142 struct resultNstmt { 143 /// The delta/change on a single node. 144 struct delta { 145 ptr<Stmt> new_val; 146 ssize_t old_idx; 147 bool is_old; 148 149 delta(const Stmt * s, ssize_t i, bool old) : 150 new_val(s), old_idx(i), is_old(old) {} 151 }; 152 153 bool differs = false; 154 container_t< delta > values; 155 156 template< typename object_t, typename super_t, typename field_t > 157 void apply( object_t *, field_t super_t::* field ); 158 159 template< template<class...> class incontainer_t > 160 void take_all( incontainer_t<ptr<Stmt>> * stmts ); 161 162 template< template<class...> class incontainer_t > 163 void take_all( incontainer_t<ptr<Decl>> * decls ); 164 }; 165 166 /// The result is a container of nodes. 167 template< template<class...> class container_t, typename node_t > 168 struct resultN { 169 bool differs = false; 170 container_t<ptr<node_t>> values; 171 172 template< typename object_t, typename super_t, typename field_t > 173 void apply( object_t *, field_t super_t::* field ); 174 }; 175 176 /// Used by previsit implementation 177 /// We need to reassign the result to 'node', unless the function 178 /// returns void, then we just leave 'node' unchanged 179 template<bool is_void> 180 struct __assign; 181 182 template<> 183 struct __assign<true> { 184 template<typename core_t, typename node_t> 185 static inline void result( core_t & core, const node_t * & node ) { 186 core.previsit( node ); 187 } 188 }; 189 190 template<> 191 struct __assign<false> { 192 template<typename core_t, typename node_t> 193 static inline void result( core_t & core, const node_t * & node ) { 194 node = core.previsit( node ); 195 assertf(node, "Previsit must not return NULL"); 196 } 197 }; 198 199 /// Used by postvisit implementation 200 /// We need to return the result unless the function 201 /// returns void, then we just return the original node 202 template<bool is_void> 203 struct __return; 204 205 template<> 206 struct __return<true> { 207 template<typename core_t, typename node_t> 208 static inline const node_t * result( core_t & core, const node_t * & node ) { 209 core.postvisit( node ); 210 return node; 211 } 212 }; 213 214 template<> 215 struct __return<false> { 216 template<typename core_t, typename node_t> 217 static inline auto result( core_t & core, const node_t * & node ) { 218 return core.postvisit( node ); 219 } 220 }; 221 222 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 223 // Deep magic (a.k.a template meta programming) to make the templated visitor work 224 // Basically the goal is to make 2 previsit 225 // 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of 226 // 'pass.previsit( node )' that compiles will be used for that node for that type 227 // This requires that this option only compile for passes that actually define an appropriate visit. 228 // SFINAE will make sure the compilation errors in this function don't halt the build. 229 // See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE 230 // 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing. 231 // This is needed only to eliminate the need for passes to specify any kind of handlers. 232 // The second implementation only works because it has a lower priority. This is due to the bogus last parameter. 233 // The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0 234 // the first implementation takes priority in regards to overloading. 235 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 236 // PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call 239 static inline void result( core_t & core, const node_t * & node ) { 240 core.previsit( node ); 241 } 242 }; 243 244 template<> 245 struct __assign<false> { 237 246 template<typename core_t, typename node_t> 238 static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) { 239 static_assert( 240 is_valid_previsit<core_t, node_t>::value, 241 "Previsit may not change the type of the node. It must return its paremeter or void." 242 ); 243 244 __assign< 245 std::is_void< 246 decltype( core.previsit( node ) ) 247 >::value 248 >::result( core, node ); 249 } 250 247 static inline void result( core_t & core, const node_t * & node ) { 248 node = core.previsit( node ); 249 assertf(node, "Previsit must not return NULL"); 250 } 251 }; 252 253 /// Used by postvisit implementation 254 /// We need to return the result unless the function 255 /// returns void, then we just return the original node 256 template<bool is_void> 257 struct __return; 258 259 template<> 260 struct __return<true> { 251 261 template<typename core_t, typename node_t> 252 static inline auto previsit( core_t &, const node_t *, long ) {} 253 254 // PostVisit : never mutates the passed pointer but may return a different node 262 static inline const node_t * result( core_t & core, const node_t * & node ) { 263 core.postvisit( node ); 264 return node; 265 } 266 }; 267 268 template<> 269 struct __return<false> { 255 270 template<typename core_t, typename node_t> 256 static inline auto postvisit( core_t & core, const node_t * node, int ) -> 257 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) ) 258 { 259 return __return< 260 std::is_void< 261 decltype( core.postvisit( node ) ) 262 >::value 263 >::result( core, node ); 264 } 265 266 template<typename core_t, typename node_t> 267 static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; } 268 269 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 270 // Deep magic (a.k.a template meta programming) continued 271 // To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit 272 // from in order to get extra functionallity for example 273 // class ErrorChecker : WithShortCircuiting { ... }; 274 // Pass<ErrorChecker> checker; 275 // this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting 276 // Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched 277 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 278 // For several accessories, the feature is enabled by detecting that a specific field is present 279 // Use a macro the encapsulate the logic of detecting a particular field 280 // The type is not strictly enforced but does match the accessory 281 #define FIELD_PTR( name, default_type ) \ 282 template< typename core_t > \ 283 static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \ 271 static inline auto result( core_t & core, const node_t * & node ) { 272 return core.postvisit( node ); 273 } 274 }; 275 276 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 277 // Deep magic (a.k.a template meta programming) to make the templated visitor work 278 // Basically the goal is to make 2 previsit 279 // 1 - Use when a pass implements a valid previsit. This uses overloading which means the any overload of 280 // 'pass.previsit( node )' that compiles will be used for that node for that type 281 // This requires that this option only compile for passes that actually define an appropriate visit. 282 // SFINAE will make sure the compilation errors in this function don't halt the build. 283 // See http://en.cppreference.com/w/cpp/language/sfinae for details on SFINAE 284 // 2 - Since the first implementation might not be specilizable, the second implementation exists and does nothing. 285 // This is needed only to eliminate the need for passes to specify any kind of handlers. 286 // The second implementation only works because it has a lower priority. This is due to the bogus last parameter. 287 // The second implementation takes a long while the first takes an int. Since the caller always passes an literal 0 288 // the first implementation takes priority in regards to overloading. 289 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 290 // PreVisit : may mutate the pointer passed in if the node is mutated in the previsit call 291 template<typename core_t, typename node_t> 292 static inline auto previsit( core_t & core, const node_t * & node, int ) -> decltype( core.previsit( node ), void() ) { 293 static_assert( 294 is_valid_previsit<core_t, node_t>::value, 295 "Previsit may not change the type of the node. It must return its paremeter or void." 296 ); 297 298 __assign< 299 std::is_void< 300 decltype( core.previsit( node ) ) 301 >::value 302 >::result( core, node ); 303 } 304 305 template<typename core_t, typename node_t> 306 static inline auto previsit( core_t &, const node_t *, long ) {} 307 308 // PostVisit : never mutates the passed pointer but may return a different node 309 template<typename core_t, typename node_t> 310 static inline auto postvisit( core_t & core, const node_t * node, int ) -> 311 decltype( core.postvisit( node ), node->accept( *(Visitor*)nullptr ) ) 312 { 313 return __return< 314 std::is_void< 315 decltype( core.postvisit( node ) ) 316 >::value 317 >::result( core, node ); 318 } 319 320 template<typename core_t, typename node_t> 321 static inline const node_t * postvisit( core_t &, const node_t * node, long ) { return node; } 322 323 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 324 // Deep magic (a.k.a template meta programming) continued 325 // To make the templated visitor be more expressive, we allow 'accessories' : classes/structs the implementation can inherit 326 // from in order to get extra functionallity for example 327 // class ErrorChecker : WithShortCircuiting { ... }; 328 // Pass<ErrorChecker> checker; 329 // this would define a pass that uses the templated visitor with the additionnal feature that it has short circuiting 330 // Note that in all cases the accessories are not required but guarantee the requirements of the feature is matched 331 //------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 332 // For several accessories, the feature is enabled by detecting that a specific field is present 333 // Use a macro the encapsulate the logic of detecting a particular field 334 // The type is not strictly enforced but does match the accessory 335 #define FIELD_PTR( name, default_type ) \ 336 template< typename core_t > \ 337 static inline auto name( core_t & core, int ) -> decltype( &core.name ) { return &core.name; } \ 338 \ 339 template< typename core_t > \ 340 static inline default_type * name( core_t &, long ) { return nullptr; } 341 342 // List of fields and their expected types 343 FIELD_PTR( typeSubs, const ast::TypeSubstitution * ) 344 FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > ) 345 FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > ) 346 FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > ) 347 FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > ) 348 FIELD_PTR( visit_children, __pass::bool_ref ) 349 FIELD_PTR( at_cleanup, __pass::at_cleanup_t ) 350 FIELD_PTR( visitor, ast::Pass<core_t> * const ) 351 352 // Remove the macro to make sure we don't clash 353 #undef FIELD_PTR 354 355 template< typename core_t > 356 static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) { 357 // Stats::Heap::stacktrace_push(core_t::traceId); 358 } 359 360 template< typename core_t > 361 static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) { 362 // Stats::Heap::stacktrace_pop(); 363 } 364 365 template< typename core_t > 366 static void beginTrace(core_t &, long) {} 367 368 template< typename core_t > 369 static void endTrace(core_t &, long) {} 370 371 // Allows visitor to handle an error on top-level declarations, and possibly suppress the error. 372 // If on_error() returns false, the error will be ignored. By default, it returns true. 373 374 template< typename core_t > 375 static bool on_error (core_t &, ptr<Decl> &, long) { return true; } 376 377 template< typename core_t > 378 static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) { 379 return core.on_error(decl); 380 } 381 382 template< typename core_t, typename node_t > 383 static auto make_location_guard( core_t & core, node_t * node, int ) 384 -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) { 385 ValueGuardPtr<const CodeLocation *> guard( &core.location ); 386 core.location = &node->location; 387 return guard; 388 } 389 390 template< typename core_t, typename node_t > 391 static auto make_location_guard( core_t &, node_t *, long ) -> int { 392 return 0; 393 } 394 395 // Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement. 396 // All passes which have such functions are assumed desire this behaviour 397 // detect it using the same strategy 398 namespace scope { 399 template<typename core_t> 400 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) { 401 core.beginScope(); 402 } 403 404 template<typename core_t> 405 static inline void enter( core_t &, long ) {} 406 407 template<typename core_t> 408 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) { 409 core.endScope(); 410 } 411 412 template<typename core_t> 413 static inline void leave( core_t &, long ) {} 414 } // namespace scope 415 416 // Certain passes desire an up to date symbol table automatically 417 // detect the presence of a member name `symtab` and call all the members appropriately 418 namespace symtab { 419 // Some simple scoping rules 420 template<typename core_t> 421 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) { 422 core.symtab.enterScope(); 423 } 424 425 template<typename core_t> 426 static inline auto enter( core_t &, long ) {} 427 428 template<typename core_t> 429 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) { 430 core.symtab.leaveScope(); 431 } 432 433 template<typename core_t> 434 static inline auto leave( core_t &, long ) {} 435 436 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments 437 // Create macro to condense these common patterns 438 #define SYMTAB_FUNC1( func, type ) \ 439 template<typename core_t> \ 440 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\ 441 core.symtab.func( arg ); \ 442 } \ 284 443 \ 285 template< typename core_t > \ 286 static inline default_type * name( core_t &, long ) { return nullptr; } 287 288 // List of fields and their expected types 289 FIELD_PTR( typeSubs, const ast::TypeSubstitution * ) 290 FIELD_PTR( stmtsToAddBefore, std::list< ast::ptr< ast::Stmt > > ) 291 FIELD_PTR( stmtsToAddAfter , std::list< ast::ptr< ast::Stmt > > ) 292 FIELD_PTR( declsToAddBefore, std::list< ast::ptr< ast::Decl > > ) 293 FIELD_PTR( declsToAddAfter , std::list< ast::ptr< ast::Decl > > ) 294 FIELD_PTR( visit_children, __pass::bool_ref ) 295 FIELD_PTR( at_cleanup, __pass::at_cleanup_t ) 296 FIELD_PTR( visitor, ast::Pass<core_t> * const ) 297 298 // Remove the macro to make sure we don't clash 299 #undef FIELD_PTR 300 301 template< typename core_t > 302 static inline auto beginTrace(core_t &, int) -> decltype( core_t::traceId, void() ) { 303 // Stats::Heap::stacktrace_push(core_t::traceId); 304 } 305 306 template< typename core_t > 307 static inline auto endTrace(core_t &, int) -> decltype( core_t::traceId, void() ) { 308 // Stats::Heap::stacktrace_pop(); 309 } 310 311 template< typename core_t > 312 static void beginTrace(core_t &, long) {} 313 314 template< typename core_t > 315 static void endTrace(core_t &, long) {} 316 317 // Allows visitor to handle an error on top-level declarations, and possibly suppress the error. 318 // If onError() returns false, the error will be ignored. By default, it returns true. 319 320 template< typename core_t > 321 static bool on_error (core_t &, ptr<Decl> &, long) { return true; } 322 323 template< typename core_t > 324 static auto on_error (core_t & core, ptr<Decl> & decl, int) -> decltype(core.on_error(decl)) { 325 return core.on_error(decl); 326 } 327 328 template< typename core_t, typename node_t > 329 static auto make_location_guard( core_t & core, node_t * node, int ) 330 -> decltype( node->location, ValueGuardPtr<const CodeLocation *>( &core.location ) ) { 331 ValueGuardPtr<const CodeLocation *> guard( &core.location ); 332 core.location = &node->location; 333 return guard; 334 } 335 336 template< typename core_t, typename node_t > 337 static auto make_location_guard( core_t &, node_t *, long ) -> int { 338 return 0; 339 } 340 341 // Another feature of the templated visitor is that it calls beginScope()/endScope() for compound statement. 342 // All passes which have such functions are assumed desire this behaviour 343 // detect it using the same strategy 344 namespace scope { 345 template<typename core_t> 346 static inline auto enter( core_t & core, int ) -> decltype( core.beginScope(), void() ) { 347 core.beginScope(); 348 } 349 350 template<typename core_t> 351 static inline void enter( core_t &, long ) {} 352 353 template<typename core_t> 354 static inline auto leave( core_t & core, int ) -> decltype( core.endScope(), void() ) { 355 core.endScope(); 356 } 357 358 template<typename core_t> 359 static inline void leave( core_t &, long ) {} 360 } // namespace scope 361 362 // Certain passes desire an up to date symbol table automatically 363 // detect the presence of a member name `symtab` and call all the members appropriately 364 namespace symtab { 365 // Some simple scoping rules 366 template<typename core_t> 367 static inline auto enter( core_t & core, int ) -> decltype( core.symtab, void() ) { 368 core.symtab.enterScope(); 369 } 370 371 template<typename core_t> 372 static inline auto enter( core_t &, long ) {} 373 374 template<typename core_t> 375 static inline auto leave( core_t & core, int ) -> decltype( core.symtab, void() ) { 376 core.symtab.leaveScope(); 377 } 378 379 template<typename core_t> 380 static inline auto leave( core_t &, long ) {} 381 382 // The symbol table has 2 kind of functions mostly, 1 argument and 2 arguments 383 // Create macro to condense these common patterns 384 #define SYMTAB_FUNC1( func, type ) \ 385 template<typename core_t> \ 386 static inline auto func( core_t & core, int, type arg ) -> decltype( core.symtab.func( arg ), void() ) {\ 387 core.symtab.func( arg ); \ 388 } \ 389 \ 390 template<typename core_t> \ 391 static inline void func( core_t &, long, type ) {} 392 393 #define SYMTAB_FUNC2( func, type1, type2 ) \ 394 template<typename core_t> \ 395 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\ 396 core.symtab.func( arg1, arg2 ); \ 397 } \ 398 \ 399 template<typename core_t> \ 400 static inline void func( core_t &, long, type1, type2 ) {} 401 402 SYMTAB_FUNC1( addId , const DeclWithType * ); 403 SYMTAB_FUNC1( addType , const NamedTypeDecl * ); 404 SYMTAB_FUNC1( addStruct , const StructDecl * ); 405 SYMTAB_FUNC1( addEnum , const EnumDecl * ); 406 SYMTAB_FUNC1( addUnion , const UnionDecl * ); 407 SYMTAB_FUNC1( addTrait , const TraitDecl * ); 408 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * ); 409 410 // A few extra functions have more complicated behaviour, they are hand written 411 template<typename core_t> 412 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) { 413 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name ); 414 for ( const auto & param : decl->params ) { 415 fwd->params.push_back( deepCopy( param.get() ) ); 416 } 417 core.symtab.addStruct( fwd ); 418 } 419 420 template<typename core_t> 421 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {} 422 423 template<typename core_t> 424 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) { 425 ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name ); 426 for ( const auto & param : decl->params ) { 427 fwd->params.push_back( deepCopy( param.get() ) ); 428 } 429 core.symtab.addUnion( fwd ); 430 } 431 432 template<typename core_t> 433 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {} 434 435 template<typename core_t> 436 static inline auto addStruct( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStruct( str ), void() ) { 437 if ( ! core.symtab.lookupStruct( str ) ) { 438 core.symtab.addStruct( str ); 439 } 440 } 441 442 template<typename core_t> 443 static inline void addStruct( core_t &, long, const std::string & ) {} 444 445 template<typename core_t> 446 static inline auto addUnion( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnion( str ), void() ) { 447 if ( ! core.symtab.lookupUnion( str ) ) { 448 core.symtab.addUnion( str ); 449 } 450 } 451 452 template<typename core_t> 453 static inline void addUnion( core_t &, long, const std::string & ) {} 454 455 #undef SYMTAB_FUNC1 456 #undef SYMTAB_FUNC2 457 } // namespace symtab 458 459 // Some passes need to mutate TypeDecl and properly update their pointing TypeInstType. 460 // Detect the presence of a member name `subs` and call all members appropriately 461 namespace forall { 462 // Some simple scoping rules 463 template<typename core_t> 464 static inline auto enter( core_t & core, int, const ast::FunctionType * type ) 465 -> decltype( core.subs, void() ) { 466 if ( ! type->forall.empty() ) core.subs.beginScope(); 467 } 468 469 template<typename core_t> 470 static inline auto enter( core_t &, long, const ast::FunctionType * ) {} 471 472 template<typename core_t> 473 static inline auto leave( core_t & core, int, const ast::FunctionType * type ) 474 -> decltype( core.subs, void() ) { 475 if ( ! type->forall.empty() ) { core.subs.endScope(); } 476 } 477 478 template<typename core_t> 479 static inline auto leave( core_t &, long, const ast::FunctionType * ) {} 480 481 // Replaces a TypeInstType's base TypeDecl according to the table 482 template<typename core_t> 483 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst ) 484 -> decltype( core.subs, void() ) { 485 inst = ast::mutate_field( 486 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) ); 487 } 488 489 template<typename core_t> 490 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {} 491 492 } // namespace forall 493 494 // For passes that need access to the global context. Sreaches `translationUnit` 495 namespace translation_unit { 496 template<typename core_t> 497 static inline auto get_cptr( core_t & core, int ) 498 -> decltype( &core.translationUnit ) { 499 return &core.translationUnit; 500 } 501 502 template<typename core_t> 503 static inline const TranslationUnit ** get_cptr( core_t &, long ) { 504 return nullptr; 505 } 506 } 507 508 template<typename core_t> 509 static inline auto get_result( core_t & core, char ) -> decltype( core.result() ) { 444 template<typename core_t> \ 445 static inline void func( core_t &, long, type ) {} 446 447 #define SYMTAB_FUNC2( func, type1, type2 ) \ 448 template<typename core_t> \ 449 static inline auto func( core_t & core, int, type1 arg1, type2 arg2 ) -> decltype( core.symtab.func( arg1, arg2 ), void () ) {\ 450 core.symtab.func( arg1, arg2 ); \ 451 } \ 452 \ 453 template<typename core_t> \ 454 static inline void func( core_t &, long, type1, type2 ) {} 455 456 SYMTAB_FUNC1( addId , const DeclWithType * ); 457 SYMTAB_FUNC1( addType , const NamedTypeDecl * ); 458 SYMTAB_FUNC1( addStruct , const StructDecl * ); 459 SYMTAB_FUNC1( addEnum , const EnumDecl * ); 460 SYMTAB_FUNC1( addUnion , const UnionDecl * ); 461 SYMTAB_FUNC1( addTrait , const TraitDecl * ); 462 SYMTAB_FUNC2( addWith , const std::vector< ptr<Expr> > &, const Decl * ); 463 464 // A few extra functions have more complicated behaviour, they are hand written 465 template<typename core_t> 466 static inline auto addStructFwd( core_t & core, int, const ast::StructDecl * decl ) -> decltype( core.symtab.addStruct( decl ), void() ) { 467 ast::StructDecl * fwd = new ast::StructDecl( decl->location, decl->name ); 468 for ( const auto & param : decl->params ) { 469 fwd->params.push_back( deepCopy( param.get() ) ); 470 } 471 core.symtab.addStruct( fwd ); 472 } 473 474 template<typename core_t> 475 static inline void addStructFwd( core_t &, long, const ast::StructDecl * ) {} 476 477 template<typename core_t> 478 static inline auto addUnionFwd( core_t & core, int, const ast::UnionDecl * decl ) -> decltype( core.symtab.addUnion( decl ), void() ) { 479 ast::UnionDecl * fwd = new ast::UnionDecl( decl->location, decl->name ); 480 for ( const auto & param : decl->params ) { 481 fwd->params.push_back( deepCopy( param.get() ) ); 482 } 483 core.symtab.addUnion( fwd ); 484 } 485 486 template<typename core_t> 487 static inline void addUnionFwd( core_t &, long, const ast::UnionDecl * ) {} 488 489 template<typename core_t> 490 static inline auto addStruct( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addStruct( str ), void() ) { 491 if ( ! core.symtab.lookupStruct( str ) ) { 492 core.symtab.addStruct( str ); 493 } 494 } 495 496 template<typename core_t> 497 static inline void addStruct( core_t &, long, const std::string & ) {} 498 499 template<typename core_t> 500 static inline auto addUnion( core_t & core, int, const std::string & str ) -> decltype( core.symtab.addUnion( str ), void() ) { 501 if ( ! core.symtab.lookupUnion( str ) ) { 502 core.symtab.addUnion( str ); 503 } 504 } 505 506 template<typename core_t> 507 static inline void addUnion( core_t &, long, const std::string & ) {} 508 509 #undef SYMTAB_FUNC1 510 #undef SYMTAB_FUNC2 511 } // namespace symtab 512 513 // Some passes need to mutate TypeDecl and properly update their pointing TypeInstType. 514 // Detect the presence of a member name `subs` and call all members appropriately 515 namespace forall { 516 // Some simple scoping rules 517 template<typename core_t> 518 static inline auto enter( core_t & core, int, const ast::FunctionType * type ) 519 -> decltype( core.subs, void() ) { 520 if ( ! type->forall.empty() ) core.subs.beginScope(); 521 } 522 523 template<typename core_t> 524 static inline auto enter( core_t &, long, const ast::FunctionType * ) {} 525 526 template<typename core_t> 527 static inline auto leave( core_t & core, int, const ast::FunctionType * type ) 528 -> decltype( core.subs, void() ) { 529 if ( ! type->forall.empty() ) { core.subs.endScope(); } 530 } 531 532 template<typename core_t> 533 static inline auto leave( core_t &, long, const ast::FunctionType * ) {} 534 535 // Replaces a TypeInstType's base TypeDecl according to the table 536 template<typename core_t> 537 static inline auto replace( core_t & core, int, const ast::TypeInstType *& inst ) 538 -> decltype( core.subs, void() ) { 539 inst = ast::mutate_field( 540 inst, &ast::TypeInstType::base, core.subs.replace( inst->base ) ); 541 } 542 543 template<typename core_t> 544 static inline auto replace( core_t &, long, const ast::TypeInstType *& ) {} 545 } // namespace forall 546 547 // For passes that need access to the global context. Searches `translationUnit` 548 namespace translation_unit { 549 template<typename core_t> 550 static inline auto get_cptr( core_t & core, int ) 551 -> decltype( &core.translationUnit ) { 552 return &core.translationUnit; 553 } 554 555 template<typename core_t> 556 static inline const TranslationUnit ** get_cptr( core_t &, long ) { 557 return nullptr; 558 } 559 } 560 561 // For passes, usually utility passes, that have a result. 562 namespace result { 563 template<typename core_t> 564 static inline auto get( core_t & core, char ) -> decltype( core.result() ) { 510 565 return core.result(); 511 566 } 512 567 513 568 template<typename core_t> 514 static inline auto get _result( core_t & core, int ) -> decltype( core.result ) {569 static inline auto get( core_t & core, int ) -> decltype( core.result ) { 515 570 return core.result; 516 571 } 517 572 518 573 template<typename core_t> 519 static inline void get_result( core_t &, long ) {} 520 } // namespace __pass 521 } // namespace ast 574 static inline void get( core_t &, long ) {} 575 } 576 577 } // namespace ast::__pass 578 579 #undef __pedantic_pass_assertf 580 #undef __pedantic_pass_assert -
src/AST/Print.cpp
r34b4268 r24d6572 16 16 #include "Print.hpp" 17 17 18 #include "Attribute.hpp" 18 19 #include "Decl.hpp" 19 20 #include "Expr.hpp" 21 #include "Init.hpp" 20 22 #include "Stmt.hpp" 21 23 #include "Type.hpp" 22 24 #include "TypeSubstitution.hpp" 23 25 #include "CompilationState.h" 24 25 #include "Common/utility.h" // for group_iterate 26 #include "Common/Iterate.hpp" 26 27 27 28 using namespace std; … … 29 30 namespace ast { 30 31 31 template <typename C, typename... T> 32 constexpr array<C,sizeof...(T)> make_array(T&&... values) 33 { 34 return array<C,sizeof...(T)>{ 35 std::forward<T>(values)... 36 }; 32 namespace { 33 34 template<typename C, typename... T> 35 constexpr array<C, sizeof...(T)> make_array( T&&... values ) { 36 return array<C, sizeof...(T)>{ std::forward<T>( values )... }; 37 } 38 39 namespace Names { 40 static constexpr auto FuncSpecifiers = make_array<const char*>( 41 "inline", "_Noreturn", "fortran" 42 ); 43 44 static constexpr auto StorageClasses = make_array<const char*>( 45 "extern", "static", "auto", "register", "__thread", "_Thread_local" 46 ); 47 48 static constexpr auto Qualifiers = make_array<const char*>( 49 "const", "restrict", "volatile", "mutex", "_Atomic" 50 ); 51 } 52 53 template<typename bits_t, size_t N> 54 void print( ostream & os, const bits_t & bits, 55 const array<const char *, N> & names ) { 56 if ( !bits.any() ) return; 57 for ( size_t i = 0 ; i < N ; i += 1 ) { 58 if ( bits[i] ) { 59 os << names[i] << ' '; 60 } 61 } 37 62 } 38 63 … … 80 105 static const char* Names[]; 81 106 82 struct Names {83 static constexpr auto FuncSpecifiers = make_array<const char*>(84 "inline", "_Noreturn", "fortran"85 );86 87 static constexpr auto StorageClasses = make_array<const char*>(88 "extern", "static", "auto", "register", "__thread", "_Thread_local"89 );90 91 static constexpr auto Qualifiers = make_array<const char*>(92 "const", "restrict", "volatile", "mutex", "_Atomic"93 );94 };95 96 template<typename storage_t, size_t N>97 void print(const storage_t & storage, const array<const char *, N> & Names ) {98 if ( storage.any() ) {99 for ( size_t i = 0; i < Names.size(); i += 1 ) {100 if ( storage[i] ) {101 os << Names[i] << ' ';102 }103 }104 }105 }106 107 void print( const ast::Function::Specs & specs ) {108 print(specs, Names::FuncSpecifiers);109 }110 111 void print( const ast::Storage::Classes & storage ) {112 print(storage, Names::StorageClasses);113 }114 115 void print( const ast::CV::Qualifiers & qualifiers ) {116 print(qualifiers, Names::Qualifiers);117 }118 119 107 void print( const std::vector<ast::Label> & labels ) { 120 108 if ( labels.empty() ) return; … … 221 209 } 222 210 211 void print( const ast::WaitStmt * node ) { 212 if ( node->timeout_time ) { 213 os << indent-1 << "timeout of:" << endl; 214 node->timeout_time->accept( *this ); 215 216 if ( node->timeout_stmt ) { 217 os << indent-1 << "... with statment:" << endl; 218 node->timeout_stmt->accept( *this ); 219 } 220 221 if ( node->timeout_cond ) { 222 os << indent-1 << "... with condition:" << endl; 223 node->timeout_cond->accept( *this ); 224 } 225 } 226 227 if ( node->else_stmt ) { 228 os << indent-1 << "else:" << endl; 229 node->else_stmt->accept( *this ); 230 231 if ( node->else_cond ) { 232 os << indent-1 << "... with condition:" << endl; 233 node->else_cond->accept( *this ); 234 } 235 } 236 } 237 223 238 void preprint( const ast::NamedTypeDecl * node ) { 224 239 if ( ! node->name.empty() ) { … … 230 245 } 231 246 232 print(node->storage );247 ast::print( os, node->storage ); 233 248 os << node->typeString(); 234 249 … … 272 287 273 288 void preprint( const ast::Type * node ) { 274 print(node->qualifiers );289 ast::print( os, node->qualifiers ); 275 290 } 276 291 … … 278 293 print( node->forall ); 279 294 print( node->assertions ); 280 print(node->qualifiers );295 ast::print( os, node->qualifiers ); 281 296 } 282 297 283 298 void preprint( const ast::BaseInstType * node ) { 284 299 print( node->attributes ); 285 print(node->qualifiers );300 ast::print( os, node->qualifiers ); 286 301 } 287 302 … … 294 309 } 295 310 296 print(node->storage );311 ast::print( os, node->storage ); 297 312 298 313 if ( node->type ) { … … 338 353 if ( ! short_mode ) printAll( node->attributes ); 339 354 340 print( node->storage ); 341 print( node->funcSpec ); 342 343 355 ast::print( os, node->storage ); 356 ast::print( os, node->funcSpec ); 344 357 345 358 if ( node->type && node->isTypeFixed ) { … … 384 397 --indent; 385 398 } 399 } 400 401 if ( ! node->withExprs.empty() ) { 402 // Not with a clause, but the 'with clause'. 403 ++indent; 404 os << " with clause" << endl << indent; 405 printAll( node->withExprs ); 406 --indent; 386 407 } 387 408 … … 746 767 virtual const ast::Stmt * visit( const ast::SuspendStmt * node ) override final { 747 768 os << "Suspend Statement"; 748 switch (node-> type) {749 750 751 769 switch (node->kind) { 770 case ast::SuspendStmt::None : os << " with implicit target"; break; 771 case ast::SuspendStmt::Generator: os << " for generator"; break; 772 case ast::SuspendStmt::Coroutine: os << " for coroutine"; break; 752 773 } 753 774 os << endl; … … 759 780 } 760 781 ++indent; 782 783 return node; 784 } 785 786 virtual const ast::WhenClause * visit( const ast::WhenClause * node ) override final { 787 os << indent-1 << "target: "; 788 safe_print( node->target ); 789 790 if ( node->stmt ) { 791 os << indent-1 << "... with statment:" << endl; 792 node->stmt->accept( *this ); 793 } 794 795 if ( node->when_cond ) { 796 os << indent-1 << "... with when condition:" << endl; 797 node->when_cond->accept( *this ); 798 } 761 799 762 800 return node; … … 800 838 virtual const ast::WaitForClause * visit( const ast::WaitForClause * node ) override final { 801 839 os << indent-1 << "target function: "; 802 safe_print( node->target _func);840 safe_print( node->target ); 803 841 804 842 if ( !node->target_args.empty() ) { … … 814 852 } 815 853 816 if ( node-> cond ) {854 if ( node->when_cond ) { 817 855 os << indent-1 << "... with condition:" << endl; 818 node->cond->accept( *this ); 819 } 820 856 node->when_cond->accept( *this ); 857 } 858 859 return node; 860 } 861 862 virtual const ast::Stmt * visit( const ast::WaitUntilStmt * node ) override final { 863 os << "Waituntil Statement" << endl; 864 indent += 2; 865 for( const auto & clause : node->clauses ) { 866 clause->accept( *this ); 867 } 868 print(node); // calls print( const ast::WaitStmt * node ) 821 869 return node; 822 870 } … … 1627 1675 }; 1628 1676 1677 } // namespace 1678 1629 1679 void print( ostream & os, const ast::Node * node, Indenter indent ) { 1630 1680 Printer printer { os, indent, false }; … … 1637 1687 } 1638 1688 1639 // Annoyingly these needed to be defined out of line to avoid undefined references. 1640 // The size here needs to be explicit but at least the compiler will produce an error 1641 // if the wrong size is specified 1642 constexpr array<const char*, 3> Printer::Names::FuncSpecifiers; 1643 constexpr array<const char*, 6> Printer::Names::StorageClasses; 1644 constexpr array<const char*, 5> Printer::Names::Qualifiers; 1689 void print( ostream & os, Function::Specs specs ) { 1690 print( os, specs, Names::FuncSpecifiers ); 1645 1691 } 1692 1693 void print( ostream & os, Storage::Classes storage ) { 1694 print( os, storage, Names::StorageClasses ); 1695 } 1696 1697 void print( ostream & os, CV::Qualifiers qualifiers ) { 1698 print( os, qualifiers, Names::Qualifiers ); 1699 } 1700 1701 } // namespace ast -
src/AST/Print.hpp
r34b4268 r24d6572 16 16 #pragma once 17 17 18 #include <iostream> 19 #include <utility> // for forward 18 #include <iosfwd> 20 19 21 #include "AST/ Node.hpp"20 #include "AST/Fwd.hpp" 22 21 #include "Common/Indenter.h" 23 22 24 23 namespace ast { 25 26 class Decl;27 24 28 25 /// Print a node with the given indenter … … 44 41 } 45 42 43 /// Print each cv-qualifier used in the set, followed by a space. 44 void print( std::ostream & os, CV::Qualifiers ); 45 /// Print each function specifier used in the set, followed by a space. 46 void print( std::ostream & os, Function::Specs ); 47 /// Print each storage class used in the set, followed by a space. 48 void print( std::ostream & os, Storage::Classes ); 49 46 50 } -
src/AST/Stmt.hpp
r34b4268 r24d6572 10 10 // Created On : Wed May 8 13:00:00 2019 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Apr 20 14:34:00 202213 // Update Count : 3 612 // Last Modified On : Wed Apr 5 10:34:00 2023 13 // Update Count : 37 14 14 // 15 15 … … 205 205 }; 206 206 207 // A while loop or a do-while loop: 208 enum WhileDoKind { While, DoWhile }; 209 207 210 // While loop: while (...) ... else ... or do ... while (...) else ...; 208 211 class WhileDoStmt final : public Stmt { … … 212 215 ptr<Stmt> else_; 213 216 std::vector<ptr<Stmt>> inits; 214 boolisDoWhile;217 WhileDoKind isDoWhile; 215 218 216 219 WhileDoStmt( const CodeLocation & loc, const Expr * cond, const Stmt * body, 217 const std::vector<ptr<Stmt>> && inits, bool isDoWhile = false, const std::vector<Label> && labels = {} )220 const std::vector<ptr<Stmt>> && inits, WhileDoKind isDoWhile = While, const std::vector<Label> && labels = {} ) 218 221 : Stmt(loc, std::move(labels)), cond(cond), body(body), else_(nullptr), inits(std::move(inits)), isDoWhile(isDoWhile) {} 219 222 220 223 WhileDoStmt( const CodeLocation & loc, const Expr * cond, const Stmt * body, const Stmt * else_, 221 const std::vector<ptr<Stmt>> && inits, bool isDoWhile = false, const std::vector<Label> && labels = {} )224 const std::vector<ptr<Stmt>> && inits, WhileDoKind isDoWhile = While, const std::vector<Label> && labels = {} ) 222 225 : Stmt(loc, std::move(labels)), cond(cond), body(body), else_(else_), inits(std::move(inits)), isDoWhile(isDoWhile) {} 223 226 … … 364 367 public: 365 368 ptr<CompoundStmt> then; 366 enum Type { None, Coroutine, Generator } type= None;367 368 SuspendStmt( const CodeLocation & loc, const CompoundStmt * then, Type type, const std::vector<Label> && labels = {} )369 : Stmt(loc, std::move(labels)), then(then), type(type) {}369 enum Kind { None, Coroutine, Generator } kind = None; 370 371 SuspendStmt( const CodeLocation & loc, const CompoundStmt * then, Kind kind, const std::vector<Label> && labels = {} ) 372 : Stmt(loc, std::move(labels)), then(then), kind(kind) {} 370 373 371 374 const Stmt * accept( Visitor & v ) const override { return v.visit( this ); } … … 375 378 }; 376 379 377 // Waitfor statement: when (...) waitfor (... , ...) ... timeout(...) ... else ...378 class WaitForStmt final : public Stmt { 379 public: 380 std::vector<ptr<WaitForClause>> clauses; 381 380 // Base class of WaitFor/WaitUntil statements 381 // form: KEYWORD(...) ... timeout(...) ... else ... 382 class WaitStmt : public Stmt { 383 public: 384 ptr<Expr> timeout_time; 382 385 ptr<Stmt> timeout_stmt; 383 386 ptr<Expr> timeout_cond; … … 385 388 ptr<Expr> else_cond; 386 389 390 WaitStmt( const CodeLocation & loc, const std::vector<Label> && labels = {} ) 391 : Stmt(loc, std::move(labels)) {} 392 393 private: 394 WaitStmt * clone() const override = 0; 395 MUTATE_FRIEND 396 }; 397 398 // Base class for WaitFor/WaitUntil clauses 399 // form: when( when_cond ) KEYWORD( target ) stmt 400 class WhenClause : public StmtClause { 401 public: 402 ptr<Expr> target; 403 ptr<Stmt> stmt; 404 ptr<Expr> when_cond; 405 406 WhenClause( const CodeLocation & loc ) 407 : StmtClause( loc ) {} 408 409 const WhenClause * accept( Visitor & v ) const override { return v.visit( this ); } 410 private: 411 WhenClause * clone() const override { return new WhenClause{ *this }; } 412 MUTATE_FRIEND 413 }; 414 415 // Waitfor statement: when (...) waitfor (... , ...) ... timeout(...) ... else ... 416 class WaitForStmt final : public WaitStmt { 417 public: 418 std::vector<ptr<WaitForClause>> clauses; 419 387 420 WaitForStmt( const CodeLocation & loc, const std::vector<Label> && labels = {} ) 388 : Stmt(loc, std::move(labels)) {}421 : WaitStmt(loc, std::move(labels)) {} 389 422 390 423 const Stmt * accept( Visitor & v ) const override { return v.visit( this ); } … … 394 427 }; 395 428 396 class WaitForClause final : public StmtClause { 397 public: 398 ptr<Expr> target_func; 429 // Clause in a waitfor statement: waitfor (..., ...) ... 430 class WaitForClause final : public WhenClause { 431 public: 399 432 std::vector<ptr<Expr>> target_args; 400 ptr<Stmt> stmt;401 ptr<Expr> cond;402 433 403 434 WaitForClause( const CodeLocation & loc ) 404 : StmtClause( loc ) {}435 : WhenClause( loc ) {} 405 436 406 437 const WaitForClause * accept( Visitor & v ) const override { return v.visit( this ); } 407 438 private: 408 439 WaitForClause * clone() const override { return new WaitForClause{ *this }; } 440 MUTATE_FRIEND 441 }; 442 443 // waituntil statement: when (...) waituntil (...) ... timeout(...) ... else ... 444 class WaitUntilStmt final : public WaitStmt { 445 public: 446 // Non-ast node used during compilation to store data needed to generate predicates 447 // and set initial status values for clauses 448 // Used to create a tree corresponding to the structure of the clauses in a WaitUntil 449 struct ClauseNode { 450 enum Op { AND, OR, LEFT_OR, LEAF, ELSE, TIMEOUT } op; // operation/type tag 451 // LEFT_OR used with TIMEOUT/ELSE to indicate that we ignore right hand side after parsing 452 453 ClauseNode * left; 454 ClauseNode * right; 455 WhenClause * leaf; // only set if this node is a leaf (points into vector of clauses) 456 457 bool ambiguousWhen; // used to paint nodes of predicate tree based on when() clauses 458 bool whenState; // used to track if when_cond is toggled on or off for generating init values 459 bool childOfAnd; // true on leaf nodes that are children of AND, false otherwise 460 461 ClauseNode( Op op, ClauseNode * left, ClauseNode * right ) 462 : op(op), left(left), right(right), leaf(nullptr), 463 ambiguousWhen(false), whenState(true), childOfAnd(false) {} 464 ClauseNode( Op op, WhenClause * leaf ) 465 : op(op), left(nullptr), right(nullptr), leaf(leaf), 466 ambiguousWhen(false), whenState(true), childOfAnd(false) {} 467 ClauseNode( WhenClause * leaf ) : ClauseNode(LEAF, leaf) {} 468 469 ~ClauseNode() { 470 if ( left ) delete left; 471 if ( right ) delete right; 472 } 473 }; 474 475 std::vector<ptr<WhenClause>> clauses; 476 ClauseNode * predicateTree; 477 478 WaitUntilStmt( const CodeLocation & loc, const std::vector<Label> && labels = {} ) 479 : WaitStmt(loc, std::move(labels)) {} 480 481 ~WaitUntilStmt() { delete predicateTree; } 482 483 const Stmt * accept( Visitor & v ) const override { return v.visit( this ); } 484 private: 485 WaitUntilStmt * clone() const override { return new WaitUntilStmt{ *this }; } 409 486 MUTATE_FRIEND 410 487 }; … … 454 531 MUTATE_FRIEND 455 532 }; 533 456 534 } // namespace ast 457 535 -
src/AST/SymbolTable.cpp
r34b4268 r24d6572 18 18 #include <cassert> 19 19 20 #include "Copy.hpp" 21 #include <iostream> 22 #include <algorithm> 23 20 24 #include "Decl.hpp" 21 25 #include "Expr.hpp" 22 26 #include "Inspect.hpp" 23 27 #include "Type.hpp" 24 #include "CodeGen/OperatorTable.h" // for isCtorDtorAssign28 #include "CodeGen/OperatorTable.h" // for isCtorDtorAssign 25 29 #include "Common/SemanticError.h" 26 30 #include "Common/Stats/Counter.h" … … 28 32 #include "InitTweak/InitTweak.h" 29 33 #include "ResolvExpr/Cost.h" 30 #include "ResolvExpr/typeops.h" 34 #include "ResolvExpr/CandidateFinder.hpp" // for referenceToRvalueConversion 35 #include "ResolvExpr/Unify.h" 31 36 #include "SymTab/Mangler.h" 32 37 … … 69 74 if ( baseExpr ) { 70 75 if (baseExpr->env) { 71 Expr * base = shallowCopy(baseExpr);76 Expr * base = deepCopy(baseExpr); 72 77 const TypeSubstitution * subs = baseExpr->env; 73 78 base->env = nullptr; … … 193 198 out.push_back(decl.second); 194 199 } 200 201 // std::cerr << otypeKey << ' ' << out.size() << std::endl; 195 202 } 196 203 … … 259 266 void SymbolTable::addId( const DeclWithType * decl, const Expr * baseExpr ) { 260 267 // default handling of conflicts is to raise an error 261 addId ( decl, OnConflict::error(), baseExpr, decl->isDeleted ? decl : nullptr );268 addIdCommon( decl, OnConflict::error(), baseExpr, decl->isDeleted ? decl : nullptr ); 262 269 } 263 270 264 271 void SymbolTable::addDeletedId( const DeclWithType * decl, const Decl * deleter ) { 265 272 // default handling of conflicts is to raise an error 266 addId ( decl, OnConflict::error(), nullptr, deleter );273 addIdCommon( decl, OnConflict::error(), nullptr, deleter ); 267 274 } 268 275 … … 276 283 } else { 277 284 // typedef redeclarations are errors only if types are different 278 if ( ! ResolvExpr::typesCompatible( existing->base, added->base , SymbolTable{}) ) {285 if ( ! ResolvExpr::typesCompatible( existing->base, added->base ) ) { 279 286 SemanticError( added->location, "redeclaration of " + added->name ); 280 287 } … … 641 648 } else if ( existing.id->linkage.is_mangled 642 649 || ResolvExpr::typesCompatible( 643 added->get_type(), existing.id->get_type() , SymbolTable{}) ) {650 added->get_type(), existing.id->get_type() ) ) { 644 651 645 652 // it is a conflict if one declaration is deleted and the other is not … … 676 683 } 677 684 678 void SymbolTable::addId (679 const DeclWithType * decl, SymbolTable::OnConflict handleConflicts, const Expr * baseExpr,680 const Decl * deleter ) {685 void SymbolTable::addIdCommon( 686 const DeclWithType * decl, SymbolTable::OnConflict handleConflicts, 687 const Expr * baseExpr, const Decl * deleter ) { 681 688 SpecialFunctionKind kind = getSpecialFunctionKind(decl->name); 682 689 if (kind == NUMBER_OF_KINDS) { // not a special decl 683 addId (decl, decl->name, idTable, handleConflicts, baseExpr, deleter);690 addIdToTable(decl, decl->name, idTable, handleConflicts, baseExpr, deleter); 684 691 } 685 692 else { … … 694 701 assertf(false, "special decl with non-function type"); 695 702 } 696 addId(decl, key, specialFunctionTable[kind], handleConflicts, baseExpr, deleter); 697 } 698 } 699 700 void SymbolTable::addId( 701 const DeclWithType * decl, const std::string & lookupKey, IdTable::Ptr & table, SymbolTable::OnConflict handleConflicts, const Expr * baseExpr, 702 const Decl * deleter ) { 703 addIdToTable(decl, key, specialFunctionTable[kind], handleConflicts, baseExpr, deleter); 704 } 705 } 706 707 void SymbolTable::addIdToTable( 708 const DeclWithType * decl, const std::string & lookupKey, 709 IdTable::Ptr & table, SymbolTable::OnConflict handleConflicts, 710 const Expr * baseExpr, const Decl * deleter ) { 703 711 ++*stats().add_calls; 704 712 const std::string &name = decl->name; … … 777 785 void SymbolTable::addMembers( 778 786 const AggregateDecl * aggr, const Expr * expr, SymbolTable::OnConflict handleConflicts ) { 779 for ( const Decl *decl : aggr->members ) {780 if ( auto dwt = dynamic_cast< const DeclWithType * >( decl ) ) {781 addId( dwt, handleConflicts, expr );782 if ( dwt->name == "" ) {783 const Type * t = dwt->get_type()->stripReferences();784 if ( auto rty = dynamic_cast<const BaseInstType *>( t ) ) {785 if ( ! dynamic_cast<const StructInstType *>(rty)786 && ! dynamic_cast<const UnionInstType *>(rty) ) continue;787 ResolvExpr::Cost cost = ResolvExpr::Cost::zero;788 ast::ptr<ast::TypeSubstitution> tmp = expr->env;789 expr = mutate_field(expr, &Expr::env, nullptr);790 const Expr * base = ResolvExpr::referenceToRvalueConversion( expr, cost );791 base = mutate_field(base, &Expr::env, tmp);792 793 addMembers(794 rty->aggr(), new MemberExpr{ base->location, dwt, base }, handleConflicts ); 795 }796 }787 for ( const ptr<Decl> & decl : aggr->members ) { 788 auto dwt = decl.as<DeclWithType>(); 789 if ( nullptr == dwt ) continue; 790 addIdCommon( dwt, handleConflicts, expr ); 791 // Inline through unnamed struct/union members. 792 if ( "" != dwt->name ) continue; 793 const Type * t = dwt->get_type()->stripReferences(); 794 if ( auto rty = dynamic_cast<const BaseInstType *>( t ) ) { 795 if ( ! dynamic_cast<const StructInstType *>(rty) 796 && ! dynamic_cast<const UnionInstType *>(rty) ) continue; 797 ResolvExpr::Cost cost = ResolvExpr::Cost::zero; 798 ast::ptr<ast::TypeSubstitution> tmp = expr->env; 799 expr = mutate_field(expr, &Expr::env, nullptr); 800 const Expr * base = ResolvExpr::referenceToRvalueConversion( expr, cost ); 801 base = mutate_field(base, &Expr::env, tmp); 802 803 addMembers( 804 rty->aggr(), new MemberExpr{ base->location, dwt, base }, handleConflicts ); 797 805 } 798 806 } -
src/AST/SymbolTable.hpp
r34b4268 r24d6572 192 192 193 193 /// common code for addId, addDeletedId, etc. 194 void addId (195 const DeclWithType * decl, OnConflict handleConflicts, const Expr * baseExpr = nullptr,196 const Decl * deleter = nullptr );194 void addIdCommon( 195 const DeclWithType * decl, OnConflict handleConflicts, 196 const Expr * baseExpr = nullptr, const Decl * deleter = nullptr ); 197 197 198 198 /// common code for addId when special decls are placed into separate tables 199 void addId( 200 const DeclWithType * decl, const std::string & lookupKey, IdTable::Ptr & idTable, OnConflict handleConflicts, 199 void addIdToTable( 200 const DeclWithType * decl, const std::string & lookupKey, 201 IdTable::Ptr & idTable, OnConflict handleConflicts, 201 202 const Expr * baseExpr = nullptr, const Decl * deleter = nullptr); 202 203 203 204 /// adds all of the members of the Aggregate (addWith helper) 204 205 void addMembers( const AggregateDecl * aggr, const Expr * expr, OnConflict handleConflicts ); -
src/AST/TranslationUnit.hpp
r34b4268 r24d6572 10 10 // Created On : Tue Jun 11 15:30:00 2019 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : T ue Mar 11 11:19:00 202213 // Update Count : 112 // Last Modified On : Thr Mar 9 16:41:00 2023 13 // Update Count : 2 14 14 // 15 15 … … 17 17 18 18 #include <map> 19 #include < vector>19 #include <list> 20 20 21 21 #include "Fwd.hpp" … … 28 28 29 29 ptr<Type> sizeType; 30 const FunctionDecl * dereference ;31 const StructDecl * dtorStruct ;32 const FunctionDecl * dtorDestroy ;30 const FunctionDecl * dereference = nullptr; 31 const StructDecl * dtorStruct = nullptr; 32 const FunctionDecl * dtorDestroy = nullptr; 33 33 }; 34 34 -
src/AST/Type.cpp
r34b4268 r24d6572 10 10 // Created On : Mon May 13 15:00:00 2019 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Thu Nov 24 9:49:00 202213 // Update Count : 612 // Last Modified On : Thu Apr 6 15:59:00 2023 13 // Update Count : 7 14 14 // 15 15 … … 199 199 200 200 TupleType::TupleType( std::vector<ptr<Type>> && ts, CV::Qualifiers q ) 201 : Type( q ), types( std::move(ts) ), members() { 202 // This constructor is awkward. `TupleType` needs to contain objects so that members can be 203 // named, but members without initializer nodes end up getting constructors, which breaks 204 // things. This happens because the object decls have to be visited so that their types are 205 // kept in sync with the types listed here. Ultimately, the types listed here should perhaps 206 // be eliminated and replaced with a list-view over members. The temporary solution is to 207 // make a `ListInit` with `maybeConstructed = false`, so when the object is visited it is not 208 // constructed. Potential better solutions include: 209 // a) Separate `TupleType` from its declarations, into `TupleDecl` and `Tuple{Inst?}Type`, 210 // similar to the aggregate types. 211 // b) Separate initializer nodes better, e.g. add a `MaybeConstructed` node that is replaced 212 // by `genInit`, rather than the current boolean flag. 213 members.reserve( types.size() ); 214 for ( const Type * ty : types ) { 215 members.emplace_back( new ObjectDecl{ 216 CodeLocation(), "", ty, new ListInit( CodeLocation(), {}, {}, NoConstruct ), 217 Storage::Classes{}, Linkage::Cforall } ); 218 } 219 } 201 : Type( q ), types( std::move(ts) ) {} 220 202 221 203 bool isUnboundType(const Type * type) { -
src/AST/Type.hpp
r34b4268 r24d6572 10 10 // Created On : Thu May 9 10:00:00 2019 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Thu Nov 24 9:47:00 202213 // Update Count : 812 // Last Modified On : Thu Apr 6 15:58:00 2023 13 // Update Count : 9 14 14 // 15 15 … … 265 265 }; 266 266 267 /// Function variable arguments flag268 enum ArgumentFlag { FixedArgs, VariableArgs };269 270 267 /// Type of a function `[R1, R2](*)(P1, P2, P3)` 271 268 class FunctionType final : public Type { … … 462 459 public: 463 460 std::vector<ptr<Type>> types; 464 std::vector<ptr<Decl>> members;465 461 466 462 TupleType( std::vector<ptr<Type>> && ts, CV::Qualifiers q = {} ); -
src/AST/TypeEnvironment.cpp
r34b4268 r24d6572 178 178 179 179 bool TypeEnvironment::combine( 180 const TypeEnvironment & o, OpenVarSet & open , const SymbolTable & symtab) {180 const TypeEnvironment & o, OpenVarSet & open ) { 181 181 // short-circuit easy cases 182 182 if ( o.empty() ) return true; … … 201 201 EqvClass & r = *rt; 202 202 // merge bindings 203 if ( ! mergeBound( r, c, open , symtab) ) return false;203 if ( ! mergeBound( r, c, open ) ) return false; 204 204 // merge previous unbound variables into this class, checking occurs if needed 205 205 if ( r.bound ) for ( const auto & u : c.vars ) { … … 216 216 } else if ( st != rt ) { 217 217 // bound, but not to the same class 218 if ( ! mergeClasses( rt, st, open , symtab) ) return false;218 if ( ! mergeClasses( rt, st, open ) ) return false; 219 219 } // ignore bound into the same class 220 220 } … … 280 280 bool TypeEnvironment::bindVar( 281 281 const TypeInstType * typeInst, const Type * bindTo, const TypeData & data, 282 AssertionSet & need, AssertionSet & have, const OpenVarSet & open, WidenMode widen, 283 const SymbolTable & symtab 282 AssertionSet & need, AssertionSet & have, const OpenVarSet & open, WidenMode widen 284 283 ) { 285 284 // remove references from bound type, so that type variables can only bind to value types … … 300 299 if ( unifyInexact( 301 300 newType, target, *this, need, have, open, 302 widen & WidenMode{ it->allowWidening, true }, symtab,common ) ) {301 widen & WidenMode{ it->allowWidening, true }, common ) ) { 303 302 if ( common ) { 304 303 it->bound = std::move(common); … … 321 320 const TypeInstType * var1, const TypeInstType * var2, TypeData && data, 322 321 AssertionSet & need, AssertionSet & have, const OpenVarSet & open, 323 WidenMode widen , const SymbolTable & symtab322 WidenMode widen 324 323 ) { 325 324 auto c1 = internal_lookup( *var1 ); … … 358 357 359 358 if ( unifyInexact( 360 newType1, newType2, *this, need, have, open, newWidenMode, symtab,common ) ) {359 newType1, newType2, *this, need, have, open, newWidenMode, common ) ) { 361 360 c1->vars.insert( c2->vars.begin(), c2->vars.end() ); 362 361 c1->allowWidening = widen1 && widen2; … … 409 408 410 409 bool TypeEnvironment::mergeBound( 411 EqvClass & to, const EqvClass & from, OpenVarSet & open , const SymbolTable & symtab) {410 EqvClass & to, const EqvClass & from, OpenVarSet & open ) { 412 411 if ( from.bound ) { 413 412 if ( to.bound ) { … … 419 418 420 419 if ( unifyInexact( 421 toType, fromType, *this, need, have, open, widen, symtab,common ) ) {420 toType, fromType, *this, need, have, open, widen, common ) ) { 422 421 // unifies, set common type if necessary 423 422 if ( common ) { … … 437 436 438 437 bool TypeEnvironment::mergeClasses( 439 ClassList::iterator to, ClassList::iterator from, OpenVarSet & open , const SymbolTable & symtab438 ClassList::iterator to, ClassList::iterator from, OpenVarSet & open 440 439 ) { 441 440 EqvClass & r = *to, & s = *from; 442 441 443 442 // ensure bounds match 444 if ( ! mergeBound( r, s, open , symtab) ) return false;443 if ( ! mergeBound( r, s, open ) ) return false; 445 444 446 445 // check safely bindable -
src/AST/TypeEnvironment.hpp
r34b4268 r24d6572 63 63 64 64 int cmp = d1->var->name.compare( d2->var->name ); 65 return cmp <0 || ( cmp == 0 && d1->result < d2->result );65 return cmp > 0 || ( cmp == 0 && d1->result < d2->result ); 66 66 } 67 67 }; … … 169 169 /// Merge environment with this one, checking compatibility. 170 170 /// Returns false if fails, but does NOT roll back partial changes. 171 bool combine( const TypeEnvironment & o, OpenVarSet & openVars , const SymbolTable & symtab);171 bool combine( const TypeEnvironment & o, OpenVarSet & openVars ); 172 172 173 173 /// Add all type variables in environment to open var list … … 183 183 const TypeInstType * typeInst, const Type * bindTo, const TypeData & data, 184 184 AssertionSet & need, AssertionSet & have, const OpenVarSet & openVars, 185 ResolvExpr::WidenMode widen , const SymbolTable & symtab);185 ResolvExpr::WidenMode widen ); 186 186 187 187 /// Binds the type classes represented by `var1` and `var2` together; will add one or both … … 190 190 const TypeInstType * var1, const TypeInstType * var2, TypeData && data, 191 191 AssertionSet & need, AssertionSet & have, const OpenVarSet & openVars, 192 ResolvExpr::WidenMode widen , const SymbolTable & symtab);192 ResolvExpr::WidenMode widen ); 193 193 194 194 /// Disallows widening for all bindings in the environment … … 205 205 /// Unifies the type bound of `to` with the type bound of `from`, returning false if fails 206 206 bool mergeBound( 207 EqvClass & to, const EqvClass & from, OpenVarSet & openVars , const SymbolTable & symtab);207 EqvClass & to, const EqvClass & from, OpenVarSet & openVars ); 208 208 209 209 /// Merges two type classes from local environment, returning false if fails 210 210 bool mergeClasses( 211 ClassList::iterator to, ClassList::iterator from, OpenVarSet & openVars, 212 const SymbolTable & symtab ); 211 ClassList::iterator to, ClassList::iterator from, OpenVarSet & openVars); 213 212 214 213 /// Private lookup API; returns array index of string, or env.size() for not found -
src/AST/TypeSubstitution.cpp
r34b4268 r24d6572 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Jun 3 13:26:00 2017 13 // Update Count : 5 14 // 12 // Last Modified On : Thr May 25 11:24:00 2023 13 // Update Count : 6 14 // 15 16 #include "TypeSubstitution.hpp" 15 17 16 18 #include "Type.hpp" // for TypeInstType, Type, StructInstType, UnionInstType 17 #include " TypeSubstitution.hpp"19 #include "Pass.hpp" // for Pass, PureVisitor, WithGuards, WithVisitorRef 18 20 19 21 namespace ast { 20 21 22 // size_t TypeSubstitution::Substituter::traceId = Stats::Heap::new_stacktrace_id("TypeSubstitution");23 22 24 23 TypeSubstitution::TypeSubstitution() { … … 119 118 } 120 119 120 // definitition must happen after PassVisitor is included so that WithGuards can be used 121 struct TypeSubstitution::Substituter : public WithGuards, public WithVisitorRef<Substituter>, public PureVisitor { 122 //static size_t traceId; 123 124 Substituter( const TypeSubstitution & sub, bool freeOnly ) : sub( sub ), freeOnly( freeOnly ) {} 125 126 const Type * postvisit( const TypeInstType * aggregateUseType ); 127 128 /// Records type variable bindings from forall-statements 129 void previsit( const FunctionType * type ); 130 /// Records type variable bindings from forall-statements and instantiations of generic types 131 // void handleAggregateType( const BaseInstType * type ); 132 133 // void previsit( const StructInstType * aggregateUseType ); 134 // void previsit( const UnionInstType * aggregateUseType ); 135 136 const TypeSubstitution & sub; 137 int subCount = 0; 138 bool freeOnly; 139 typedef std::unordered_set< TypeEnvKey > BoundVarsType; 140 BoundVarsType boundVars; 141 }; 142 143 // size_t TypeSubstitution::Substituter::traceId = Stats::Heap::new_stacktrace_id("TypeSubstitution"); 144 121 145 void TypeSubstitution::normalize() { 122 146 Pass<Substituter> sub( *this, true ); … … 128 152 } 129 153 } while ( sub.core.subCount ); 154 } 155 156 TypeSubstitution::ApplyResult<Node> TypeSubstitution::applyBase( 157 const Node * input, bool isFree ) const { 158 assert( input ); 159 Pass<Substituter> sub( *this, isFree ); 160 const Node * output = input->accept( sub ); 161 return { output, sub.core.subCount }; 130 162 } 131 163 -
src/AST/TypeSubstitution.hpp
r34b4268 r24d6572 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : T ue Apr 30 22:52:47 201913 // Update Count : 911 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr May 25 12:31:00 2023 13 // Update Count : 10 14 14 // 15 15 … … 46 46 TypeSubstitution &operator=( const TypeSubstitution &other ); 47 47 48 template< typename SynTreeClass>48 template< typename node_t > 49 49 struct ApplyResult { 50 ast::ptr< SynTreeClass> node;50 ast::ptr<node_t> node; 51 51 int count; 52 52 }; 53 53 54 template< typename SynTreeClass > ApplyResult<SynTreeClass> apply( const SynTreeClass * input ) const; 55 template< typename SynTreeClass > ApplyResult<SynTreeClass> applyFree( const SynTreeClass * input ) const; 54 template< typename node_t > 55 ApplyResult<node_t> apply( const node_t * input ) const { 56 ApplyResult<Node> ret = applyBase( input, false ); 57 return { ret.node.strict_as<node_t>(), ret.count }; 58 } 56 59 57 60 template< typename node_t, enum Node::ref_type ref_t > 58 61 int apply( ptr_base< node_t, ref_t > & input ) const { 59 const node_t * p = input.get(); 60 auto ret = apply(p); 61 input = ret.node; 62 ApplyResult<Node> ret = applyBase( input.get(), false ); 63 input = ret.node.strict_as<node_t>(); 62 64 return ret.count; 65 } 66 67 template< typename node_t > 68 ApplyResult<node_t> applyFree( const node_t * input ) const { 69 ApplyResult<Node> ret = applyBase( input, true ); 70 return { ret.node.strict_as<node_t>(), ret.count }; 63 71 } 64 72 65 73 template< typename node_t, enum Node::ref_type ref_t > 66 74 int applyFree( ptr_base< node_t, ref_t > & input ) const { 67 const node_t * p = input.get(); 68 auto ret = applyFree(p); 69 input = ret.node; 75 ApplyResult<Node> ret = applyBase( input.get(), true ); 76 input = ret.node.strict_as<node_t>(); 70 77 return ret.count; 71 78 } … … 97 104 // Mutator that performs the substitution 98 105 struct Substituter; 106 ApplyResult<Node> applyBase( const Node * input, bool isFree ) const; 99 107 100 108 // TODO: worry about traversing into a forall-qualified function type or type decl with assertions … … 158 166 } // namespace ast 159 167 160 // include needs to happen after TypeSubstitution is defined so that both TypeSubstitution and161 // PassVisitor are defined before PassVisitor implementation accesses TypeSubstitution internals.162 #include "Pass.hpp"163 #include "Copy.hpp"164 165 namespace ast {166 167 // definitition must happen after PassVisitor is included so that WithGuards can be used168 struct TypeSubstitution::Substituter : public WithGuards, public WithVisitorRef<Substituter>, public PureVisitor {169 static size_t traceId;170 171 Substituter( const TypeSubstitution & sub, bool freeOnly ) : sub( sub ), freeOnly( freeOnly ) {}172 173 const Type * postvisit( const TypeInstType * aggregateUseType );174 175 /// Records type variable bindings from forall-statements176 void previsit( const FunctionType * type );177 /// Records type variable bindings from forall-statements and instantiations of generic types178 // void handleAggregateType( const BaseInstType * type );179 180 // void previsit( const StructInstType * aggregateUseType );181 // void previsit( const UnionInstType * aggregateUseType );182 183 const TypeSubstitution & sub;184 int subCount = 0;185 bool freeOnly;186 typedef std::unordered_set< TypeEnvKey > BoundVarsType;187 BoundVarsType boundVars;188 189 };190 191 template< typename SynTreeClass >192 TypeSubstitution::ApplyResult<SynTreeClass> TypeSubstitution::apply( const SynTreeClass * input ) const {193 assert( input );194 Pass<Substituter> sub( *this, false );195 input = strict_dynamic_cast< const SynTreeClass * >( input->accept( sub ) );196 return { input, sub.core.subCount };197 }198 199 template< typename SynTreeClass >200 TypeSubstitution::ApplyResult<SynTreeClass> TypeSubstitution::applyFree( const SynTreeClass * input ) const {201 assert( input );202 Pass<Substituter> sub( *this, true );203 input = strict_dynamic_cast< const SynTreeClass * >( input->accept( sub ) );204 return { input, sub.core.subCount };205 }206 207 } // namespace ast208 209 168 // Local Variables: // 210 169 // tab-width: 4 // -
src/AST/Visitor.hpp
r34b4268 r24d6572 50 50 virtual const ast::FinallyClause * visit( const ast::FinallyClause * ) = 0; 51 51 virtual const ast::Stmt * visit( const ast::SuspendStmt * ) = 0; 52 virtual const ast::WhenClause * visit( const ast::WhenClause * ) = 0; 52 53 virtual const ast::Stmt * visit( const ast::WaitForStmt * ) = 0; 53 54 virtual const ast::WaitForClause * visit( const ast::WaitForClause * ) = 0; 55 virtual const ast::Stmt * visit( const ast::WaitUntilStmt * ) = 0; 54 56 virtual const ast::Decl * visit( const ast::WithStmt * ) = 0; 55 57 virtual const ast::NullStmt * visit( const ast::NullStmt * ) = 0; -
src/AST/porting.md
r34b4268 r24d6572 213 213 * `get_statement()` exclusively used for code location, replaced with `CodeLocation` field 214 214 215 `CaseStmt` 215 `CaseStmt` => `CaseClause` 216 216 * `_isDefault` has been removed 217 217 * `isDefault` calculates value from `cond` … … 227 227 * `block` -> `body` and `finallyBlock` -> `finally` 228 228 229 `ThrowStmt` `CatchStmt`229 `ThrowStmt` and `CatchStmt` => `CatchClause` 230 230 * moved `Kind` enums to shared `ast::ExceptionKind` enum 231 231 232 `FinallyStmt` 232 `FinallyStmt` => `FinallyClause` 233 233 * `block` -> `body` 234 234 … … 280 280 * Template class, with specializations and using to implement some other types: 281 281 * `StructInstType`, `UnionInstType` & `EnumInstType` 282 * `baseStruct`, `baseUnion` & `baseEnum` => `base` 282 283 283 284 `TypeInstType` -
src/CodeGen/CodeGenerator.cc
r34b4268 r24d6572 17 17 #include <cassert> // for assert, assertf 18 18 #include <list> // for _List_iterator, list, list<>::it... 19 #include <sstream> // for stringstream 19 20 20 21 #include "AST/Decl.hpp" // for DeclWithType 21 22 #include "Common/UniqueName.h" // for UniqueName 22 #include "Common/utility.h" // for CodeLocation, toString23 23 #include "GenType.h" // for genType 24 24 #include "InitTweak/InitTweak.h" // for getPointerBase … … 273 273 } 274 274 275 template<typename pass_type> 276 inline void genEnumInitializer( PassVisitor<pass_type> * visitor, Type * baseType, std::ostream & output, 277 Initializer * init, long long * cur_val, Options options) { 278 auto baseTypeAsBasic = baseType ? dynamic_cast<BasicType *>( baseType ) : nullptr; 279 if ( init ) { // If value has an explicit initiazatior 280 output << " = "; 281 output << "(" << genType(baseType, "", options) << ")"; 282 init->accept( *visitor ); 283 if ( baseTypeAsBasic && baseTypeAsBasic->isInteger() ) { // if it is an integral type and initilizer offered, 284 // need to update the cur_val 285 Expression* expr = ((SingleInit *)(init))->value; 286 while ( auto temp = dynamic_cast<CastExpr *>(expr) ) { // unwrap introduced cast 287 expr = temp->arg; 288 } 289 *cur_val = ((ConstantExpr *)expr)->constant.get_ival()+1; 290 } 291 } else if ( baseTypeAsBasic && baseTypeAsBasic->isInteger() ) { // integral implicitly init to cur_val + 1 292 output << " = " << "(" << genType(baseType, "", options) << ")"; 293 output << (*cur_val)++; 294 } 295 } 296 275 297 void CodeGenerator::postvisit( EnumDecl * enumDecl ) { 276 298 extension( enumDecl ); 277 299 std::list< Declaration* > &memb = enumDecl->get_members(); 278 300 if (enumDecl->base && ! memb.empty()) { 279 unsigned long long last_val = -1; // if the first enum value has no explicit initializer, 280 // as other 301 long long cur_val = 0; 281 302 for ( std::list< Declaration* >::iterator i = memb.begin(); i != memb.end(); i++) { 282 303 ObjectDecl * obj = dynamic_cast< ObjectDecl* >( *i ); 283 304 assert( obj ); 284 305 output << "static "; 285 output << genType(enumDecl->base, "", options) << " const "; 286 output << mangleName( obj ) << " "; 287 output << " = "; 288 output << "(" << genType(enumDecl->base, "", options) << ")"; 289 if ( (BasicType *)(enumDecl->base) && ((BasicType *)(enumDecl->base))->isWholeNumber() ) { 290 if ( obj->get_init() ) { 291 obj->get_init()->accept( *visitor ); 292 Expression* expr = ((SingleInit *)(obj->init))->value; 293 while ( auto temp = dynamic_cast<CastExpr *>(expr) ) { 294 expr = temp->arg; 295 } 296 last_val = ((ConstantExpr *)expr)->constant.get_ival(); 297 } else { 298 output << ++last_val; 299 } // if 300 } else { 301 if ( obj->get_init() ) { 302 obj->get_init()->accept( *visitor ); 303 } else { 304 // Should not reach here! 305 } 306 } 306 output << genType(enumDecl->base, mangleName( obj ), options); 307 genEnumInitializer( visitor, enumDecl->base, output, obj->get_init(), &cur_val, options); 307 308 output << ";" << endl; 308 309 } // for -
src/CodeGen/GenType.cc
r34b4268 r24d6572 255 255 void GenType::postvisit( EnumInstType * enumInst ) { 256 256 if ( enumInst->baseEnum && enumInst->baseEnum->base ) { 257 typeString = genType(enumInst->baseEnum->base, "", options) + typeString;257 typeString = genType(enumInst->baseEnum->base, typeString, options); 258 258 } else { 259 259 typeString = enumInst->name + " " + typeString; -
src/Common/CodeLocationTools.cpp
r34b4268 r24d6572 128 128 macro(FinallyClause, FinallyClause) \ 129 129 macro(SuspendStmt, Stmt) \ 130 macro(WhenClause, WhenClause) \ 130 131 macro(WaitForStmt, Stmt) \ 131 132 macro(WaitForClause, WaitForClause) \ 133 macro(WaitUntilStmt, Stmt) \ 132 134 macro(WithStmt, Decl) \ 133 135 macro(NullStmt, NullStmt) \ … … 208 210 209 211 struct LeafKindVisitor : public ast::Visitor { 210 LeafKind kind;212 LeafKind result; 211 213 212 214 #define VISIT(node_type, return_type) \ 213 215 const ast::return_type * visit( const ast::node_type * ) final { \ 214 kind= LeafKind::node_type; \216 result = LeafKind::node_type; \ 215 217 return nullptr; \ 216 218 } … … 222 224 223 225 LeafKind get_leaf_kind( ast::Node const * node ) { 224 LeafKindVisitor visitor; 225 node->accept( visitor ); 226 return visitor.kind; 226 return ast::Pass<LeafKindVisitor>::read( node ); 227 227 } 228 228 -
src/Common/DeclStats.cpp
r34b4268 r24d6572 23 23 #include <iostream> 24 24 #include <map> 25 #include <sstream> 25 26 #include <unordered_map> 26 27 #include <unordered_set> -
src/Common/Eval.cc
r34b4268 r24d6572 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // utility.h --7 // Eval.cc -- Evaluate parts of the ast at compile time. 8 8 // 9 9 // Author : Richard C. Bilson … … 13 13 // Update Count : 119 14 14 // 15 16 #include "Eval.h" 15 17 16 18 #include <utility> // for pair -
src/Common/ResolvProtoDump.cpp
r34b4268 r24d6572 19 19 #include <iostream> 20 20 #include <set> 21 #include <sstream> 21 22 #include <unordered_set> 22 23 … … 26 27 #include "AST/Type.hpp" 27 28 #include "CodeGen/OperatorTable.h" 28 #include "Common/utility.h"29 29 30 30 namespace { -
src/Common/ScopedMap.h
r34b4268 r24d6572 37 37 template<typename N> 38 38 Scope(N && n) : map(), note(std::forward<N>(n)) {} 39 39 40 40 Scope() = default; 41 41 Scope(const Scope &) = default; … … 46 46 typedef std::vector< Scope > ScopeList; 47 47 48 ScopeList scopes; ///< scoped list of maps 48 /// Scoped list of maps. 49 ScopeList scopes; 49 50 public: 50 51 typedef typename MapType::key_type key_type; … … 58 59 typedef typename MapType::const_pointer const_pointer; 59 60 60 class iterator : public std::iterator< std::bidirectional_iterator_tag, value_type > { 61 friend class ScopedMap; 62 friend class const_iterator; 63 typedef typename ScopedMap::MapType::iterator wrapped_iterator; 64 typedef typename ScopedMap::ScopeList scope_list; 65 typedef typename scope_list::size_type size_type; 66 67 /// Checks if this iterator points to a valid item 68 bool is_valid() const { 69 return it != (*scopes)[level].map.end(); 70 } 71 72 /// Increments on invalid 73 iterator & next_valid() { 74 if ( ! is_valid() ) { ++(*this); } 75 return *this; 76 } 77 78 /// Decrements on invalid 79 iterator & prev_valid() { 80 if ( ! is_valid() ) { --(*this); } 81 return *this; 82 } 83 84 iterator(scope_list & _scopes, const wrapped_iterator & _it, size_type inLevel) 85 : scopes(&_scopes), it(_it), level(inLevel) {} 86 public: 87 iterator(const iterator & that) : scopes(that.scopes), it(that.it), level(that.level) {} 88 iterator & operator= (const iterator & that) { 89 scopes = that.scopes; level = that.level; it = that.it; 90 return *this; 91 } 92 93 reference operator* () { return *it; } 94 pointer operator-> () const { return it.operator->(); } 95 96 iterator & operator++ () { 97 if ( it == (*scopes)[level].map.end() ) { 98 if ( level == 0 ) return *this; 99 --level; 100 it = (*scopes)[level].map.begin(); 101 } else { 102 ++it; 103 } 104 return next_valid(); 105 } 106 iterator operator++ (int) { iterator tmp = *this; ++(*this); return tmp; } 107 108 iterator & operator-- () { 109 // may fail if this is the begin iterator; allowed by STL spec 110 if ( it == (*scopes)[level].map.begin() ) { 111 ++level; 112 it = (*scopes)[level].map.end(); 113 } 114 --it; 115 return prev_valid(); 116 } 117 iterator operator-- (int) { iterator tmp = *this; --(*this); return tmp; } 118 119 bool operator== (const iterator & that) const { 120 return scopes == that.scopes && level == that.level && it == that.it; 121 } 122 bool operator!= (const iterator & that) const { return !( *this == that ); } 123 124 size_type get_level() const { return level; } 125 126 Note & get_note() { return (*scopes)[level].note; } 127 const Note & get_note() const { return (*scopes)[level].note; } 128 129 private: 130 scope_list *scopes; 131 wrapped_iterator it; 132 size_type level; 133 }; 134 135 class const_iterator : public std::iterator< std::bidirectional_iterator_tag, 136 value_type > { 137 friend class ScopedMap; 138 typedef typename ScopedMap::MapType::iterator wrapped_iterator; 139 typedef typename ScopedMap::MapType::const_iterator wrapped_const_iterator; 140 typedef typename ScopedMap::ScopeList scope_list; 141 typedef typename scope_list::size_type size_type; 142 143 /// Checks if this iterator points to a valid item 144 bool is_valid() const { 145 return it != (*scopes)[level].map.end(); 146 } 147 148 /// Increments on invalid 149 const_iterator & next_valid() { 150 if ( ! is_valid() ) { ++(*this); } 151 return *this; 152 } 153 154 /// Decrements on invalid 155 const_iterator & prev_valid() { 156 if ( ! is_valid() ) { --(*this); } 157 return *this; 158 } 159 160 const_iterator(scope_list const & _scopes, const wrapped_const_iterator & _it, size_type inLevel) 161 : scopes(&_scopes), it(_it), level(inLevel) {} 162 public: 163 const_iterator(const iterator & that) : scopes(that.scopes), it(that.it), level(that.level) {} 164 const_iterator(const const_iterator & that) : scopes(that.scopes), it(that.it), level(that.level) {} 165 const_iterator & operator= (const iterator & that) { 166 scopes = that.scopes; level = that.level; it = that.it; 167 return *this; 168 } 169 const_iterator & operator= (const const_iterator & that) { 170 scopes = that.scopes; level = that.level; it = that.it; 171 return *this; 172 } 173 174 const_reference operator* () { return *it; } 175 const_pointer operator-> () { return it.operator->(); } 176 177 const_iterator & operator++ () { 178 if ( it == (*scopes)[level].map.end() ) { 179 if ( level == 0 ) return *this; 180 --level; 181 it = (*scopes)[level].map.begin(); 182 } else { 183 ++it; 184 } 185 return next_valid(); 186 } 187 const_iterator operator++ (int) { const_iterator tmp = *this; ++(*this); return tmp; } 188 189 const_iterator & operator-- () { 190 // may fail if this is the begin iterator; allowed by STL spec 191 if ( it == (*scopes)[level].map.begin() ) { 192 ++level; 193 it = (*scopes)[level].map.end(); 194 } 195 --it; 196 return prev_valid(); 197 } 198 const_iterator operator-- (int) { const_iterator tmp = *this; --(*this); return tmp; } 199 200 bool operator== (const const_iterator & that) const { 201 return scopes == that.scopes && level == that.level && it == that.it; 202 } 203 bool operator!= (const const_iterator & that) const { return !( *this == that ); } 204 205 size_type get_level() const { return level; } 206 207 const Note & get_note() const { return (*scopes)[level].note; } 208 209 private: 210 scope_list const *scopes; 211 wrapped_const_iterator it; 212 size_type level; 213 }; 61 // Both iterator types are complete bidrectional iterators, see below. 62 class iterator; 63 class const_iterator; 214 64 215 65 /// Starts a new scope … … 297 147 } 298 148 299 template< typename value_type_t >300 std::pair< iterator, bool > insert( iterator at, value_type_t && value ) {301 MapType & scope = (*at.scopes)[ at.level ].map;302 std::pair< typename MapType::iterator, bool > res = scope.insert( std::forward<value_type_t>( value ) );303 return std::make_pair( iterator(scopes, std::move( res.first ), at.level), std::move( res.second ) );304 }305 306 149 template< typename value_t > 307 150 std::pair< iterator, bool > insert( const Key & key, value_t && value ) { return insert( std::make_pair( key, std::forward<value_t>( value ) ) ); } … … 324 167 } 325 168 326 iterator erase( iterator pos ) { 327 MapType & scope = (*pos.scopes)[ pos.level ].map; 328 const typename iterator::wrapped_iterator & new_it = scope.erase( pos.it ); 329 iterator it( *pos.scopes, new_it, pos.level ); 330 return it.next_valid(); 169 /// Erases element with key in the innermost scope that has it. 170 size_type erase( const Key & key ) { 171 for ( auto it = scopes.rbegin() ; it != scopes.rend() ; ++it ) { 172 size_type i = it->map.erase( key ); 173 if ( 0 != i ) return i; 174 } 175 return 0; 331 176 } 332 177 … … 343 188 return c; 344 189 } 190 191 bool contains( const Key & key ) const { 192 return find( key ) != cend(); 193 } 194 }; 195 196 template<typename Key, typename Value, typename Note> 197 class ScopedMap<Key, Value, Note>::iterator : 198 public std::iterator< std::bidirectional_iterator_tag, value_type > { 199 friend class ScopedMap; 200 friend class const_iterator; 201 typedef typename ScopedMap::MapType::iterator wrapped_iterator; 202 typedef typename ScopedMap::ScopeList scope_list; 203 typedef typename scope_list::size_type size_type; 204 205 /// Checks if this iterator points to a valid item 206 bool is_valid() const { 207 return it != (*scopes)[level].map.end(); 208 } 209 210 /// Increments on invalid 211 iterator & next_valid() { 212 if ( ! is_valid() ) { ++(*this); } 213 return *this; 214 } 215 216 /// Decrements on invalid 217 iterator & prev_valid() { 218 if ( ! is_valid() ) { --(*this); } 219 return *this; 220 } 221 222 iterator(scope_list & _scopes, const wrapped_iterator & _it, size_type inLevel) 223 : scopes(&_scopes), it(_it), level(inLevel) {} 224 public: 225 iterator(const iterator & that) : scopes(that.scopes), it(that.it), level(that.level) {} 226 iterator & operator= (const iterator & that) { 227 scopes = that.scopes; level = that.level; it = that.it; 228 return *this; 229 } 230 231 reference operator* () { return *it; } 232 pointer operator-> () const { return it.operator->(); } 233 234 iterator & operator++ () { 235 if ( it == (*scopes)[level].map.end() ) { 236 if ( level == 0 ) return *this; 237 --level; 238 it = (*scopes)[level].map.begin(); 239 } else { 240 ++it; 241 } 242 return next_valid(); 243 } 244 iterator operator++ (int) { iterator tmp = *this; ++(*this); return tmp; } 245 246 iterator & operator-- () { 247 // may fail if this is the begin iterator; allowed by STL spec 248 if ( it == (*scopes)[level].map.begin() ) { 249 ++level; 250 it = (*scopes)[level].map.end(); 251 } 252 --it; 253 return prev_valid(); 254 } 255 iterator operator-- (int) { iterator tmp = *this; --(*this); return tmp; } 256 257 bool operator== (const iterator & that) const { 258 return scopes == that.scopes && level == that.level && it == that.it; 259 } 260 bool operator!= (const iterator & that) const { return !( *this == that ); } 261 262 size_type get_level() const { return level; } 263 264 Note & get_note() { return (*scopes)[level].note; } 265 const Note & get_note() const { return (*scopes)[level].note; } 266 267 private: 268 scope_list *scopes; 269 wrapped_iterator it; 270 size_type level; 271 }; 272 273 template<typename Key, typename Value, typename Note> 274 class ScopedMap<Key, Value, Note>::const_iterator : 275 public std::iterator< std::bidirectional_iterator_tag, value_type > { 276 friend class ScopedMap; 277 typedef typename ScopedMap::MapType::iterator wrapped_iterator; 278 typedef typename ScopedMap::MapType::const_iterator wrapped_const_iterator; 279 typedef typename ScopedMap::ScopeList scope_list; 280 typedef typename scope_list::size_type size_type; 281 282 /// Checks if this iterator points to a valid item 283 bool is_valid() const { 284 return it != (*scopes)[level].map.end(); 285 } 286 287 /// Increments on invalid 288 const_iterator & next_valid() { 289 if ( ! is_valid() ) { ++(*this); } 290 return *this; 291 } 292 293 /// Decrements on invalid 294 const_iterator & prev_valid() { 295 if ( ! is_valid() ) { --(*this); } 296 return *this; 297 } 298 299 const_iterator(scope_list const & _scopes, const wrapped_const_iterator & _it, size_type inLevel) 300 : scopes(&_scopes), it(_it), level(inLevel) {} 301 public: 302 const_iterator(const iterator & that) : scopes(that.scopes), it(that.it), level(that.level) {} 303 const_iterator(const const_iterator & that) : scopes(that.scopes), it(that.it), level(that.level) {} 304 const_iterator & operator= (const iterator & that) { 305 scopes = that.scopes; level = that.level; it = that.it; 306 return *this; 307 } 308 const_iterator & operator= (const const_iterator & that) { 309 scopes = that.scopes; level = that.level; it = that.it; 310 return *this; 311 } 312 313 const_reference operator* () { return *it; } 314 const_pointer operator-> () { return it.operator->(); } 315 316 const_iterator & operator++ () { 317 if ( it == (*scopes)[level].map.end() ) { 318 if ( level == 0 ) return *this; 319 --level; 320 it = (*scopes)[level].map.begin(); 321 } else { 322 ++it; 323 } 324 return next_valid(); 325 } 326 const_iterator operator++ (int) { const_iterator tmp = *this; ++(*this); return tmp; } 327 328 const_iterator & operator-- () { 329 // may fail if this is the begin iterator; allowed by STL spec 330 if ( it == (*scopes)[level].map.begin() ) { 331 ++level; 332 it = (*scopes)[level].map.end(); 333 } 334 --it; 335 return prev_valid(); 336 } 337 const_iterator operator-- (int) { const_iterator tmp = *this; --(*this); return tmp; } 338 339 bool operator== (const const_iterator & that) const { 340 return scopes == that.scopes && level == that.level && it == that.it; 341 } 342 bool operator!= (const const_iterator & that) const { return !( *this == that ); } 343 344 size_type get_level() const { return level; } 345 346 const Note & get_note() const { return (*scopes)[level].note; } 347 348 private: 349 scope_list const *scopes; 350 wrapped_const_iterator it; 351 size_type level; 345 352 }; 346 353 -
src/Common/SemanticError.h
r34b4268 r24d6572 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Wed May 4 14:08:26 202213 // Update Count : 3 512 // Last Modified On : Sat Feb 25 12:01:31 2023 13 // Update Count : 37 14 14 // 15 15 … … 54 54 55 55 constexpr WarningData WarningFormats[] = { 56 {"self-assign" , Severity::Warn , "self assignment of expression: %s" }, 57 {"reference-conversion" , Severity::Warn , "rvalue to reference conversion of rvalue: %s" }, 58 {"qualifiers-zero_t-one_t", Severity::Warn , "questionable use of type qualifier %s with %s" }, 59 {"aggregate-forward-decl" , Severity::Warn , "forward declaration of nested aggregate: %s" }, 60 {"superfluous-decl" , Severity::Warn , "declaration does not allocate storage: %s" }, 61 {"superfluous-else" , Severity::Warn , "else clause never executed for empty loop conditional" }, 62 {"gcc-attributes" , Severity::Warn , "invalid attribute: %s" }, 63 {"c++-like-copy" , Severity::Warn , "Constructor from reference is not a valid copy constructor" }, 56 {"self-assign" , Severity::Warn , "self assignment of expression: %s" }, 57 {"reference-conversion" , Severity::Warn , "rvalue to reference conversion of rvalue: %s" }, 58 {"qualifiers-zero_t-one_t" , Severity::Warn , "questionable use of type qualifier(s) with %s" }, 59 {"aggregate-forward-decl" , Severity::Warn , "forward declaration of nested aggregate: %s" }, 60 {"superfluous-decl" , Severity::Warn , "declaration does not allocate storage: %s" }, 61 {"superfluous-else" , Severity::Warn , "else clause never executed for empty loop conditional" }, 62 {"gcc-attributes" , Severity::Warn , "invalid attribute: %s" }, 63 {"c++-like-copy" , Severity::Warn , "Constructor from reference is not a valid copy constructor" }, 64 {"depreciated-trait-syntax" , Severity::Warn , "trait type-parameters are now specified using the forall clause" }, 64 65 }; 65 66 … … 73 74 GccAttributes, 74 75 CppCopy, 76 DeprecTraitSyntax, 75 77 NUMBER_OF_WARNINGS, // This MUST be the last warning 76 78 }; -
src/Common/module.mk
r34b4268 r24d6572 20 20 Common/CodeLocationTools.hpp \ 21 21 Common/CodeLocationTools.cpp \ 22 Common/CompilerError.h \23 Common/Debug.h \24 22 Common/DeclStats.hpp \ 25 23 Common/DeclStats.cpp \ 26 24 Common/ErrorObjects.h \ 27 25 Common/Eval.cc \ 26 Common/Eval.h \ 28 27 Common/Examine.cc \ 29 28 Common/Examine.h \ … … 31 30 Common/Indenter.h \ 32 31 Common/Indenter.cc \ 32 Common/Iterate.hpp \ 33 33 Common/PassVisitor.cc \ 34 34 Common/PassVisitor.h \ … … 52 52 Common/Stats/Time.cc \ 53 53 Common/Stats/Time.h \ 54 Common/ UnimplementedError.h\54 Common/ToString.hpp \ 55 55 Common/UniqueName.cc \ 56 56 Common/UniqueName.h \ -
src/Common/utility.h
r34b4268 r24d6572 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // utility.h -- 7 // utility.h -- General utilities used across the compiler. 8 8 // 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Apr 25 14:26:00 202213 // Update Count : 5 112 // Last Modified On : Fri Feb 17 15:25:00 2023 13 // Update Count : 53 14 14 // 15 15 … … 19 19 #include <cctype> 20 20 #include <algorithm> 21 #include <functional>22 21 #include <iostream> 23 #include <iterator>24 22 #include <list> 25 23 #include <memory> 26 #include <sstream>27 24 #include <string> 28 25 #include <type_traits> 29 #include <utility>30 26 #include <vector> 31 27 #include <cstring> // memcmp … … 49 45 return 0; 50 46 } // if 51 }52 53 template< typename T, typename U >54 struct maybeBuild_t {55 static T * doit( const U *orig ) {56 if ( orig ) {57 return orig->build();58 } else {59 return 0;60 } // if61 }62 };63 64 template< typename T, typename U >65 static inline T * maybeBuild( const U *orig ) {66 return maybeBuild_t<T,U>::doit(orig);67 }68 69 template< typename T, typename U >70 static inline T * maybeMoveBuild( const U *orig ) {71 T* ret = maybeBuild<T>(orig);72 delete orig;73 return ret;74 47 } 75 48 … … 168 141 splice( src, dst ); 169 142 dst.swap( src ); 170 }171 172 template < typename T >173 void toString_single( std::ostream & os, const T & value ) {174 os << value;175 }176 177 template < typename T, typename... Params >178 void toString_single( std::ostream & os, const T & value, const Params & ... params ) {179 os << value;180 toString_single( os, params ... );181 }182 183 template < typename ... Params >184 std::string toString( const Params & ... params ) {185 std::ostringstream os;186 toString_single( os, params... );187 return os.str();188 }189 190 #define toCString( ... ) toString( __VA_ARGS__ ).c_str()191 192 // replace element of list with all elements of another list193 template< typename T >194 void replace( std::list< T > &org, typename std::list< T >::iterator pos, std::list< T > &with ) {195 typename std::list< T >::iterator next = pos; advance( next, 1 );196 197 //if ( next != org.end() ) {198 org.erase( pos );199 org.splice( next, with );200 //}201 202 return;203 }204 205 // replace range of a list with a single element206 template< typename T >207 void replace( std::list< T > &org, typename std::list< T >::iterator begin, typename std::list< T >::iterator end, const T & with ) {208 org.insert( begin, with );209 org.erase( begin, end );210 143 } 211 144 … … 236 169 } 237 170 238 template< typename... Args >239 auto zip(Args&&... args) -> decltype(zipWith(std::forward<Args>(args)..., std::make_pair)) {240 return zipWith(std::forward<Args>(args)..., std::make_pair);241 }242 243 template< class InputIterator1, class InputIterator2, class OutputIterator, class BinFunction >244 void zipWith( InputIterator1 b1, InputIterator1 e1, InputIterator2 b2, InputIterator2 e2, OutputIterator out, BinFunction func ) {245 while ( b1 != e1 && b2 != e2 )246 *out++ = func(*b1++, *b2++);247 }248 249 // it's nice to actually be able to increment iterators by an arbitrary amount250 template< class InputIt, class Distance >251 InputIt operator+( InputIt it, Distance n ) {252 advance(it, n);253 return it;254 }255 256 template< typename T >257 void warn_single( const T & arg ) {258 std::cerr << arg << std::endl;259 }260 261 template< typename T, typename... Params >262 void warn_single(const T & arg, const Params & ... params ) {263 std::cerr << arg;264 warn_single( params... );265 }266 267 template< typename... Params >268 void warn( const Params & ... params ) {269 std::cerr << "Warning: ";270 warn_single( params... );271 }272 273 171 // determines if pref is a prefix of str 274 172 static inline bool isPrefix( const std::string & str, const std::string & pref, unsigned int start = 0 ) { 275 173 if ( pref.size() > str.size() ) return false; 276 return 0 == memcmp( str.c_str() + start, pref.c_str(), pref.size() ); 277 // return prefix == full.substr(0, prefix.size()); // for future, requires c++17 278 } 279 280 // ----------------------------------------------------------------------------- 281 // Ref Counted Singleton class 282 // Objects that inherit from this class will have at most one reference to it 283 // but if all references die, the object will be deleted. 284 285 template< typename ThisType > 286 class RefCountSingleton { 287 public: 288 static std::shared_ptr<ThisType> get() { 289 if( global_instance.expired() ) { 290 std::shared_ptr<ThisType> new_instance = std::make_shared<ThisType>(); 291 global_instance = new_instance; 292 return std::move(new_instance); 293 } 294 return global_instance.lock(); 295 } 296 private: 297 static std::weak_ptr<ThisType> global_instance; 298 }; 299 300 template< typename ThisType > 301 std::weak_ptr<ThisType> RefCountSingleton<ThisType>::global_instance; 174 return pref == str.substr(start, pref.size()); 175 } 302 176 303 177 // ----------------------------------------------------------------------------- … … 356 230 ~ValueGuardPtr() { if( ref ) { swap( *ref, old ); } } 357 231 }; 358 359 // -----------------------------------------------------------------------------360 // Helper struct and function to support361 // for ( val : reverseIterate( container ) ) {}362 // syntax to have a for each that iterates backwards363 364 template< typename T >365 struct reverse_iterate_t {366 T& ref;367 368 reverse_iterate_t( T & ref ) : ref(ref) {}369 370 // this does NOT work on const T!!!371 // typedef typename T::reverse_iterator iterator;372 auto begin() { return ref.rbegin(); }373 auto end() { return ref.rend(); }374 };375 376 template< typename T >377 reverse_iterate_t< T > reverseIterate( T & ref ) {378 return reverse_iterate_t< T >( ref );379 }380 381 template< typename T >382 struct enumerate_t {383 template<typename val_t>384 struct value_t {385 val_t & val;386 size_t idx;387 };388 389 template< typename iter_t, typename val_t >390 struct iterator_t {391 iter_t it;392 size_t idx;393 394 iterator_t( iter_t _it, size_t _idx ) : it(_it), idx(_idx) {}395 396 value_t<val_t> operator*() const { return value_t<val_t>{ *it, idx }; }397 398 bool operator==(const iterator_t & o) const { return o.it == it; }399 bool operator!=(const iterator_t & o) const { return o.it != it; }400 401 iterator_t & operator++() {402 it++;403 idx++;404 return *this;405 }406 407 using difference_type = typename std::iterator_traits< iter_t >::difference_type;408 using value_type = value_t<val_t>;409 using pointer = value_t<val_t> *;410 using reference = value_t<val_t> &;411 using iterator_category = std::forward_iterator_tag;412 };413 414 T & ref;415 416 using iterator = iterator_t< typename T::iterator, typename T::value_type >;417 using const_iterator = iterator_t< typename T::const_iterator, const typename T::value_type >;418 419 iterator begin() { return iterator( ref.begin(), 0 ); }420 iterator end() { return iterator( ref.end(), ref.size() ); }421 422 const_iterator begin() const { return const_iterator( ref.cbegin(), 0 ); }423 const_iterator end() const { return const_iterator( ref.cend(), ref.size() ); }424 425 const_iterator cbegin() const { return const_iterator( ref.cbegin(), 0 ); }426 const_iterator cend() const { return const_iterator( ref.cend(), ref.size() ); }427 };428 429 template< typename T >430 enumerate_t<T> enumerate( T & ref ) {431 return enumerate_t< T >{ ref };432 }433 434 template< typename T >435 const enumerate_t< const T > enumerate( const T & ref ) {436 return enumerate_t< const T >{ ref };437 }438 439 template< typename OutType, typename Range, typename Functor >440 OutType map_range( const Range& range, Functor&& functor ) {441 OutType out;442 443 std::transform(444 begin( range ),445 end( range ),446 std::back_inserter( out ),447 std::forward< Functor >( functor )448 );449 450 return out;451 }452 453 // -----------------------------------------------------------------------------454 // Helper struct and function to support:455 // for ( auto val : group_iterate( container1, container2, ... ) ) { ... }456 // This iteraters through multiple containers of the same size.457 458 template<typename... Args>459 class group_iterate_t {460 using Iterables = std::tuple<Args...>;461 Iterables iterables;462 463 // Getting the iterator and value types this way preserves const.464 template<size_t I> using Iter = decltype(std::get<I>(iterables).begin());465 template<size_t I> using Data = decltype(*std::get<I>(iterables).begin());466 template<typename> struct base_iterator;467 468 // This inner template puts the sequence of `0, 1, ... sizeof...(Args)-1`469 // into a pack. These are the indexes into the tuples, so unpacking can470 // go over each element of the tuple.471 // The std::integer_sequence is just used to build that sequence.472 // A library reference will probably explain it better than I can.473 template<std::size_t... Indices>474 struct base_iterator<std::integer_sequence<std::size_t, Indices...>> {475 using value_type = std::tuple< Data<Indices>... >;476 std::tuple<Iter<Indices>...> iterators;477 478 base_iterator( Iter<Indices>... is ) : iterators( is... ) {}479 base_iterator operator++() {480 return base_iterator( ++std::get<Indices>( iterators )... );481 }482 bool operator!=( const base_iterator& other ) const {483 return iterators != other.iterators;484 }485 value_type operator*() const {486 return std::tie( *std::get<Indices>( iterators )... );487 }488 489 static base_iterator make_begin( Iterables & data ) {490 return base_iterator( std::get<Indices>( data ).begin()... );491 }492 static base_iterator make_end( Iterables & data ) {493 return base_iterator( std::get<Indices>( data ).end()... );494 }495 };496 497 public:498 group_iterate_t( const Args &... args ) : iterables( args... ) {}499 500 using iterator = base_iterator<decltype(501 std::make_integer_sequence<std::size_t, sizeof...(Args)>())>;502 503 iterator begin() { return iterator::make_begin( iterables ); }504 iterator end() { return iterator::make_end( iterables ); }505 };506 507 // Helpers for the bounds checks (the non-varatic part of group_iterate):508 static inline void runGroupBoundsCheck(size_t size0, size_t size1) {509 assertf( size0 == size1,510 "group iteration requires containers of the same size: <%zd, %zd>.",511 size0, size1 );512 }513 514 static inline void runGroupBoundsCheck(size_t size0, size_t size1, size_t size2) {515 assertf( size0 == size1 && size1 == size2,516 "group iteration requires containers of the same size: <%zd, %zd, %zd>.",517 size0, size1, size2 );518 }519 520 /// Performs bounds check to ensure that all arguments are of the same length.521 template< typename... Args >522 group_iterate_t<Args...> group_iterate( Args &&... args ) {523 runGroupBoundsCheck( args.size()... );524 return group_iterate_t<Args...>( std::forward<Args>( args )... );525 }526 527 /// Does not perform a bounds check - requires user to ensure that iteration terminates when appropriate.528 template< typename... Args >529 group_iterate_t<Args...> unsafe_group_iterate( Args &&... args ) {530 return group_iterate_t<Args...>( std::forward<Args>( args )... );531 }532 533 // -----------------------------------------------------------------------------534 // Helper struct and function to support535 // for ( val : lazy_map( container1, f ) ) {}536 // syntax to have a for each that iterates a container, mapping each element by applying f537 template< typename T, typename Func >538 struct lambda_iterate_t {539 const T & ref;540 std::function<Func> f;541 542 struct iterator {543 typedef decltype(begin(ref)) Iter;544 Iter it;545 std::function<Func> f;546 iterator( Iter it, std::function<Func> f ) : it(it), f(f) {}547 iterator & operator++() {548 ++it; return *this;549 }550 bool operator!=( const iterator &other ) const { return it != other.it; }551 auto operator*() const -> decltype(f(*it)) { return f(*it); }552 };553 554 lambda_iterate_t( const T & ref, std::function<Func> f ) : ref(ref), f(f) {}555 556 auto begin() const -> decltype(iterator(std::begin(ref), f)) { return iterator(std::begin(ref), f); }557 auto end() const -> decltype(iterator(std::end(ref), f)) { return iterator(std::end(ref), f); }558 };559 560 template< typename... Args >561 lambda_iterate_t<Args...> lazy_map( const Args &... args ) {562 return lambda_iterate_t<Args...>( args...);563 }564 232 565 233 // ----------------------------------------------------------------------------- … … 583 251 } // ilog2 584 252 585 // -----------------------------------------------------------------------------586 /// evaluates expr as a long long int. If second is false, expr could not be evaluated587 std::pair<long long int, bool> eval(const Expression * expr);588 589 namespace ast {590 class Expr;591 }592 593 std::pair<long long int, bool> eval(const ast::Expr * expr);594 595 // -----------------------------------------------------------------------------596 /// Reorders the input range in-place so that the minimal-value elements according to the597 /// comparator are in front;598 /// returns the iterator after the last minimal-value element.599 template<typename Iter, typename Compare>600 Iter sort_mins( Iter begin, Iter end, Compare& lt ) {601 if ( begin == end ) return end;602 603 Iter min_pos = begin;604 for ( Iter i = begin + 1; i != end; ++i ) {605 if ( lt( *i, *min_pos ) ) {606 // new minimum cost; swap into first position607 min_pos = begin;608 std::iter_swap( min_pos, i );609 } else if ( ! lt( *min_pos, *i ) ) {610 // duplicate minimum cost; swap into next minimum position611 ++min_pos;612 std::iter_swap( min_pos, i );613 }614 }615 return ++min_pos;616 }617 618 template<typename Iter, typename Compare>619 inline Iter sort_mins( Iter begin, Iter end, Compare&& lt ) {620 return sort_mins( begin, end, lt );621 }622 623 /// sort_mins defaulted to use std::less624 template<typename Iter>625 inline Iter sort_mins( Iter begin, Iter end ) {626 return sort_mins( begin, end, std::less<typename std::iterator_traits<Iter>::value_type>{} );627 }628 629 253 // Local Variables: // 630 254 // tab-width: 4 // -
src/CompilationState.cc
r34b4268 r24d6572 9 9 // Author : Rob Schluntz 10 10 // Created On : Mon Ju1 30 10:47:01 2018 11 // Last Modified By : Henry Xue12 // Last Modified On : Tue Jul 20 04:27:35 202113 // Update Count : 511 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Apr 10 19:12:50 2023 13 // Update Count : 6 14 14 // 15 15 … … 27 27 expraltp = false, 28 28 genericsp = false, 29 invariant = false, 29 30 libcfap = false, 30 31 nopreludep = false, … … 33 34 useNewAST = true, 34 35 nomainp = false, 35 parsep = false,36 36 resolvep = false, 37 37 resolvprotop = false, -
src/CompilationState.h
r34b4268 r24d6572 9 9 // Author : Rob Schluntz 10 10 // Created On : Mon Ju1 30 10:47:01 2018 11 // Last Modified By : Henry Xue12 // Last Modified On : Tue Jul 20 04:27:35 202113 // Update Count : 511 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Apr 10 19:12:53 2023 13 // Update Count : 6 14 14 // 15 15 … … 26 26 expraltp, 27 27 genericsp, 28 invariant, 28 29 libcfap, 29 30 nopreludep, … … 32 33 useNewAST, 33 34 nomainp, 34 parsep,35 35 resolvep, 36 36 resolvprotop, -
src/Concurrency/KeywordsNew.cpp
r34b4268 r24d6572 779 779 780 780 const ast::Stmt * SuspendKeyword::postvisit( const ast::SuspendStmt * stmt ) { 781 switch ( stmt-> type) {781 switch ( stmt->kind ) { 782 782 case ast::SuspendStmt::None: 783 783 // Use the context to determain the implicit target. -
src/Concurrency/WaitforNew.cpp
r34b4268 r24d6572 305 305 306 306 const ast::VariableExpr * variableExpr = 307 clause->target _func.as<ast::VariableExpr>();307 clause->target.as<ast::VariableExpr>(); 308 308 ast::Expr * castExpr = new ast::CastExpr( 309 309 location, 310 310 new ast::CastExpr( 311 311 location, 312 clause->target _func,312 clause->target, 313 313 ast::deepCopy( variableExpr->result.get() ), 314 314 ast::GeneratedCast ), … … 325 325 326 326 ResolveContext context{ symtab, transUnit().global }; 327 out->push_back( maybeCond( location, clause-> cond.get(), {327 out->push_back( maybeCond( location, clause->when_cond.get(), { 328 328 makeAccStmt( location, acceptables, index, "is_dtor", 329 detectIsDtor( location, clause->target _func), context ),329 detectIsDtor( location, clause->target ), context ), 330 330 makeAccStmt( location, acceptables, index, "func", 331 331 funcExpr, context ), -
src/Concurrency/module.mk
r34b4268 r24d6572 16 16 17 17 SRC += \ 18 Concurrency/Actors.cpp \ 19 Concurrency/Actors.hpp \ 18 20 Concurrency/KeywordsNew.cpp \ 19 21 Concurrency/Keywords.cc \ … … 21 23 Concurrency/WaitforNew.cpp \ 22 24 Concurrency/Waitfor.cc \ 23 Concurrency/Waitfor.h 25 Concurrency/Waitfor.h \ 26 Concurrency/Waituntil.cpp \ 27 Concurrency/Waituntil.hpp -
src/ControlStruct/ExceptDeclNew.cpp
r34b4268 r24d6572 16 16 #include "ExceptDecl.h" 17 17 18 #include <sstream> 19 20 #include "AST/Copy.hpp" 18 21 #include "AST/Decl.hpp" 19 22 #include "AST/Pass.hpp" -
src/ControlStruct/ExceptTranslateNew.cpp
r34b4268 r24d6572 314 314 nullptr, 315 315 ast::Storage::Classes{}, 316 ast::Linkage::Cforall 316 ast::Linkage::Cforall, 317 {}, 318 { ast::Function::Inline } 317 319 ); 318 320 } -
src/ControlStruct/MLEMutator.cc
r34b4268 r24d6572 25 25 #include <memory> // for allocator_traits<>::value_... 26 26 27 #include "Common/ utility.h" // for toString, operator+27 #include "Common/ToString.hpp" // for toString 28 28 #include "ControlStruct/LabelGenerator.h" // for LabelGenerator 29 29 #include "MLEMutator.h" -
src/GenPoly/Box.cc
r34b4268 r24d6572 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 23:40:34 201913 // Update Count : 34 711 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Dec 19 16:36:00 2022 13 // Update Count : 348 14 14 // 15 16 #include "Box.h" 15 17 16 18 #include <algorithm> // for mismatch … … 24 26 #include <utility> // for pair 25 27 26 #include "Box.h"27 28 28 #include "CodeGen/OperatorTable.h" 29 29 #include "Common/PassVisitor.h" // for PassVisitor … … 31 31 #include "Common/SemanticError.h" // for SemanticError 32 32 #include "Common/UniqueName.h" // for UniqueName 33 #include "Common/ utility.h" // for toString33 #include "Common/ToString.hpp" // for toCString 34 34 #include "FindFunction.h" // for findFunction, findAndReplace... 35 35 #include "GenPoly/ErasableScopedMap.h" // for ErasableScopedMap<>::const_i... … … 37 37 #include "InitTweak/InitTweak.h" // for getFunctionName, isAssignment 38 38 #include "Lvalue.h" // for generalizedLvalue 39 #include "ResolvExpr/ typeops.h"// for typesCompatible39 #include "ResolvExpr/Unify.h" // for typesCompatible 40 40 #include "ScopedSet.h" // for ScopedSet, ScopedSet<>::iter... 41 41 #include "ScrubTyVars.h" // for ScrubTyVars … … 72 72 }; 73 73 74 /// Updates the call sites of polymorphic functions. 74 75 /// Replaces polymorphic return types with out-parameters, 75 76 /// replaces calls to polymorphic functions with adapter calls, 76 77 /// and adds appropriate type variables to the function call. 77 class Pass1 final : public BoxPass, public WithConstTypeSubstitution, public WithStmtsToAdd, public WithGuards, public WithVisitorRef<Pass1>, public WithShortCircuiting {78 class CallAdapter final : public BoxPass, public WithConstTypeSubstitution, public WithStmtsToAdd, public WithGuards, public WithVisitorRef<CallAdapter>, public WithShortCircuiting { 78 79 public: 79 Pass1(); 80 80 CallAdapter(); 81 82 void premutate( Declaration * declaration ); 81 83 void premutate( FunctionDecl * functionDecl ); 82 84 void premutate( TypeDecl * typeDecl ); … … 138 140 }; 139 141 142 /// Updates declarations (and types) that require adapters. 140 143 /// * Moves polymorphic returns in function types to pointer-type parameters 141 144 /// * adds type size and assertion parameters to parameter lists 142 struct Pass2final : public BoxPass, public WithGuards {145 struct DeclAdapter final : public BoxPass, public WithGuards { 143 146 void handleAggDecl(); 144 147 … … 210 213 }; 211 214 215 /// Erases unneeded/unwanted polymorphic information. 212 216 /// Replaces initialization of polymorphic values with alloca, 213 217 /// declaration of dtype/ftype with appropriate void expression, 214 218 /// sizeof expressions of polymorphic types with the proper variable, 215 219 /// and strips fields from generic struct declarations. 216 struct Pass3 final : public BoxPass, public WithGuards { 217 template< typename DeclClass > 218 void handleDecl( DeclClass * decl, Type * type ); 219 220 struct Eraser final { 220 221 void premutate( ObjectDecl * objectDecl ); 221 222 void premutate( FunctionDecl * functionDecl ); … … 223 224 void premutate( StructDecl * structDecl ); 224 225 void premutate( UnionDecl * unionDecl ); 225 void premutate( TypeDecl * typeDecl );226 void premutate( PointerType * pointerType );227 void premutate( FunctionType * funcType );228 226 }; 229 227 } // anonymous namespace … … 231 229 void box( std::list< Declaration *>& translationUnit ) { 232 230 PassVisitor<LayoutFunctionBuilder> layoutBuilder; 233 PassVisitor< Pass1> pass1;234 PassVisitor< Pass2> pass2;231 PassVisitor<CallAdapter> callAdapter; 232 PassVisitor<DeclAdapter> declAdapter; 235 233 PassVisitor<PolyGenericCalculator> polyCalculator; 236 PassVisitor< Pass3> pass3;234 PassVisitor<Eraser> eraser; 237 235 238 236 acceptAll( translationUnit, layoutBuilder ); 239 mutateAll( translationUnit, pass1);240 mutateAll( translationUnit, pass2);237 mutateAll( translationUnit, callAdapter ); 238 mutateAll( translationUnit, declAdapter ); 241 239 mutateAll( translationUnit, polyCalculator ); 242 mutateAll( translationUnit, pass3);240 mutateAll( translationUnit, eraser ); 243 241 } 244 242 245 ////////////////////////////////// LayoutFunctionBuilder ////////////////////////////////////////////243 ////////////////////////////////// LayoutFunctionBuilder //////////////////////////////////////// 246 244 247 245 /// Get a list of type declarations that will affect a layout function … … 423 421 } 424 422 425 ////////////////////////////////////////// Pass1 ////////////////////////////////////////////////////423 ////////////////////////////////////////////// CallAdapter ////////////////////////////////////// 426 424 427 425 namespace { 428 426 std::string makePolyMonoSuffix( FunctionType const * function, const TyVarMap &tyVars ) { 429 std::stringstream name;430 431 427 // NOTE: this function previously used isPolyObj, which failed to produce 432 428 // the correct thing in some situations. It's not clear to me why this wasn't working. … … 435 431 // to take those polymorphic types as pointers. Therefore, there can be two different functions 436 432 // with the same mangled name, so we need to further mangle the names. 433 std::stringstream name; 437 434 for ( DeclarationWithType const * const ret : function->returnVals ) { 438 if ( isPolyType( ret->get_type(), tyVars ) ) { 439 name << "P"; 440 } else { 441 name << "M"; 442 } 443 } 444 name << "_"; 435 name << ( isPolyType( ret->get_type(), tyVars ) ? 'P' : 'M' ); 436 } 437 name << '_'; 445 438 for ( DeclarationWithType const * const arg : function->parameters ) { 446 if ( isPolyType( arg->get_type(), tyVars ) ) { 447 name << "P"; 448 } else { 449 name << "M"; 450 } 451 } // for 439 name << ( isPolyType( arg->get_type(), tyVars ) ? 'P' : 'M' ); 440 } 452 441 return name.str(); 453 442 } … … 465 454 Type *replaceWithConcrete( Type *type, TypeSubstitution const * env, bool doClone = true ); 466 455 467 Pass1::Pass1() : tempNamer( "_temp" ) {} 468 469 void Pass1::premutate( FunctionDecl *functionDecl ) { 456 CallAdapter::CallAdapter() : tempNamer( "_temp" ) {} 457 458 void CallAdapter::premutate( Declaration * ) { 459 // Prevent type declaration information from leaking out. 460 GuardScope( scopeTyVars ); 461 } 462 463 void CallAdapter::premutate( FunctionDecl *functionDecl ) { 470 464 if ( functionDecl->get_statements() ) { // empty routine body ? 471 465 // std::cerr << "mutating function: " << functionDecl->get_mangleName() << std::endl; … … 500 494 for ( FunctionType const * const funType : functions ) { 501 495 std::string mangleName = mangleAdapterName( funType, scopeTyVars ); 502 if ( adapters.find( mangleName ) == adapters.end() ) {496 if ( !adapters.contains( mangleName ) ) { 503 497 std::string adapterName = makeAdapterName( mangleName ); 504 498 adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, new ObjectDecl( adapterName, Type::StorageClasses(), LinkageSpec::C, nullptr, new PointerType( Type::Qualifiers(), makeAdapterType( funType, scopeTyVars ) ), nullptr ) ) ); … … 509 503 } 510 504 511 void Pass1::premutate( TypeDecl *typeDecl ) {505 void CallAdapter::premutate( TypeDecl *typeDecl ) { 512 506 addToTyVarMap( typeDecl, scopeTyVars ); 513 507 } 514 508 515 void Pass1::premutate( CommaExpr *commaExpr ) {509 void CallAdapter::premutate( CommaExpr *commaExpr ) { 516 510 // Attempting to find application expressions that were mutated by the copy constructor passes 517 511 // to use an explicit return variable, so that the variable can be reused as a parameter to the … … 531 525 } 532 526 533 std::list< Expression *>::iterator Pass1::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) {527 std::list< Expression *>::iterator CallAdapter::passArgTypeVars( ApplicationExpr *appExpr, Type *parmType, Type *argBaseType, std::list< Expression *>::iterator arg, const TyVarMap &exprTyVars, std::set< std::string > &seenTypes ) { 534 528 Type *polyType = isPolyType( parmType, exprTyVars ); 535 529 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { … … 558 552 } 559 553 560 std::list< Expression *>::iterator Pass1::passTypeVars( ApplicationExpr *appExpr, Type *polyRetType, const TyVarMap &exprTyVars ) {554 std::list< Expression *>::iterator CallAdapter::passTypeVars( ApplicationExpr *appExpr, Type *polyRetType, const TyVarMap &exprTyVars ) { 561 555 assert( env ); 562 556 std::list< Expression *>::iterator arg = appExpr->args.begin(); … … 568 562 // even when converted to strings, sort in the original order. 569 563 // (At least, that is the best explination I have.) 570 for ( std::pair< std::string, TypeDecl::Data> const & tyParam : exprTyVars ) {564 for ( std::pair<const std::string, TypeDecl::Data> const & tyParam : exprTyVars ) { 571 565 if ( !tyParam.second.isComplete ) continue; 572 566 Type *concrete = env->lookup( tyParam.first ); … … 611 605 } 612 606 613 ObjectDecl * Pass1::makeTemporary( Type *type ) {607 ObjectDecl *CallAdapter::makeTemporary( Type *type ) { 614 608 ObjectDecl *newObj = new ObjectDecl( tempNamer.newName(), Type::StorageClasses(), LinkageSpec::C, 0, type, 0 ); 615 609 stmtsToAddBefore.push_back( new DeclStmt( newObj ) ); … … 617 611 } 618 612 619 Expression * Pass1::addRetParam( ApplicationExpr *appExpr, Type *retType ) {613 Expression *CallAdapter::addRetParam( ApplicationExpr *appExpr, Type *retType ) { 620 614 // Create temporary to hold return value of polymorphic function and produce that temporary as a result 621 615 // using a comma expression. … … 680 674 } 681 675 682 Expression * Pass1::addDynRetParam( ApplicationExpr *appExpr, Type *dynType ) {676 Expression *CallAdapter::addDynRetParam( ApplicationExpr *appExpr, Type *dynType ) { 683 677 Type *concrete = replaceWithConcrete( dynType, env ); 684 678 // add out-parameter for return value … … 686 680 } 687 681 688 Expression * Pass1::applyAdapter( ApplicationExpr *appExpr, FunctionType *function ) {682 Expression *CallAdapter::applyAdapter( ApplicationExpr *appExpr, FunctionType *function ) { 689 683 Expression *ret = appExpr; 690 684 if ( isDynRet( function, scopeTyVars ) ) { … … 735 729 } 736 730 737 void Pass1::boxParam( Expression *&arg, Type *param, const TyVarMap &exprTyVars ) {731 void CallAdapter::boxParam( Expression *&arg, Type *param, const TyVarMap &exprTyVars ) { 738 732 assertf( arg->result, "arg does not have result: %s", toString( arg ).c_str() ); 739 733 addCast( arg, param, exprTyVars ); … … 770 764 } 771 765 772 void Pass1::boxParams( ApplicationExpr *appExpr, std::list< Expression *>::iterator arg, FunctionType *function, const TyVarMap &exprTyVars ) {766 void CallAdapter::boxParams( ApplicationExpr *appExpr, std::list< Expression *>::iterator arg, FunctionType *function, const TyVarMap &exprTyVars ) { 773 767 for ( DeclarationWithType * param : function->parameters ) { 774 768 assertf( arg != appExpr->args.end(), "boxParams: missing argument for param %s to %s in %s", toString( param ).c_str(), toString( function ).c_str(), toString( appExpr ).c_str() ); … … 778 772 } 779 773 780 void Pass1::addInferredParams( ApplicationExpr *appExpr, std::list< Expression *>::iterator arg, FunctionType *functionType, const TyVarMap &tyVars ) {774 void CallAdapter::addInferredParams( ApplicationExpr *appExpr, std::list< Expression *>::iterator arg, FunctionType *functionType, const TyVarMap &tyVars ) { 781 775 for ( TypeDecl * const tyVar : functionType->forall ) { 782 776 for ( DeclarationWithType * const assert : tyVar->assertions ) { … … 846 840 } 847 841 848 FunctionDecl * Pass1::makeAdapter( FunctionType const *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) {842 FunctionDecl *CallAdapter::makeAdapter( FunctionType const *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars ) { 849 843 FunctionType *adapterType = makeAdapterType( adaptee, tyVars ); 850 844 adapterType = ScrubTyVars::scrub( adapterType, tyVars ); … … 906 900 } 907 901 908 void Pass1::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) {902 void CallAdapter::passAdapters( ApplicationExpr * appExpr, FunctionType * functionType, const TyVarMap & exprTyVars ) { 909 903 // collect a list of function types passed as parameters or implicit parameters (assertions) 910 904 std::list<FunctionType const *> functions; … … 923 917 924 918 for ( FunctionType const * const funType : functions ) { 925 FunctionType *originalFunction = funType->clone(); 926 FunctionType *realFunction = funType->clone(); 927 std::string mangleName = SymTab::Mangler::mangle( realFunction ); 919 std::string mangleName = SymTab::Mangler::mangle( funType ); 928 920 929 921 // only attempt to create an adapter or pass one as a parameter if we haven't already done so for this 930 922 // pre-substitution parameter function type. 931 923 // The second part of the insert result is "is the value new". 932 if ( adaptersDone.insert( mangleName ).second ) { 933 934 // apply substitution to type variables to figure out what the adapter's type should look like 935 assert( env ); 936 env->apply( realFunction ); 937 mangleName = SymTab::Mangler::mangle( realFunction ); 938 mangleName += makePolyMonoSuffix( originalFunction, exprTyVars ); 939 940 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter; 941 AdapterIter adapter = adapters.find( mangleName ); 942 if ( adapter == adapters.end() ) { 943 // adapter has not been created yet in the current scope, so define it 944 FunctionDecl *newAdapter = makeAdapter( funType, realFunction, mangleName, exprTyVars ); 945 std::pair< AdapterIter, bool > answer = adapters.insert( std::pair< std::string, DeclarationWithType *>( mangleName, newAdapter ) ); 946 adapter = answer.first; 947 stmtsToAddBefore.push_back( new DeclStmt( newAdapter ) ); 948 } // if 949 assert( adapter != adapters.end() ); 950 951 // add the appropriate adapter as a parameter 952 appExpr->get_args().push_front( new VariableExpr( adapter->second ) ); 924 if ( !adaptersDone.insert( mangleName ).second ) continue; 925 926 // Apply substitution to type variables to figure out what the adapter's type should look like. 927 assert( env ); 928 FunctionType *realType = funType->clone(); 929 env->apply( realType ); 930 mangleName = SymTab::Mangler::mangle( realType ); 931 mangleName += makePolyMonoSuffix( funType, exprTyVars ); 932 933 typedef ScopedMap< std::string, DeclarationWithType* >::iterator AdapterIter; 934 AdapterIter adapter = adapters.find( mangleName ); 935 if ( adapter == adapters.end() ) { 936 // Adapter has not been created yet in the current scope, so define it. 937 FunctionDecl *newAdapter = makeAdapter( funType, realType, mangleName, exprTyVars ); 938 std::pair< AdapterIter, bool > answer = adapters.insert( mangleName, newAdapter ); 939 adapter = answer.first; 940 stmtsToAddBefore.push_back( new DeclStmt( newAdapter ) ); 953 941 } // if 942 assert( adapter != adapters.end() ); 943 944 // Add the appropriate adapter as a parameter. 945 appExpr->args.push_front( new VariableExpr( adapter->second ) ); 954 946 } // for 955 947 } // passAdapters … … 974 966 } 975 967 976 Expression * Pass1::handleIntrinsics( ApplicationExpr *appExpr ) {968 Expression *CallAdapter::handleIntrinsics( ApplicationExpr *appExpr ) { 977 969 if ( VariableExpr *varExpr = dynamic_cast< VariableExpr *>( appExpr->function ) ) { 978 970 if ( varExpr->var->linkage == LinkageSpec::Intrinsic ) { … … 1097 1089 } 1098 1090 1099 Expression * Pass1::postmutate( ApplicationExpr *appExpr ) {1091 Expression *CallAdapter::postmutate( ApplicationExpr *appExpr ) { 1100 1092 // std::cerr << "mutate appExpr: " << InitTweak::getFunctionName( appExpr ) << std::endl; 1101 1093 // for ( auto tyVar : scopeTyVars ) { … … 1169 1161 } 1170 1162 1171 Expression * Pass1::postmutate( UntypedExpr *expr ) {1163 Expression * CallAdapter::postmutate( UntypedExpr *expr ) { 1172 1164 if ( isPolyDeref( expr, scopeTyVars, env ) ) { 1173 1165 Expression *ret = expr->args.front(); … … 1179 1171 } 1180 1172 1181 void Pass1::premutate( AddressExpr * ) { visit_children = false; }1182 1183 Expression * Pass1::postmutate( AddressExpr * addrExpr ) {1173 void CallAdapter::premutate( AddressExpr * ) { visit_children = false; } 1174 1175 Expression * CallAdapter::postmutate( AddressExpr * addrExpr ) { 1184 1176 assert( addrExpr->arg->result && ! addrExpr->arg->result->isVoid() ); 1185 1177 … … 1212 1204 } 1213 1205 1214 void Pass1::premutate( ReturnStmt *returnStmt ) {1206 void CallAdapter::premutate( ReturnStmt *returnStmt ) { 1215 1207 if ( retval && returnStmt->expr ) { 1216 1208 assert( returnStmt->expr->result && ! returnStmt->expr->result->isVoid() ); … … 1220 1212 } 1221 1213 1222 void Pass1::premutate( PointerType *pointerType ) {1214 void CallAdapter::premutate( PointerType *pointerType ) { 1223 1215 GuardScope( scopeTyVars ); 1224 1216 makeTyVarMap( pointerType, scopeTyVars ); 1225 1217 } 1226 1218 1227 void Pass1::premutate( FunctionType *functionType ) {1219 void CallAdapter::premutate( FunctionType *functionType ) { 1228 1220 GuardScope( scopeTyVars ); 1229 1221 makeTyVarMap( functionType, scopeTyVars ); 1230 1222 } 1231 1223 1232 void Pass1::beginScope() {1224 void CallAdapter::beginScope() { 1233 1225 adapters.beginScope(); 1234 1226 } 1235 1227 1236 void Pass1::endScope() {1228 void CallAdapter::endScope() { 1237 1229 adapters.endScope(); 1238 1230 } 1239 1231 1240 ////////////////////////////////////////// Pass2 ////////////////////////////////////////////////////1241 1242 void Pass2::addAdapters( FunctionType *functionType ) {1232 ////////////////////////////////////////// DeclAdapter ////////////////////////////////////////// 1233 1234 void DeclAdapter::addAdapters( FunctionType *functionType ) { 1243 1235 std::list< FunctionType const *> functions; 1244 1236 for ( DeclarationWithType * const arg : functionType->parameters ) { … … 1260 1252 } 1261 1253 1262 DeclarationWithType * Pass2::postmutate( FunctionDecl *functionDecl ) {1254 DeclarationWithType * DeclAdapter::postmutate( FunctionDecl *functionDecl ) { 1263 1255 FunctionType * ftype = functionDecl->type; 1264 1256 if ( ! ftype->returnVals.empty() && functionDecl->statements ) { … … 1285 1277 } 1286 1278 1287 void Pass2::premutate( StructDecl * ) {1279 void DeclAdapter::premutate( StructDecl * ) { 1288 1280 // prevent tyVars from leaking into containing scope 1289 1281 GuardScope( scopeTyVars ); 1290 1282 } 1291 1283 1292 void Pass2::premutate( UnionDecl * ) {1284 void DeclAdapter::premutate( UnionDecl * ) { 1293 1285 // prevent tyVars from leaking into containing scope 1294 1286 GuardScope( scopeTyVars ); 1295 1287 } 1296 1288 1297 void Pass2::premutate( TraitDecl * ) {1289 void DeclAdapter::premutate( TraitDecl * ) { 1298 1290 // prevent tyVars from leaking into containing scope 1299 1291 GuardScope( scopeTyVars ); 1300 1292 } 1301 1293 1302 void Pass2::premutate( TypeDecl *typeDecl ) {1294 void DeclAdapter::premutate( TypeDecl *typeDecl ) { 1303 1295 addToTyVarMap( typeDecl, scopeTyVars ); 1304 1296 } 1305 1297 1306 void Pass2::premutate( PointerType *pointerType ) {1298 void DeclAdapter::premutate( PointerType *pointerType ) { 1307 1299 GuardScope( scopeTyVars ); 1308 1300 makeTyVarMap( pointerType, scopeTyVars ); 1309 1301 } 1310 1302 1311 void Pass2::premutate( FunctionType *funcType ) {1303 void DeclAdapter::premutate( FunctionType *funcType ) { 1312 1304 GuardScope( scopeTyVars ); 1313 1305 makeTyVarMap( funcType, scopeTyVars ); … … 1393 1385 } 1394 1386 1395 ////////////////////////////////////////// PolyGenericCalculator //////////////////////////////// ////////////////////1387 ////////////////////////////////////////// PolyGenericCalculator //////////////////////////////// 1396 1388 1397 1389 PolyGenericCalculator::PolyGenericCalculator() … … 1474 1466 // make sure that any type information passed into the function is accounted for 1475 1467 for ( DeclarationWithType * const fnParam : funcType->get_parameters() ) { 1476 // condition here duplicates that in Pass2::mutate( FunctionType* )1468 // condition here duplicates that in DeclAdapter::mutate( FunctionType* ) 1477 1469 Type *polyType = isPolyType( fnParam->get_type(), scopeTyVars ); 1478 1470 if ( polyType && ! dynamic_cast< TypeInstType* >( polyType ) ) { … … 1501 1493 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType* >( ty ) ) { 1502 1494 // do not try to monomorphize generic parameters 1503 if ( scopeTyVars. find( typeInst->get_name() ) != scopeTyVars.end() && ! genericParams.count( typeInst->name ) ) {1495 if ( scopeTyVars.contains( typeInst->get_name() ) && ! genericParams.count( typeInst->name ) ) { 1504 1496 // polymorphic aggregate members should be converted into monomorphic members. 1505 1497 // Using char[size_T] here respects the expected sizing rules of an aggregate type. … … 1710 1702 1711 1703 if ( auto typeInst = dynamic_cast< TypeInstType const * >( ty ) ) { 1712 if ( scopeTyVars. find( typeInst->get_name() ) != scopeTyVars.end() ) {1704 if ( scopeTyVars.contains( typeInst->get_name() ) ) { 1713 1705 // NOTE assumes here that getting put in the scopeTyVars included having the layout variables set 1714 1706 return true; … … 1718 1710 // check if this type already has a layout generated for it 1719 1711 std::string typeName = mangleType( ty ); 1720 if ( knownLayouts. find( typeName ) != knownLayouts.end() ) return true;1712 if ( knownLayouts.contains( typeName ) ) return true; 1721 1713 1722 1714 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized … … 1755 1747 // check if this type already has a layout generated for it 1756 1748 std::string typeName = mangleType( ty ); 1757 if ( knownLayouts. find( typeName ) != knownLayouts.end() ) return true;1749 if ( knownLayouts.contains( typeName ) ) return true; 1758 1750 1759 1751 // check if any of the type parameters have dynamic layout; if none do, this type is (or will be) monomorphized … … 1846 1838 } else { 1847 1839 std::string offsetName = offsetofName( mangleType( ty ) ); 1848 if ( knownOffsets. find( offsetName ) != knownOffsets.end() ) {1840 if ( knownOffsets.contains( offsetName ) ) { 1849 1841 // use the already-generated offsets for this type 1850 1842 ret = new NameExpr( offsetName ); … … 1884 1876 } 1885 1877 1886 ////////////////////////////////////////// Pass3 //////////////////////////////////////////////////// 1887 1888 template< typename DeclClass > 1889 void Pass3::handleDecl( DeclClass * decl, Type * type ) { 1890 GuardScope( scopeTyVars ); 1891 makeTyVarMap( type, scopeTyVars ); 1892 ScrubTyVars::scrubAll( decl ); 1893 } 1894 1895 void Pass3::premutate( ObjectDecl * objectDecl ) { 1896 handleDecl( objectDecl, objectDecl->type ); 1897 } 1898 1899 void Pass3::premutate( FunctionDecl * functionDecl ) { 1900 handleDecl( functionDecl, functionDecl->type ); 1901 } 1902 1903 void Pass3::premutate( TypedefDecl * typedefDecl ) { 1904 handleDecl( typedefDecl, typedefDecl->base ); 1878 ////////////////////////////////////////// Eraser /////////////////////////////////////////////// 1879 1880 void Eraser::premutate( ObjectDecl * objectDecl ) { 1881 ScrubTyVars::scrubAll( objectDecl ); 1882 } 1883 1884 void Eraser::premutate( FunctionDecl * functionDecl ) { 1885 ScrubTyVars::scrubAll( functionDecl ); 1886 } 1887 1888 void Eraser::premutate( TypedefDecl * typedefDecl ) { 1889 ScrubTyVars::scrubAll( typedefDecl ); 1905 1890 } 1906 1891 1907 1892 /// Strips the members from a generic aggregate 1908 void stripGenericMembers(AggregateDecl * decl) {1893 static void stripGenericMembers( AggregateDecl * decl ) { 1909 1894 if ( ! decl->parameters.empty() ) decl->members.clear(); 1910 1895 } 1911 1896 1912 void Pass3::premutate( StructDecl * structDecl ) {1897 void Eraser::premutate( StructDecl * structDecl ) { 1913 1898 stripGenericMembers( structDecl ); 1914 1899 } 1915 1900 1916 void Pass3::premutate( UnionDecl * unionDecl ) {1901 void Eraser::premutate( UnionDecl * unionDecl ) { 1917 1902 stripGenericMembers( unionDecl ); 1918 }1919 1920 void Pass3::premutate( TypeDecl * typeDecl ) {1921 addToTyVarMap( typeDecl, scopeTyVars );1922 }1923 1924 void Pass3::premutate( PointerType * pointerType ) {1925 GuardScope( scopeTyVars );1926 makeTyVarMap( pointerType, scopeTyVars );1927 }1928 1929 void Pass3::premutate( FunctionType * functionType ) {1930 GuardScope( scopeTyVars );1931 makeTyVarMap( functionType, scopeTyVars );1932 1903 } 1933 1904 } // anonymous namespace … … 1939 1910 // compile-command: "make install" // 1940 1911 // End: // 1941 -
src/GenPoly/ErasableScopedMap.h
r34b4268 r24d6572 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // ScopedMap.h --7 // ErasableScopedMap.h -- 8 8 // 9 9 // Author : Aaron B. Moss … … 51 51 typedef typename Scope::const_pointer const_pointer; 52 52 53 // Both iterator types are complete bidirection iterators, definedbelow.53 // Both iterator types are complete bidirectional iterators, see below. 54 54 class iterator; 55 55 class const_iterator; … … 118 118 std::pair< iterator, bool > insert( const Key &key, const Value &value ) { return insert( std::make_pair( key, value ) ); } 119 119 120 Value& operator[] ( const Key &key ) { 121 iterator slot = find( key ); 122 if ( slot != end() ) return slot->second; 123 return insert( key, Value() ).first->second; 124 } 125 120 126 /// Marks the given element as erased from this scope inward; returns 1 for erased an element, 0 otherwise 121 127 size_type erase( const Key &key ) { … … 130 136 } 131 137 132 Value& operator[] ( const Key &key ) { 133 iterator slot = find( key ); 134 if ( slot != end() ) return slot->second; 135 return insert( key, Value() ).first->second; 138 bool contains( const Key & key ) const { 139 return find( key ) != cend(); 136 140 } 137 141 }; -
src/GenPoly/FindFunction.cc
r34b4268 r24d6572 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Rob Schluntz12 // Last Modified On : Fri Feb 05 12:22:20 201613 // Update Count : 611 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Oct 7 17:05:20 2022 13 // Update Count : 7 14 14 // 15 15 … … 18 18 #include <utility> // for pair 19 19 20 #include "AST/Pass.hpp" // for Pass 21 #include "AST/Type.hpp" 20 22 #include "Common/PassVisitor.h" // for PassVisitor 21 23 #include "GenPoly/ErasableScopedMap.h" // for ErasableScopedMap<>::iterator … … 89 91 handleForall( pointerType->get_forall() ); 90 92 } 93 94 namespace { 95 96 struct FindFunctionCore : 97 public ast::WithGuards, 98 public ast::WithShortCircuiting, 99 public ast::WithVisitorRef<FindFunctionCore> { 100 FindFunctionCore( 101 std::vector<ast::ptr<ast::FunctionType>> & functions, 102 const TypeVarMap & typeVars, FindFunctionPred predicate, 103 bool replaceMode ); 104 105 void previsit( ast::FunctionType const * type ); 106 ast::Type const * postvisit( ast::FunctionType const * type ); 107 void previsit( ast::PointerType const * type ); 108 private: 109 void handleForall( const ast::FunctionType::ForallList & forall ); 110 111 std::vector<ast::ptr<ast::FunctionType>> &functions; 112 TypeVarMap typeVars; 113 FindFunctionPred predicate; 114 bool replaceMode; 115 }; 116 117 FindFunctionCore::FindFunctionCore( 118 std::vector<ast::ptr<ast::FunctionType>> & functions, 119 const TypeVarMap &typeVars, FindFunctionPred predicate, 120 bool replaceMode ) : 121 functions( functions ), typeVars( typeVars ), 122 predicate( predicate ), replaceMode( replaceMode ) {} 123 124 void FindFunctionCore::handleForall( const ast::FunctionType::ForallList & forall ) { 125 for ( const ast::ptr<ast::TypeInstType> & td : forall ) { 126 TypeVarMap::iterator var = typeVars.find( *td ); 127 if ( var != typeVars.end() ) { 128 typeVars.erase( var->first ); 129 } // if 130 } // for 131 } 132 133 void FindFunctionCore::previsit( ast::FunctionType const * type ) { 134 visit_children = false; 135 GuardScope( typeVars ); 136 handleForall( type->forall ); 137 //ast::accept_all( type->returns, *visitor ); 138 // This might have to become ast::mutate_each with return. 139 ast::accept_each( type->returns, *visitor ); 140 } 141 142 ast::Type const * FindFunctionCore::postvisit( ast::FunctionType const * type ) { 143 ast::Type const * ret = type; 144 if ( predicate( type, typeVars ) ) { 145 functions.push_back( type ); 146 if ( replaceMode ) { 147 // replace type parameters in function type with void* 148 ret = scrubTypeVars( ast::deepCopy( type ), typeVars ); 149 } // if 150 } // if 151 return ret; 152 } 153 154 void FindFunctionCore::previsit( ast::PointerType const * /*type*/ ) { 155 GuardScope( typeVars ); 156 //handleForall( type->forall ); 157 } 158 159 } // namespace 160 161 void findFunction( const ast::Type * type, 162 std::vector<ast::ptr<ast::FunctionType>> & functions, 163 const TypeVarMap & typeVars, FindFunctionPred predicate ) { 164 ast::Pass<FindFunctionCore> pass( functions, typeVars, predicate, false ); 165 type->accept( pass ); 166 //(void)type; 167 //(void)functions; 168 //(void)typeVars; 169 //(void)predicate; 170 } 171 172 const ast::Type * findAndReplaceFunction( const ast::Type * type, 173 std::vector<ast::ptr<ast::FunctionType>> & functions, 174 const TypeVarMap & typeVars, FindFunctionPred predicate ) { 175 ast::Pass<FindFunctionCore> pass( functions, typeVars, predicate, true ); 176 return type->accept( pass ); 177 //(void)functions; 178 //(void)typeVars; 179 //(void)predicate; 180 //return type; 181 } 182 91 183 } // namespace GenPoly 92 184 -
src/GenPoly/FindFunction.h
r34b4268 r24d6572 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sat Jul 22 09:23:36 201713 // Update Count : 211 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Oct 7 10:30:00 2022 13 // Update Count : 3 14 14 // 15 15 … … 30 30 /// like `findFunction`, but also replaces the function type with void ()(void) 31 31 void findAndReplaceFunction( Type *&type, std::list< FunctionType const * > &functions, const TyVarMap &tyVars, FindFunctionPredicate predicate ); 32 33 typedef bool (*FindFunctionPred)( const ast::FunctionType *, const TypeVarMap & ); 34 35 /// Recursively walks `type`, placing all functions that match `predicate` 36 /// under `typeVars` into `functions`. 37 void findFunction( const ast::Type * type, 38 std::vector<ast::ptr<ast::FunctionType>> & functions, 39 const TypeVarMap & typeVars, FindFunctionPred predicate ); 40 /// Like findFunction, but also replaces the function type with `void ()(void)`. 41 const ast::Type * findAndReplaceFunction( const ast::Type * type, 42 std::vector<ast::ptr<ast::FunctionType>> & functions, 43 const TypeVarMap & typeVars, FindFunctionPred predicate ); 44 32 45 } // namespace GenPoly 33 46 -
src/GenPoly/GenPoly.cc
r34b4268 r24d6572 24 24 #include <vector> // for vector 25 25 26 #include "AST/Expr.hpp" 26 27 #include "AST/Type.hpp" 28 #include "AST/TypeSubstitution.hpp" 27 29 #include "GenPoly/ErasableScopedMap.h" // for ErasableScopedMap<>::const_it... 28 30 #include "ResolvExpr/typeops.h" // for flatten … … 170 172 171 173 if ( TypeInstType *typeInst = dynamic_cast< TypeInstType * >( type ) ) { 172 if ( tyVars. find( typeInst->get_name() ) != tyVars.end() ) {174 if ( tyVars.contains( typeInst->get_name() ) ) { 173 175 return type; 174 176 } … … 187 189 188 190 if ( auto typeInst = dynamic_cast< const ast::TypeInstType * >( type ) ) { 189 return tyVars.find(typeInst->typeString()) != tyVars.end() ? type : nullptr;191 if ( tyVars.contains( typeInst->typeString() ) ) return type; 190 192 } else if ( auto arrayType = dynamic_cast< const ast::ArrayType * >( type ) ) { 191 193 return isPolyType( arrayType->base, env ); … … 203 205 204 206 if ( auto inst = dynamic_cast< const ast::TypeInstType * >( type ) ) { 205 if ( typeVars. find( *inst ) != typeVars.end() ) return type;207 if ( typeVars.contains( *inst ) ) return type; 206 208 } else if ( auto array = dynamic_cast< const ast::ArrayType * >( type ) ) { 207 209 return isPolyType( array->base, subst ); … … 272 274 return (ReferenceToType*)isDynType( function->get_returnVals().front()->get_type(), forallTypes ); 273 275 } 276 277 const ast::BaseInstType *isDynRet( const ast::FunctionType * func ) { 278 if ( func->returns.empty() ) return nullptr; 279 280 TypeVarMap forallTypes = { ast::TypeData() }; 281 makeTypeVarMap( func, forallTypes ); 282 return isDynType( func->returns.front(), forallTypes ); 283 } 274 284 275 285 bool needsAdapter( FunctionType *adaptee, const TyVarMap &tyVars ) { … … 317 327 return 0; 318 328 } 329 330 const ast::Type * isPolyPtr( 331 const ast::Type * type, const TypeVarMap & typeVars, 332 const ast::TypeSubstitution * typeSubs ) { 333 type = replaceTypeInst( type, typeSubs ); 334 335 if ( auto * ptr = dynamic_cast<ast::PointerType const *>( type ) ) { 336 return isPolyType( ptr->base, typeVars, typeSubs ); 337 } 338 return nullptr; 339 } 319 340 320 341 Type * hasPolyBase( Type *type, int *levels, const TypeSubstitution *env ) { … … 391 412 392 413 if ( TypeInstType *typeInstType = dynamic_cast< TypeInstType * >( type ) ) { 393 if ( tyVars. find( typeInstType->get_name() ) != tyVars.end() ) {414 if ( tyVars.contains( typeInstType->get_name() ) ) { 394 415 return true; 395 416 } … … 490 511 } 491 512 513 /// Flattens a list of types. 514 // There is another flattenList in Unify. 492 515 void flattenList( vector<ast::ptr<ast::Type>> const & src, 493 516 vector<ast::ptr<ast::Type>> & out ) { … … 792 815 } 793 816 817 void addToTypeVarMap( const ast::TypeDecl * decl, TypeVarMap & typeVars ) { 818 typeVars.insert( ast::TypeEnvKey( decl, 0, 0 ), ast::TypeData( decl ) ); 819 } 820 794 821 void addToTypeVarMap( const ast::TypeInstType * type, TypeVarMap & typeVars ) { 795 typeVars.insert( *type, ast::TypeData( type->base ) );822 typeVars.insert( ast::TypeEnvKey( *type ), ast::TypeData( type->base ) ); 796 823 } 797 824 … … 818 845 } 819 846 847 void makeTypeVarMap( const ast::FunctionDecl * decl, TypeVarMap & typeVars ) { 848 for ( auto & typeDecl : decl->type_params ) { 849 addToTypeVarMap( typeDecl, typeVars ); 850 } 851 } 852 820 853 void printTyVarMap( std::ostream &os, const TyVarMap &tyVarMap ) { 821 854 for ( TyVarMap::const_iterator i = tyVarMap.begin(); i != tyVarMap.end(); ++i ) { -
src/GenPoly/GenPoly.h
r34b4268 r24d6572 111 111 void addToTyVarMap( TypeDecl * tyVar, TyVarMap &tyVarMap ); 112 112 void addToTypeVarMap( const ast::TypeDecl * type, TypeVarMap & typeVars ); 113 void addToTypeVarMap( const ast::TypeInstType * type, TypeVarMap & typeVars ); 113 114 114 115 /// Adds the declarations in the forall list of type (and its pointed-to type if it's a pointer type) to `tyVarMap` 115 116 void makeTyVarMap( Type *type, TyVarMap &tyVarMap ); 116 117 void makeTypeVarMap( const ast::Type * type, TypeVarMap & typeVars ); 118 void makeTypeVarMap( const ast::FunctionDecl * decl, TypeVarMap & typeVars ); 117 119 118 120 /// Prints type variable map -
src/GenPoly/InstantiateGeneric.cc
r34b4268 r24d6572 28 28 #include "GenPoly.h" // for isPolyType, typesPolyCompatible 29 29 #include "InitTweak/InitTweak.h" 30 #include "ResolvExpr/typeops.h" 30 #include "ResolvExpr/AdjustExprType.hpp" // for adjustExprType 31 #include "ResolvExpr/Unify.h" // for typesCompatible 31 32 #include "ScopedSet.h" // for ScopedSet, ScopedSet<>::iterator 32 33 #include "ScrubTyVars.h" // for ScrubTyVars -
src/GenPoly/InstantiateGenericNew.cpp
r34b4268 r24d6572 32 32 #include "GenPoly/GenPoly.h" // for isPolyType, typesPolyCompatible 33 33 #include "GenPoly/ScrubTyVars.h" // for scrubAll 34 #include "ResolvExpr/typeops.h" // for typesCompatible 34 #include "ResolvExpr/AdjustExprType.hpp" // for adjustExprType 35 #include "ResolvExpr/Unify.h" // for typesCompatible 35 36 36 37 namespace GenPoly { … … 361 362 ResolvExpr::typesCompatible( 362 363 memberExpr->result, 363 memberExpr->member->get_type() , ast::SymbolTable()) ) {364 memberExpr->member->get_type() ) ) { 364 365 return memberExpr; 365 366 } -
src/GenPoly/Lvalue.cc
r34b4268 r24d6572 17 17 #include <string> // for string 18 18 19 #include "Common/ToString.hpp" // for toCString 19 20 #include "Common/UniqueName.h" 20 21 #include "Common/PassVisitor.h" -
src/GenPoly/LvalueNew.cpp
r34b4268 r24d6572 25 25 #include "AST/Pass.hpp" 26 26 #include "Common/SemanticError.h" // for SemanticWarning 27 #include "Common/ToString.hpp" // for toCString 27 28 #include "Common/UniqueName.h" // for UniqueName 28 29 #include "GenPoly/GenPoly.h" // for genFunctionType … … 358 359 !ResolvExpr::typesCompatible( 359 360 srcType, 360 strict_dynamic_cast<ast::ReferenceType const *>( dstType )->base, 361 ast::SymbolTable() ) ) { 361 strict_dynamic_cast<ast::ReferenceType const *>( dstType )->base ) ) { 362 362 // Must keep cast if cast-to type is different from the actual type. 363 363 return ast::mutate_field( expr, &ast::CastExpr::arg, ret ); … … 376 376 if ( !ResolvExpr::typesCompatibleIgnoreQualifiers( 377 377 dstType->stripReferences(), 378 srcType->stripReferences(), 379 ast::SymbolTable() ) ) { 378 srcType->stripReferences() ) ) { 380 379 return ast::mutate_field( expr, &ast::CastExpr::arg, ret ); 381 380 } … … 392 391 ResolvExpr::typesCompatible( 393 392 expr->result, 394 expr->arg->result , ast::SymbolTable()) ) {393 expr->arg->result ) ) { 395 394 PRINT( 396 395 std::cerr << "types are compatible, removing cast: " << expr << '\n'; … … 589 588 ast::OpenVarSet openVars; 590 589 ResolvExpr::unify( ret->arg2->result, ret->arg3->result, newEnv, 591 needAssertions, haveAssertions, openVars, 592 ast::SymbolTable(), common ); 590 needAssertions, haveAssertions, openVars, common ); 593 591 ret->result = common ? common : ast::deepCopy( ret->arg2->result ); 594 592 return ret; -
src/GenPoly/ScopedSet.h
r34b4268 r24d6572 21 21 22 22 namespace GenPoly { 23 /// A set where the items are placed into nested scopes; 24 /// inserted items are placed into the innermost scope, lookup looks from the innermost scope outward 25 template<typename Value> 26 class ScopedSet { 27 typedef std::set< Value > Scope; 28 typedef std::vector< Scope > ScopeList; 29 30 ScopeList scopes; ///< scoped list of sets 31 public: 32 typedef typename Scope::key_type key_type; 33 typedef typename Scope::value_type value_type; 34 typedef typename ScopeList::size_type size_type; 35 typedef typename ScopeList::difference_type difference_type; 36 typedef typename Scope::reference reference; 37 typedef typename Scope::const_reference const_reference; 38 typedef typename Scope::pointer pointer; 39 typedef typename Scope::const_pointer const_pointer; 40 41 class iterator : public std::iterator< std::bidirectional_iterator_tag, 42 value_type > { 43 friend class ScopedSet; 44 friend class const_iterator; 45 typedef typename std::set< Value >::iterator wrapped_iterator; 46 typedef typename std::vector< std::set< Value > > scope_list; 47 typedef typename scope_list::size_type size_type; 48 49 /// Checks if this iterator points to a valid item 50 bool is_valid() const { 51 return it != (*scopes)[i].end(); 52 } 53 54 /// Increments on invalid 55 iterator& next_valid() { 56 if ( ! is_valid() ) { ++(*this); } 57 return *this; 58 } 59 60 /// Decrements on invalid 61 iterator& prev_valid() { 62 if ( ! is_valid() ) { --(*this); } 63 return *this; 64 } 65 66 iterator(scope_list const &_scopes, const wrapped_iterator &_it, size_type _i) 67 : scopes(&_scopes), it(_it), i(_i) {} 68 public: 69 iterator(const iterator &that) : scopes(that.scopes), it(that.it), i(that.i) {} 70 iterator& operator= (const iterator &that) { 71 scopes = that.scopes; i = that.i; it = that.it; 72 return *this; 73 } 74 75 reference operator* () { return *it; } 76 pointer operator-> () { return it.operator->(); } 77 78 iterator& operator++ () { 79 if ( it == (*scopes)[i].end() ) { 80 if ( i == 0 ) return *this; 81 --i; 82 it = (*scopes)[i].begin(); 83 } else { 84 ++it; 85 } 86 return next_valid(); 87 } 88 iterator operator++ (int) { iterator tmp = *this; ++(*this); return tmp; } 89 90 iterator& operator-- () { 91 // may fail if this is the begin iterator; allowed by STL spec 92 if ( it == (*scopes)[i].begin() ) { 93 ++i; 94 it = (*scopes)[i].end(); 95 } 96 --it; 97 return prev_valid(); 98 } 99 iterator operator-- (int) { iterator tmp = *this; --(*this); return tmp; } 100 101 bool operator== (const iterator &that) { 102 return scopes == that.scopes && i == that.i && it == that.it; 103 } 104 bool operator!= (const iterator &that) { return !( *this == that ); } 105 106 size_type get_level() const { return i; } 107 108 private: 109 scope_list const *scopes; 110 wrapped_iterator it; 111 size_type i; 112 }; 113 114 class const_iterator : public std::iterator< std::bidirectional_iterator_tag, 115 value_type > { 116 friend class ScopedSet; 117 typedef typename std::set< Value >::iterator wrapped_iterator; 118 typedef typename std::set< Value >::const_iterator wrapped_const_iterator; 119 typedef typename std::vector< std::set< Value > > scope_list; 120 typedef typename scope_list::size_type size_type; 121 122 /// Checks if this iterator points to a valid item 123 bool is_valid() const { 124 return it != (*scopes)[i].end(); 125 } 126 127 /// Increments on invalid 128 const_iterator& next_valid() { 129 if ( ! is_valid() ) { ++(*this); } 130 return *this; 131 } 132 133 /// Decrements on invalid 134 const_iterator& prev_valid() { 135 if ( ! is_valid() ) { --(*this); } 136 return *this; 137 } 138 139 const_iterator(scope_list const &_scopes, const wrapped_const_iterator &_it, size_type _i) 140 : scopes(&_scopes), it(_it), i(_i) {} 141 public: 142 const_iterator(const iterator &that) : scopes(that.scopes), it(that.it), i(that.i) {} 143 const_iterator(const const_iterator &that) : scopes(that.scopes), it(that.it), i(that.i) {} 144 const_iterator& operator= (const iterator &that) { 145 scopes = that.scopes; i = that.i; it = that.it; 146 return *this; 147 } 148 const_iterator& operator= (const const_iterator &that) { 149 scopes = that.scopes; i = that.i; it = that.it; 150 return *this; 151 } 152 153 const_reference operator* () { return *it; } 154 const_pointer operator-> () { return it.operator->(); } 155 156 const_iterator& operator++ () { 157 if ( it == (*scopes)[i].end() ) { 158 if ( i == 0 ) return *this; 159 --i; 160 it = (*scopes)[i].begin(); 161 } else { 162 ++it; 163 } 164 return next_valid(); 165 } 166 const_iterator operator++ (int) { const_iterator tmp = *this; ++(*this); return tmp; } 167 168 const_iterator& operator-- () { 169 // may fail if this is the begin iterator; allowed by STL spec 170 if ( it == (*scopes)[i].begin() ) { 171 ++i; 172 it = (*scopes)[i].end(); 173 } 174 --it; 175 return prev_valid(); 176 } 177 const_iterator operator-- (int) { const_iterator tmp = *this; --(*this); return tmp; } 178 179 bool operator== (const const_iterator &that) { 180 return scopes == that.scopes && i == that.i && it == that.it; 181 } 182 bool operator!= (const const_iterator &that) { return !( *this == that ); } 183 184 size_type get_level() const { return i; } 185 186 private: 187 scope_list const *scopes; 188 wrapped_const_iterator it; 189 size_type i; 190 }; 191 192 /// Starts a new scope 193 void beginScope() { 194 Scope scope; 195 scopes.push_back(scope); 196 } 197 198 /// Ends a scope; invalidates any iterators pointing to elements of that scope 199 void endScope() { 200 scopes.pop_back(); 201 } 202 203 /// Default constructor initializes with one scope 204 ScopedSet() { beginScope(); } 205 206 iterator begin() { return iterator(scopes, scopes.back().begin(), scopes.size()-1).next_valid(); } 207 const_iterator begin() const { return const_iterator(scopes, scopes.back().begin(), scopes.size()-1).next_valid(); } 208 const_iterator cbegin() const { return const_iterator(scopes, scopes.back().begin(), scopes.size()-1).next_valid(); } 209 iterator end() { return iterator(scopes, scopes[0].end(), 0); } 210 const_iterator end() const { return const_iterator(scopes, scopes[0].end(), 0); } 211 const_iterator cend() const { return const_iterator(scopes, scopes[0].end(), 0); } 212 213 /// Gets the index of the current scope (counted from 1) 214 size_type currentScope() const { return scopes.size(); } 215 216 /// Finds the given key in the outermost scope it occurs; returns end() for none such 217 iterator find( const Value &key ) { 218 for ( size_type i = scopes.size() - 1; ; --i ) { 219 typename Scope::iterator val = scopes[i].find( key ); 220 if ( val != scopes[i].end() ) return iterator( scopes, val, i ); 221 if ( i == 0 ) break; 222 } 223 return end(); 224 } 225 const_iterator find( const Value &key ) const { 226 return const_iterator( const_cast< ScopedSet< Value >* >(this)->find( key ) ); 227 } 228 229 /// Finds the given key in the outermost scope inside the given scope where it occurs 230 iterator findNext( const_iterator &it, const Value &key ) { 231 if ( it.i == 0 ) return end(); 23 24 /// A set where the items are placed into nested scopes; 25 /// inserted items are placed into the innermost scope, lookup looks from the innermost scope outward 26 template<typename Value> 27 class ScopedSet { 28 typedef std::set< Value > Scope; 29 typedef std::vector< Scope > ScopeList; 30 31 /// Scoped list of sets. 32 ScopeList scopes; 33 public: 34 typedef typename Scope::key_type key_type; 35 typedef typename Scope::value_type value_type; 36 typedef typename ScopeList::size_type size_type; 37 typedef typename ScopeList::difference_type difference_type; 38 typedef typename Scope::reference reference; 39 typedef typename Scope::const_reference const_reference; 40 typedef typename Scope::pointer pointer; 41 typedef typename Scope::const_pointer const_pointer; 42 43 // Both iterator types are complete bidirectional iterators, see below. 44 class iterator; 45 class const_iterator; 46 47 /// Starts a new scope 48 void beginScope() { 49 Scope scope; 50 scopes.push_back(scope); 51 } 52 53 /// Ends a scope; invalidates any iterators pointing to elements of that scope 54 void endScope() { 55 scopes.pop_back(); 56 } 57 58 /// Default constructor initializes with one scope 59 ScopedSet() { beginScope(); } 60 61 iterator begin() { return iterator(scopes, scopes.back().begin(), scopes.size()-1).next_valid(); } 62 const_iterator begin() const { return const_iterator(scopes, scopes.back().begin(), scopes.size()-1).next_valid(); } 63 const_iterator cbegin() const { return const_iterator(scopes, scopes.back().begin(), scopes.size()-1).next_valid(); } 64 iterator end() { return iterator(scopes, scopes[0].end(), 0); } 65 const_iterator end() const { return const_iterator(scopes, scopes[0].end(), 0); } 66 const_iterator cend() const { return const_iterator(scopes, scopes[0].end(), 0); } 67 68 /// Gets the index of the current scope (counted from 1) 69 size_type currentScope() const { return scopes.size(); } 70 71 /// Finds the given key in the outermost scope it occurs; returns end() for none such 72 iterator find( const Value &key ) { 73 for ( size_type i = scopes.size() - 1; ; --i ) { 74 typename Scope::iterator val = scopes[i].find( key ); 75 if ( val != scopes[i].end() ) return iterator( scopes, val, i ); 76 if ( i == 0 ) break; 77 } 78 return end(); 79 } 80 const_iterator find( const Value &key ) const { 81 return const_iterator( const_cast< ScopedSet< Value >* >(this)->find( key ) ); 82 } 83 84 /// Finds the given key in the outermost scope inside the given scope where it occurs 85 iterator findNext( const_iterator &it, const Value &key ) { 86 if ( it.i == 0 ) return end(); 232 87 for ( size_type i = it.i - 1; ; --i ) { 233 typename Scope::iterator val = scopes[i].find( key ); 234 if ( val != scopes[i].end() ) return iterator( scopes, val, i ); 235 if ( i == 0 ) break; 236 } 237 return end(); 238 } 239 const_iterator findNext( const_iterator &it, const Value &key ) const { 240 return const_iterator( const_cast< ScopedSet< Value >* >(this)->findNext( it, key ) ); 241 } 242 243 /// Inserts the given value into the outermost scope 244 std::pair< iterator, bool > insert( const value_type &value ) { 245 std::pair< typename Scope::iterator, bool > res = scopes.back().insert( value ); 246 return std::make_pair( iterator(scopes, res.first, scopes.size()-1), res.second ); 247 } 248 249 }; 88 typename Scope::iterator val = scopes[i].find( key ); 89 if ( val != scopes[i].end() ) return iterator( scopes, val, i ); 90 if ( i == 0 ) break; 91 } 92 return end(); 93 } 94 const_iterator findNext( const_iterator &it, const Value &key ) const { 95 return const_iterator( const_cast< ScopedSet< Value >* >(this)->findNext( it, key ) ); 96 } 97 98 /// Inserts the given value into the outermost scope 99 std::pair< iterator, bool > insert( const value_type &value ) { 100 std::pair< typename Scope::iterator, bool > res = scopes.back().insert( value ); 101 return std::make_pair( iterator(scopes, res.first, scopes.size()-1), res.second ); 102 } 103 104 bool contains( const Value & key ) const { 105 return find( key ) != cend(); 106 } 107 }; 108 109 template<typename Value> 110 class ScopedSet<Value>::iterator : 111 public std::iterator< std::bidirectional_iterator_tag, value_type > { 112 friend class ScopedSet; 113 friend class const_iterator; 114 typedef typename std::set< Value >::iterator wrapped_iterator; 115 typedef typename std::vector< std::set< Value > > scope_list; 116 typedef typename scope_list::size_type size_type; 117 118 /// Checks if this iterator points to a valid item 119 bool is_valid() const { 120 return it != (*scopes)[i].end(); 121 } 122 123 /// Increments on invalid 124 iterator& next_valid() { 125 if ( ! is_valid() ) { ++(*this); } 126 return *this; 127 } 128 129 /// Decrements on invalid 130 iterator& prev_valid() { 131 if ( ! is_valid() ) { --(*this); } 132 return *this; 133 } 134 135 iterator(scope_list const &_scopes, const wrapped_iterator &_it, size_type _i) 136 : scopes(&_scopes), it(_it), i(_i) {} 137 public: 138 iterator(const iterator &that) : scopes(that.scopes), it(that.it), i(that.i) {} 139 iterator& operator= (const iterator &that) { 140 scopes = that.scopes; i = that.i; it = that.it; 141 return *this; 142 } 143 144 reference operator* () { return *it; } 145 pointer operator-> () { return it.operator->(); } 146 147 iterator& operator++ () { 148 if ( it == (*scopes)[i].end() ) { 149 if ( i == 0 ) return *this; 150 --i; 151 it = (*scopes)[i].begin(); 152 } else { 153 ++it; 154 } 155 return next_valid(); 156 } 157 iterator operator++ (int) { iterator tmp = *this; ++(*this); return tmp; } 158 159 iterator& operator-- () { 160 // may fail if this is the begin iterator; allowed by STL spec 161 if ( it == (*scopes)[i].begin() ) { 162 ++i; 163 it = (*scopes)[i].end(); 164 } 165 --it; 166 return prev_valid(); 167 } 168 iterator operator-- (int) { iterator tmp = *this; --(*this); return tmp; } 169 170 bool operator== (const iterator &that) { 171 return scopes == that.scopes && i == that.i && it == that.it; 172 } 173 bool operator!= (const iterator &that) { return !( *this == that ); } 174 175 size_type get_level() const { return i; } 176 177 private: 178 scope_list const *scopes; 179 wrapped_iterator it; 180 size_type i; 181 }; 182 183 template<typename Value> 184 class ScopedSet<Value>::const_iterator : 185 public std::iterator< std::bidirectional_iterator_tag, value_type > { 186 friend class ScopedSet; 187 typedef typename std::set< Value >::iterator wrapped_iterator; 188 typedef typename std::set< Value >::const_iterator wrapped_const_iterator; 189 typedef typename std::vector< std::set< Value > > scope_list; 190 typedef typename scope_list::size_type size_type; 191 192 /// Checks if this iterator points to a valid item 193 bool is_valid() const { 194 return it != (*scopes)[i].end(); 195 } 196 197 /// Increments on invalid 198 const_iterator& next_valid() { 199 if ( ! is_valid() ) { ++(*this); } 200 return *this; 201 } 202 203 /// Decrements on invalid 204 const_iterator& prev_valid() { 205 if ( ! is_valid() ) { --(*this); } 206 return *this; 207 } 208 209 const_iterator(scope_list const &_scopes, const wrapped_const_iterator &_it, size_type _i) 210 : scopes(&_scopes), it(_it), i(_i) {} 211 public: 212 const_iterator(const iterator &that) : scopes(that.scopes), it(that.it), i(that.i) {} 213 const_iterator(const const_iterator &that) : scopes(that.scopes), it(that.it), i(that.i) {} 214 const_iterator& operator= (const iterator &that) { 215 scopes = that.scopes; i = that.i; it = that.it; 216 return *this; 217 } 218 const_iterator& operator= (const const_iterator &that) { 219 scopes = that.scopes; i = that.i; it = that.it; 220 return *this; 221 } 222 223 const_reference operator* () { return *it; } 224 const_pointer operator-> () { return it.operator->(); } 225 226 const_iterator& operator++ () { 227 if ( it == (*scopes)[i].end() ) { 228 if ( i == 0 ) return *this; 229 --i; 230 it = (*scopes)[i].begin(); 231 } else { 232 ++it; 233 } 234 return next_valid(); 235 } 236 const_iterator operator++ (int) { const_iterator tmp = *this; ++(*this); return tmp; } 237 238 const_iterator& operator-- () { 239 // may fail if this is the begin iterator; allowed by STL spec 240 if ( it == (*scopes)[i].begin() ) { 241 ++i; 242 it = (*scopes)[i].end(); 243 } 244 --it; 245 return prev_valid(); 246 } 247 const_iterator operator-- (int) { const_iterator tmp = *this; --(*this); return tmp; } 248 249 bool operator== (const const_iterator &that) { 250 return scopes == that.scopes && i == that.i && it == that.it; 251 } 252 bool operator!= (const const_iterator &that) { return !( *this == that ); } 253 254 size_type get_level() const { return i; } 255 256 private: 257 scope_list const *scopes; 258 wrapped_const_iterator it; 259 size_type i; 260 }; 261 250 262 } // namespace GenPoly 251 263 -
src/GenPoly/ScrubTyVars.cc
r34b4268 r24d6572 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Oct 7 15:42:00 202213 // Update Count : 512 // Last Modified On : Wed Dec 7 17:01:00 2022 13 // Update Count : 6 14 14 // 15 15 … … 117 117 namespace { 118 118 119 enum class ScrubMode {120 FromMap,121 DynamicFromMap,122 All,123 };124 125 119 struct ScrubTypeVars : 126 120 public ast::WithGuards, … … 184 178 185 179 ast::Type const * ScrubTypeVars::postvisit( ast::TypeInstType const * type ) { 180 ast::TypeDecl::Kind kind; 186 181 // This implies that mode == ScrubMode::All. 187 182 if ( !typeVars ) { 188 if ( ast::TypeDecl::Ftype == type->kind ) { 189 return new ast::PointerType( 190 new ast::FunctionType( ast::FixedArgs ) ); 191 } else { 192 return new ast::PointerType( 193 new ast::VoidType( type->qualifiers ) ); 194 } 195 } 196 197 auto typeVar = typeVars->find( *type ); 198 if ( typeVar == typeVars->end() ) { 199 return type; 200 } 201 202 switch ( typeVar->second.kind ) { 203 case ::TypeDecl::Dtype: 204 case ::TypeDecl::Ttype: 183 kind = type->kind; 184 } else { 185 // Otherwise, only scrub the type var if it is in map. 186 auto typeVar = typeVars->find( *type ); 187 if ( typeVar == typeVars->end() ) { 188 return type; 189 } 190 kind = typeVar->second.kind; 191 } 192 193 switch ( kind ) { 194 case ast::TypeDecl::Dtype: 195 case ast::TypeDecl::Ttype: 205 196 return new ast::PointerType( 206 197 new ast::VoidType( type->qualifiers ) ); 207 case ::TypeDecl::Ftype:198 case ast::TypeDecl::Ftype: 208 199 return new ast::PointerType( 209 200 new ast::FunctionType( ast::VariableArgs ) ); 210 201 default: 211 assertf( false, 212 "Unhandled type variable kind: %d", typeVar->second.kind ); 202 assertf( false, "Unhandled type variable kind: %d", kind ); 213 203 throw; // Just in case the assert is removed, stop here. 214 204 } … … 253 243 } 254 244 245 } // namespace 246 255 247 const ast::Node * scrubTypeVarsBase( 256 const ast::Node * target, 257 ScrubMode mode, const TypeVarMap * typeVars ) { 248 const ast::Node * node, const TypeVarMap * typeVars, ScrubMode mode ) { 258 249 if ( ScrubMode::All == mode ) { 259 250 assert( nullptr == typeVars ); … … 262 253 } 263 254 ast::Pass<ScrubTypeVars> visitor( mode, typeVars ); 264 return target->accept( visitor ); 265 } 266 267 } // namespace 268 269 template<> 270 ast::Node const * scrubTypeVars<ast::Node>( 271 const ast::Node * target, const TypeVarMap & typeVars ) { 272 return scrubTypeVarsBase( target, ScrubMode::FromMap, &typeVars ); 273 } 274 275 template<> 276 ast::Node const * scrubTypeVarsDynamic<ast::Node>( 277 ast::Node const * target, const TypeVarMap & typeVars ) { 278 return scrubTypeVarsBase( target, ScrubMode::DynamicFromMap, &typeVars ); 279 } 280 281 template<> 282 ast::Node const * scrubAllTypeVars<ast::Node>( const ast::Node * target ) { 283 return scrubTypeVarsBase( target, ScrubMode::All, nullptr ); 255 return node->accept( visitor ); 284 256 } 285 257 -
src/GenPoly/ScrubTyVars.h
r34b4268 r24d6572 10 10 // Created On : Mon May 18 07:44:20 2015 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Oct 7 15:51:00 202213 // Update Count : 412 // Last Modified On : Wed Dec 7 16:57:00 2022 13 // Update Count : 5 14 14 // 15 15 … … 109 109 } 110 110 111 // ScrubMode and scrubTypeVarsBase are internal. 112 enum class ScrubMode { FromMap, DynamicFromMap, All }; 113 114 const ast::Node * scrubTypeVarsBase( 115 const ast::Node * target, const TypeVarMap * typeVars, ScrubMode mode ); 116 117 111 118 /// For all polymorphic types with type variables in `typeVars`, 112 119 /// replaces generic types, dtypes, and ftypes with the appropriate void type, … … 116 123 node_t const * target, const TypeVarMap & typeVars ) { 117 124 return strict_dynamic_cast<node_t const *>( 118 scrubTypeVars <ast::Node>( target, typeVars) );125 scrubTypeVarsBase( target, &typeVars, ScrubMode::FromMap ) ); 119 126 } 120 127 … … 123 130 /// and sizeof/alignof expressions with the proper variable. 124 131 template<typename node_t> 125 ast::Nodeconst * scrubTypeVarsDynamic(132 node_t const * scrubTypeVarsDynamic( 126 133 node_t const * target, const TypeVarMap & typeVars ) { 127 134 return strict_dynamic_cast<node_t const *>( 128 scrubTypeVars Dynamic<ast::Node>( target, typeVars) );135 scrubTypeVarsBase( target, &typeVars, ScrubMode::DynamicFromMap ) ); 129 136 } 130 137 … … 134 141 node_t const * scrubAllTypeVars( node_t const * target ) { 135 142 return strict_dynamic_cast<node_t const *>( 136 scrub AllTypeVars<ast::Node>( target) );143 scrubTypeVarsBase( target, nullptr, ScrubMode::All ) ); 137 144 } 138 139 // We specialize for Node as a base case.140 template<>141 ast::Node const * scrubTypeVars<ast::Node>(142 const ast::Node * target, const TypeVarMap & typeVars );143 144 template<>145 ast::Node const * scrubTypeVarsDynamic<ast::Node>(146 ast::Node const * target, const TypeVarMap & typeVars );147 148 template<>149 ast::Node const * scrubAllTypeVars<ast::Node>( const ast::Node * target );150 145 151 146 } // namespace GenPoly -
src/GenPoly/SpecializeNew.cpp
r34b4268 r24d6572 16 16 #include "Specialize.h" 17 17 18 #include "AST/Copy.hpp" // for deepCopy 18 19 #include "AST/Inspect.hpp" // for isIntrinsicCallExpr 19 20 #include "AST/Pass.hpp" // for Pass -
src/InitTweak/FixInit.cc
r34b4268 r24d6572 32 32 #include "Common/PassVisitor.h" // for PassVisitor, WithStmtsToAdd 33 33 #include "Common/SemanticError.h" // for SemanticError 34 #include "Common/ToString.hpp" // for toCString 34 35 #include "Common/UniqueName.h" // for UniqueName 35 #include "Common/utility.h" // for CodeLocation, ValueGuard, toSt...36 36 #include "FixGlobalInit.h" // for fixGlobalInit 37 37 #include "GenInit.h" // for genCtorDtor … … 39 39 #include "InitTweak.h" // for getFunctionName, getCallArg 40 40 #include "ResolvExpr/Resolver.h" // for findVoidExpression 41 #include "ResolvExpr/ typeops.h"// for typesCompatible41 #include "ResolvExpr/Unify.h" // for typesCompatible 42 42 #include "SymTab/Autogen.h" // for genImplicitCall 43 43 #include "SymTab/Indexer.h" // for Indexer … … 1233 1233 } 1234 1234 1235 template< typename Visitor, typename... Params >1236 void error( Visitor & v, CodeLocation loc, const Params &... params ) {1237 SemanticErrorException err( loc, toString( params... ) );1238 v.errors.append( err );1239 }1240 1241 1235 template< typename... Params > 1242 1236 void GenStructMemberCalls::emit( CodeLocation loc, const Params &... params ) { 1243 // toggle warnings vs. errors here. 1244 // warn( params... ); 1245 error( *this, loc, params... ); 1237 SemanticErrorException err( loc, toString( params... ) ); 1238 errors.append( err ); 1246 1239 } 1247 1240 -
src/InitTweak/FixInitNew.cpp
r34b4268 r24d6572 14 14 #include <utility> // for pair 15 15 16 #include "AST/DeclReplacer.hpp" 17 #include "AST/Expr.hpp" 16 18 #include "AST/Inspect.hpp" // for getFunction, getPointerBase, g... 19 #include "AST/Node.hpp" 20 #include "AST/Pass.hpp" 21 #include "AST/Print.hpp" 22 #include "AST/SymbolTable.hpp" 23 #include "AST/Type.hpp" 17 24 #include "CodeGen/GenType.h" // for genPrettyType 18 25 #include "CodeGen/OperatorTable.h" 19 #include "Common/CodeLocationTools.hpp"20 26 #include "Common/PassVisitor.h" // for PassVisitor, WithStmtsToAdd 21 27 #include "Common/SemanticError.h" // for SemanticError 28 #include "Common/ToString.hpp" // for toCString 22 29 #include "Common/UniqueName.h" // for UniqueName 23 #include "Common/utility.h" // for CodeLocation, ValueGuard, toSt...24 30 #include "FixGlobalInit.h" // for fixGlobalInit 25 31 #include "GenInit.h" // for genCtorDtor 26 32 #include "GenPoly/GenPoly.h" // for getFunctionType 27 33 #include "ResolvExpr/Resolver.h" // for findVoidExpression 28 #include "ResolvExpr/ typeops.h"// for typesCompatible34 #include "ResolvExpr/Unify.h" // for typesCompatible 29 35 #include "SymTab/Autogen.h" // for genImplicitCall 36 #include "SymTab/GenImplicitCall.hpp" // for genImplicitCall 30 37 #include "SymTab/Indexer.h" // for Indexer 31 38 #include "SymTab/Mangler.h" // for Mangler … … 45 52 #include "Validate/FindSpecialDecls.h" // for dtorStmt, dtorStructDestroy 46 53 47 #include "AST/Expr.hpp"48 #include "AST/Node.hpp"49 #include "AST/Pass.hpp"50 #include "AST/Print.hpp"51 #include "AST/SymbolTable.hpp"52 #include "AST/Type.hpp"53 #include "AST/DeclReplacer.hpp"54 55 54 extern bool ctordtorp; // print all debug 56 55 extern bool ctorp; // print ctor debug … … 63 62 namespace InitTweak { 64 63 namespace { 64 65 // Shallow copy the pointer list for return. 66 std::vector<ast::ptr<ast::TypeDecl>> getGenericParams( const ast::Type * t ) { 67 if ( auto inst = dynamic_cast<const ast::StructInstType *>( t ) ) { 68 return inst->base->params; 69 } 70 if ( auto inst = dynamic_cast<const ast::UnionInstType *>( t ) ) { 71 return inst->base->params; 72 } 73 return {}; 74 } 75 76 /// Given type T, generate type of default ctor/dtor, i.e. function type void (*) (T &). 77 ast::FunctionDecl * genDefaultFunc( 78 const CodeLocation loc, 79 const std::string fname, 80 const ast::Type * paramType, 81 bool maybePolymorphic = true) { 82 std::vector<ast::ptr<ast::TypeDecl>> typeParams; 83 if ( maybePolymorphic ) typeParams = getGenericParams( paramType ); 84 auto dstParam = new ast::ObjectDecl( loc, 85 "_dst", 86 new ast::ReferenceType( paramType ), 87 nullptr, 88 {}, 89 ast::Linkage::Cforall 90 ); 91 return new ast::FunctionDecl( loc, 92 fname, 93 std::move(typeParams), 94 {dstParam}, 95 {}, 96 new ast::CompoundStmt(loc), 97 {}, 98 ast::Linkage::Cforall 99 ); 100 } 101 65 102 struct SelfAssignChecker { 66 103 void previsit( const ast::ApplicationExpr * appExpr ); … … 107 144 private: 108 145 /// hack to implement WithTypeSubstitution while conforming to mutation safety. 109 ast::TypeSubstitution * env ;110 bool envModified ;146 ast::TypeSubstitution * env = nullptr; 147 bool envModified = false; 111 148 }; 112 149 … … 121 158 void previsit( const ast::FunctionDecl * ) { visit_children = false; } 122 159 123 160 protected: 124 161 ObjectSet curVars; 125 162 }; … … 202 239 203 240 SemanticErrorException errors; 204 241 private: 205 242 template< typename... Params > 206 243 void emit( CodeLocation, const Params &... params ); … … 288 325 static UniqueName dtorNamer( "__cleanup_dtor" ); 289 326 std::string name = dtorNamer.newName(); 290 ast::FunctionDecl * dtorFunc = SymTab::genDefaultFunc( loc, name, objDecl->type->stripReferences(), false );327 ast::FunctionDecl * dtorFunc = genDefaultFunc( loc, name, objDecl->type->stripReferences(), false ); 291 328 stmtsToAdd.push_back( new ast::DeclStmt(loc, dtorFunc ) ); 292 329 … … 522 559 { 523 560 static UniqueName tempNamer("_tmp_cp"); 524 assert( env );525 561 const CodeLocation loc = impCpCtorExpr->location; 526 562 // CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *env << std::endl; ) … … 534 570 535 571 // xxx - this originally mutates arg->result in place. is it correct? 572 assert( env ); 536 573 result = env->applyFree( result.get() ).node; 537 574 auto mutResult = result.get_and_mutate(); … … 1080 1117 void InsertDtors::previsit( const ast::BranchStmt * stmt ) { 1081 1118 switch( stmt->kind ) { 1082 1083 1119 case ast::BranchStmt::Continue: 1120 case ast::BranchStmt::Break: 1084 1121 // could optimize the break/continue case, because the S_L-S_G check is unnecessary (this set should 1085 1122 // always be empty), but it serves as a small sanity check. 1086 1123 case ast::BranchStmt::Goto: 1087 1124 handleGoto( stmt ); 1088 1125 break; 1089 1126 default: 1090 1127 assert( false ); 1091 1128 } // switch … … 1303 1340 } 1304 1341 1305 template< typename Visitor, typename... Params >1306 void error( Visitor & v, CodeLocation loc, const Params &... params ) {1307 SemanticErrorException err( loc, toString( params... ) );1308 v.errors.append( err );1309 }1310 1311 1342 template< typename... Params > 1312 1343 void GenStructMemberCalls::emit( CodeLocation loc, const Params &... params ) { 1313 // toggle warnings vs. errors here. 1314 // warn( params... ); 1315 error( *this, loc, params... ); 1344 SemanticErrorException err( loc, toString( params... ) ); 1345 errors.append( err ); 1316 1346 } 1317 1347 … … 1319 1349 // xxx - functions returning ast::ptr seems wrong... 1320 1350 auto res = ResolvExpr::findVoidExpression( untypedExpr, { symtab, transUnit().global } ); 1321 // Fix CodeLocation (at least until resolver is fixed). 1322 auto fix = localFillCodeLocations( untypedExpr->location, res.release() ); 1323 return strict_dynamic_cast<const ast::Expr *>( fix ); 1351 return res.release(); 1324 1352 } 1325 1353 -
src/InitTweak/GenInit.cc
r34b4268 r24d6572 31 31 #include "Common/PassVisitor.h" // for PassVisitor, WithGuards, WithShort... 32 32 #include "Common/SemanticError.h" // for SemanticError 33 #include "Common/ToString.hpp" // for toCString 33 34 #include "Common/UniqueName.h" // for UniqueName 34 35 #include "Common/utility.h" // for ValueGuard, maybeClone … … 38 39 #include "ResolvExpr/Resolver.h" 39 40 #include "SymTab/Autogen.h" // for genImplicitCall 41 #include "SymTab/GenImplicitCall.hpp" // for genImplicitCall 40 42 #include "SymTab/Mangler.h" // for Mangler 41 43 #include "SynTree/LinkageSpec.h" // for isOverridable, C -
src/InitTweak/InitTweak.cc
r34b4268 r24d6572 35 35 #include "GenPoly/GenPoly.h" // for getFunctionType 36 36 #include "InitTweak.h" 37 #include "ResolvExpr/ typeops.h"// for typesCompatibleIgnoreQualifiers37 #include "ResolvExpr/Unify.h" // for typesCompatibleIgnoreQualifiers 38 38 #include "SymTab/Autogen.h" 39 39 #include "SymTab/Indexer.h" // for Indexer … … 1066 1066 const ast::Type * t2 = ftype->params.back(); 1067 1067 1068 return ResolvExpr::typesCompatibleIgnoreQualifiers( t1, t2 , ast::SymbolTable());1068 return ResolvExpr::typesCompatibleIgnoreQualifiers( t1, t2 ); 1069 1069 } 1070 1070 -
src/MakeLibCfaNew.cpp
r34b4268 r24d6572 16 16 #include "MakeLibCfa.h" 17 17 18 #include "AST/Copy.hpp" 18 19 #include "AST/Fwd.hpp" 19 20 #include "AST/Pass.hpp" -
src/Parser/DeclarationNode.cc
r34b4268 r24d6572 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 12:34:05 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Mon Aug 8 17:07:00 202213 // Update Count : 1 18511 // Last Modified By : Andrew Beach 12 // Last Modified On : Thr Apr 20 11:46:00 2023 13 // Update Count : 1393 14 14 // 15 16 #include "DeclarationNode.h" 15 17 16 18 #include <cassert> // for assert, assertf, strict_dynamic_cast … … 21 23 #include <string> // for string, operator+, allocator, char... 22 24 25 #include "AST/Attribute.hpp" // for Attribute 26 #include "AST/Copy.hpp" // for shallowCopy 27 #include "AST/Decl.hpp" // for Decl 28 #include "AST/Expr.hpp" // for Expr 29 #include "AST/Print.hpp" // for print 30 #include "AST/Stmt.hpp" // for AsmStmt, DirectiveStmt 31 #include "AST/StorageClasses.hpp" // for Storage::Class 32 #include "AST/Type.hpp" // for Type 33 #include "Common/CodeLocation.h" // for CodeLocation 34 #include "Common/Iterate.hpp" // for reverseIterate 23 35 #include "Common/SemanticError.h" // for SemanticError 24 36 #include "Common/UniqueName.h" // for UniqueName 25 #include "Common/utility.h" // for maybeClone, maybeBuild, CodeLocation 26 #include "Parser/ParseNode.h" // for DeclarationNode, ExpressionNode 27 #include "SynTree/LinkageSpec.h" // for Spec, linkageName, Cforall 28 #include "SynTree/Attribute.h" // for Attribute 29 #include "SynTree/Declaration.h" // for TypeDecl, ObjectDecl, InlineMemberDecl, Declaration 30 #include "SynTree/Expression.h" // for Expression, ConstantExpr 31 #include "SynTree/Statement.h" // for AsmStmt 32 #include "SynTree/Type.h" // for Type, Type::StorageClasses, Type::... 37 #include "Common/utility.h" // for maybeClone 38 #include "Parser/ExpressionNode.h" // for ExpressionNode 39 #include "Parser/InitializerNode.h"// for InitializerNode 40 #include "Parser/StatementNode.h" // for StatementNode 33 41 #include "TypeData.h" // for TypeData, TypeData::Aggregate_t 34 42 #include "TypedefTable.h" // for TypedefTable … … 41 49 42 50 // These must harmonize with the corresponding DeclarationNode enumerations. 43 const char * DeclarationNode::basicTypeNames[] = { "void", "_Bool", "char", "int", "int128", 44 "float", "double", "long double", "float80", "float128", 45 "_float16", "_float32", "_float32x", "_float64", "_float64x", "_float128", "_float128x", "NoBasicTypeNames" }; 46 const char * DeclarationNode::complexTypeNames[] = { "_Complex", "NoComplexTypeNames", "_Imaginary" }; // Imaginary unsupported => parse, but make invisible and print error message 47 const char * DeclarationNode::signednessNames[] = { "signed", "unsigned", "NoSignednessNames" }; 48 const char * DeclarationNode::lengthNames[] = { "short", "long", "long long", "NoLengthNames" }; 49 const char * DeclarationNode::builtinTypeNames[] = { "__builtin_va_list", "__auto_type", "zero_t", "one_t", "NoBuiltinTypeNames" }; 51 const char * DeclarationNode::basicTypeNames[] = { 52 "void", "_Bool", "char", "int", "int128", 53 "float", "double", "long double", "float80", "float128", 54 "_float16", "_float32", "_float32x", "_float64", "_float64x", "_float128", "_float128x", "NoBasicTypeNames" 55 }; 56 const char * DeclarationNode::complexTypeNames[] = { 57 "_Complex", "NoComplexTypeNames", "_Imaginary" 58 }; // Imaginary unsupported => parse, but make invisible and print error message 59 const char * DeclarationNode::signednessNames[] = { 60 "signed", "unsigned", "NoSignednessNames" 61 }; 62 const char * DeclarationNode::lengthNames[] = { 63 "short", "long", "long long", "NoLengthNames" 64 }; 65 const char * DeclarationNode::builtinTypeNames[] = { 66 "__builtin_va_list", "__auto_type", "zero_t", "one_t", "NoBuiltinTypeNames" 67 }; 50 68 51 69 UniqueName DeclarationNode::anonymous( "__anonymous" ); 52 70 53 extern LinkageSpec::Spec linkage; // defined in parser.yy71 extern ast::Linkage::Spec linkage; // defined in parser.yy 54 72 55 73 DeclarationNode::DeclarationNode() : … … 57 75 58 76 // variable.name = nullptr; 59 variable.tyClass = TypeDecl::NUMBER_OF_KINDS;77 variable.tyClass = ast::TypeDecl::NUMBER_OF_KINDS; 60 78 variable.assertions = nullptr; 61 79 variable.initializer = nullptr; 62 80 63 // attr.name = nullptr;64 attr.expr = nullptr;65 attr.type = nullptr;66 67 81 assert.condition = nullptr; 68 82 assert.message = nullptr; … … 70 84 71 85 DeclarationNode::~DeclarationNode() { 72 // delete attr.name;73 delete attr.expr;74 delete attr.type;75 76 86 // delete variable.name; 77 87 delete variable.assertions; 78 88 delete variable.initializer; 79 89 80 // 90 // delete type; 81 91 delete bitfieldWidth; 82 92 … … 103 113 newnode->hasEllipsis = hasEllipsis; 104 114 newnode->linkage = linkage; 105 newnode->asmName = maybeC lone( asmName );106 cloneAll( attributes, newnode->attributes );115 newnode->asmName = maybeCopy( asmName ); 116 newnode->attributes = attributes; 107 117 newnode->initializer = maybeClone( initializer ); 108 118 newnode->extension = extension; … … 115 125 newnode->variable.initializer = maybeClone( variable.initializer ); 116 126 117 // newnode->attr.name = attr.name ? new string( *attr.name ) : nullptr;118 newnode->attr.expr = maybeClone( attr.expr );119 newnode->attr.type = maybeClone( attr.type );120 121 127 newnode->assert.condition = maybeClone( assert.condition ); 122 newnode->assert.message = maybeC lone( assert.message );128 newnode->assert.message = maybeCopy( assert.message ); 123 129 return newnode; 124 130 } // DeclarationNode::clone … … 130 136 } // if 131 137 132 if ( linkage != LinkageSpec::Cforall ) {133 os << LinkageSpec::name( linkage ) << " ";134 } // if 135 136 storageClasses.print( os );137 funcSpecs.print( os );138 if ( linkage != ast::Linkage::Cforall ) { 139 os << ast::Linkage::name( linkage ) << " "; 140 } // if 141 142 ast::print( os, storageClasses ); 143 ast::print( os, funcSpecs ); 138 144 139 145 if ( type ) { … … 154 160 } // if 155 161 156 for ( Attribute * attr: reverseIterate( attributes ) ) { 157 os << string( indent + 2, ' ' ) << "attr " << attr->name.c_str(); 158 } // for 162 if ( ! attributes.empty() ) { 163 os << string( indent + 2, ' ' ) << "with attributes " << endl; 164 for ( ast::ptr<ast::Attribute> const & attr : reverseIterate( attributes ) ) { 165 os << string( indent + 4, ' ' ) << attr->name.c_str() << endl; 166 } // for 167 } // if 159 168 160 169 os << endl; … … 168 177 } 169 178 170 DeclarationNode * DeclarationNode::newStorageClass( Type::StorageClasses sc ) {179 DeclarationNode * DeclarationNode::newStorageClass( ast::Storage::Classes sc ) { 171 180 DeclarationNode * newnode = new DeclarationNode; 172 181 newnode->storageClasses = sc; … … 174 183 } // DeclarationNode::newStorageClass 175 184 176 DeclarationNode * DeclarationNode::newFuncSpecifier( Type::FuncSpecifiers fs ) {185 DeclarationNode * DeclarationNode::newFuncSpecifier( ast::Function::Specs fs ) { 177 186 DeclarationNode * newnode = new DeclarationNode; 178 187 newnode->funcSpecs = fs; … … 180 189 } // DeclarationNode::newFuncSpecifier 181 190 182 DeclarationNode * DeclarationNode::newTypeQualifier( Type::Qualifiers tq ) {191 DeclarationNode * DeclarationNode::newTypeQualifier( ast::CV::Qualifiers tq ) { 183 192 DeclarationNode * newnode = new DeclarationNode; 184 193 newnode->type = new TypeData(); … … 240 249 } 241 250 242 DeclarationNode * DeclarationNode::newAggregate( AggregateDecl::Aggregate kind, const string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body ) {251 DeclarationNode * DeclarationNode::newAggregate( ast::AggregateDecl::Aggregate kind, const string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body ) { 243 252 DeclarationNode * newnode = new DeclarationNode; 244 253 newnode->type = new TypeData( TypeData::Aggregate ); 245 254 newnode->type->aggregate.kind = kind; 246 newnode->type->aggregate.name = name == nullptr ? new string( DeclarationNode::anonymous.newName() ) : name; 255 newnode->type->aggregate.anon = name == nullptr; 256 newnode->type->aggregate.name = newnode->type->aggregate.anon ? new string( DeclarationNode::anonymous.newName() ) : name; 247 257 newnode->type->aggregate.actuals = actuals; 248 258 newnode->type->aggregate.fields = fields; … … 250 260 newnode->type->aggregate.tagged = false; 251 261 newnode->type->aggregate.parent = nullptr; 252 newnode->type->aggregate.anon = name == nullptr;253 262 return newnode; 254 263 } // DeclarationNode::newAggregate … … 257 266 DeclarationNode * newnode = new DeclarationNode; 258 267 newnode->type = new TypeData( TypeData::Enum ); 259 newnode->type->enumeration.name = name == nullptr ? new string( DeclarationNode::anonymous.newName() ) : name; 268 newnode->type->enumeration.anon = name == nullptr; 269 newnode->type->enumeration.name = newnode->type->enumeration.anon ? new string( DeclarationNode::anonymous.newName() ) : name; 260 270 newnode->type->enumeration.constants = constants; 261 271 newnode->type->enumeration.body = body; 262 newnode->type->enumeration.anon = name == nullptr;263 272 newnode->type->enumeration.typed = typed; 264 273 newnode->type->enumeration.hiding = hiding; 265 if ( base && base->type ) {274 if ( base && base->type ) { 266 275 newnode->type->base = base->type; 267 276 } // if … … 269 278 return newnode; 270 279 } // DeclarationNode::newEnum 271 272 273 280 274 281 DeclarationNode * DeclarationNode::newName( const string * name ) { … … 323 330 } // DeclarationNode::newFromTypeGen 324 331 325 DeclarationNode * DeclarationNode::newTypeParam( TypeDecl::Kind tc, const string * name ) {332 DeclarationNode * DeclarationNode::newTypeParam( ast::TypeDecl::Kind tc, const string * name ) { 326 333 DeclarationNode * newnode = newName( name ); 327 334 newnode->type = nullptr; … … 335 342 newnode->type = new TypeData( TypeData::Aggregate ); 336 343 newnode->type->aggregate.name = name; 337 newnode->type->aggregate.kind = AggregateDecl::Trait;344 newnode->type->aggregate.kind = ast::AggregateDecl::Trait; 338 345 newnode->type->aggregate.params = params; 339 346 newnode->type->aggregate.fields = asserts; … … 345 352 newnode->type = new TypeData( TypeData::AggregateInst ); 346 353 newnode->type->aggInst.aggregate = new TypeData( TypeData::Aggregate ); 347 newnode->type->aggInst.aggregate->aggregate.kind = AggregateDecl::Trait;354 newnode->type->aggInst.aggregate->aggregate.kind = ast::AggregateDecl::Trait; 348 355 newnode->type->aggInst.aggregate->aggregate.name = name; 349 356 newnode->type->aggInst.params = params; … … 380 387 newnode->type->array.dimension = size; 381 388 newnode->type->array.isStatic = isStatic; 382 if ( newnode->type->array.dimension == nullptr || newnode->type->array.dimension->isExpressionType< ConstantExpr *>() ) {389 if ( newnode->type->array.dimension == nullptr || newnode->type->array.dimension->isExpressionType<ast::ConstantExpr *>() ) { 383 390 newnode->type->array.isVarLen = false; 384 391 } else { … … 450 457 DeclarationNode * newnode = new DeclarationNode; 451 458 newnode->type = nullptr; 452 std:: list< Expression *> exprs;459 std::vector<ast::ptr<ast::Expr>> exprs; 453 460 buildList( expr, exprs ); 454 newnode->attributes.push_back( new Attribute( *name, exprs ) ); 461 newnode->attributes.push_back( 462 new ast::Attribute( *name, std::move( exprs ) ) ); 455 463 delete name; 456 464 return newnode; … … 469 477 } 470 478 471 DeclarationNode * DeclarationNode::newStaticAssert( ExpressionNode * condition, Expression* message ) {479 DeclarationNode * DeclarationNode::newStaticAssert( ExpressionNode * condition, ast::Expr * message ) { 472 480 DeclarationNode * newnode = new DeclarationNode; 473 481 newnode->assert.condition = condition; … … 476 484 } 477 485 478 479 void appendError( string & dst, const string & src ) { 486 static void appendError( string & dst, const string & src ) { 480 487 if ( src.empty() ) return; 481 488 if ( dst.empty() ) { dst = src; return; } … … 484 491 485 492 void DeclarationNode::checkQualifiers( const TypeData * src, const TypeData * dst ) { 486 const Type::Qualifiers qsrc = src->qualifiers, qdst = dst->qualifiers; // optimization 487 488 if ( (qsrc & qdst).any() ) { // duplicates ? 489 for ( unsigned int i = 0; i < Type::NumTypeQualifier; i += 1 ) { // find duplicates 490 if ( qsrc[i] && qdst[i] ) { 491 appendError( error, string( "duplicate " ) + Type::QualifiersNames[i] ); 492 } // if 493 } // for 493 const ast::CV::Qualifiers qsrc = src->qualifiers, qdst = dst->qualifiers; // optimization 494 const ast::CV::Qualifiers duplicates = qsrc & qdst; 495 496 if ( duplicates.any() ) { 497 std::stringstream str; 498 str << "duplicate "; 499 ast::print( str, duplicates ); 500 str << "qualifier(s)"; 501 appendError( error, str.str() ); 494 502 } // for 495 503 } // DeclarationNode::checkQualifiers 496 504 497 505 void DeclarationNode::checkSpecifiers( DeclarationNode * src ) { 498 if ( (funcSpecs & src->funcSpecs).any() ) { // duplicates ? 499 for ( unsigned int i = 0; i < Type::NumFuncSpecifier; i += 1 ) { // find duplicates 500 if ( funcSpecs[i] && src->funcSpecs[i] ) { 501 appendError( error, string( "duplicate " ) + Type::FuncSpecifiersNames[i] ); 502 } // if 503 } // for 504 } // if 505 506 if ( storageClasses.any() && src->storageClasses.any() ) { // any reason to check ? 507 if ( (storageClasses & src->storageClasses ).any() ) { // duplicates ? 508 for ( unsigned int i = 0; i < Type::NumStorageClass; i += 1 ) { // find duplicates 509 if ( storageClasses[i] && src->storageClasses[i] ) { 510 appendError( error, string( "duplicate " ) + Type::StorageClassesNames[i] ); 511 } // if 512 } // for 513 // src is the new item being added and has a single bit 514 } else if ( ! src->storageClasses.is_threadlocal_any() ) { // conflict ? 515 appendError( error, string( "conflicting " ) + Type::StorageClassesNames[storageClasses.ffs()] + 516 " & " + Type::StorageClassesNames[src->storageClasses.ffs()] ); 517 src->storageClasses.reset(); // FIX to preserve invariant of one basic storage specifier 518 } // if 506 ast::Function::Specs fsDups = funcSpecs & src->funcSpecs; 507 if ( fsDups.any() ) { 508 std::stringstream str; 509 str << "duplicate "; 510 ast::print( str, fsDups ); 511 str << "function specifier(s)"; 512 appendError( error, str.str() ); 513 } // if 514 515 // Skip if everything is unset. 516 if ( storageClasses.any() && src->storageClasses.any() ) { 517 ast::Storage::Classes dups = storageClasses & src->storageClasses; 518 // Check for duplicates. 519 if ( dups.any() ) { 520 std::stringstream str; 521 str << "duplicate "; 522 ast::print( str, dups ); 523 str << "storage class(es)"; 524 appendError( error, str.str() ); 525 // Check for conflicts. 526 } else if ( !src->storageClasses.is_threadlocal_any() ) { 527 std::stringstream str; 528 str << "conflicting "; 529 ast::print( str, ast::Storage::Classes( 1 << storageClasses.ffs() ) ); 530 str << "& "; 531 ast::print( str, ast::Storage::Classes( 1 << src->storageClasses.ffs() ) ); 532 str << "storage classes"; 533 appendError( error, str.str() ); 534 // FIX to preserve invariant of one basic storage specifier 535 src->storageClasses.reset(); 536 } 519 537 } // if 520 538 … … 526 544 storageClasses |= q->storageClasses; 527 545 528 for ( Attribute * attr: reverseIterate( q->attributes ) ) { 529 attributes.push_front( attr->clone() ); 530 } // for 546 std::vector<ast::ptr<ast::Attribute>> tmp; 547 tmp.reserve( q->attributes.size() ); 548 for ( auto const & attr : q->attributes ) { 549 tmp.emplace_back( ast::shallowCopy( attr.get() ) ); 550 } 551 spliceBegin( attributes, tmp ); 552 531 553 return this; 532 554 } // DeclarationNode::copySpecifiers … … 576 598 577 599 checkQualifiers( type, q->type ); 578 if ( (builtin == Zero || builtin == One) && q->type->qualifiers. val != 0&& error.length() == 0 ) {579 SemanticWarning( yylloc, Warning::BadQualifiersZeroOne, Type::QualifiersNames[ilog2( q->type->qualifiers.val )],builtinTypeNames[builtin] );600 if ( (builtin == Zero || builtin == One) && q->type->qualifiers.any() && error.length() == 0 ) { 601 SemanticWarning( yylloc, Warning::BadQualifiersZeroOne, builtinTypeNames[builtin] ); 580 602 } // if 581 603 addQualifiersToType( q->type, type ); … … 598 620 } else { 599 621 switch ( dst->kind ) { 600 622 case TypeData::Unknown: 601 623 src->qualifiers |= dst->qualifiers; 602 624 dst = src; 603 625 src = nullptr; 604 626 break; 605 627 case TypeData::Basic: 606 628 dst->qualifiers |= src->qualifiers; 607 629 if ( src->kind != TypeData::Unknown ) { … … 631 653 } // if 632 654 break; 633 655 default: 634 656 switch ( src->kind ) { 635 636 657 case TypeData::Aggregate: 658 case TypeData::Enum: 637 659 dst->base = new TypeData( TypeData::AggregateInst ); 638 660 dst->base->aggInst.aggregate = src; … … 643 665 src = nullptr; 644 666 break; 645 667 default: 646 668 if ( dst->forall ) { 647 669 dst->forall->appendList( src->forall ); … … 714 736 715 737 DeclarationNode * DeclarationNode::addAssertions( DeclarationNode * assertions ) { 716 if ( variable.tyClass != TypeDecl::NUMBER_OF_KINDS ) {717 718 719 720 721 722 738 if ( variable.tyClass != ast::TypeDecl::NUMBER_OF_KINDS ) { 739 if ( variable.assertions ) { 740 variable.assertions->appendList( assertions ); 741 } else { 742 variable.assertions = assertions; 743 } // if 744 return this; 723 745 } // if 724 746 725 747 assert( type ); 726 748 switch ( type->kind ) { 727 749 case TypeData::Symbolic: 728 750 if ( type->symbolic.assertions ) { 729 751 type->symbolic.assertions->appendList( assertions ); … … 732 754 } // if 733 755 break; 734 756 default: 735 757 assert( false ); 736 758 } // switch … … 796 818 DeclarationNode * DeclarationNode::copyAttribute( DeclarationNode * a ) { 797 819 if ( a ) { 798 for ( Attribute *attr: reverseIterate( a->attributes ) ) { 799 attributes.push_front( attr ); 800 } // for 820 spliceBegin( attributes, a->attributes ); 801 821 a->attributes.clear(); 802 822 } // if … … 831 851 if ( type ) { 832 852 switch ( type->kind ) { 833 834 853 case TypeData::Aggregate: 854 case TypeData::Enum: 835 855 p->type->base = new TypeData( TypeData::AggregateInst ); 836 856 p->type->base->aggInst.aggregate = type; … … 841 861 break; 842 862 843 863 default: 844 864 p->type->base = type; 845 865 } // switch … … 863 883 864 884 DeclarationNode * DeclarationNode::addNewArray( DeclarationNode * a ) { 865 885 if ( ! a ) return this; 866 886 assert( a->type->kind == TypeData::Array ); 867 887 TypeData * lastArray = findLast( a->type ); 868 888 if ( type ) { 869 889 switch ( type->kind ) { 870 871 890 case TypeData::Aggregate: 891 case TypeData::Enum: 872 892 lastArray->base = new TypeData( TypeData::AggregateInst ); 873 893 lastArray->base->aggInst.aggregate = type; … … 877 897 lastArray->base->qualifiers |= type->qualifiers; 878 898 break; 879 899 default: 880 900 lastArray->base = type; 881 901 } // switch … … 919 939 920 940 DeclarationNode * DeclarationNode::addTypeInitializer( DeclarationNode * init ) { 921 assertf( variable.tyClass != TypeDecl::NUMBER_OF_KINDS, "Called addTypeInitializer on something that isn't a type variable." );941 assertf( variable.tyClass != ast::TypeDecl::NUMBER_OF_KINDS, "Called addTypeInitializer on something that isn't a type variable." ); 922 942 variable.initializer = init; 923 943 return this; … … 983 1003 } 984 1004 985 void buildList( const DeclarationNode * firstNode, std::list< Declaration * > & outputList ) { 1005 // If a typedef wraps an anonymous declaration, name the inner declaration 1006 // so it has a consistent name across translation units. 1007 static void nameTypedefedDecl( 1008 DeclarationNode * innerDecl, 1009 const DeclarationNode * outerDecl ) { 1010 TypeData * outer = outerDecl->type; 1011 assert( outer ); 1012 // First make sure this is a typedef: 1013 if ( outer->kind != TypeData::Symbolic || !outer->symbolic.isTypedef ) { 1014 return; 1015 } 1016 TypeData * inner = innerDecl->type; 1017 assert( inner ); 1018 // Always clear any CVs associated with the aggregate: 1019 inner->qualifiers.reset(); 1020 // Handle anonymous aggregates: typedef struct { int i; } foo 1021 if ( inner->kind == TypeData::Aggregate && inner->aggregate.anon ) { 1022 delete inner->aggregate.name; 1023 inner->aggregate.name = new string( "__anonymous_" + *outerDecl->name ); 1024 inner->aggregate.anon = false; 1025 assert( outer->base ); 1026 delete outer->base->aggInst.aggregate->aggregate.name; 1027 outer->base->aggInst.aggregate->aggregate.name = new string( "__anonymous_" + *outerDecl->name ); 1028 outer->base->aggInst.aggregate->aggregate.anon = false; 1029 outer->base->aggInst.aggregate->qualifiers.reset(); 1030 // Handle anonymous enumeration: typedef enum { A, B, C } foo 1031 } else if ( inner->kind == TypeData::Enum && inner->enumeration.anon ) { 1032 delete inner->enumeration.name; 1033 inner->enumeration.name = new string( "__anonymous_" + *outerDecl->name ); 1034 inner->enumeration.anon = false; 1035 assert( outer->base ); 1036 delete outer->base->aggInst.aggregate->enumeration.name; 1037 outer->base->aggInst.aggregate->enumeration.name = new string( "__anonymous_" + *outerDecl->name ); 1038 outer->base->aggInst.aggregate->enumeration.anon = false; 1039 // No qualifiers.reset() here. 1040 } 1041 } 1042 1043 // This code handles a special issue with the attribute transparent_union. 1044 // 1045 // typedef union U { int i; } typedef_name __attribute__(( aligned(16) )) __attribute__(( transparent_union )) 1046 // 1047 // Here the attribute aligned goes with the typedef_name, so variables declared of this type are 1048 // aligned. However, the attribute transparent_union must be moved from the typedef_name to 1049 // alias union U. Currently, this is the only know attribute that must be moved from typedef to 1050 // alias. 1051 static void moveUnionAttribute( ast::Decl * decl, ast::UnionDecl * unionDecl ) { 1052 if ( auto typedefDecl = dynamic_cast<ast::TypedefDecl *>( decl ) ) { 1053 // Is the typedef alias a union aggregate? 1054 if ( nullptr == unionDecl ) return; 1055 1056 // If typedef is an alias for a union, then its alias type was hoisted above and remembered. 1057 if ( auto unionInstType = typedefDecl->base.as<ast::UnionInstType>() ) { 1058 auto instType = ast::mutate( unionInstType ); 1059 // Remove all transparent_union attributes from typedef and move to alias union. 1060 for ( auto attr = instType->attributes.begin() ; attr != instType->attributes.end() ; ) { 1061 assert( *attr ); 1062 if ( (*attr)->name == "transparent_union" || (*attr)->name == "__transparent_union__" ) { 1063 unionDecl->attributes.emplace_back( attr->release() ); 1064 attr = instType->attributes.erase( attr ); 1065 } else { 1066 attr++; 1067 } 1068 } 1069 typedefDecl->base = instType; 1070 } 1071 } 1072 } 1073 1074 // Get the non-anonymous name of the instance type of the declaration, 1075 // if one exists. 1076 static const std::string * getInstTypeOfName( ast::Decl * decl ) { 1077 if ( auto dwt = dynamic_cast<ast::DeclWithType *>( decl ) ) { 1078 if ( auto aggr = dynamic_cast<ast::BaseInstType const *>( dwt->get_type() ) ) { 1079 if ( aggr->name.find("anonymous") == std::string::npos ) { 1080 return &aggr->name; 1081 } 1082 } 1083 } 1084 return nullptr; 1085 } 1086 1087 void buildList( DeclarationNode * firstNode, 1088 std::vector<ast::ptr<ast::Decl>> & outputList ) { 986 1089 SemanticErrorException errors; 987 std::back_insert_iterator< std::list< Declaration * >> out( outputList );988 989 for ( const DeclarationNode * cur = firstNode ; cur; cur = dynamic_cast< DeclarationNode * >( cur->get_next()) ) {1090 std::back_insert_iterator<std::vector<ast::ptr<ast::Decl>>> out( outputList ); 1091 1092 for ( const DeclarationNode * cur = firstNode ; cur ; cur = strict_next( cur ) ) { 990 1093 try { 991 bool extracted = false; 992 bool anon = false; 1094 bool extracted_named = false; 1095 ast::UnionDecl * unionDecl = nullptr; 1096 993 1097 if ( DeclarationNode * extr = cur->extractAggregate() ) { 994 // handle the case where a structure declaration is contained within an object or type declaration 995 Declaration * decl = extr->build(); 996 if ( decl ) { 997 // hoist the structure declaration 998 decl->location = cur->location; 999 * out++ = decl; 1098 assert( cur->type ); 1099 nameTypedefedDecl( extr, cur ); 1100 1101 if ( ast::Decl * decl = extr->build() ) { 1102 // Remember the declaration if it is a union aggregate ? 1103 unionDecl = dynamic_cast<ast::UnionDecl *>( decl ); 1104 1105 *out++ = decl; 1000 1106 1001 1107 // need to remember the cases where a declaration contains an anonymous aggregate definition 1002 extracted = true;1003 1108 assert( extr->type ); 1004 1109 if ( extr->type->kind == TypeData::Aggregate ) { 1005 anon = extr->type->aggregate.anon; 1110 // typedef struct { int A } B is the only case? 1111 extracted_named = !extr->type->aggregate.anon; 1006 1112 } else if ( extr->type->kind == TypeData::Enum ) { 1007 // xxx - is it useful to have an implicit anonymous enum member? 1008 anon = extr->type->enumeration.anon; 1113 // typedef enum { A } B is the only case? 1114 extracted_named = !extr->type->enumeration.anon; 1115 } else { 1116 extracted_named = true; 1009 1117 } 1010 1118 } // if … … 1012 1120 } // if 1013 1121 1014 Declaration * decl = cur->build(); 1015 if ( decl ) { 1016 // don't include anonymous declaration for named aggregates, but do include them for anonymous aggregates, e.g.: 1017 // struct S { 1018 // struct T { int x; }; // no anonymous member 1019 // struct { int y; }; // anonymous member 1020 // struct T; // anonymous member 1021 // }; 1022 if ( ! (extracted && decl->name == "" && ! anon && ! cur->get_inLine()) ) { 1023 if ( decl->name == "" ) { 1024 if ( DeclarationWithType * dwt = dynamic_cast<DeclarationWithType *>( decl ) ) { 1025 if ( ReferenceToType * aggr = dynamic_cast<ReferenceToType *>( dwt->get_type() ) ) { 1026 if ( aggr->name.find("anonymous") == std::string::npos ) { 1027 if ( ! cur->get_inLine() ) { 1028 // temporary: warn about anonymous member declarations of named types, since 1029 // this conflicts with the syntax for the forward declaration of an anonymous type 1030 SemanticWarning( cur->location, Warning::AggrForwardDecl, aggr->name.c_str() ); 1031 } // if 1032 } // if 1033 } // if 1034 } // if 1035 } // if 1036 decl->location = cur->location; 1037 *out++ = decl; 1122 if ( ast::Decl * decl = cur->build() ) { 1123 moveUnionAttribute( decl, unionDecl ); 1124 1125 if ( "" == decl->name && !cur->get_inLine() ) { 1126 // Don't include anonymous declaration for named aggregates, 1127 // but do include them for anonymous aggregates, e.g.: 1128 // struct S { 1129 // struct T { int x; }; // no anonymous member 1130 // struct { int y; }; // anonymous member 1131 // struct T; // anonymous member 1132 // }; 1133 if ( extracted_named ) { 1134 continue; 1135 } 1136 1137 if ( auto name = getInstTypeOfName( decl ) ) { 1138 // Temporary: warn about anonymous member declarations of named types, since 1139 // this conflicts with the syntax for the forward declaration of an anonymous type. 1140 SemanticWarning( cur->location, Warning::AggrForwardDecl, name->c_str() ); 1141 } 1038 1142 } // if 1143 *out++ = decl; 1039 1144 } // if 1040 } catch ( SemanticErrorException & e ) {1145 } catch ( SemanticErrorException & e ) { 1041 1146 errors.append( e ); 1042 1147 } // try … … 1049 1154 1050 1155 // currently only builds assertions, function parameters, and return values 1051 void buildList( const DeclarationNode * firstNode, std::list< DeclarationWithType *> & outputList ) {1156 void buildList( DeclarationNode * firstNode, std::vector<ast::ptr<ast::DeclWithType>> & outputList ) { 1052 1157 SemanticErrorException errors; 1053 std::back_insert_iterator< std::list< DeclarationWithType * >> out( outputList );1054 1055 for ( const DeclarationNode * cur = firstNode; cur; cur = dynamic_cast< DeclarationNode * >( cur->get_next()) ) {1158 std::back_insert_iterator<std::vector<ast::ptr<ast::DeclWithType>>> out( outputList ); 1159 1160 for ( const DeclarationNode * cur = firstNode; cur; cur = strict_next( cur ) ) { 1056 1161 try { 1057 Declaration* decl = cur->build();1058 assert ( decl);1059 if ( DeclarationWithType * dwt = dynamic_cast< DeclarationWithType *>( decl ) ) {1162 ast::Decl * decl = cur->build(); 1163 assertf( decl, "buildList: build for ast::DeclWithType." ); 1164 if ( ast::DeclWithType * dwt = dynamic_cast<ast::DeclWithType *>( decl ) ) { 1060 1165 dwt->location = cur->location; 1061 1166 *out++ = dwt; 1062 } else if ( StructDecl * agg = dynamic_cast< StructDecl *>( decl ) ) {1167 } else if ( ast::StructDecl * agg = dynamic_cast<ast::StructDecl *>( decl ) ) { 1063 1168 // e.g., int foo(struct S) {} 1064 StructInstType * inst = new StructInstType( Type::Qualifiers(),agg->name );1065 auto obj = new ObjectDecl( "", Type::StorageClasses(), linkage, nullptr, inst, nullptr);1066 obj->l ocation = cur->location;1169 auto inst = new ast::StructInstType( agg->name ); 1170 auto obj = new ast::ObjectDecl( cur->location, "", inst ); 1171 obj->linkage = linkage; 1067 1172 *out++ = obj; 1068 1173 delete agg; 1069 } else if ( UnionDecl * agg = dynamic_cast< UnionDecl *>( decl ) ) {1174 } else if ( ast::UnionDecl * agg = dynamic_cast<ast::UnionDecl *>( decl ) ) { 1070 1175 // e.g., int foo(union U) {} 1071 UnionInstType * inst = new UnionInstType( Type::Qualifiers(), agg->name ); 1072 auto obj = new ObjectDecl( "", Type::StorageClasses(), linkage, nullptr, inst, nullptr ); 1073 obj->location = cur->location; 1176 auto inst = new ast::UnionInstType( agg->name ); 1177 auto obj = new ast::ObjectDecl( cur->location, 1178 "", inst, nullptr, ast::Storage::Classes(), 1179 linkage ); 1074 1180 *out++ = obj; 1075 } else if ( EnumDecl * agg = dynamic_cast< EnumDecl *>( decl ) ) {1181 } else if ( ast::EnumDecl * agg = dynamic_cast<ast::EnumDecl *>( decl ) ) { 1076 1182 // e.g., int foo(enum E) {} 1077 EnumInstType * inst = new EnumInstType( Type::Qualifiers(), agg->name ); 1078 auto obj = new ObjectDecl( "", Type::StorageClasses(), linkage, nullptr, inst, nullptr ); 1079 obj->location = cur->location; 1183 auto inst = new ast::EnumInstType( agg->name ); 1184 auto obj = new ast::ObjectDecl( cur->location, 1185 "", 1186 inst, 1187 nullptr, 1188 ast::Storage::Classes(), 1189 linkage 1190 ); 1080 1191 *out++ = obj; 1192 } else { 1193 assertf( false, "buildList: Could not convert to ast::DeclWithType." ); 1081 1194 } // if 1082 } catch ( SemanticErrorException & e ) {1195 } catch ( SemanticErrorException & e ) { 1083 1196 errors.append( e ); 1084 1197 } // try … … 1090 1203 } // buildList 1091 1204 1092 void buildTypeList( const DeclarationNode * firstNode, std::list< Type * > & outputList ) { 1205 void buildTypeList( const DeclarationNode * firstNode, 1206 std::vector<ast::ptr<ast::Type>> & outputList ) { 1093 1207 SemanticErrorException errors; 1094 std::back_insert_iterator< std::list< Type * > > out( outputList ); 1095 const DeclarationNode * cur = firstNode; 1096 1097 while ( cur ) { 1208 std::back_insert_iterator<std::vector<ast::ptr<ast::Type>>> out( outputList ); 1209 1210 for ( const DeclarationNode * cur = firstNode ; cur ; cur = strict_next( cur ) ) { 1098 1211 try { 1099 1212 * out++ = cur->buildType(); 1100 } catch ( SemanticErrorException & e ) {1213 } catch ( SemanticErrorException & e ) { 1101 1214 errors.append( e ); 1102 1215 } // try 1103 cur = dynamic_cast< DeclarationNode * >( cur->get_next() ); 1104 } // while 1216 } // for 1105 1217 1106 1218 if ( ! errors.isEmpty() ) { … … 1109 1221 } // buildTypeList 1110 1222 1111 Declaration* DeclarationNode::build() const {1223 ast::Decl * DeclarationNode::build() const { 1112 1224 if ( ! error.empty() ) SemanticError( this, error + " in declaration of " ); 1113 1225 1114 1226 if ( asmStmt ) { 1115 return new AsmDecl( strict_dynamic_cast<AsmStmt *>( asmStmt->build() ) ); 1227 auto stmt = strict_dynamic_cast<ast::AsmStmt *>( asmStmt->build() ); 1228 return new ast::AsmDecl( stmt->location, stmt ); 1116 1229 } // if 1117 1230 if ( directiveStmt ) { 1118 return new DirectiveDecl( strict_dynamic_cast<DirectiveStmt *>( directiveStmt->build() ) ); 1119 } // if 1120 1121 if ( variable.tyClass != TypeDecl::NUMBER_OF_KINDS ) { 1231 auto stmt = strict_dynamic_cast<ast::DirectiveStmt *>( directiveStmt->build() ); 1232 return new ast::DirectiveDecl( stmt->location, stmt ); 1233 } // if 1234 1235 if ( variable.tyClass != ast::TypeDecl::NUMBER_OF_KINDS ) { 1122 1236 // otype is internally converted to dtype + otype parameters 1123 static const TypeDecl::Kind kindMap[] = { TypeDecl::Dtype, TypeDecl::Dtype, TypeDecl::Dtype, TypeDecl::Ftype, TypeDecl::Ttype,TypeDecl::Dimension };1124 static_assert( sizeof(kindMap) / sizeof(kindMap[0]) == TypeDecl::NUMBER_OF_KINDS, "DeclarationNode::build: kindMap is out of sync." );1237 static const ast::TypeDecl::Kind kindMap[] = { ast::TypeDecl::Dtype, ast::TypeDecl::Dtype, ast::TypeDecl::Dtype, ast::TypeDecl::Ftype, ast::TypeDecl::Ttype, ast::TypeDecl::Dimension }; 1238 static_assert( sizeof(kindMap) / sizeof(kindMap[0]) == ast::TypeDecl::NUMBER_OF_KINDS, "DeclarationNode::build: kindMap is out of sync." ); 1125 1239 assertf( variable.tyClass < sizeof(kindMap)/sizeof(kindMap[0]), "Variable's tyClass is out of bounds." ); 1126 TypeDecl * ret = new TypeDecl( *name, Type::StorageClasses(), nullptr, kindMap[ variable.tyClass ], variable.tyClass == TypeDecl::Otype || variable.tyClass == TypeDecl::DStype, variable.initializer ? variable.initializer->buildType() : nullptr ); 1127 buildList( variable.assertions, ret->get_assertions() ); 1240 ast::TypeDecl * ret = new ast::TypeDecl( location, 1241 *name, 1242 ast::Storage::Classes(), 1243 (ast::Type *)nullptr, 1244 kindMap[ variable.tyClass ], 1245 variable.tyClass == ast::TypeDecl::Otype || variable.tyClass == ast::TypeDecl::DStype, 1246 variable.initializer ? variable.initializer->buildType() : nullptr 1247 ); 1248 buildList( variable.assertions, ret->assertions ); 1128 1249 return ret; 1129 1250 } // if … … 1147 1268 } // if 1148 1269 bool isDelete = initializer && initializer->get_isDelete(); 1149 Declaration * decl = buildDecl( type, name ? *name : string( "" ), storageClasses, maybeBuild< Expression >( bitfieldWidth ), funcSpecs, linkage, asmName, isDelete ? nullptr : maybeBuild< Initializer >(initializer), attributes )->set_extension( extension ); 1270 ast::Decl * decl = buildDecl( 1271 type, 1272 name ? *name : string( "" ), 1273 storageClasses, 1274 maybeBuild( bitfieldWidth ), 1275 funcSpecs, 1276 linkage, 1277 asmName, 1278 isDelete ? nullptr : maybeBuild( initializer ), 1279 copy( attributes ) 1280 )->set_extension( extension ); 1150 1281 if ( isDelete ) { 1151 DeclarationWithType * dwt = strict_dynamic_cast<DeclarationWithType *>( decl );1282 auto dwt = strict_dynamic_cast<ast::DeclWithType *>( decl ); 1152 1283 dwt->isDeleted = true; 1153 1284 } … … 1156 1287 1157 1288 if ( assert.condition ) { 1158 return new StaticAssertDecl( maybeBuild< Expression >( assert.condition ), strict_dynamic_cast< ConstantExpr * >( maybeClone( assert.message ) ) ); 1289 auto cond = maybeBuild( assert.condition ); 1290 auto msg = strict_dynamic_cast<ast::ConstantExpr *>( maybeCopy( assert.message ) ); 1291 return new ast::StaticAssertDecl( location, cond, msg ); 1159 1292 } 1160 1293 … … 1167 1300 } // if 1168 1301 if ( enumInLine ) { 1169 return new InlineMemberDecl( *name, storageClasses, linkage, nullptr ); 1302 return new ast::InlineMemberDecl( location, 1303 *name, (ast::Type*)nullptr, storageClasses, linkage ); 1170 1304 } // if 1171 1305 assertf( name, "ObjectDecl must a have name\n" ); 1172 return (new ObjectDecl( *name, storageClasses, linkage, maybeBuild< Expression >( bitfieldWidth ), nullptr, maybeBuild< Initializer >( initializer ) ))->set_asmName( asmName )->set_extension( extension ); 1173 } 1174 1175 Type * DeclarationNode::buildType() const { 1306 auto ret = new ast::ObjectDecl( location, 1307 *name, 1308 (ast::Type*)nullptr, 1309 maybeBuild( initializer ), 1310 storageClasses, 1311 linkage, 1312 maybeBuild( bitfieldWidth ) 1313 ); 1314 ret->asmName = asmName; 1315 ret->extension = extension; 1316 return ret; 1317 } 1318 1319 ast::Type * DeclarationNode::buildType() const { 1176 1320 assert( type ); 1177 1321 1178 if ( attr.expr ) {1179 return new AttrType( buildQualifiers( type ), *name, attr.expr->build(), attributes );1180 } else if ( attr.type ) {1181 return new AttrType( buildQualifiers( type ), *name, attr.type->buildType(), attributes );1182 } // if1183 1184 1322 switch ( type->kind ) { 1185 case TypeData::Enum: 1186 case TypeData::Aggregate: { 1187 ReferenceToType * ret = buildComAggInst( type, attributes, linkage ); 1188 buildList( type->aggregate.actuals, ret->get_parameters() ); 1189 return ret; 1190 } 1191 case TypeData::Symbolic: { 1192 TypeInstType * ret = new TypeInstType( buildQualifiers( type ), *type->symbolic.name, false, attributes ); 1193 buildList( type->symbolic.actuals, ret->get_parameters() ); 1194 return ret; 1195 } 1196 default: 1197 Type * simpletypes = typebuild( type ); 1198 simpletypes->get_attributes() = attributes; // copy because member is const 1323 case TypeData::Enum: 1324 case TypeData::Aggregate: { 1325 ast::BaseInstType * ret = 1326 buildComAggInst( type, copy( attributes ), linkage ); 1327 buildList( type->aggregate.actuals, ret->params ); 1328 return ret; 1329 } 1330 case TypeData::Symbolic: { 1331 ast::TypeInstType * ret = new ast::TypeInstType( 1332 *type->symbolic.name, 1333 // This is just a default, the true value is not known yet. 1334 ast::TypeDecl::Dtype, 1335 buildQualifiers( type ), 1336 copy( attributes ) ); 1337 buildList( type->symbolic.actuals, ret->params ); 1338 return ret; 1339 } 1340 default: 1341 ast::Type * simpletypes = typebuild( type ); 1342 // copy because member is const 1343 simpletypes->attributes = attributes; 1199 1344 return simpletypes; 1200 1345 } // switch -
src/Parser/ExpressionNode.cc
r34b4268 r24d6572 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat May 16 13:17:07 2015 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sat Aug 7 09:18:56 2021 13 // Update Count : 1077 14 // 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 4 11:07:00 2023 13 // Update Count : 1083 14 // 15 16 #include "ExpressionNode.h" 15 17 16 18 #include <cassert> // for assert … … 21 23 #include <string> // for string, operator+, operator== 22 24 25 #include "AST/Expr.hpp" // for NameExpr 26 #include "AST/Type.hpp" // for BaseType, SueInstType 23 27 #include "Common/SemanticError.h" // for SemanticError 24 28 #include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo... 25 #include "ParseNode.h" // for ExpressionNode, maybeMoveBuildType 26 #include "SynTree/Constant.h" // for Constant 27 #include "SynTree/Declaration.h" // for EnumDecl, StructDecl, UnionDecl 28 #include "SynTree/Expression.h" // for Expression, ConstantExpr, NameExpr 29 #include "SynTree/Statement.h" // for CompoundStmt, Statement 30 #include "SynTree/Type.h" // for BasicType, Type, Type::Qualifiers 29 #include "DeclarationNode.h" // for DeclarationNode 30 #include "InitializerNode.h" // for InitializerNode 31 31 #include "parserutility.h" // for notZeroExpr 32 33 class Initializer;34 32 35 33 using namespace std; … … 48 46 // because the CONT rule is NOT triggered if the pattern is empty. Hence, constants are reparsed here to determine their 49 47 // type. 50 51 extern const Type::Qualifiers noQualifiers; // no qualifiers on constants52 48 53 49 // static inline bool checkH( char c ) { return c == 'h' || c == 'H'; } … … 71 67 size_t end = str.length() - 1; 72 68 if ( posn == end ) { type = 3; return; } // no length after 'l' => long 73 69 74 70 string::size_type next = posn + 1; // advance to length 75 71 if ( str[next] == '3' ) { // 32 … … 122 118 if ( str[i] == '1' ) v |= 1; 123 119 i += 1; 124 120 if ( i == last - 1 || (str[i] != '0' && str[i] != '1') ) break; 125 121 v <<= 1; 126 122 } // for 127 123 } // scanbin 128 124 129 Expression * build_constantInteger( string & str ) { 130 static const BasicType::Kind kind[2][6] = { 125 ast::Expr * build_constantInteger( 126 const CodeLocation & location, string & str ) { 127 static const ast::BasicType::Kind kind[2][6] = { 131 128 // short (h) must be before char (hh) because shorter type has the longer suffix 132 { BasicType::ShortSignedInt, BasicType::SignedChar, BasicType::SignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt, /* BasicType::SignedInt128 */BasicType::LongLongSignedInt, },133 { BasicType::ShortUnsignedInt, BasicType::UnsignedChar, BasicType::UnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt, /* BasicType::UnsignedInt128 */BasicType::LongLongUnsignedInt, },129 { ast::BasicType::ShortSignedInt, ast::BasicType::SignedChar, ast::BasicType::SignedInt, ast::BasicType::LongSignedInt, ast::BasicType::LongLongSignedInt, /* BasicType::SignedInt128 */ ast::BasicType::LongLongSignedInt, }, 130 { ast::BasicType::ShortUnsignedInt, ast::BasicType::UnsignedChar, ast::BasicType::UnsignedInt, ast::BasicType::LongUnsignedInt, ast::BasicType::LongLongUnsignedInt, /* BasicType::UnsignedInt128 */ ast::BasicType::LongLongUnsignedInt, }, 134 131 }; 135 132 … … 141 138 string str2( "0x0" ); 142 139 unsigned long long int v, v2 = 0; // converted integral value 143 Expression* ret, * ret2;140 ast::Expr * ret, * ret2; 144 141 145 142 int type = -1; // 0 => short, 1 => char, 2 => int, 3 => long int, 4 => long long int, 5 => int128 … … 149 146 // special constants 150 147 if ( str == "0" ) { 151 ret = new ConstantExpr( Constant( (Type *)new ZeroType( noQualifiers ), str, (unsigned long long int)0 ));148 ret = new ast::ConstantExpr( location, new ast::ZeroType(), str, 0 ); 152 149 goto CLEANUP; 153 150 } // if 154 151 if ( str == "1" ) { 155 ret = new ConstantExpr( Constant( (Type *)new OneType( noQualifiers ), str, (unsigned long long int)1 ));152 ret = new ast::ConstantExpr( location, new ast::OneType(), str, 1 ); 156 153 goto CLEANUP; 157 154 } // if 158 159 string::size_type posn;160 155 161 156 // 'u' can appear before or after length suffix … … 166 161 } else { 167 162 // At least one digit in integer constant, so safe to backup while looking for suffix. 168 169 posn = str.find_last_of( "pP" ); // pointer value 170 if ( posn != string::npos ) { ltype = 5; str.erase( posn, 1 ); goto FINI; } 171 172 posn = str.find_last_of( "zZ" ); // size_t 173 if ( posn != string::npos ) { Unsigned = true; type = 2; ltype = 4; str.erase( posn, 1 ); goto FINI; } 174 175 posn = str.rfind( "hh" ); // char 176 if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; } 177 178 posn = str.rfind( "HH" ); // char 179 if ( posn != string::npos ) { type = 1; str.erase( posn, 2 ); goto FINI; } 180 181 posn = str.find_last_of( "hH" ); // short 182 if ( posn != string::npos ) { type = 0; str.erase( posn, 1 ); goto FINI; } 183 184 posn = str.find_last_of( "nN" ); // int (natural number) 185 if ( posn != string::npos ) { type = 2; str.erase( posn, 1 ); goto FINI; } 186 187 if ( str.rfind( "ll" ) != string::npos || str.rfind( "LL" ) != string::npos ) { type = 4; goto FINI; } 188 189 lnthSuffix( str, type, ltype ); // must be after check for "ll" 190 FINI: ; 163 // This declaration and the comma expressions in the conditions mimic 164 // the declare and check pattern allowed in later compiler versions. 165 // (Only some early compilers/C++ standards do not support it.) 166 string::size_type posn; 167 // pointer value 168 if ( posn = str.find_last_of( "pP" ), posn != string::npos ) { 169 ltype = 5; str.erase( posn, 1 ); 170 // size_t 171 } else if ( posn = str.find_last_of( "zZ" ), posn != string::npos ) { 172 Unsigned = true; type = 2; ltype = 4; str.erase( posn, 1 ); 173 // signed char 174 } else if ( posn = str.rfind( "hh" ), posn != string::npos ) { 175 type = 1; str.erase( posn, 2 ); 176 // signed char 177 } else if ( posn = str.rfind( "HH" ), posn != string::npos ) { 178 type = 1; str.erase( posn, 2 ); 179 // short 180 } else if ( posn = str.find_last_of( "hH" ), posn != string::npos ) { 181 type = 0; str.erase( posn, 1 ); 182 // int (natural number) 183 } else if ( posn = str.find_last_of( "nN" ), posn != string::npos ) { 184 type = 2; str.erase( posn, 1 ); 185 } else if ( str.rfind( "ll" ) != string::npos || str.rfind( "LL" ) != string::npos ) { 186 type = 4; 187 } else { 188 lnthSuffix( str, type, ltype ); 189 } // if 191 190 } // if 192 191 … … 196 195 if ( type == 5 ) SemanticError( yylloc, "int128 constant is not supported on this target " + str ); 197 196 #endif // ! __SIZEOF_INT128__ 198 197 199 198 if ( str[0] == '0' ) { // radix character ? 200 199 dec = false; … … 206 205 unsigned int len = str.length(); 207 206 if ( len > (2 + 16 + 16) ) SemanticError( yylloc, "128-bit hexadecimal constant to large " + str ); 208 if ( len <= (2 + 16) ) goto FHEX1; // hex digits < 2^64 209 str2 = "0x" + str.substr( len - 16 ); 210 sscanf( (char *)str2.c_str(), "%llx", &v2 ); 211 str = str.substr( 0, len - 16 ); 212 FHEX1: ; 207 // hex digits < 2^64 208 if ( len > (2 + 16) ) { 209 str2 = "0x" + str.substr( len - 16 ); 210 sscanf( (char *)str2.c_str(), "%llx", &v2 ); 211 str = str.substr( 0, len - 16 ); 212 } // if 213 213 sscanf( (char *)str.c_str(), "%llx", &v ); 214 214 #endif // __SIZEOF_INT128__ … … 301 301 302 302 // Constant type is correct for overload resolving. 303 ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[Unsigned][type] ), str, v ) ); 303 ret = new ast::ConstantExpr( location, 304 new ast::BasicType( kind[Unsigned][type] ), str, v ); 304 305 if ( Unsigned && type < 2 ) { // hh or h, less than int ? 305 306 // int i = -1uh => 65535 not -1, so cast is necessary for unsigned, which unfortunately eliminates warnings for large values. 306 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false ); 307 ret = new ast::CastExpr( location, 308 ret, 309 new ast::BasicType( kind[Unsigned][type] ), 310 ast::ExplicitCast ); 307 311 } else if ( ltype != -1 ) { // explicit length ? 308 312 if ( ltype == 6 ) { // int128, (int128)constant 309 // ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[Unsigned][type] ), false ); 310 ret2 = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::LongLongSignedInt ), str2, v2 ) ); 311 ret = build_compoundLiteral( DeclarationNode::newBasicType( DeclarationNode::Int128 )->addType( DeclarationNode::newSignedNess( DeclarationNode::Unsigned ) ), 312 new InitializerNode( (InitializerNode *)(new InitializerNode( new ExpressionNode( v2 == 0 ? ret2 : ret ) ))->set_last( new InitializerNode( new ExpressionNode( v2 == 0 ? ret : ret2 ) ) ), true ) ); 313 ret2 = new ast::ConstantExpr( location, 314 new ast::BasicType( ast::BasicType::LongLongSignedInt ), 315 str2, 316 v2 ); 317 ret = build_compoundLiteral( location, 318 DeclarationNode::newBasicType( 319 DeclarationNode::Int128 320 )->addType( 321 DeclarationNode::newSignedNess( DeclarationNode::Unsigned ) ), 322 new InitializerNode( 323 (InitializerNode *)(new InitializerNode( new ExpressionNode( v2 == 0 ? ret2 : ret ) ))->set_last( new InitializerNode( new ExpressionNode( v2 == 0 ? ret : ret2 ) ) ), true ) 324 ); 313 325 } else { // explicit length, (length_type)constant 314 ret = new CastExpr( ret, new TypeInstType( Type::Qualifiers(), lnthsInt[Unsigned][ltype], false ), false ); 326 ret = new ast::CastExpr( location, 327 ret, 328 new ast::TypeInstType( lnthsInt[Unsigned][ltype], ast::TypeDecl::Dtype ), 329 ast::ExplicitCast ); 315 330 if ( ltype == 5 ) { // pointer, intptr( (uintptr_t)constant ) 316 ret = build_func( new ExpressionNode( build_varref( new string( "intptr" ) ) ), new ExpressionNode( ret ) ); 331 ret = build_func( location, 332 new ExpressionNode( 333 build_varref( location, new string( "intptr" ) ) ), 334 new ExpressionNode( ret ) ); 317 335 } // if 318 336 } // if … … 358 376 359 377 360 Expression * build_constantFloat( string & str ) { 361 static const BasicType::Kind kind[2][12] = { 362 { BasicType::Float, BasicType::Double, BasicType::LongDouble, BasicType::uuFloat80, BasicType::uuFloat128, BasicType::uFloat16, BasicType::uFloat32, BasicType::uFloat32x, BasicType::uFloat64, BasicType::uFloat64x, BasicType::uFloat128, BasicType::uFloat128x }, 363 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, BasicType::NUMBER_OF_BASIC_TYPES, BasicType::NUMBER_OF_BASIC_TYPES, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex, BasicType::uFloat128xComplex }, 378 ast::Expr * build_constantFloat( 379 const CodeLocation & location, string & str ) { 380 static const ast::BasicType::Kind kind[2][12] = { 381 { ast::BasicType::Float, ast::BasicType::Double, ast::BasicType::LongDouble, ast::BasicType::uuFloat80, ast::BasicType::uuFloat128, ast::BasicType::uFloat16, ast::BasicType::uFloat32, ast::BasicType::uFloat32x, ast::BasicType::uFloat64, ast::BasicType::uFloat64x, ast::BasicType::uFloat128, ast::BasicType::uFloat128x }, 382 { ast::BasicType::FloatComplex, ast::BasicType::DoubleComplex, ast::BasicType::LongDoubleComplex, ast::BasicType::NUMBER_OF_BASIC_TYPES, ast::BasicType::NUMBER_OF_BASIC_TYPES, ast::BasicType::uFloat16Complex, ast::BasicType::uFloat32Complex, ast::BasicType::uFloat32xComplex, ast::BasicType::uFloat64Complex, ast::BasicType::uFloat64xComplex, ast::BasicType::uFloat128Complex, ast::BasicType::uFloat128xComplex }, 364 383 }; 365 384 … … 398 417 399 418 assert( 0 <= type && type < 12 ); 400 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, kind[complx][type] ), str, v ) ); 401 if ( explnth ) { // explicit length ? 402 ret = new CastExpr( ret, new BasicType( Type::Qualifiers(), kind[complx][type] ), false ); 419 ast::Expr * ret = new ast::ConstantExpr( location, 420 new ast::BasicType( kind[complx][type] ), 421 str, 422 v ); 423 // explicit length ? 424 if ( explnth ) { 425 ret = new ast::CastExpr( location, 426 ret, 427 new ast::BasicType( kind[complx][type] ), 428 ast::ExplicitCast ); 403 429 } // if 404 430 … … 415 441 } // sepString 416 442 417 Expression * build_constantChar(string & str ) {443 ast::Expr * build_constantChar( const CodeLocation & location, string & str ) { 418 444 string units; // units 419 445 sepString( str, units, '\'' ); // separate constant from units 420 446 421 Expression * ret = new ConstantExpr( Constant( new BasicType( noQualifiers, BasicType::Char ), str, (unsigned long long int)(unsigned char)str[1] ) ); 447 ast::Expr * ret = new ast::ConstantExpr( location, 448 new ast::BasicType( ast::BasicType::Char ), 449 str, 450 (unsigned long long int)(unsigned char)str[1] ); 422 451 if ( units.length() != 0 ) { 423 ret = new UntypedExpr( new NameExpr( units ), { ret } ); 452 ret = new ast::UntypedExpr( location, 453 new ast::NameExpr( location, units ), 454 { ret } ); 424 455 } // if 425 456 … … 428 459 } // build_constantChar 429 460 430 Expression * build_constantStr( string & str ) { 461 ast::Expr * build_constantStr( 462 const CodeLocation & location, 463 string & str ) { 431 464 assert( str.length() > 0 ); 432 465 string units; // units 433 466 sepString( str, units, '"' ); // separate constant from units 434 467 435 Type * strtype;468 ast::Type * strtype; 436 469 switch ( str[0] ) { // str has >= 2 characters, i.e, null string "" => safe to look at subscripts 0/1 437 470 case 'u': 438 471 if ( str[1] == '8' ) goto Default; // utf-8 characters => array of char 439 472 // lookup type of associated typedef 440 strtype = new TypeInstType( Type::Qualifiers( ), "char16_t", false );473 strtype = new ast::TypeInstType( "char16_t", ast::TypeDecl::Dtype ); 441 474 break; 442 443 strtype = new TypeInstType( Type::Qualifiers( ), "char32_t", false );475 case 'U': 476 strtype = new ast::TypeInstType( "char32_t", ast::TypeDecl::Dtype ); 444 477 break; 445 446 strtype = new TypeInstType( Type::Qualifiers( ), "wchar_t", false );478 case 'L': 479 strtype = new ast::TypeInstType( "wchar_t", ast::TypeDecl::Dtype ); 447 480 break; 448 449 450 strtype = new BasicType( Type::Qualifiers( ),BasicType::Char );481 Default: // char default string type 482 default: 483 strtype = new ast::BasicType( ast::BasicType::Char ); 451 484 } // switch 452 ArrayType * at = new ArrayType( noQualifiers, strtype, 453 new ConstantExpr( Constant::from_ulong( str.size() + 1 - 2 ) ), // +1 for '\0' and -2 for '"' 454 false, false ); 455 Expression * ret = new ConstantExpr( Constant( at, str, std::nullopt ) ); 485 ast::ArrayType * at = new ast::ArrayType( 486 strtype, 487 // Length is adjusted: +1 for '\0' and -2 for '"' 488 ast::ConstantExpr::from_ulong( location, str.size() + 1 - 2 ), 489 ast::FixedLen, 490 ast::DynamicDim ); 491 ast::Expr * ret = new ast::ConstantExpr( location, at, str, std::nullopt ); 456 492 if ( units.length() != 0 ) { 457 ret = new UntypedExpr( new NameExpr( units ), { ret } ); 493 ret = new ast::UntypedExpr( location, 494 new ast::NameExpr( location, units ), 495 { ret } ); 458 496 } // if 459 497 … … 462 500 } // build_constantStr 463 501 464 Expression * build_field_name_FLOATING_FRACTIONconstant( const string & str ) { 502 ast::Expr * build_field_name_FLOATING_FRACTIONconstant( 503 const CodeLocation & location, const string & str ) { 465 504 if ( str.find_first_not_of( "0123456789", 1 ) != string::npos ) SemanticError( yylloc, "invalid tuple index " + str ); 466 Expression * ret = build_constantInteger( *new string( str.substr(1) ) ); 505 ast::Expr * ret = build_constantInteger( location, 506 *new string( str.substr(1) ) ); 467 507 delete &str; 468 508 return ret; 469 509 } // build_field_name_FLOATING_FRACTIONconstant 470 510 471 Expression * build_field_name_FLOATING_DECIMALconstant( const string & str ) { 511 ast::Expr * build_field_name_FLOATING_DECIMALconstant( 512 const CodeLocation & location, const string & str ) { 472 513 if ( str[str.size() - 1] != '.' ) SemanticError( yylloc, "invalid tuple index " + str ); 473 Expression * ret = build_constantInteger( *new string( str.substr( 0, str.size()-1 ) ) ); 514 ast::Expr * ret = build_constantInteger( 515 location, *new string( str.substr( 0, str.size()-1 ) ) ); 474 516 delete &str; 475 517 return ret; 476 518 } // build_field_name_FLOATING_DECIMALconstant 477 519 478 Expression * build_field_name_FLOATINGconstant( const string & str ) { 520 ast::Expr * build_field_name_FLOATINGconstant( const CodeLocation & location, 521 const string & str ) { 479 522 // str is of the form A.B -> separate at the . and return member expression 480 523 int a, b; … … 482 525 stringstream ss( str ); 483 526 ss >> a >> dot >> b; 484 UntypedMemberExpr * ret = new UntypedMemberExpr( new ConstantExpr( Constant::from_int( b ) ), new ConstantExpr( Constant::from_int( a ) ) ); 527 auto ret = new ast::UntypedMemberExpr( location, 528 ast::ConstantExpr::from_int( location, b ), 529 ast::ConstantExpr::from_int( location, a ) 530 ); 485 531 delete &str; 486 532 return ret; 487 533 } // build_field_name_FLOATINGconstant 488 534 489 Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) { 490 if ( fracts ) { 491 if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) { 492 memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) ); 493 return memberExpr; 494 } else { 495 return new UntypedMemberExpr( fracts, fieldName ); 496 } // if 497 } // if 498 return fieldName; 535 ast::Expr * make_field_name_fraction_constants( const CodeLocation & location, 536 ast::Expr * fieldName, 537 ast::Expr * fracts ) { 538 if ( nullptr == fracts ) { 539 return fieldName; 540 } else if ( auto memberExpr = dynamic_cast<ast::UntypedMemberExpr *>( fracts ) ) { 541 memberExpr->member = make_field_name_fraction_constants( location, 542 fieldName, 543 ast::mutate( memberExpr->aggregate.get() ) ); 544 return memberExpr; 545 } else { 546 return new ast::UntypedMemberExpr( location, fracts, fieldName ); 547 } // if 499 548 } // make_field_name_fraction_constants 500 549 501 Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) { 502 return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) ); 550 ast::Expr * build_field_name_fraction_constants( const CodeLocation & location, 551 ast::Expr * fieldName, 552 ExpressionNode * fracts ) { 553 return make_field_name_fraction_constants( location, fieldName, maybeMoveBuild( fracts ) ); 503 554 } // build_field_name_fraction_constants 504 555 505 NameExpr * build_varref( const string * name ) { 506 NameExpr * expr = new NameExpr( *name ); 556 ast::NameExpr * build_varref( const CodeLocation & location, 557 const string * name ) { 558 ast::NameExpr * expr = new ast::NameExpr( location, *name ); 507 559 delete name; 508 560 return expr; 509 561 } // build_varref 510 562 511 QualifiedNameExpr * build_qualified_expr( const DeclarationNode * decl_node, const NameExpr * name ) { 512 Declaration * newDecl = maybeBuild< Declaration >(decl_node); 513 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { 514 const Type * t = newDeclWithType->get_type(); 515 if ( t ) { 516 if ( const TypeInstType * typeInst = dynamic_cast<const TypeInstType *>( t ) ) { 517 newDecl= new EnumDecl( typeInst->name ); 563 ast::QualifiedNameExpr * build_qualified_expr( const CodeLocation & location, 564 const DeclarationNode * decl_node, 565 const ast::NameExpr * name ) { 566 ast::Decl * newDecl = maybeBuild( decl_node ); 567 if ( ast::DeclWithType * newDeclWithType = dynamic_cast<ast::DeclWithType *>( newDecl ) ) { 568 if ( const ast::Type * t = newDeclWithType->get_type() ) { 569 if ( auto typeInst = dynamic_cast<const ast::TypeInstType *>( t ) ) { 570 newDecl = new ast::EnumDecl( location, typeInst->name ); 518 571 } 519 572 } 520 573 } 521 return new QualifiedNameExpr(newDecl, name->name );574 return new ast::QualifiedNameExpr( location, newDecl, name->name ); 522 575 } 523 576 524 QualifiedNameExpr * build_qualified_expr( const EnumDecl * decl_node, const NameExpr * name ) { 525 EnumDecl * newDecl = const_cast< EnumDecl * >( decl_node ); 526 return new QualifiedNameExpr( newDecl, name->name ); 577 ast::QualifiedNameExpr * build_qualified_expr( const CodeLocation & location, 578 const ast::EnumDecl * decl, 579 const ast::NameExpr * name ) { 580 return new ast::QualifiedNameExpr( location, decl, name->name ); 527 581 } 528 582 529 DimensionExpr * build_dimensionref( const string * name ) { 530 DimensionExpr * expr = new DimensionExpr( *name ); 583 ast::DimensionExpr * build_dimensionref( const CodeLocation & location, 584 const string * name ) { 585 ast::DimensionExpr * expr = new ast::DimensionExpr( location, *name ); 531 586 delete name; 532 587 return expr; … … 544 599 }; // OperName 545 600 546 Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node, CastExpr::CastKind kind ) { 547 Type * targetType = maybeMoveBuildType( decl_node ); 548 if ( dynamic_cast< VoidType * >( targetType ) ) { 601 ast::Expr * build_cast( const CodeLocation & location, 602 DeclarationNode * decl_node, 603 ExpressionNode * expr_node, 604 ast::CastExpr::CastKind kind ) { 605 ast::Type * targetType = maybeMoveBuildType( decl_node ); 606 if ( dynamic_cast<ast::VoidType *>( targetType ) ) { 549 607 delete targetType; 550 return new CastExpr( maybeMoveBuild< Expression >(expr_node), false, kind ); 608 return new ast::CastExpr( location, 609 maybeMoveBuild( expr_node ), 610 ast::ExplicitCast, kind ); 551 611 } else { 552 return new CastExpr( maybeMoveBuild< Expression >(expr_node), targetType, false, kind ); 612 return new ast::CastExpr( location, 613 maybeMoveBuild( expr_node ), 614 targetType, 615 ast::ExplicitCast, kind ); 553 616 } // if 554 617 } // build_cast 555 618 556 Expression * build_keyword_cast( AggregateDecl::Aggregate target, ExpressionNode * expr_node ) { 557 return new KeywordCastExpr( maybeMoveBuild< Expression >(expr_node), target ); 619 ast::Expr * build_keyword_cast( const CodeLocation & location, 620 ast::AggregateDecl::Aggregate target, 621 ExpressionNode * expr_node ) { 622 return new ast::KeywordCastExpr( location, 623 maybeMoveBuild( expr_node ), 624 target 625 ); 558 626 } 559 627 560 Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node ) { 561 return new VirtualCastExpr( maybeMoveBuild< Expression >( expr_node ), maybeMoveBuildType( decl_node ) ); 628 ast::Expr * build_virtual_cast( const CodeLocation & location, 629 DeclarationNode * decl_node, 630 ExpressionNode * expr_node ) { 631 return new ast::VirtualCastExpr( location, 632 maybeMoveBuild( expr_node ), 633 maybeMoveBuildType( decl_node ) 634 ); 562 635 } // build_virtual_cast 563 636 564 Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member ) { 565 return new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) ); 637 ast::Expr * build_fieldSel( const CodeLocation & location, 638 ExpressionNode * expr_node, 639 ast::Expr * member ) { 640 return new ast::UntypedMemberExpr( location, 641 member, 642 maybeMoveBuild( expr_node ) 643 ); 566 644 } // build_fieldSel 567 645 568 Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member ) { 569 UntypedExpr * deref = new UntypedExpr( new NameExpr( "*?" ) ); 646 ast::Expr * build_pfieldSel( const CodeLocation & location, 647 ExpressionNode * expr_node, 648 ast::Expr * member ) { 649 auto deref = new ast::UntypedExpr( location, 650 new ast::NameExpr( location, "*?" ) 651 ); 570 652 deref->location = expr_node->location; 571 deref-> get_args().push_back( maybeMoveBuild< Expression >(expr_node) );572 UntypedMemberExpr * ret = new UntypedMemberExpr(member, deref );653 deref->args.push_back( maybeMoveBuild( expr_node ) ); 654 auto ret = new ast::UntypedMemberExpr( location, member, deref ); 573 655 return ret; 574 656 } // build_pfieldSel 575 657 576 Expression * build_offsetOf( DeclarationNode * decl_node, NameExpr * member ) { 577 Expression * ret = new UntypedOffsetofExpr( maybeMoveBuildType( decl_node ), member->get_name() ); 658 ast::Expr * build_offsetOf( const CodeLocation & location, 659 DeclarationNode * decl_node, 660 ast::NameExpr * member ) { 661 ast::Expr * ret = new ast::UntypedOffsetofExpr( location, 662 maybeMoveBuildType( decl_node ), 663 member->name 664 ); 665 ret->result = new ast::BasicType( ast::BasicType::LongUnsignedInt ); 578 666 delete member; 579 667 return ret; 580 668 } // build_offsetOf 581 669 582 Expression * build_and_or( ExpressionNode * expr_node1, ExpressionNode * expr_node2, bool kind ) { 583 return new LogicalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), notZeroExpr( maybeMoveBuild< Expression >(expr_node2) ), kind ); 670 ast::Expr * build_and_or( const CodeLocation & location, 671 ExpressionNode * expr_node1, 672 ExpressionNode * expr_node2, 673 ast::LogicalFlag flag ) { 674 return new ast::LogicalExpr( location, 675 notZeroExpr( maybeMoveBuild( expr_node1 ) ), 676 notZeroExpr( maybeMoveBuild( expr_node2 ) ), 677 flag 678 ); 584 679 } // build_and_or 585 680 586 Expression * build_unary_val( OperKinds op, ExpressionNode * expr_node ) { 587 list< Expression * > args; 588 args.push_back( maybeMoveBuild< Expression >(expr_node) ); 589 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args ); 681 ast::Expr * build_unary_val( const CodeLocation & location, 682 OperKinds op, 683 ExpressionNode * expr_node ) { 684 std::vector<ast::ptr<ast::Expr>> args; 685 args.push_back( maybeMoveBuild( expr_node ) ); 686 return new ast::UntypedExpr( location, 687 new ast::NameExpr( location, OperName[ (int)op ] ), 688 std::move( args ) 689 ); 590 690 } // build_unary_val 591 691 592 Expression * build_unary_ptr( OperKinds op, ExpressionNode * expr_node ) { 593 list< Expression * > args;594 args.push_back( maybeMoveBuild< Expression >(expr_node) ); // xxx -- this is exactly the same as the val case now, refactor this code.595 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );596 } // build_unary_ptr 597 598 Expression * build_binary_val( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) { 599 list< Expression * > args;600 args.push_back( maybeMoveBuild< Expression >(expr_node1) );601 args.push_back( maybeMoveBuild< Expression >(expr_node2) );602 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args);692 ast::Expr * build_binary_val( const CodeLocation & location, 693 OperKinds op, 694 ExpressionNode * expr_node1, 695 ExpressionNode * expr_node2 ) { 696 std::vector<ast::ptr<ast::Expr>> args; 697 args.push_back( maybeMoveBuild( expr_node1 ) ); 698 args.push_back( maybeMoveBuild( expr_node2 ) ); 699 return new ast::UntypedExpr( location, 700 new ast::NameExpr( location, OperName[ (int)op ] ), 701 std::move( args ) 702 ); 603 703 } // build_binary_val 604 704 605 Expression * build_binary_ptr( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 ) { 606 list< Expression * > args;607 args.push_back( maybeMoveBuild< Expression >(expr_node1) );608 args.push_back( maybeMoveBuild< Expression >(expr_node2) );609 return new UntypedExpr( new NameExpr( OperName[ (int)op ] ), args );610 } // build_binary_ptr 611 612 Expression * build_cond( ExpressionNode * expr_node1, ExpressionNode * expr_node2, ExpressionNode * expr_node3 ) { 613 return new ConditionalExpr( notZeroExpr( maybeMoveBuild< Expression >(expr_node1) ), maybeMoveBuild< Expression >(expr_node2), maybeMoveBuild< Expression >(expr_node3));705 ast::Expr * build_cond( const CodeLocation & location, 706 ExpressionNode * expr_node1, 707 ExpressionNode * expr_node2, 708 ExpressionNode * expr_node3 ) { 709 return new ast::ConditionalExpr( location, 710 notZeroExpr( maybeMoveBuild( expr_node1 ) ), 711 maybeMoveBuild( expr_node2 ), 712 maybeMoveBuild( expr_node3 ) 713 ); 614 714 } // build_cond 615 715 616 Expression * build_tuple( ExpressionNode * expr_node ) { 617 list< Expression * > exprs; 716 ast::Expr * build_tuple( const CodeLocation & location, 717 ExpressionNode * expr_node ) { 718 std::vector<ast::ptr<ast::Expr>> exprs; 618 719 buildMoveList( expr_node, exprs ); 619 return new UntypedTupleExpr( exprs );;720 return new ast::UntypedTupleExpr( location, std::move( exprs ) ); 620 721 } // build_tuple 621 722 622 Expression * build_func( ExpressionNode * function, ExpressionNode * expr_node ) { 623 list< Expression * > args; 723 ast::Expr * build_func( const CodeLocation & location, 724 ExpressionNode * function, 725 ExpressionNode * expr_node ) { 726 std::vector<ast::ptr<ast::Expr>> args; 624 727 buildMoveList( expr_node, args ); 625 return new UntypedExpr( maybeMoveBuild< Expression >(function), args ); 728 return new ast::UntypedExpr( location, 729 maybeMoveBuild( function ), 730 std::move( args ) 731 ); 626 732 } // build_func 627 733 628 Expression * build_compoundLiteral( DeclarationNode * decl_node, InitializerNode * kids ) { 629 Declaration * newDecl = maybeBuild< Declaration >(decl_node); // compound literal type 630 if ( DeclarationWithType * newDeclWithType = dynamic_cast< DeclarationWithType * >( newDecl ) ) { // non-sue compound-literal type 631 return new CompoundLiteralExpr( newDeclWithType->get_type(), maybeMoveBuild< Initializer >(kids) ); 734 ast::Expr * build_compoundLiteral( const CodeLocation & location, 735 DeclarationNode * decl_node, 736 InitializerNode * kids ) { 737 // compound literal type 738 ast::Decl * newDecl = maybeBuild( decl_node ); 739 // non-sue compound-literal type 740 if ( ast::DeclWithType * newDeclWithType = dynamic_cast<ast::DeclWithType *>( newDecl ) ) { 741 return new ast::CompoundLiteralExpr( location, 742 newDeclWithType->get_type(), 743 maybeMoveBuild( kids ) ); 632 744 // these types do not have associated type information 633 } else if ( StructDecl * newDeclStructDecl = dynamic_cast< StructDecl * >( newDecl ) ) { 634 if ( newDeclStructDecl->has_body() ) { 635 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl ), maybeMoveBuild< Initializer >(kids) ); 745 } else if ( auto newDeclStructDecl = dynamic_cast<ast::StructDecl *>( newDecl ) ) { 746 if ( newDeclStructDecl->body ) { 747 return new ast::CompoundLiteralExpr( location, 748 new ast::StructInstType( newDeclStructDecl ), 749 maybeMoveBuild( kids ) ); 636 750 } else { 637 return new CompoundLiteralExpr( new StructInstType( Type::Qualifiers(), newDeclStructDecl->get_name() ), maybeMoveBuild< Initializer >(kids) ); 638 } // if 639 } else if ( UnionDecl * newDeclUnionDecl = dynamic_cast< UnionDecl * >( newDecl ) ) { 640 if ( newDeclUnionDecl->has_body() ) { 641 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl ), maybeMoveBuild< Initializer >(kids) ); 751 return new ast::CompoundLiteralExpr( location, 752 new ast::StructInstType( newDeclStructDecl->name ), 753 maybeMoveBuild( kids ) ); 754 } // if 755 } else if ( auto newDeclUnionDecl = dynamic_cast<ast::UnionDecl *>( newDecl ) ) { 756 if ( newDeclUnionDecl->body ) { 757 return new ast::CompoundLiteralExpr( location, 758 new ast::UnionInstType( newDeclUnionDecl ), 759 maybeMoveBuild( kids ) ); 642 760 } else { 643 return new CompoundLiteralExpr( new UnionInstType( Type::Qualifiers(), newDeclUnionDecl->get_name() ), maybeMoveBuild< Initializer >(kids) ); 644 } // if 645 } else if ( EnumDecl * newDeclEnumDecl = dynamic_cast< EnumDecl * >( newDecl ) ) { 646 if ( newDeclEnumDecl->has_body() ) { 647 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl ), maybeMoveBuild< Initializer >(kids) ); 761 return new ast::CompoundLiteralExpr( location, 762 new ast::UnionInstType( newDeclUnionDecl->name ), 763 maybeMoveBuild( kids ) ); 764 } // if 765 } else if ( auto newDeclEnumDecl = dynamic_cast<ast::EnumDecl *>( newDecl ) ) { 766 if ( newDeclEnumDecl->body ) { 767 return new ast::CompoundLiteralExpr( location, 768 new ast::EnumInstType( newDeclEnumDecl ), 769 maybeMoveBuild( kids ) ); 648 770 } else { 649 return new CompoundLiteralExpr( new EnumInstType( Type::Qualifiers(), newDeclEnumDecl->get_name() ), maybeMoveBuild< Initializer >(kids) ); 771 return new ast::CompoundLiteralExpr( location, 772 new ast::EnumInstType( newDeclEnumDecl->name ), 773 maybeMoveBuild( kids ) ); 650 774 } // if 651 775 } else { … … 656 780 // Local Variables: // 657 781 // tab-width: 4 // 658 // mode: c++ //659 // compile-command: "make install" //660 782 // End: // -
src/Parser/InitializerNode.cc
r34b4268 r24d6572 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 13:20:24 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Jul 28 23:27:20 201713 // Update Count : 2 611 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 4 11:18:00 2023 13 // Update Count : 27 14 14 // 15 16 #include "InitializerNode.h" 15 17 16 18 #include <iostream> // for operator<<, ostream, basic_ostream … … 18 20 #include <string> // for operator<<, string 19 21 22 #include "AST/Expr.hpp" // for Expr 23 #include "AST/Init.hpp" // for Designator, Init, ListInit, Sing... 24 #include "Common/SemanticError.h" // for SemanticError 25 #include "Common/utility.h" // for maybeBuild 26 #include "ExpressionNode.h" // for ExpressionNode 27 #include "DeclarationNode.h" // for buildList 28 20 29 using namespace std; 21 30 22 #include "Common/SemanticError.h" // for SemanticError 23 #include "Common/utility.h" // for maybeBuild 24 #include "ParseNode.h" // for InitializerNode, ExpressionNode 25 #include "SynTree/Expression.h" // for Expression 26 #include "SynTree/Initializer.h" // for Initializer, ListInit, SingleInit 31 static ast::ConstructFlag toConstructFlag( bool maybeConstructed ) { 32 return maybeConstructed ? ast::MaybeConstruct : ast::NoConstruct; 33 } 27 34 28 35 InitializerNode::InitializerNode( ExpressionNode * _expr, bool aggrp, ExpressionNode * des ) … … 33 40 if ( kids ) 34 41 set_last( nullptr ); 35 } // InitializerNode::InitializerNode 42 } // InitializerNode::InitializerNode 36 43 37 44 InitializerNode::InitializerNode( InitializerNode * init, bool aggrp, ExpressionNode * des ) … … 85 92 } // InitializerNode::printOneLine 86 93 87 Initializer* InitializerNode::build() const {94 ast::Init * InitializerNode::build() const { 88 95 assertf( ! isDelete, "Should not build delete stmt InitializerNode" ); 89 96 if ( aggregate ) { 90 97 // steal designators from children 91 std:: list< Designation *> designlist;98 std::vector<ast::ptr<ast::Designation>> designlist; 92 99 InitializerNode * child = next_init(); 93 for ( ; child != nullptr; child = dynamic_cast< InitializerNode * >( child->get_next() ) ) { 94 std::list< Expression * > desList; 95 buildList< Expression, ExpressionNode >( child->designator, desList ); 96 designlist.push_back( new Designation( desList ) ); 100 for ( ; child != nullptr ; child = dynamic_cast< InitializerNode * >( child->get_next() ) ) { 101 std::deque<ast::ptr<ast::Expr>> desList; 102 buildList( child->designator, desList ); 103 designlist.push_back( 104 new ast::Designation( location, std::move( desList ) ) ); 97 105 } // for 98 std::list< Initializer * > initlist; 99 buildList< Initializer, InitializerNode >( next_init(), initlist ); 100 return new ListInit( initlist, designlist, maybeConstructed ); 101 } else { 102 if ( get_expression() ) { 103 assertf( get_expression()->expr, "The expression of initializer must have value" ); 104 return new SingleInit( maybeBuild< Expression >( get_expression() ), maybeConstructed ); 105 } // if 106 std::vector<ast::ptr<ast::Init>> initlist; 107 buildList( next_init(), initlist ); 108 return new ast::ListInit( location, 109 std::move( initlist ), 110 std::move( designlist ), 111 toConstructFlag( maybeConstructed ) 112 ); 113 } else if ( get_expression() ) { 114 assertf( get_expression()->expr, "The expression of initializer must have value" ); 115 return new ast::SingleInit( location, 116 maybeBuild( get_expression() ), 117 toConstructFlag( maybeConstructed ) 118 ); 106 119 } // if 107 120 return nullptr; -
src/Parser/ParseNode.h
r34b4268 r24d6572 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 13:28:16 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Wed Nov 2 21:27:07 202213 // Update Count : 9 3911 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Apr 3 17:55:00 2023 13 // Update Count : 942 14 14 // 15 15 … … 24 24 #include <string> // for string 25 25 26 #include "AST/Expr.hpp" // for Expr, NameExpr LogicalFlag 27 #include "AST/Fwd.hpp" // for ptr, Decl, DeclWithType, 28 #include "AST/Stmt.hpp" // for Stmt 26 29 #include "Common/CodeLocation.h" // for CodeLocation 27 30 #include "Common/SemanticError.h" // for SemanticError 28 31 #include "Common/UniqueName.h" // for UniqueName 29 #include "Common/utility.h" // for maybeClone, maybeBuild 30 #include "SynTree/LinkageSpec.h" // for Spec 31 #include "SynTree/Declaration.h" // for Aggregate 32 #include "SynTree/Expression.h" // for Expression, ConstantExpr (ptr only) 33 #include "SynTree/Label.h" // for Label 34 #include "SynTree/Statement.h" // for Statement, BranchStmt, BranchStmt:... 35 #include "SynTree/Type.h" // for Type, Type::FuncSpecifiers, Type::... 32 #include "Common/utility.h" // for maybeClone 33 #include "Parser/parserutility.h" // for maybeBuild, maybeCopy 36 34 37 35 class Attribute; … … 40 38 class DeclarationWithType; 41 39 class Initializer; 40 class InitializerNode; 42 41 class ExpressionNode; 43 42 struct StatementNode; … … 82 81 }; // ParseNode 83 82 84 //##############################################################################85 86 class InitializerNode : public ParseNode {87 public:88 InitializerNode( ExpressionNode *, bool aggrp = false, ExpressionNode * des = nullptr );89 InitializerNode( InitializerNode *, bool aggrp = false, ExpressionNode * des = nullptr );90 InitializerNode( bool isDelete );91 ~InitializerNode();92 virtual InitializerNode * clone() const { assert( false ); return nullptr; }93 94 ExpressionNode * get_expression() const { return expr; }95 96 InitializerNode * set_designators( ExpressionNode * des ) { designator = des; return this; }97 ExpressionNode * get_designators() const { return designator; }98 99 InitializerNode * set_maybeConstructed( bool value ) { maybeConstructed = value; return this; }100 bool get_maybeConstructed() const { return maybeConstructed; }101 102 bool get_isDelete() const { return isDelete; }103 104 InitializerNode * next_init() const { return kids; }105 106 void print( std::ostream & os, int indent = 0 ) const;107 void printOneLine( std::ostream & ) const;108 109 virtual Initializer * build() const;110 private:111 ExpressionNode * expr;112 bool aggregate;113 ExpressionNode * designator; // may be list114 InitializerNode * kids;115 bool maybeConstructed;116 bool isDelete;117 }; // InitializerNode118 119 //##############################################################################120 121 class ExpressionNode final : public ParseNode {122 public:123 ExpressionNode( Expression * expr = nullptr ) : expr( expr ) {}124 virtual ~ExpressionNode() {}125 virtual ExpressionNode * clone() const override { return expr ? static_cast<ExpressionNode*>((new ExpressionNode( expr->clone() ))->set_next( maybeClone( get_next() ) )) : nullptr; }126 127 bool get_extension() const { return extension; }128 ExpressionNode * set_extension( bool exten ) { extension = exten; return this; }129 130 virtual void print( std::ostream & os, __attribute__((unused)) int indent = 0 ) const override {131 os << expr.get();132 }133 void printOneLine( __attribute__((unused)) std::ostream & os, __attribute__((unused)) int indent = 0 ) const {}134 135 template<typename T>136 bool isExpressionType() const { return nullptr != dynamic_cast<T>(expr.get()); }137 138 Expression * build() const { return const_cast<ExpressionNode *>(this)->expr.release(); }139 140 std::unique_ptr<Expression> expr; // public because of lifetime implications141 private:142 bool extension = false;143 }; // ExpressionNode144 145 template< typename T >146 struct maybeBuild_t< Expression, T > {147 static inline Expression * doit( const T * orig ) {148 if ( orig ) {149 Expression * p = orig->build();150 p->set_extension( orig->get_extension() );151 p->location = orig->location;152 return p;153 } else {154 return nullptr;155 } // if156 }157 };158 159 83 // Must harmonize with OperName. 160 84 enum class OperKinds { … … 172 96 173 97 struct LabelNode { 174 std:: list< Label> labels;98 std::vector<ast::Label> labels; 175 99 }; 176 100 177 Expression * build_constantInteger( std::string & str ); // these 4 routines modify the string178 Expression * build_constantFloat( std::string & str );179 Expression * build_constantChar( std::string & str );180 Expression * build_constantStr( std::string & str );181 Expression * build_field_name_FLOATING_FRACTIONconstant( const std::string & str );182 Expression * build_field_name_FLOATING_DECIMALconstant( const std::string & str );183 Expression * build_field_name_FLOATINGconstant( const std::string & str );184 Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts );185 186 NameExpr * build_varref( const std::string * name );187 QualifiedNameExpr * build_qualified_expr( const DeclarationNode * decl_node, const NameExpr * name );188 QualifiedNameExpr * build_qualified_expr( const EnumDecl * decl, const NameExpr * name );189 DimensionExpr * build_dimensionref( const std::string * name );190 191 Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node, CastExpr::CastKind kind = CastExpr::Default );192 Expression * build_keyword_cast( AggregateDecl::Aggregate target, ExpressionNode * expr_node );193 Expression * build_virtual_cast( DeclarationNode * decl_node, ExpressionNode * expr_node );194 Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member );195 Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member );196 Expression * build_offsetOf( DeclarationNode * decl_node, NameExpr * member );197 Expression * build_and( ExpressionNode * expr_node1, ExpressionNode * expr_node2 );198 Expression * build_and_or( ExpressionNode * expr_node1, ExpressionNode * expr_node2, bool kind );199 Expression * build_unary_val( OperKinds op, ExpressionNode * expr_node );200 Expression * build_unary_ptr( OperKinds op, ExpressionNode * expr_node );201 Expression * build_binary_val( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 );202 Expression * build_binary_ptr( OperKinds op, ExpressionNode * expr_node1, ExpressionNode * expr_node2 );203 Expression * build_cond( ExpressionNode * expr_node1, ExpressionNode * expr_node2, ExpressionNode * expr_node3 );204 Expression * build_tuple( ExpressionNode * expr_node = nullptr );205 Expression * build_func( ExpressionNode * function, ExpressionNode * expr_node );206 Expression * build_compoundLiteral( DeclarationNode * decl_node, InitializerNode * kids );207 208 //##############################################################################209 210 struct TypeData;211 212 struct DeclarationNode : public ParseNode {213 // These enumerations must harmonize with their names in DeclarationNode.cc.214 enum BasicType { Void, Bool, Char, Int, Int128,215 Float, Double, LongDouble, uuFloat80, uuFloat128,216 uFloat16, uFloat32, uFloat32x, uFloat64, uFloat64x, uFloat128, uFloat128x, NoBasicType };217 static const char * basicTypeNames[];218 enum ComplexType { Complex, NoComplexType, Imaginary }; // Imaginary unsupported => parse, but make invisible and print error message219 static const char * complexTypeNames[];220 enum Signedness { Signed, Unsigned, NoSignedness };221 static const char * signednessNames[];222 enum Length { Short, Long, LongLong, NoLength };223 static const char * lengthNames[];224 enum BuiltinType { Valist, AutoType, Zero, One, NoBuiltinType };225 static const char * builtinTypeNames[];226 227 static DeclarationNode * newStorageClass( Type::StorageClasses );228 static DeclarationNode * newFuncSpecifier( Type::FuncSpecifiers );229 static DeclarationNode * newTypeQualifier( Type::Qualifiers );230 static DeclarationNode * newBasicType( BasicType );231 static DeclarationNode * newComplexType( ComplexType );232 static DeclarationNode * newSignedNess( Signedness );233 static DeclarationNode * newLength( Length );234 static DeclarationNode * newBuiltinType( BuiltinType );235 static DeclarationNode * newForall( DeclarationNode * );236 static DeclarationNode * newFromTypedef( const std::string * );237 static DeclarationNode * newFromGlobalScope();238 static DeclarationNode * newQualifiedType( DeclarationNode *, DeclarationNode * );239 static DeclarationNode * newFunction( const std::string * name, DeclarationNode * ret, DeclarationNode * param, StatementNode * body );240 static DeclarationNode * newAggregate( AggregateDecl::Aggregate kind, const std::string * name, ExpressionNode * actuals, DeclarationNode * fields, bool body );241 static DeclarationNode * newEnum( const std::string * name, DeclarationNode * constants, bool body, bool typed, DeclarationNode * base = nullptr, EnumHiding hiding = EnumHiding::Visible );242 static DeclarationNode * newEnumConstant( const std::string * name, ExpressionNode * constant );243 static DeclarationNode * newEnumValueGeneric( const std::string * name, InitializerNode * init );244 static DeclarationNode * newEnumInLine( const std::string name );245 static DeclarationNode * newName( const std::string * );246 static DeclarationNode * newFromTypeGen( const std::string *, ExpressionNode * params );247 static DeclarationNode * newTypeParam( TypeDecl::Kind, const std::string * );248 static DeclarationNode * newTrait( const std::string * name, DeclarationNode * params, DeclarationNode * asserts );249 static DeclarationNode * newTraitUse( const std::string * name, ExpressionNode * params );250 static DeclarationNode * newTypeDecl( const std::string * name, DeclarationNode * typeParams );251 static DeclarationNode * newPointer( DeclarationNode * qualifiers, OperKinds kind );252 static DeclarationNode * newArray( ExpressionNode * size, DeclarationNode * qualifiers, bool isStatic );253 static DeclarationNode * newVarArray( DeclarationNode * qualifiers );254 static DeclarationNode * newBitfield( ExpressionNode * size );255 static DeclarationNode * newTuple( DeclarationNode * members );256 static DeclarationNode * newTypeof( ExpressionNode * expr, bool basetypeof = false );257 static DeclarationNode * newVtableType( DeclarationNode * expr );258 static DeclarationNode * newAttribute( const std::string *, ExpressionNode * expr = nullptr ); // gcc attributes259 static DeclarationNode * newDirectiveStmt( StatementNode * stmt ); // gcc external directive statement260 static DeclarationNode * newAsmStmt( StatementNode * stmt ); // gcc external asm statement261 static DeclarationNode * newStaticAssert( ExpressionNode * condition, Expression * message );262 263 DeclarationNode();264 ~DeclarationNode();265 DeclarationNode * clone() const override;266 267 DeclarationNode * addQualifiers( DeclarationNode * );268 void checkQualifiers( const TypeData *, const TypeData * );269 void checkSpecifiers( DeclarationNode * );270 DeclarationNode * copySpecifiers( DeclarationNode * );271 DeclarationNode * addType( DeclarationNode * );272 DeclarationNode * addTypedef();273 DeclarationNode * addEnumBase( DeclarationNode * );274 DeclarationNode * addAssertions( DeclarationNode * );275 DeclarationNode * addName( std::string * );276 DeclarationNode * addAsmName( DeclarationNode * );277 DeclarationNode * addBitfield( ExpressionNode * size );278 DeclarationNode * addVarArgs();279 DeclarationNode * addFunctionBody( StatementNode * body, ExpressionNode * with = nullptr );280 DeclarationNode * addOldDeclList( DeclarationNode * list );281 DeclarationNode * setBase( TypeData * newType );282 DeclarationNode * copyAttribute( DeclarationNode * attr );283 DeclarationNode * addPointer( DeclarationNode * qualifiers );284 DeclarationNode * addArray( DeclarationNode * array );285 DeclarationNode * addNewPointer( DeclarationNode * pointer );286 DeclarationNode * addNewArray( DeclarationNode * array );287 DeclarationNode * addParamList( DeclarationNode * list );288 DeclarationNode * addIdList( DeclarationNode * list ); // old-style functions289 DeclarationNode * addInitializer( InitializerNode * init );290 DeclarationNode * addTypeInitializer( DeclarationNode * init );291 292 DeclarationNode * cloneType( std::string * newName );293 DeclarationNode * cloneBaseType( DeclarationNode * newdecl );294 295 DeclarationNode * appendList( DeclarationNode * node ) {296 return (DeclarationNode *)set_last( node );297 }298 299 virtual void print( __attribute__((unused)) std::ostream & os, __attribute__((unused)) int indent = 0 ) const override;300 virtual void printList( __attribute__((unused)) std::ostream & os, __attribute__((unused)) int indent = 0 ) const override;301 302 Declaration * build() const;303 Type * buildType() const;304 305 LinkageSpec::Spec get_linkage() const { return linkage; }306 DeclarationNode * extractAggregate() const;307 bool has_enumeratorValue() const { return (bool)enumeratorValue; }308 ExpressionNode * consume_enumeratorValue() const { return const_cast<DeclarationNode *>(this)->enumeratorValue.release(); }309 310 bool get_extension() const { return extension; }311 DeclarationNode * set_extension( bool exten ) { extension = exten; return this; }312 313 bool get_inLine() const { return inLine; }314 DeclarationNode * set_inLine( bool inL ) { inLine = inL; return this; }315 316 DeclarationNode * get_last() { return (DeclarationNode *)ParseNode::get_last(); }317 318 struct Variable_t {319 // const std::string * name;320 TypeDecl::Kind tyClass;321 DeclarationNode * assertions;322 DeclarationNode * initializer;323 };324 Variable_t variable;325 326 struct Attr_t {327 // const std::string * name;328 ExpressionNode * expr;329 DeclarationNode * type;330 };331 Attr_t attr;332 333 struct StaticAssert_t {334 ExpressionNode * condition;335 Expression * message;336 };337 StaticAssert_t assert;338 339 BuiltinType builtin = NoBuiltinType;340 341 TypeData * type = nullptr;342 343 bool inLine = false;344 bool enumInLine = false;345 Type::FuncSpecifiers funcSpecs;346 Type::StorageClasses storageClasses;347 348 ExpressionNode * bitfieldWidth = nullptr;349 std::unique_ptr<ExpressionNode> enumeratorValue;350 bool hasEllipsis = false;351 LinkageSpec::Spec linkage;352 Expression * asmName = nullptr;353 std::list< Attribute * > attributes;354 InitializerNode * initializer = nullptr;355 bool extension = false;356 std::string error;357 StatementNode * asmStmt = nullptr;358 StatementNode * directiveStmt = nullptr;359 360 static UniqueName anonymous;361 }; // DeclarationNode362 363 Type * buildType( TypeData * type );364 365 static inline Type * maybeMoveBuildType( const DeclarationNode * orig ) {366 Type * ret = orig ? orig->buildType() : nullptr;367 delete orig;368 return ret;369 }370 371 //##############################################################################372 373 struct StatementNode final : public ParseNode {374 StatementNode() { stmt = nullptr; }375 StatementNode( Statement * stmt ) : stmt( stmt ) {}376 StatementNode( DeclarationNode * decl );377 virtual ~StatementNode() {}378 379 virtual StatementNode * clone() const final { assert( false ); return nullptr; }380 Statement * build() const { return const_cast<StatementNode *>(this)->stmt.release(); }381 382 virtual StatementNode * add_label( const std::string * name, DeclarationNode * attr = nullptr ) {383 stmt->get_labels().emplace_back( * name, nullptr, attr ? std::move( attr->attributes ) : std::list< Attribute * > {} );384 delete attr;385 delete name;386 return this;387 }388 389 virtual StatementNode * append_last_case( StatementNode * );390 391 virtual void print( std::ostream & os, __attribute__((unused)) int indent = 0 ) const override {392 os << stmt.get() << std::endl;393 }394 395 std::unique_ptr<Statement> stmt;396 }; // StatementNode397 398 Statement * build_expr( ExpressionNode * ctl );399 400 struct CondCtl {401 CondCtl( DeclarationNode * decl, ExpressionNode * condition ) :402 init( decl ? new StatementNode( decl ) : nullptr ), condition( condition ) {}403 404 StatementNode * init;405 ExpressionNode * condition;406 };407 408 struct ForCtrl {409 ForCtrl( ExpressionNode * expr, ExpressionNode * condition, ExpressionNode * change ) :410 init( new StatementNode( build_expr( expr ) ) ), condition( condition ), change( change ) {}411 ForCtrl( DeclarationNode * decl, ExpressionNode * condition, ExpressionNode * change ) :412 init( new StatementNode( decl ) ), condition( condition ), change( change ) {}413 414 StatementNode * init;415 ExpressionNode * condition;416 ExpressionNode * change;417 };418 419 Expression * build_if_control( CondCtl * ctl, std::list< Statement * > & init );420 Statement * build_if( CondCtl * ctl, StatementNode * then, StatementNode * else_ );421 Statement * build_switch( bool isSwitch, ExpressionNode * ctl, StatementNode * stmt );422 Statement * build_case( ExpressionNode * ctl );423 Statement * build_default();424 Statement * build_while( CondCtl * ctl, StatementNode * stmt, StatementNode * else_ = nullptr );425 Statement * build_do_while( ExpressionNode * ctl, StatementNode * stmt, StatementNode * else_ = nullptr );426 Statement * build_for( ForCtrl * forctl, StatementNode * stmt, StatementNode * else_ = nullptr );427 Statement * build_branch( BranchStmt::Type kind );428 Statement * build_branch( std::string * identifier, BranchStmt::Type kind );429 Statement * build_computedgoto( ExpressionNode * ctl );430 Statement * build_return( ExpressionNode * ctl );431 Statement * build_throw( ExpressionNode * ctl );432 Statement * build_resume( ExpressionNode * ctl );433 Statement * build_resume_at( ExpressionNode * ctl , ExpressionNode * target );434 Statement * build_try( StatementNode * try_, StatementNode * catch_, StatementNode * finally_ );435 Statement * build_catch( CatchStmt::Kind kind, DeclarationNode * decl, ExpressionNode * cond, StatementNode * body );436 Statement * build_finally( StatementNode * stmt );437 Statement * build_compound( StatementNode * first );438 StatementNode * maybe_build_compound( StatementNode * first );439 Statement * build_asm( bool voltile, Expression * instruction, ExpressionNode * output = nullptr, ExpressionNode * input = nullptr, ExpressionNode * clobber = nullptr, LabelNode * gotolabels = nullptr );440 Statement * build_directive( std::string * directive );441 SuspendStmt * build_suspend( StatementNode *, SuspendStmt::Type = SuspendStmt::None);442 WaitForStmt * build_waitfor( ExpressionNode * target, StatementNode * stmt, ExpressionNode * when );443 WaitForStmt * build_waitfor( ExpressionNode * target, StatementNode * stmt, ExpressionNode * when, WaitForStmt * existing );444 WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when );445 WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when, StatementNode * else_stmt, ExpressionNode * else_when );446 Statement * build_with( ExpressionNode * exprs, StatementNode * stmt );447 Statement * build_mutex( ExpressionNode * exprs, StatementNode * stmt );448 449 //##############################################################################450 451 template< typename SynTreeType, typename NodeType, template< typename, typename...> class Container, typename... Args >452 void buildList( const NodeType * firstNode, Container< SynTreeType *, Args... > & outputList ) {453 SemanticErrorException errors;454 std::back_insert_iterator< Container< SynTreeType *, Args... > > out( outputList );455 const NodeType * cur = firstNode;456 457 while ( cur ) {458 try {459 SynTreeType * result = dynamic_cast< SynTreeType * >( maybeBuild< typename std::pointer_traits< decltype(cur->build())>::element_type >( cur ) );460 if ( result ) {461 result->location = cur->location;462 * out++ = result;463 } else {464 SemanticError( cur->location, "type specifier declaration in forall clause is currently unimplemented." );465 } // if466 } catch( SemanticErrorException & e ) {467 errors.append( e );468 } // try469 const ParseNode * temp = (cur->get_next());470 cur = dynamic_cast< const NodeType * >( temp ); // should not return nullptr471 if ( ! cur && temp ) { // non-homogeneous nodes ?472 SemanticError( temp->location, "internal error, non-homogeneous nodes founds in buildList processing." );473 } // if474 } // while475 if ( ! errors.isEmpty() ) {476 throw errors;477 } // if478 }479 480 // in DeclarationNode.cc481 void buildList( const DeclarationNode * firstNode, std::list< Declaration * > & outputList );482 void buildList( const DeclarationNode * firstNode, std::list< DeclarationWithType * > & outputList );483 void buildTypeList( const DeclarationNode * firstNode, std::list< Type * > & outputList );484 485 template< typename SynTreeType, typename NodeType >486 void buildMoveList( const NodeType * firstNode, std::list< SynTreeType * > & outputList ) {487 buildList( firstNode, outputList );488 delete firstNode;489 }490 491 // in ParseNode.cc492 101 std::ostream & operator<<( std::ostream & out, const ParseNode * node ); 493 102 -
src/Parser/ParserTypes.h
r34b4268 r24d6572 4 4 // The contents of this file are covered under the licence agreement in the 5 5 // file "LICENCE" distributed with Cforall. 6 // 7 // parser.hh -- 8 // 6 // 7 // parser.hh -- 8 // 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat Sep 22 08:58:10 2001 -
src/Parser/StatementNode.cc
r34b4268 r24d6572 10 10 // Author : Rodolfo G. Esteves 11 11 // Created On : Sat May 16 14:59:41 2015 12 // Last Modified By : Peter A. Buhr13 // Last Modified On : Wed Feb 2 20:29:30 202214 // Update Count : 42 512 // Last Modified By : Andrew Beach 13 // Last Modified On : Tue Apr 11 10:16:00 2023 14 // Update Count : 428 15 15 // 16 16 17 #include "StatementNode.h" 18 17 19 #include <cassert> // for assert, strict_dynamic_cast, assertf 18 #include <list> // for list19 20 #include <memory> // for unique_ptr 20 21 #include <string> // for string 21 22 23 #include "AST/Label.hpp" // for Label 24 #include "AST/Stmt.hpp" // for Stmt, AsmStmt, BranchStmt, CaseCla... 22 25 #include "Common/SemanticError.h" // for SemanticError 23 26 #include "Common/utility.h" // for maybeMoveBuild, maybeBuild 24 #include "ParseNode.h" // for StatementNode, ExpressionNode, bui... 25 #include "SynTree/Expression.h" // for Expression, ConstantExpr 26 #include "SynTree/Label.h" // for Label, noLabels 27 #include "SynTree/Declaration.h" 28 #include "SynTree/Statement.h" // for Statement, BranchStmt, CaseStmt 27 #include "DeclarationNode.h" // for DeclarationNode 28 #include "ExpressionNode.h" // for ExpressionNode 29 29 #include "parserutility.h" // for notZeroExpr 30 30 … … 33 33 using namespace std; 34 34 35 // Some helpers for cases that really want a single node but check for lists. 36 static const ast::Stmt * buildMoveSingle( StatementNode * node ) { 37 std::vector<ast::ptr<ast::Stmt>> list; 38 buildMoveList( node, list ); 39 assertf( list.size() == 1, "CFA Internal Error: Extra/Missing Nodes" ); 40 return list.front().release(); 41 } 42 43 static const ast::Stmt * buildMoveOptional( StatementNode * node ) { 44 std::vector<ast::ptr<ast::Stmt>> list; 45 buildMoveList( node, list ); 46 assertf( list.size() <= 1, "CFA Internal Error: Extra Nodes" ); 47 return list.empty() ? nullptr : list.front().release(); 48 } 35 49 36 50 StatementNode::StatementNode( DeclarationNode * decl ) { … … 38 52 DeclarationNode * agg = decl->extractAggregate(); 39 53 if ( agg ) { 40 StatementNode * nextStmt = new StatementNode( new DeclStmt( maybeBuild< Declaration >( decl ) ) ); 54 StatementNode * nextStmt = new StatementNode( 55 new ast::DeclStmt( decl->location, maybeBuild( decl ) ) ); 41 56 set_next( nextStmt ); 42 57 if ( decl->get_next() ) { … … 51 66 agg = decl; 52 67 } // if 53 stmt.reset( new DeclStmt( maybeMoveBuild< Declaration >(agg) ) ); 68 // Local copy to avoid accessing the pointer after it is moved from. 69 CodeLocation declLocation = agg->location; 70 stmt.reset( new ast::DeclStmt( declLocation, maybeMoveBuild( agg ) ) ); 54 71 } // StatementNode::StatementNode 55 72 56 StatementNode * StatementNode::append_last_case( StatementNode * stmt ) { 57 StatementNode * prev = this; 73 StatementNode * StatementNode::add_label( 74 const CodeLocation & location, 75 const std::string * name, 76 DeclarationNode * attr ) { 77 stmt->labels.emplace_back( location, 78 *name, 79 attr ? std::move( attr->attributes ) 80 : std::vector<ast::ptr<ast::Attribute>>{} ); 81 delete attr; 82 delete name; 83 return this; 84 } 85 86 ClauseNode * ClauseNode::append_last_case( StatementNode * stmt ) { 87 ClauseNode * prev = this; 58 88 // find end of list and maintain previous pointer 59 for ( StatementNode * curr = prev; curr != nullptr; curr = (StatementNode *)curr->get_next() ) {60 StatementNode * node = strict_dynamic_cast< StatementNode * >(curr);61 assert( dynamic_cast< CaseStmt * >(node->stmt.get()) );89 for ( ClauseNode * curr = prev; curr != nullptr; curr = (ClauseNode *)curr->get_next() ) { 90 ClauseNode * node = strict_dynamic_cast< ClauseNode * >(curr); 91 assert( dynamic_cast<ast::CaseClause *>( node->clause.get() ) ); 62 92 prev = curr; 63 93 } // for 94 ClauseNode * node = dynamic_cast< ClauseNode * >(prev); 64 95 // convert from StatementNode list to Statement list 65 StatementNode * node = dynamic_cast< StatementNode * >(prev); 66 list< Statement * > stmts; 96 std::vector<ast::ptr<ast::Stmt>> stmts; 67 97 buildMoveList( stmt, stmts ); 68 98 // splice any new Statements to end of current Statements 69 CaseStmt * caseStmt = dynamic_cast< CaseStmt * >(node->stmt.get()); 70 caseStmt->get_statements().splice( caseStmt->get_statements().end(), stmts ); 99 auto caseStmt = strict_dynamic_cast<ast::CaseClause *>( node->clause.get() ); 100 for ( auto const & newStmt : stmts ) { 101 caseStmt->stmts.emplace_back( newStmt ); 102 } 103 stmts.clear(); 71 104 return this; 72 } // StatementNode::append_last_case 73 74 Statement * build_expr( ExpressionNode * ctl ) { 75 Expression * e = maybeMoveBuild< Expression >( ctl ); 76 77 if ( e ) return new ExprStmt( e ); 78 else return new NullStmt(); 105 } // ClauseNode::append_last_case 106 107 ast::Stmt * build_expr( CodeLocation const & location, ExpressionNode * ctl ) { 108 if ( ast::Expr * e = maybeMoveBuild( ctl ) ) { 109 return new ast::ExprStmt( location, e ); 110 } else { 111 return new ast::NullStmt( location ); 112 } 79 113 } // build_expr 80 114 81 Expression * build_if_control( CondCtl * ctl, list< Statement * > & init ) { 82 if ( ctl->init != 0 ) { 83 buildMoveList( ctl->init, init ); 115 static ast::Expr * build_if_control( CondCtl * ctl, 116 std::vector<ast::ptr<ast::Stmt>> & inits ) { 117 assert( inits.empty() ); 118 if ( nullptr != ctl->init ) { 119 buildMoveList( ctl->init, inits ); 84 120 } // if 85 121 86 Expression* cond = nullptr;122 ast::Expr * cond = nullptr; 87 123 if ( ctl->condition ) { 88 124 // compare the provided condition against 0 89 cond = notZeroExpr( maybeMoveBuild < Expression >(ctl->condition) );125 cond = notZeroExpr( maybeMoveBuild( ctl->condition ) ); 90 126 } else { 91 for ( Statement * stmt : init) {127 for ( ast::ptr<ast::Stmt> & stmt : inits ) { 92 128 // build the && of all of the declared variables compared against 0 93 DeclStmt * declStmt = strict_dynamic_cast< DeclStmt * >( stmt);94 DeclarationWithType * dwt = strict_dynamic_cast< DeclarationWithType * >( declStmt->decl);95 Expression * nze = notZeroExpr( new VariableExpr(dwt ) );96 cond = cond ? new LogicalExpr( cond, nze, true) : nze;129 auto declStmt = stmt.strict_as<ast::DeclStmt>(); 130 auto dwt = declStmt->decl.strict_as<ast::DeclWithType>(); 131 ast::Expr * nze = notZeroExpr( new ast::VariableExpr( dwt->location, dwt ) ); 132 cond = cond ? new ast::LogicalExpr( dwt->location, cond, nze, ast::AndExpr ) : nze; 97 133 } 98 134 } … … 101 137 } // build_if_control 102 138 103 Statement * build_if( CondCtl * ctl, StatementNode * then, StatementNode * else_ ) { 104 list< Statement * > astinit; // maybe empty 105 Expression * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set 106 107 Statement * astthen, * astelse = nullptr; 108 list< Statement * > aststmt; 109 buildMoveList< Statement, StatementNode >( then, aststmt ); 110 assert( aststmt.size() == 1 ); 111 astthen = aststmt.front(); 112 113 if ( else_ ) { 114 list< Statement * > aststmt; 115 buildMoveList< Statement, StatementNode >( else_, aststmt ); 116 assert( aststmt.size() == 1 ); 117 astelse = aststmt.front(); 118 } // if 119 120 return new IfStmt( astcond, astthen, astelse, astinit ); 139 ast::Stmt * build_if( const CodeLocation & location, CondCtl * ctl, StatementNode * then, StatementNode * else_ ) { 140 std::vector<ast::ptr<ast::Stmt>> astinit; // maybe empty 141 ast::Expr * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set 142 143 ast::Stmt const * astthen = buildMoveSingle( then ); 144 ast::Stmt const * astelse = buildMoveOptional( else_ ); 145 146 return new ast::IfStmt( location, astcond, astthen, astelse, 147 std::move( astinit ) 148 ); 121 149 } // build_if 122 150 123 Statement * build_switch( bool isSwitch, ExpressionNode * ctl, StatementNode * stmt ) { 124 list< Statement * > aststmt; 125 buildMoveList< Statement, StatementNode >( stmt, aststmt ); 126 if ( ! isSwitch ) { // choose statement 127 for ( Statement * stmt : aststmt ) { 128 CaseStmt * caseStmt = strict_dynamic_cast< CaseStmt * >( stmt ); 129 if ( ! caseStmt->stmts.empty() ) { // code after "case" => end of case list 130 CompoundStmt * block = strict_dynamic_cast< CompoundStmt * >( caseStmt->stmts.front() ); 131 block->kids.push_back( new BranchStmt( "", BranchStmt::Break ) ); 151 ast::Stmt * build_switch( const CodeLocation & location, bool isSwitch, ExpressionNode * ctl, ClauseNode * stmt ) { 152 std::vector<ast::ptr<ast::CaseClause>> aststmt; 153 buildMoveList( stmt, aststmt ); 154 // If it is not a switch it is a choose statement. 155 if ( ! isSwitch ) { 156 for ( ast::ptr<ast::CaseClause> & stmt : aststmt ) { 157 // Code after "case" is the end of case list. 158 if ( !stmt->stmts.empty() ) { 159 auto mutStmt = ast::mutate( stmt.get() ); 160 // I believe the stmts are actually always one block. 161 auto stmts = mutStmt->stmts.front().get_and_mutate(); 162 auto block = strict_dynamic_cast<ast::CompoundStmt *>( stmts ); 163 block->kids.push_back( new ast::BranchStmt( block->location, 164 ast::BranchStmt::Break, 165 ast::Label( block->location ) ) ); 166 stmt = mutStmt; 132 167 } // if 133 168 } // for 134 169 } // if 135 170 // aststmt.size() == 0 for switch (...) {}, i.e., no declaration or statements 136 return new SwitchStmt( maybeMoveBuild< Expression >(ctl), aststmt ); 171 return new ast::SwitchStmt( location, 172 maybeMoveBuild( ctl ), std::move( aststmt ) ); 137 173 } // build_switch 138 174 139 Statement * build_case( ExpressionNode * ctl ) { 140 return new CaseStmt( maybeMoveBuild< Expression >(ctl), {} ); // stmt starts empty and then added to 175 ast::CaseClause * build_case( const CodeLocation & location, ExpressionNode * ctl ) { 176 // stmt starts empty and then added to 177 auto expr = maybeMoveBuild( ctl ); 178 return new ast::CaseClause( location, expr, {} ); 141 179 } // build_case 142 180 143 Statement * build_default() { 144 return new CaseStmt( nullptr, {}, true ); // stmt starts empty and then added to 181 ast::CaseClause * build_default( const CodeLocation & location ) { 182 // stmt starts empty and then added to 183 return new ast::CaseClause( location, nullptr, {} ); 145 184 } // build_default 146 185 147 Statement * build_while( CondCtl * ctl, StatementNode * stmt, StatementNode * else_ ) { 148 list< Statement * > astinit; // maybe empty 149 Expression * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set 150 151 list< Statement * > aststmt; // loop body, compound created if empty 152 buildMoveList< Statement, StatementNode >( stmt, aststmt ); 153 assert( aststmt.size() == 1 ); 154 155 list< Statement * > astelse; // else clause, maybe empty 156 buildMoveList< Statement, StatementNode >( else_, astelse ); 157 158 return new WhileDoStmt( astcond, aststmt.front(), astelse.front(), astinit, false ); 186 ast::Stmt * build_while( const CodeLocation & location, CondCtl * ctl, StatementNode * stmt, StatementNode * else_ ) { 187 std::vector<ast::ptr<ast::Stmt>> astinit; // maybe empty 188 ast::Expr * astcond = build_if_control( ctl, astinit ); // ctl deleted, cond/init set 189 190 return new ast::WhileDoStmt( location, 191 astcond, 192 buildMoveSingle( stmt ), 193 buildMoveOptional( else_ ), 194 std::move( astinit ), 195 ast::While 196 ); 159 197 } // build_while 160 198 161 Statement * build_do_while( ExpressionNode * ctl, StatementNode * stmt, StatementNode * else_ ) { 162 list< Statement * > aststmt; // loop body, compound created if empty 163 buildMoveList< Statement, StatementNode >( stmt, aststmt ); 164 assert( aststmt.size() == 1 ); // compound created if empty 165 166 list< Statement * > astelse; // else clause, maybe empty 167 buildMoveList< Statement, StatementNode >( else_, astelse ); 168 199 ast::Stmt * build_do_while( const CodeLocation & location, ExpressionNode * ctl, StatementNode * stmt, StatementNode * else_ ) { 169 200 // do-while cannot have declarations in the contitional, so init is always empty 170 return new WhileDoStmt( notZeroExpr( maybeMoveBuild< Expression >(ctl) ), aststmt.front(), astelse.front(), {}, true ); 201 return new ast::WhileDoStmt( location, 202 notZeroExpr( maybeMoveBuild( ctl ) ), 203 buildMoveSingle( stmt ), 204 buildMoveOptional( else_ ), 205 {}, 206 ast::DoWhile 207 ); 171 208 } // build_do_while 172 209 173 Statement * build_for(ForCtrl * forctl, StatementNode * stmt, StatementNode * else_ ) {174 list< Statement *> astinit; // maybe empty210 ast::Stmt * build_for( const CodeLocation & location, ForCtrl * forctl, StatementNode * stmt, StatementNode * else_ ) { 211 std::vector<ast::ptr<ast::Stmt>> astinit; // maybe empty 175 212 buildMoveList( forctl->init, astinit ); 176 213 177 Expression* astcond = nullptr; // maybe empty178 astcond = notZeroExpr( maybeMoveBuild < Expression >(forctl->condition) );179 180 Expression* astincr = nullptr; // maybe empty181 astincr = maybeMoveBuild < Expression >(forctl->change);214 ast::Expr * astcond = nullptr; // maybe empty 215 astcond = notZeroExpr( maybeMoveBuild( forctl->condition ) ); 216 217 ast::Expr * astincr = nullptr; // maybe empty 218 astincr = maybeMoveBuild( forctl->change ); 182 219 delete forctl; 183 220 184 list< Statement * > aststmt; // loop body, compound created if empty 185 buildMoveList< Statement, StatementNode >( stmt, aststmt ); 186 assert( aststmt.size() == 1 ); 187 188 list< Statement * > astelse; // else clause, maybe empty 189 buildMoveList< Statement, StatementNode >( else_, astelse ); 190 191 return new ForStmt( astinit, astcond, astincr, aststmt.front(), astelse.front() ); 221 return new ast::ForStmt( location, 222 std::move( astinit ), 223 astcond, 224 astincr, 225 buildMoveSingle( stmt ), 226 buildMoveOptional( else_ ) 227 ); 192 228 } // build_for 193 229 194 Statement * build_branch( BranchStmt::Type kind ) { 195 Statement * ret = new BranchStmt( "", kind ); 196 return ret; 230 ast::Stmt * build_branch( const CodeLocation & location, ast::BranchStmt::Kind kind ) { 231 return new ast::BranchStmt( location, 232 kind, 233 ast::Label( location ) 234 ); 197 235 } // build_branch 198 236 199 Statement * build_branch( string * identifier, BranchStmt::Type kind ) { 200 Statement * ret = new BranchStmt( * identifier, kind ); 237 ast::Stmt * build_branch( const CodeLocation & location, string * identifier, ast::BranchStmt::Kind kind ) { 238 ast::Stmt * ret = new ast::BranchStmt( location, 239 kind, 240 ast::Label( location, *identifier ) 241 ); 201 242 delete identifier; // allocated by lexer 202 243 return ret; 203 244 } // build_branch 204 245 205 Statement * build_computedgoto( ExpressionNode * ctl ) { 206 return new BranchStmt( maybeMoveBuild< Expression >(ctl), BranchStmt::Goto ); 246 ast::Stmt * build_computedgoto( ExpressionNode * ctl ) { 247 ast::Expr * expr = maybeMoveBuild( ctl ); 248 return new ast::BranchStmt( expr->location, expr ); 207 249 } // build_computedgoto 208 250 209 Statement * build_return(ExpressionNode * ctl ) {210 list< Expression *> exps;251 ast::Stmt * build_return( const CodeLocation & location, ExpressionNode * ctl ) { 252 std::vector<ast::ptr<ast::Expr>> exps; 211 253 buildMoveList( ctl, exps ); 212 return new ReturnStmt( exps.size() > 0 ? exps.back() : nullptr ); 254 return new ast::ReturnStmt( location, 255 exps.size() > 0 ? exps.back().release() : nullptr 256 ); 213 257 } // build_return 214 258 215 Statement * build_throw( ExpressionNode * ctl ) { 216 list< Expression * > exps; 259 static ast::Stmt * build_throw_stmt( 260 const CodeLocation & location, 261 ExpressionNode * ctl, 262 ast::ExceptionKind kind ) { 263 std::vector<ast::ptr<ast::Expr>> exps; 217 264 buildMoveList( ctl, exps ); 218 265 assertf( exps.size() < 2, "CFA internal error: leaking memory" ); 219 return new ThrowStmt( ThrowStmt::Terminate, !exps.empty() ? exps.back() : nullptr ); 266 return new ast::ThrowStmt( location, 267 kind, 268 !exps.empty() ? exps.back().release() : nullptr, 269 (ast::Expr *)nullptr 270 ); 271 } 272 273 ast::Stmt * build_throw( const CodeLocation & loc, ExpressionNode * ctl ) { 274 return build_throw_stmt( loc, ctl, ast::Terminate ); 220 275 } // build_throw 221 276 222 Statement * build_resume( ExpressionNode * ctl ) { 223 list< Expression * > exps; 224 buildMoveList( ctl, exps ); 225 assertf( exps.size() < 2, "CFA internal error: leaking memory" ); 226 return new ThrowStmt( ThrowStmt::Resume, !exps.empty() ? exps.back() : nullptr ); 277 ast::Stmt * build_resume( const CodeLocation & loc, ExpressionNode * ctl ) { 278 return build_throw_stmt( loc, ctl, ast::Resume ); 227 279 } // build_resume 228 280 229 Statement * build_resume_at( ExpressionNode * ctl, ExpressionNode * target ) {281 ast::Stmt * build_resume_at( ExpressionNode * ctl, ExpressionNode * target ) { 230 282 (void)ctl; 231 283 (void)target; … … 233 285 } // build_resume_at 234 286 235 Statement * build_try( StatementNode * try_, StatementNode * catch_, StatementNode * finally_ ) { 236 list< CatchStmt * > aststmt; 237 buildMoveList< CatchStmt, StatementNode >( catch_, aststmt ); 238 CompoundStmt * tryBlock = strict_dynamic_cast< CompoundStmt * >(maybeMoveBuild< Statement >(try_)); 239 FinallyStmt * finallyBlock = dynamic_cast< FinallyStmt * >(maybeMoveBuild< Statement >(finally_) ); 240 return new TryStmt( tryBlock, aststmt, finallyBlock ); 287 ast::Stmt * build_try( const CodeLocation & location, StatementNode * try_, ClauseNode * catch_, ClauseNode * finally_ ) { 288 std::vector<ast::ptr<ast::CatchClause>> aststmt; 289 buildMoveList( catch_, aststmt ); 290 ast::CompoundStmt * tryBlock = strict_dynamic_cast<ast::CompoundStmt *>( maybeMoveBuild( try_ ) ); 291 ast::FinallyClause * finallyBlock = nullptr; 292 if ( finally_ ) { 293 finallyBlock = dynamic_cast<ast::FinallyClause *>( finally_->clause.release() ); 294 } 295 return new ast::TryStmt( location, 296 tryBlock, 297 std::move( aststmt ), 298 finallyBlock 299 ); 241 300 } // build_try 242 301 243 Statement * build_catch( CatchStmt::Kind kind, DeclarationNode * decl, ExpressionNode * cond, StatementNode * body ) { 244 list< Statement * > aststmt; 245 buildMoveList< Statement, StatementNode >( body, aststmt ); 246 assert( aststmt.size() == 1 ); 247 return new CatchStmt( kind, maybeMoveBuild< Declaration >(decl), maybeMoveBuild< Expression >(cond), aststmt.front() ); 302 ast::CatchClause * build_catch( const CodeLocation & location, ast::ExceptionKind kind, DeclarationNode * decl, ExpressionNode * cond, StatementNode * body ) { 303 return new ast::CatchClause( location, 304 kind, 305 maybeMoveBuild( decl ), 306 maybeMoveBuild( cond ), 307 buildMoveSingle( body ) 308 ); 248 309 } // build_catch 249 310 250 Statement * build_finally( StatementNode * stmt ) { 251 list< Statement * > aststmt; 252 buildMoveList< Statement, StatementNode >( stmt, aststmt ); 253 assert( aststmt.size() == 1 ); 254 return new FinallyStmt( dynamic_cast< CompoundStmt * >( aststmt.front() ) ); 311 ast::FinallyClause * build_finally( const CodeLocation & location, StatementNode * stmt ) { 312 return new ast::FinallyClause( location, 313 strict_dynamic_cast<const ast::CompoundStmt *>( 314 buildMoveSingle( stmt ) 315 ) 316 ); 255 317 } // build_finally 256 318 257 SuspendStmt * build_suspend( StatementNode * then, SuspendStmt::Type type ) { 258 auto node = new SuspendStmt(); 259 260 node->type = type; 261 262 list< Statement * > stmts; 263 buildMoveList< Statement, StatementNode >( then, stmts ); 264 if(!stmts.empty()) { 265 assert( stmts.size() == 1 ); 266 node->then = dynamic_cast< CompoundStmt * >( stmts.front() ); 267 } 268 269 return node; 270 } 271 272 WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when ) { 273 auto node = new WaitForStmt(); 274 275 WaitForStmt::Target target; 276 target.function = maybeBuild<Expression>( targetExpr ); 319 ast::SuspendStmt * build_suspend( const CodeLocation & location, StatementNode * then, ast::SuspendStmt::Kind kind ) { 320 return new ast::SuspendStmt( location, 321 strict_dynamic_cast<const ast::CompoundStmt *, nullptr>( 322 buildMoveOptional( then ) 323 ), 324 kind 325 ); 326 } // build_suspend 327 328 ast::WaitForStmt * build_waitfor( const CodeLocation & location, ast::WaitForStmt * existing, ExpressionNode * when, ExpressionNode * targetExpr, StatementNode * stmt ) { 329 auto clause = new ast::WaitForClause( location ); 330 clause->target = maybeBuild( targetExpr ); 331 clause->stmt = maybeMoveBuild( stmt ); 332 clause->when_cond = notZeroExpr( maybeMoveBuild( when ) ); 277 333 278 334 ExpressionNode * next = dynamic_cast<ExpressionNode *>( targetExpr->get_next() ); 279 335 targetExpr->set_next( nullptr ); 280 buildMoveList < Expression >( next, target.arguments );336 buildMoveList( next, clause->target_args ); 281 337 282 338 delete targetExpr; 283 339 284 node->clauses.push_back( WaitForStmt::Clause{ 285 target, 286 maybeMoveBuild<Statement >( stmt ), 287 notZeroExpr( maybeMoveBuild<Expression>( when ) ) 288 }); 289 290 return node; 340 existing->clauses.insert( existing->clauses.begin(), clause ); 341 342 return existing; 291 343 } // build_waitfor 292 344 293 WaitForStmt * build_waitfor( ExpressionNode * targetExpr, StatementNode * stmt, ExpressionNode * when, WaitForStmt * node ) { 294 WaitForStmt::Target target; 295 target.function = maybeBuild<Expression>( targetExpr ); 296 297 ExpressionNode * next = dynamic_cast<ExpressionNode *>( targetExpr->get_next() ); 298 targetExpr->set_next( nullptr ); 299 buildMoveList< Expression >( next, target.arguments ); 300 301 delete targetExpr; 302 303 node->clauses.insert( node->clauses.begin(), WaitForStmt::Clause{ 304 std::move( target ), 305 maybeMoveBuild<Statement >( stmt ), 306 notZeroExpr( maybeMoveBuild<Expression>( when ) ) 307 }); 308 309 return node; 310 } // build_waitfor 311 312 WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when ) { 313 auto node = new WaitForStmt(); 314 315 if( timeout ) { 316 node->timeout.time = maybeMoveBuild<Expression>( timeout ); 317 node->timeout.statement = maybeMoveBuild<Statement >( stmt ); 318 node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) ); 319 } else { 320 node->orelse.statement = maybeMoveBuild<Statement >( stmt ); 321 node->orelse.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) ); 322 } // if 323 324 return node; 345 ast::WaitForStmt * build_waitfor_else( const CodeLocation & location, ast::WaitForStmt * existing, ExpressionNode * when, StatementNode * stmt ) { 346 existing->else_stmt = maybeMoveBuild( stmt ); 347 existing->else_cond = notZeroExpr( maybeMoveBuild( when ) ); 348 349 (void)location; 350 return existing; 351 } // build_waitfor_else 352 353 ast::WaitForStmt * build_waitfor_timeout( const CodeLocation & location, ast::WaitForStmt * existing, ExpressionNode * when, ExpressionNode * timeout, StatementNode * stmt ) { 354 existing->timeout_time = maybeMoveBuild( timeout ); 355 existing->timeout_stmt = maybeMoveBuild( stmt ); 356 existing->timeout_cond = notZeroExpr( maybeMoveBuild( when ) ); 357 358 (void)location; 359 return existing; 325 360 } // build_waitfor_timeout 326 361 327 WaitForStmt * build_waitfor_timeout( ExpressionNode * timeout, StatementNode * stmt, ExpressionNode * when, StatementNode * else_, ExpressionNode * else_when ) { 328 auto node = new WaitForStmt(); 329 330 node->timeout.time = maybeMoveBuild<Expression>( timeout ); 331 node->timeout.statement = maybeMoveBuild<Statement >( stmt ); 332 node->timeout.condition = notZeroExpr( maybeMoveBuild<Expression>( when ) ); 333 334 node->orelse.statement = maybeMoveBuild<Statement >( else_ ); 335 node->orelse.condition = notZeroExpr( maybeMoveBuild<Expression>( else_when ) ); 336 337 return node; 338 } // build_waitfor_timeout 339 340 Statement * build_with( ExpressionNode * exprs, StatementNode * stmt ) { 341 list< Expression * > e; 362 ast::WaitUntilStmt::ClauseNode * build_waituntil_clause( const CodeLocation & loc, ExpressionNode * when, ExpressionNode * targetExpr, StatementNode * stmt ) { 363 ast::WhenClause * clause = new ast::WhenClause( loc ); 364 clause->when_cond = notZeroExpr( maybeMoveBuild( when ) ); 365 clause->stmt = maybeMoveBuild( stmt ); 366 clause->target = maybeMoveBuild( targetExpr ); 367 return new ast::WaitUntilStmt::ClauseNode( clause ); 368 } 369 ast::WaitUntilStmt::ClauseNode * build_waituntil_else( const CodeLocation & loc, ExpressionNode * when, StatementNode * stmt ) { 370 ast::WhenClause * clause = new ast::WhenClause( loc ); 371 clause->when_cond = notZeroExpr( maybeMoveBuild( when ) ); 372 clause->stmt = maybeMoveBuild( stmt ); 373 return new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::ELSE, clause ); 374 } 375 ast::WaitUntilStmt::ClauseNode * build_waituntil_timeout( const CodeLocation & loc, ExpressionNode * when, ExpressionNode * timeout, StatementNode * stmt ) { 376 ast::WhenClause * clause = new ast::WhenClause( loc ); 377 clause->when_cond = notZeroExpr( maybeMoveBuild( when ) ); 378 clause->stmt = maybeMoveBuild( stmt ); 379 clause->target = maybeMoveBuild( timeout ); 380 return new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::TIMEOUT, clause ); 381 } 382 383 ast::WaitUntilStmt * build_waituntil_stmt( const CodeLocation & loc, ast::WaitUntilStmt::ClauseNode * root ) { 384 ast::WaitUntilStmt * retStmt = new ast::WaitUntilStmt( loc ); 385 retStmt->predicateTree = root; 386 387 // iterative tree traversal 388 std::vector<ast::WaitUntilStmt::ClauseNode *> nodeStack; // stack needed for iterative traversal 389 ast::WaitUntilStmt::ClauseNode * currNode = nullptr; 390 ast::WaitUntilStmt::ClauseNode * lastInternalNode = nullptr; 391 ast::WaitUntilStmt::ClauseNode * cleanup = nullptr; // used to cleanup removed else/timeout 392 nodeStack.push_back(root); 393 394 do { 395 currNode = nodeStack.back(); 396 nodeStack.pop_back(); // remove node since it will be processed 397 398 switch (currNode->op) { 399 case ast::WaitUntilStmt::ClauseNode::LEAF: 400 retStmt->clauses.push_back(currNode->leaf); 401 break; 402 case ast::WaitUntilStmt::ClauseNode::ELSE: 403 retStmt->else_stmt = currNode->leaf->stmt 404 ? ast::deepCopy( currNode->leaf->stmt ) 405 : nullptr; 406 407 retStmt->else_cond = currNode->leaf->when_cond 408 ? ast::deepCopy( currNode->leaf->when_cond ) 409 : nullptr; 410 411 delete currNode->leaf; 412 break; 413 case ast::WaitUntilStmt::ClauseNode::TIMEOUT: 414 retStmt->timeout_time = currNode->leaf->target 415 ? ast::deepCopy( currNode->leaf->target ) 416 : nullptr; 417 retStmt->timeout_stmt = currNode->leaf->stmt 418 ? ast::deepCopy( currNode->leaf->stmt ) 419 : nullptr; 420 retStmt->timeout_cond = currNode->leaf->when_cond 421 ? ast::deepCopy( currNode->leaf->when_cond ) 422 : nullptr; 423 424 delete currNode->leaf; 425 break; 426 default: 427 nodeStack.push_back( currNode->right ); // process right after left 428 nodeStack.push_back( currNode->left ); 429 430 // Cut else/timeout out of the tree 431 if ( currNode->op == ast::WaitUntilStmt::ClauseNode::LEFT_OR ) { 432 if ( lastInternalNode ) 433 lastInternalNode->right = currNode->left; 434 else // if not set then root is LEFT_OR 435 retStmt->predicateTree = currNode->left; 436 437 currNode->left = nullptr; 438 cleanup = currNode; 439 } 440 441 lastInternalNode = currNode; 442 break; 443 } 444 } while ( !nodeStack.empty() ); 445 446 if ( cleanup ) delete cleanup; 447 448 return retStmt; 449 } 450 451 ast::Stmt * build_with( const CodeLocation & location, ExpressionNode * exprs, StatementNode * stmt ) { 452 std::vector<ast::ptr<ast::Expr>> e; 342 453 buildMoveList( exprs, e ); 343 Statement * s = maybeMoveBuild<Statement>( stmt );344 return new DeclStmt( new WithStmt( e, s ) );454 ast::Stmt * s = maybeMoveBuild( stmt ); 455 return new ast::DeclStmt( location, new ast::WithStmt( location, std::move( e ), s ) ); 345 456 } // build_with 346 457 347 Statement * build_compound(StatementNode * first ) {348 CompoundStmt * cs = new CompoundStmt();349 buildMoveList( first, cs-> get_kids());458 ast::Stmt * build_compound( const CodeLocation & location, StatementNode * first ) { 459 auto cs = new ast::CompoundStmt( location ); 460 buildMoveList( first, cs->kids ); 350 461 return cs; 351 462 } // build_compound … … 355 466 // statement and wrap it into a compound statement to insert additional code. Hence, all control structures have a 356 467 // conical form for code generation. 357 StatementNode * maybe_build_compound( StatementNode * first ) {468 StatementNode * maybe_build_compound( const CodeLocation & location, StatementNode * first ) { 358 469 // Optimization: if the control-structure statement is a compound statement, do not wrap it. 359 470 // e.g., if (...) {...} do not wrap the existing compound statement. 360 if ( ! dynamic_cast<CompoundStmt *>( first->stmt.get() ) ) { // unique_ptr 361 CompoundStmt * cs = new CompoundStmt(); 362 buildMoveList( first, cs->get_kids() ); 363 return new StatementNode( cs ); 471 if ( !dynamic_cast<ast::CompoundStmt *>( first->stmt.get() ) ) { // unique_ptr 472 return new StatementNode( build_compound( location, first ) ); 364 473 } // if 365 474 return first; … … 367 476 368 477 // Question 369 Statement * build_asm( bool voltile, Expression* instruction, ExpressionNode * output, ExpressionNode * input, ExpressionNode * clobber, LabelNode * gotolabels ) {370 list< Expression *> out, in;371 list< ConstantExpr *> clob;478 ast::Stmt * build_asm( const CodeLocation & location, bool is_volatile, ExpressionNode * instruction, ExpressionNode * output, ExpressionNode * input, ExpressionNode * clobber, LabelNode * gotolabels ) { 479 std::vector<ast::ptr<ast::Expr>> out, in; 480 std::vector<ast::ptr<ast::ConstantExpr>> clob; 372 481 373 482 buildMoveList( output, out ); 374 483 buildMoveList( input, in ); 375 484 buildMoveList( clobber, clob ); 376 return new AsmStmt( voltile, instruction, out, in, clob, gotolabels ? gotolabels->labels : noLabels ); 485 return new ast::AsmStmt( location, 486 is_volatile, 487 maybeMoveBuild( instruction ), 488 std::move( out ), 489 std::move( in ), 490 std::move( clob ), 491 gotolabels ? gotolabels->labels : std::vector<ast::Label>() 492 ); 377 493 } // build_asm 378 494 379 Statement * build_directive( string * directive ) { 380 return new DirectiveStmt( *directive ); 495 ast::Stmt * build_directive( const CodeLocation & location, string * directive ) { 496 auto stmt = new ast::DirectiveStmt( location, *directive ); 497 delete directive; 498 return stmt; 381 499 } // build_directive 382 500 383 Statement * build_mutex(ExpressionNode * exprs, StatementNode * stmt ) {384 list< Expression *> expList;501 ast::Stmt * build_mutex( const CodeLocation & location, ExpressionNode * exprs, StatementNode * stmt ) { 502 std::vector<ast::ptr<ast::Expr>> expList; 385 503 buildMoveList( exprs, expList ); 386 Statement * body = maybeMoveBuild<Statement>( stmt );387 return new MutexStmt( body, expList);504 ast::Stmt * body = maybeMoveBuild( stmt ); 505 return new ast::MutexStmt( location, body, std::move( expList ) ); 388 506 } // build_mutex 389 507 -
src/Parser/TypeData.cc
r34b4268 r24d6572 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 15:12:51 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Tue May 10 22:36:52 202213 // Update Count : 6 7711 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 4 13:39:00 2023 13 // Update Count : 680 14 14 // 15 16 #include "TypeData.h" 15 17 16 18 #include <cassert> // for assert 17 19 #include <ostream> // for operator<<, ostream, basic_ostream 18 20 21 #include "AST/Decl.hpp" // for AggregateDecl, ObjectDecl, TypeDe... 22 #include "AST/Init.hpp" // for SingleInit, ListInit 23 #include "AST/Print.hpp" // for print 19 24 #include "Common/SemanticError.h" // for SemanticError 20 #include "Common/utility.h" // for maybeClone, maybeBuild, maybeMoveB... 21 #include "Parser/ParseNode.h" // for DeclarationNode, ExpressionNode 22 #include "SynTree/Declaration.h" // for TypeDecl, ObjectDecl, FunctionDecl 23 #include "SynTree/Expression.h" // for Expression, ConstantExpr (ptr only) 24 #include "SynTree/Initializer.h" // for SingleInit, Initializer (ptr only) 25 #include "SynTree/Statement.h" // for CompoundStmt, Statement 26 #include "SynTree/Type.h" // for BasicType, Type, Type::ForallList 27 #include "TypeData.h" 25 #include "Common/utility.h" // for splice, spliceBegin 26 #include "Parser/ExpressionNode.h" // for ExpressionNode 27 #include "Parser/StatementNode.h" // for StatementNode 28 28 29 29 class Attribute; … … 33 33 TypeData::TypeData( Kind k ) : location( yylloc ), kind( k ), base( nullptr ), forall( nullptr ) /*, PTR1( (void*)(0xdeadbeefdeadbeef)), PTR2( (void*)(0xdeadbeefdeadbeef) ) */ { 34 34 switch ( kind ) { 35 case Unknown: 36 case Pointer: 37 case Reference: 38 case EnumConstant: 39 case GlobalScope: 40 // nothing else to initialize 41 break; 42 case Basic: 43 // basic = new Basic_t; 44 break; 45 case Array: 46 // array = new Array_t; 35 case Unknown: 36 case Pointer: 37 case Reference: 38 case EnumConstant: 39 case GlobalScope: 40 case Basic: 41 // No unique data to initialize. 42 break; 43 case Array: 47 44 array.dimension = nullptr; 48 45 array.isVarLen = false; 49 46 array.isStatic = false; 50 47 break; 51 case Function: 52 // function = new Function_t; 48 case Function: 53 49 function.params = nullptr; 54 50 function.idList = nullptr; … … 57 53 function.withExprs = nullptr; 58 54 break; 59 // Enum is an Aggregate, so both structures are initialized together. 60 case Enum: 61 // enumeration = new Enumeration_t; 55 case Enum: 62 56 enumeration.name = nullptr; 63 57 enumeration.constants = nullptr; … … 65 59 enumeration.anon = false; 66 60 break; 67 case Aggregate: 68 // aggregate = new Aggregate_t; 69 aggregate.kind = AggregateDecl::NoAggregate; 61 case Aggregate: 62 aggregate.kind = ast::AggregateDecl::NoAggregate; 70 63 aggregate.name = nullptr; 71 64 aggregate.params = nullptr; … … 77 70 aggregate.anon = false; 78 71 break; 79 case AggregateInst: 80 // aggInst = new AggInst_t; 72 case AggregateInst: 81 73 aggInst.aggregate = nullptr; 82 74 aggInst.params = nullptr; 83 75 aggInst.hoistType = false; 84 76 break; 85 case Symbolic: 86 case SymbolicInst: 87 // symbolic = new Symbolic_t; 77 case Symbolic: 78 case SymbolicInst: 88 79 symbolic.name = nullptr; 89 80 symbolic.params = nullptr; … … 91 82 symbolic.assertions = nullptr; 92 83 break; 93 case Tuple: 94 // tuple = new Tuple_t; 84 case Tuple: 95 85 tuple = nullptr; 96 86 break; 97 case Typeof: 98 case Basetypeof: 99 // typeexpr = new Typeof_t; 87 case Typeof: 88 case Basetypeof: 100 89 typeexpr = nullptr; 101 90 break; 102 103 break;104 case Builtin:105 // builtin = new Builtin_t;106 91 case Vtable: 92 case Builtin: 93 // No unique data to initialize. 94 break; 95 case Qualified: 107 96 qualified.parent = nullptr; 108 97 qualified.child = nullptr; … … 117 106 118 107 switch ( kind ) { 119 case Unknown: 120 case Pointer: 121 case Reference: 122 case EnumConstant: 123 case GlobalScope: 124 // nothing to destroy 125 break; 126 case Basic: 127 // delete basic; 128 break; 129 case Array: 108 case Unknown: 109 case Pointer: 110 case Reference: 111 case EnumConstant: 112 case GlobalScope: 113 case Basic: 114 // No unique data to deconstruct. 115 break; 116 case Array: 130 117 delete array.dimension; 131 // delete array; 132 break; 133 case Function: 118 break; 119 case Function: 134 120 delete function.params; 135 121 delete function.idList; … … 137 123 delete function.body; 138 124 delete function.withExprs; 139 // delete function; 140 break; 141 case Aggregate: 125 break; 126 case Aggregate: 142 127 delete aggregate.name; 143 128 delete aggregate.params; 144 129 delete aggregate.actuals; 145 130 delete aggregate.fields; 146 // delete aggregate; 147 break; 148 case AggregateInst: 131 break; 132 case AggregateInst: 149 133 delete aggInst.aggregate; 150 134 delete aggInst.params; 151 // delete aggInst; 152 break; 153 case Enum: 135 break; 136 case Enum: 154 137 delete enumeration.name; 155 138 delete enumeration.constants; 156 // delete enumeration; 157 break; 158 case Symbolic: 159 case SymbolicInst: 139 break; 140 case Symbolic: 141 case SymbolicInst: 160 142 delete symbolic.name; 161 143 delete symbolic.params; 162 144 delete symbolic.actuals; 163 145 delete symbolic.assertions; 164 // delete symbolic; 165 break; 166 case Tuple: 167 // delete tuple->members; 146 break; 147 case Tuple: 168 148 delete tuple; 169 149 break; 170 case Typeof: 171 case Basetypeof: 172 // delete typeexpr->expr; 150 case Typeof: 151 case Basetypeof: 173 152 delete typeexpr; 174 153 break; 175 case Vtable: 176 break; 177 case Builtin: 178 // delete builtin; 179 break; 180 case Qualified: 154 case Vtable: 155 case Builtin: 156 // No unique data to deconstruct. 157 break; 158 case Qualified: 181 159 delete qualified.parent; 182 160 delete qualified.child; 161 break; 183 162 } // switch 184 163 } // TypeData::~TypeData … … 192 171 193 172 switch ( kind ) { 194 195 196 197 198 173 case Unknown: 174 case EnumConstant: 175 case Pointer: 176 case Reference: 177 case GlobalScope: 199 178 // nothing else to copy 200 179 break; 201 180 case Basic: 202 181 newtype->basictype = basictype; 203 182 newtype->complextype = complextype; … … 205 184 newtype->length = length; 206 185 break; 207 186 case Array: 208 187 newtype->array.dimension = maybeClone( array.dimension ); 209 188 newtype->array.isVarLen = array.isVarLen; 210 189 newtype->array.isStatic = array.isStatic; 211 190 break; 212 191 case Function: 213 192 newtype->function.params = maybeClone( function.params ); 214 193 newtype->function.idList = maybeClone( function.idList ); … … 217 196 newtype->function.withExprs = maybeClone( function.withExprs ); 218 197 break; 219 198 case Aggregate: 220 199 newtype->aggregate.kind = aggregate.kind; 221 200 newtype->aggregate.name = aggregate.name ? new string( *aggregate.name ) : nullptr; … … 228 207 newtype->aggregate.parent = aggregate.parent ? new string( *aggregate.parent ) : nullptr; 229 208 break; 230 209 case AggregateInst: 231 210 newtype->aggInst.aggregate = maybeClone( aggInst.aggregate ); 232 211 newtype->aggInst.params = maybeClone( aggInst.params ); 233 212 newtype->aggInst.hoistType = aggInst.hoistType; 234 213 break; 235 214 case Enum: 236 215 newtype->enumeration.name = enumeration.name ? new string( *enumeration.name ) : nullptr; 237 216 newtype->enumeration.constants = maybeClone( enumeration.constants ); … … 239 218 newtype->enumeration.anon = enumeration.anon; 240 219 break; 241 242 220 case Symbolic: 221 case SymbolicInst: 243 222 newtype->symbolic.name = symbolic.name ? new string( *symbolic.name ) : nullptr; 244 223 newtype->symbolic.params = maybeClone( symbolic.params ); … … 247 226 newtype->symbolic.isTypedef = symbolic.isTypedef; 248 227 break; 249 228 case Tuple: 250 229 newtype->tuple = maybeClone( tuple ); 251 230 break; 252 253 231 case Typeof: 232 case Basetypeof: 254 233 newtype->typeexpr = maybeClone( typeexpr ); 255 234 break; 256 257 break; 258 235 case Vtable: 236 break; 237 case Builtin: 259 238 assert( builtintype == DeclarationNode::Zero || builtintype == DeclarationNode::One ); 260 239 newtype->builtintype = builtintype; 261 240 break; 262 241 case Qualified: 263 242 newtype->qualified.parent = maybeClone( qualified.parent ); 264 243 newtype->qualified.child = maybeClone( qualified.child ); … … 270 249 271 250 void TypeData::print( ostream &os, int indent ) const { 272 for ( int i = 0; i < Type::NumTypeQualifier; i += 1 ) { 273 if ( qualifiers[i] ) os << Type::QualifiersNames[ i ] << ' '; 274 } // for 251 ast::print( os, qualifiers ); 275 252 276 253 if ( forall ) { … … 280 257 281 258 switch ( kind ) { 282 259 case Basic: 283 260 if ( signedness != DeclarationNode::NoSignedness ) os << DeclarationNode::signednessNames[ signedness ] << " "; 284 261 if ( length != DeclarationNode::NoLength ) os << DeclarationNode::lengthNames[ length ] << " "; … … 286 263 if ( basictype != DeclarationNode::NoBasicType ) os << DeclarationNode::basicTypeNames[ basictype ] << " "; 287 264 break; 288 265 case Pointer: 289 266 os << "pointer "; 290 267 if ( base ) { … … 293 270 } // if 294 271 break; 295 272 case Reference: 296 273 os << "reference "; 297 274 if ( base ) { … … 300 277 } // if 301 278 break; 302 279 case Array: 303 280 if ( array.isStatic ) { 304 281 os << "static "; … … 316 293 } // if 317 294 break; 318 295 case Function: 319 296 os << "function" << endl; 320 297 if ( function.params ) { … … 344 321 } // if 345 322 break; 346 347 os << AggregateDecl::aggrString( aggregate.kind ) << ' ' << *aggregate.name << endl;323 case Aggregate: 324 os << ast::AggregateDecl::aggrString( aggregate.kind ) << ' ' << *aggregate.name << endl; 348 325 if ( aggregate.params ) { 349 326 os << string( indent + 2, ' ' ) << "with type parameters" << endl; … … 362 339 } // if 363 340 break; 364 341 case AggregateInst: 365 342 if ( aggInst.aggregate ) { 366 343 os << "instance of " ; … … 374 351 } // if 375 352 break; 376 377 os << "enumeration " ;353 case Enum: 354 os << "enumeration " << *enumeration.name << endl;; 378 355 if ( enumeration.constants ) { 379 356 os << "with constants" << endl; … … 388 365 } // if 389 366 break; 390 367 case EnumConstant: 391 368 os << "enumeration constant "; 392 369 break; 393 370 case Symbolic: 394 371 if ( symbolic.isTypedef ) { 395 372 os << "typedef definition "; … … 411 388 } // if 412 389 break; 413 390 case SymbolicInst: 414 391 os << *symbolic.name; 415 392 if ( symbolic.actuals ) { … … 419 396 } // if 420 397 break; 421 398 case Tuple: 422 399 os << "tuple "; 423 400 if ( tuple ) { … … 426 403 } // if 427 404 break; 428 405 case Basetypeof: 429 406 os << "base-"; 430 407 #if defined(__GNUC__) && __GNUC__ >= 7 … … 432 409 #endif 433 410 // FALL THROUGH 434 411 case Typeof: 435 412 os << "type-of expression "; 436 413 if ( typeexpr ) { … … 438 415 } // if 439 416 break; 440 417 case Vtable: 441 418 os << "vtable"; 442 419 break; 443 420 case Builtin: 444 421 os << DeclarationNode::builtinTypeNames[builtintype]; 445 422 break; 446 447 break; 448 423 case GlobalScope: 424 break; 425 case Qualified: 449 426 qualified.parent->print( os ); 450 427 os << "."; 451 428 qualified.child->print( os ); 452 429 break; 453 430 case Unknown: 454 431 os << "entity of unknown type "; 455 432 break; 456 433 default: 457 434 os << "internal error: TypeData::print " << kind << endl; 458 435 assert( false ); … … 462 439 const std::string * TypeData::leafName() const { 463 440 switch ( kind ) { 464 465 466 467 468 469 470 471 472 473 474 475 476 477 441 case Unknown: 442 case Pointer: 443 case Reference: 444 case EnumConstant: 445 case GlobalScope: 446 case Array: 447 case Basic: 448 case Function: 449 case AggregateInst: 450 case Tuple: 451 case Typeof: 452 case Basetypeof: 453 case Builtin: 454 case Vtable: 478 455 assertf(false, "Tried to get leaf name from kind without a name: %d", kind); 479 456 break; 480 457 case Aggregate: 481 458 return aggregate.name; 482 459 case Enum: 483 460 return enumeration.name; 484 485 461 case Symbolic: 462 case SymbolicInst: 486 463 return symbolic.name; 487 464 case Qualified: 488 465 return qualified.child->leafName(); 489 466 } // switch … … 492 469 493 470 494 template< typename ForallList > 495 void buildForall( const DeclarationNode * firstNode, ForallList &outputList ) { 496 buildList( firstNode, outputList ); 471 void buildForall( 472 const DeclarationNode * firstNode, 473 std::vector<ast::ptr<ast::TypeInstType>> &outputList ) { 474 { 475 std::vector<ast::ptr<ast::Type>> tmpList; 476 buildTypeList( firstNode, tmpList ); 477 for ( auto tmp : tmpList ) { 478 outputList.emplace_back( 479 strict_dynamic_cast<const ast::TypeInstType *>( 480 tmp.release() ) ); 481 } 482 } 497 483 auto n = firstNode; 498 for ( typename ForallList::iterator i = outputList.begin(); i != outputList.end(); ++i, n = (DeclarationNode*)n->get_next() ) { 499 TypeDecl * td = static_cast<TypeDecl *>(*i); 500 if ( n->variable.tyClass == TypeDecl::Otype ) { 501 // add assertion parameters to `type' tyvars in reverse order 502 // add dtor: void ^?{}(T *) 503 FunctionType * dtorType = new FunctionType( Type::Qualifiers(), false ); 504 dtorType->get_parameters().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) ); 505 td->get_assertions().push_front( new FunctionDecl( "^?{}", Type::StorageClasses(), LinkageSpec::Cforall, dtorType, nullptr ) ); 506 507 // add copy ctor: void ?{}(T *, T) 508 FunctionType * copyCtorType = new FunctionType( Type::Qualifiers(), false ); 509 copyCtorType->get_parameters().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) ); 510 copyCtorType->get_parameters().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), td->get_name(), *i ), nullptr ) ); 511 td->get_assertions().push_front( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, copyCtorType, nullptr ) ); 512 513 // add default ctor: void ?{}(T *) 514 FunctionType * ctorType = new FunctionType( Type::Qualifiers(), false ); 515 ctorType->get_parameters().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) ); 516 td->get_assertions().push_front( new FunctionDecl( "?{}", Type::StorageClasses(), LinkageSpec::Cforall, ctorType, nullptr ) ); 517 518 // add assignment operator: T * ?=?(T *, T) 519 FunctionType * assignType = new FunctionType( Type::Qualifiers(), false ); 520 assignType->get_parameters().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new ReferenceType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) ); 521 assignType->get_parameters().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), td->get_name(), *i ), nullptr ) ); 522 assignType->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), td->get_name(), *i ), nullptr ) ); 523 td->get_assertions().push_front( new FunctionDecl( "?=?", Type::StorageClasses(), LinkageSpec::Cforall, assignType, nullptr ) ); 524 } // if 484 for ( auto i = outputList.begin() ; 485 i != outputList.end() ; 486 ++i, n = (DeclarationNode*)n->get_next() ) { 487 // Only the object type class adds additional assertions. 488 if ( n->variable.tyClass != ast::TypeDecl::Otype ) { 489 continue; 490 } 491 492 ast::TypeDecl const * td = i->strict_as<ast::TypeDecl>(); 493 std::vector<ast::ptr<ast::DeclWithType>> newAssertions; 494 auto mutTypeDecl = ast::mutate( td ); 495 const CodeLocation & location = mutTypeDecl->location; 496 *i = mutTypeDecl; 497 498 // add assertion parameters to `type' tyvars in reverse order 499 // add assignment operator: T * ?=?(T *, T) 500 newAssertions.push_back( new ast::FunctionDecl( 501 location, 502 "?=?", 503 {}, // forall 504 {}, // assertions 505 { 506 new ast::ObjectDecl( 507 location, 508 "", 509 new ast::ReferenceType( i->get() ), 510 (ast::Init *)nullptr, 511 ast::Storage::Classes(), 512 ast::Linkage::Cforall, 513 (ast::Expr *)nullptr 514 ), 515 new ast::ObjectDecl( 516 location, 517 "", 518 i->get(), 519 (ast::Init *)nullptr, 520 ast::Storage::Classes(), 521 ast::Linkage::Cforall, 522 (ast::Expr *)nullptr 523 ), 524 }, // params 525 { 526 new ast::ObjectDecl( 527 location, 528 "", 529 i->get(), 530 (ast::Init *)nullptr, 531 ast::Storage::Classes(), 532 ast::Linkage::Cforall, 533 (ast::Expr *)nullptr 534 ), 535 }, // returns 536 (ast::CompoundStmt *)nullptr, 537 ast::Storage::Classes(), 538 ast::Linkage::Cforall 539 ) ); 540 541 // add default ctor: void ?{}(T *) 542 newAssertions.push_back( new ast::FunctionDecl( 543 location, 544 "?{}", 545 {}, // forall 546 {}, // assertions 547 { 548 new ast::ObjectDecl( 549 location, 550 "", 551 new ast::ReferenceType( i->get() ), 552 (ast::Init *)nullptr, 553 ast::Storage::Classes(), 554 ast::Linkage::Cforall, 555 (ast::Expr *)nullptr 556 ), 557 }, // params 558 {}, // returns 559 (ast::CompoundStmt *)nullptr, 560 ast::Storage::Classes(), 561 ast::Linkage::Cforall 562 ) ); 563 564 // add copy ctor: void ?{}(T *, T) 565 newAssertions.push_back( new ast::FunctionDecl( 566 location, 567 "?{}", 568 {}, // forall 569 {}, // assertions 570 { 571 new ast::ObjectDecl( 572 location, 573 "", 574 new ast::ReferenceType( i->get() ), 575 (ast::Init *)nullptr, 576 ast::Storage::Classes(), 577 ast::Linkage::Cforall, 578 (ast::Expr *)nullptr 579 ), 580 new ast::ObjectDecl( 581 location, 582 "", 583 i->get(), 584 (ast::Init *)nullptr, 585 ast::Storage::Classes(), 586 ast::Linkage::Cforall, 587 (ast::Expr *)nullptr 588 ), 589 }, // params 590 {}, // returns 591 (ast::CompoundStmt *)nullptr, 592 ast::Storage::Classes(), 593 ast::Linkage::Cforall 594 ) ); 595 596 // add dtor: void ^?{}(T *) 597 newAssertions.push_back( new ast::FunctionDecl( 598 location, 599 "^?{}", 600 {}, // forall 601 {}, // assertions 602 { 603 new ast::ObjectDecl( 604 location, 605 "", 606 new ast::ReferenceType( i->get() ), 607 (ast::Init *)nullptr, 608 ast::Storage::Classes(), 609 ast::Linkage::Cforall, 610 (ast::Expr *)nullptr 611 ), 612 }, // params 613 {}, // returns 614 (ast::CompoundStmt *)nullptr, 615 ast::Storage::Classes(), 616 ast::Linkage::Cforall 617 ) ); 618 619 spliceBegin( mutTypeDecl->assertions, newAssertions ); 620 } // for 621 } 622 623 624 void buildForall( 625 const DeclarationNode * firstNode, 626 std::vector<ast::ptr<ast::TypeDecl>> &outputForall ) { 627 buildList( firstNode, outputForall ); 628 auto n = firstNode; 629 for ( auto i = outputForall.begin() ; 630 i != outputForall.end() ; 631 ++i, n = (DeclarationNode*)n->get_next() ) { 632 // Only the object type class adds additional assertions. 633 if ( n->variable.tyClass != ast::TypeDecl::Otype ) { 634 continue; 635 } 636 637 ast::TypeDecl const * td = i->strict_as<ast::TypeDecl>(); 638 std::vector<ast::ptr<ast::DeclWithType>> newAssertions; 639 auto mutTypeDecl = ast::mutate( td ); 640 const CodeLocation & location = mutTypeDecl->location; 641 *i = mutTypeDecl; 642 643 // add assertion parameters to `type' tyvars in reverse order 644 // add assignment operator: T * ?=?(T *, T) 645 newAssertions.push_back( new ast::FunctionDecl( 646 location, 647 "?=?", 648 {}, // forall 649 {}, // assertions 650 { 651 new ast::ObjectDecl( 652 location, 653 "", 654 new ast::ReferenceType( new ast::TypeInstType( td->name, *i ) ), 655 (ast::Init *)nullptr, 656 ast::Storage::Classes(), 657 ast::Linkage::Cforall, 658 (ast::Expr *)nullptr 659 ), 660 new ast::ObjectDecl( 661 location, 662 "", 663 new ast::TypeInstType( td->name, *i ), 664 (ast::Init *)nullptr, 665 ast::Storage::Classes(), 666 ast::Linkage::Cforall, 667 (ast::Expr *)nullptr 668 ), 669 }, // params 670 { 671 new ast::ObjectDecl( 672 location, 673 "", 674 new ast::TypeInstType( td->name, *i ), 675 (ast::Init *)nullptr, 676 ast::Storage::Classes(), 677 ast::Linkage::Cforall, 678 (ast::Expr *)nullptr 679 ), 680 }, // returns 681 (ast::CompoundStmt *)nullptr, 682 ast::Storage::Classes(), 683 ast::Linkage::Cforall 684 ) ); 685 686 // add default ctor: void ?{}(T *) 687 newAssertions.push_back( new ast::FunctionDecl( 688 location, 689 "?{}", 690 {}, // forall 691 {}, // assertions 692 { 693 new ast::ObjectDecl( 694 location, 695 "", 696 new ast::ReferenceType( 697 new ast::TypeInstType( td->name, i->get() ) ), 698 (ast::Init *)nullptr, 699 ast::Storage::Classes(), 700 ast::Linkage::Cforall, 701 (ast::Expr *)nullptr 702 ), 703 }, // params 704 {}, // returns 705 (ast::CompoundStmt *)nullptr, 706 ast::Storage::Classes(), 707 ast::Linkage::Cforall 708 ) ); 709 710 // add copy ctor: void ?{}(T *, T) 711 newAssertions.push_back( new ast::FunctionDecl( 712 location, 713 "?{}", 714 {}, // forall 715 {}, // assertions 716 { 717 new ast::ObjectDecl( 718 location, 719 "", 720 new ast::ReferenceType( 721 new ast::TypeInstType( td->name, *i ) ), 722 (ast::Init *)nullptr, 723 ast::Storage::Classes(), 724 ast::Linkage::Cforall, 725 (ast::Expr *)nullptr 726 ), 727 new ast::ObjectDecl( 728 location, 729 "", 730 new ast::TypeInstType( td->name, *i ), 731 (ast::Init *)nullptr, 732 ast::Storage::Classes(), 733 ast::Linkage::Cforall, 734 (ast::Expr *)nullptr 735 ), 736 }, // params 737 {}, // returns 738 (ast::CompoundStmt *)nullptr, 739 ast::Storage::Classes(), 740 ast::Linkage::Cforall 741 ) ); 742 743 // add dtor: void ^?{}(T *) 744 newAssertions.push_back( new ast::FunctionDecl( 745 location, 746 "^?{}", 747 {}, // forall 748 {}, // assertions 749 { 750 new ast::ObjectDecl( 751 location, 752 "", 753 new ast::ReferenceType( 754 new ast::TypeInstType( i->get() ) 755 ), 756 (ast::Init *)nullptr, 757 ast::Storage::Classes(), 758 ast::Linkage::Cforall, 759 (ast::Expr *)nullptr 760 ), 761 }, // params 762 {}, // returns 763 (ast::CompoundStmt *)nullptr, 764 ast::Storage::Classes(), 765 ast::Linkage::Cforall 766 ) ); 767 768 spliceBegin( mutTypeDecl->assertions, newAssertions ); 525 769 } // for 526 770 } // buildForall 527 771 528 772 529 Type * typebuild( const TypeData * td ) {773 ast::Type * typebuild( const TypeData * td ) { 530 774 assert( td ); 531 775 switch ( td->kind ) { 532 776 case TypeData::Unknown: 533 777 // fill in implicit int 534 return new BasicType( buildQualifiers( td ), BasicType::SignedInt ); 535 case TypeData::Basic: 778 return new ast::BasicType( 779 ast::BasicType::SignedInt, 780 buildQualifiers( td ) 781 ); 782 case TypeData::Basic: 536 783 return buildBasicType( td ); 537 784 case TypeData::Pointer: 538 785 return buildPointer( td ); 539 786 case TypeData::Array: 540 787 return buildArray( td ); 541 788 case TypeData::Reference: 542 789 return buildReference( td ); 543 544 return buildFunction ( td );545 790 case TypeData::Function: 791 return buildFunctionType( td ); 792 case TypeData::AggregateInst: 546 793 return buildAggInst( td ); 547 548 return new EnumInstType( buildQualifiers( td ), "");549 794 case TypeData::EnumConstant: 795 return new ast::EnumInstType( "", buildQualifiers( td ) ); 796 case TypeData::SymbolicInst: 550 797 return buildSymbolicInst( td ); 551 798 case TypeData::Tuple: 552 799 return buildTuple( td ); 553 554 800 case TypeData::Typeof: 801 case TypeData::Basetypeof: 555 802 return buildTypeof( td ); 556 803 case TypeData::Vtable: 557 804 return buildVtable( td ); 558 805 case TypeData::Builtin: 559 806 switch ( td->builtintype ) { 560 561 return new ZeroType( noQualifiers);562 563 return new OneType( noQualifiers);564 565 return new VarArgsType( buildQualifiers( td ) );807 case DeclarationNode::Zero: 808 return new ast::ZeroType(); 809 case DeclarationNode::One: 810 return new ast::OneType(); 811 default: 812 return new ast::VarArgsType( buildQualifiers( td ) ); 566 813 } // switch 567 case TypeData::GlobalScope: 568 return new GlobalScopeType(); 569 case TypeData::Qualified: 570 return new QualifiedType( buildQualifiers( td ), typebuild( td->qualified.parent ), typebuild( td->qualified.child ) ); 571 case TypeData::Symbolic: 572 case TypeData::Enum: 573 case TypeData::Aggregate: 814 case TypeData::GlobalScope: 815 return new ast::GlobalScopeType(); 816 case TypeData::Qualified: 817 return new ast::QualifiedType( 818 typebuild( td->qualified.parent ), 819 typebuild( td->qualified.child ), 820 buildQualifiers( td ) 821 ); 822 case TypeData::Symbolic: 823 case TypeData::Enum: 824 case TypeData::Aggregate: 574 825 assert( false ); 575 826 } // switch … … 583 834 584 835 switch ( td->kind ) { 585 836 case TypeData::Aggregate: 586 837 if ( ! toplevel && td->aggregate.body ) { 587 838 ret = td->clone(); 588 839 } // if 589 840 break; 590 841 case TypeData::Enum: 591 842 if ( ! toplevel && td->enumeration.body ) { 592 843 ret = td->clone(); 593 844 } // if 594 845 break; 595 846 case TypeData::AggregateInst: 596 847 if ( td->aggInst.aggregate ) { 597 848 ret = typeextractAggregate( td->aggInst.aggregate, false ); 598 849 } // if 599 850 break; 600 851 default: 601 852 if ( td->base ) { 602 853 ret = typeextractAggregate( td->base, false ); … … 607 858 608 859 609 Type::Qualifiers buildQualifiers( const TypeData * td ) {860 ast::CV::Qualifiers buildQualifiers( const TypeData * td ) { 610 861 return td->qualifiers; 611 862 } // buildQualifiers … … 616 867 } // genTSError 617 868 618 Type * buildBasicType( const TypeData * td ) {619 BasicType::Kind ret;869 ast::Type * buildBasicType( const TypeData * td ) { 870 ast::BasicType::Kind ret; 620 871 621 872 switch ( td->basictype ) { 622 873 case DeclarationNode::Void: 623 874 if ( td->signedness != DeclarationNode::NoSignedness ) { 624 875 genTSError( DeclarationNode::signednessNames[ td->signedness ], td->basictype ); … … 627 878 genTSError( DeclarationNode::lengthNames[ td->length ], td->basictype ); 628 879 } // if 629 return new VoidType( buildQualifiers( td ) );630 break; 631 632 880 return new ast::VoidType( buildQualifiers( td ) ); 881 break; 882 883 case DeclarationNode::Bool: 633 884 if ( td->signedness != DeclarationNode::NoSignedness ) { 634 885 genTSError( DeclarationNode::signednessNames[ td->signedness ], td->basictype ); … … 638 889 } // if 639 890 640 ret = BasicType::Bool;641 break; 642 643 891 ret = ast::BasicType::Bool; 892 break; 893 894 case DeclarationNode::Char: 644 895 // C11 Standard 6.2.5.15: The three types char, signed char, and unsigned char are collectively called the 645 896 // character types. The implementation shall define char to have the same range, representation, and behavior as 646 897 // either signed char or unsigned char. 647 static BasicType::Kind chartype[] = { BasicType::SignedChar, BasicType::UnsignedChar,BasicType::Char };898 static ast::BasicType::Kind chartype[] = { ast::BasicType::SignedChar, ast::BasicType::UnsignedChar, ast::BasicType::Char }; 648 899 649 900 if ( td->length != DeclarationNode::NoLength ) { … … 654 905 break; 655 906 656 657 static BasicType::Kind inttype[2][4] = {658 { BasicType::ShortSignedInt, BasicType::LongSignedInt, BasicType::LongLongSignedInt,BasicType::SignedInt },659 { BasicType::ShortUnsignedInt, BasicType::LongUnsignedInt, BasicType::LongLongUnsignedInt,BasicType::UnsignedInt },907 case DeclarationNode::Int: 908 static ast::BasicType::Kind inttype[2][4] = { 909 { ast::BasicType::ShortSignedInt, ast::BasicType::LongSignedInt, ast::BasicType::LongLongSignedInt, ast::BasicType::SignedInt }, 910 { ast::BasicType::ShortUnsignedInt, ast::BasicType::LongUnsignedInt, ast::BasicType::LongLongUnsignedInt, ast::BasicType::UnsignedInt }, 660 911 }; 661 912 662 913 Integral: ; 663 914 if ( td->signedness == DeclarationNode::NoSignedness ) { 664 915 const_cast<TypeData *>(td)->signedness = DeclarationNode::Signed; … … 667 918 break; 668 919 669 670 ret = td->signedness == DeclarationNode::Unsigned ? BasicType::UnsignedInt128 :BasicType::SignedInt128;920 case DeclarationNode::Int128: 921 ret = td->signedness == DeclarationNode::Unsigned ? ast::BasicType::UnsignedInt128 : ast::BasicType::SignedInt128; 671 922 if ( td->length != DeclarationNode::NoLength ) { 672 923 genTSError( DeclarationNode::lengthNames[ td->length ], td->basictype ); … … 674 925 break; 675 926 676 677 678 679 680 681 682 683 684 685 686 687 688 static BasicType::Kind floattype[2][12] = {689 { BasicType::FloatComplex, BasicType::DoubleComplex, BasicType::LongDoubleComplex, (BasicType::Kind)-1, (BasicType::Kind)-1, BasicType::uFloat16Complex, BasicType::uFloat32Complex, BasicType::uFloat32xComplex, BasicType::uFloat64Complex, BasicType::uFloat64xComplex, BasicType::uFloat128Complex,BasicType::uFloat128xComplex, },690 { BasicType::Float, BasicType::Double, BasicType::LongDouble, BasicType::uuFloat80, BasicType::uuFloat128, BasicType::uFloat16, BasicType::uFloat32, BasicType::uFloat32x, BasicType::uFloat64, BasicType::uFloat64x, BasicType::uFloat128,BasicType::uFloat128x, },927 case DeclarationNode::Float: 928 case DeclarationNode::Double: 929 case DeclarationNode::LongDouble: // not set until below 930 case DeclarationNode::uuFloat80: 931 case DeclarationNode::uuFloat128: 932 case DeclarationNode::uFloat16: 933 case DeclarationNode::uFloat32: 934 case DeclarationNode::uFloat32x: 935 case DeclarationNode::uFloat64: 936 case DeclarationNode::uFloat64x: 937 case DeclarationNode::uFloat128: 938 case DeclarationNode::uFloat128x: 939 static ast::BasicType::Kind floattype[2][12] = { 940 { ast::BasicType::FloatComplex, ast::BasicType::DoubleComplex, ast::BasicType::LongDoubleComplex, (ast::BasicType::Kind)-1, (ast::BasicType::Kind)-1, ast::BasicType::uFloat16Complex, ast::BasicType::uFloat32Complex, ast::BasicType::uFloat32xComplex, ast::BasicType::uFloat64Complex, ast::BasicType::uFloat64xComplex, ast::BasicType::uFloat128Complex, ast::BasicType::uFloat128xComplex, }, 941 { ast::BasicType::Float, ast::BasicType::Double, ast::BasicType::LongDouble, ast::BasicType::uuFloat80, ast::BasicType::uuFloat128, ast::BasicType::uFloat16, ast::BasicType::uFloat32, ast::BasicType::uFloat32x, ast::BasicType::uFloat64, ast::BasicType::uFloat64x, ast::BasicType::uFloat128, ast::BasicType::uFloat128x, }, 691 942 }; 692 943 693 944 FloatingPoint: ; 694 945 if ( td->signedness != DeclarationNode::NoSignedness ) { 695 946 genTSError( DeclarationNode::signednessNames[ td->signedness ], td->basictype ); … … 715 966 break; 716 967 717 968 case DeclarationNode::NoBasicType: 718 969 // No basic type in declaration => default double for Complex/Imaginary and int type for integral types 719 970 if ( td->complextype == DeclarationNode::Complex || td->complextype == DeclarationNode::Imaginary ) { … … 724 975 const_cast<TypeData *>(td)->basictype = DeclarationNode::Int; 725 976 goto Integral; 726 727 977 default: 978 assertf( false, "unknown basic type" ); 728 979 return nullptr; 729 980 } // switch 730 981 731 BasicType * bt = new BasicType( buildQualifiers( td ), ret ); 732 buildForall( td->forall, bt->get_forall() ); 982 ast::BasicType * bt = new ast::BasicType( ret, buildQualifiers( td ) ); 733 983 return bt; 734 984 } // buildBasicType 735 985 736 986 737 PointerType * buildPointer( const TypeData * td ) {738 PointerType * pt;987 ast::PointerType * buildPointer( const TypeData * td ) { 988 ast::PointerType * pt; 739 989 if ( td->base ) { 740 pt = new PointerType( buildQualifiers( td ), typebuild( td->base ) ); 990 pt = new ast::PointerType( 991 typebuild( td->base ), 992 buildQualifiers( td ) 993 ); 741 994 } else { 742 pt = new PointerType( buildQualifiers( td ), new BasicType( Type::Qualifiers(), BasicType::SignedInt ) ); 995 pt = new ast::PointerType( 996 new ast::BasicType( ast::BasicType::SignedInt ), 997 buildQualifiers( td ) 998 ); 743 999 } // if 744 buildForall( td->forall, pt->get_forall() );745 1000 return pt; 746 1001 } // buildPointer 747 1002 748 1003 749 ArrayType * buildArray( const TypeData * td ) {750 ArrayType * at;1004 ast::ArrayType * buildArray( const TypeData * td ) { 1005 ast::ArrayType * at; 751 1006 if ( td->base ) { 752 at = new ArrayType( buildQualifiers( td ), typebuild( td->base ), maybeBuild< Expression >( td->array.dimension ), 753 td->array.isVarLen, td->array.isStatic ); 1007 at = new ast::ArrayType( 1008 typebuild( td->base ), 1009 maybeBuild( td->array.dimension ), 1010 td->array.isVarLen ? ast::VariableLen : ast::FixedLen, 1011 td->array.isStatic ? ast::StaticDim : ast::DynamicDim, 1012 buildQualifiers( td ) 1013 ); 754 1014 } else { 755 at = new ArrayType( buildQualifiers( td ), new BasicType( Type::Qualifiers(), BasicType::SignedInt ), 756 maybeBuild< Expression >( td->array.dimension ), td->array.isVarLen, td->array.isStatic ); 1015 at = new ast::ArrayType( 1016 new ast::BasicType( ast::BasicType::SignedInt ), 1017 maybeBuild( td->array.dimension ), 1018 td->array.isVarLen ? ast::VariableLen : ast::FixedLen, 1019 td->array.isStatic ? ast::StaticDim : ast::DynamicDim, 1020 buildQualifiers( td ) 1021 ); 757 1022 } // if 758 buildForall( td->forall, at->get_forall() );759 1023 return at; 760 1024 } // buildArray 761 1025 762 1026 763 ReferenceType * buildReference( const TypeData * td ) {764 ReferenceType * rt;1027 ast::ReferenceType * buildReference( const TypeData * td ) { 1028 ast::ReferenceType * rt; 765 1029 if ( td->base ) { 766 rt = new ReferenceType( buildQualifiers( td ), typebuild( td->base ) ); 1030 rt = new ast::ReferenceType( 1031 typebuild( td->base ), 1032 buildQualifiers( td ) 1033 ); 767 1034 } else { 768 rt = new ReferenceType( buildQualifiers( td ), new BasicType( Type::Qualifiers(), BasicType::SignedInt ) ); 1035 rt = new ast::ReferenceType( 1036 new ast::BasicType( ast::BasicType::SignedInt ), 1037 buildQualifiers( td ) 1038 ); 769 1039 } // if 770 buildForall( td->forall, rt->get_forall() );771 1040 return rt; 772 1041 } // buildReference 773 1042 774 1043 775 AggregateDecl * buildAggregate( const TypeData * td, std::list< Attribute * > attributes, LinkageSpec::Spec linkage ) {1044 ast::AggregateDecl * buildAggregate( const TypeData * td, std::vector<ast::ptr<ast::Attribute>> attributes, ast::Linkage::Spec linkage ) { 776 1045 assert( td->kind == TypeData::Aggregate ); 777 AggregateDecl * at;1046 ast::AggregateDecl * at; 778 1047 switch ( td->aggregate.kind ) { 779 case AggregateDecl::Struct: 780 case AggregateDecl::Coroutine: 781 case AggregateDecl::Exception: 782 case AggregateDecl::Generator: 783 case AggregateDecl::Monitor: 784 case AggregateDecl::Thread: 785 at = new StructDecl( *td->aggregate.name, td->aggregate.kind, attributes, linkage ); 786 buildForall( td->aggregate.params, at->get_parameters() ); 787 break; 788 case AggregateDecl::Union: 789 at = new UnionDecl( *td->aggregate.name, attributes, linkage ); 790 buildForall( td->aggregate.params, at->get_parameters() ); 791 break; 792 case AggregateDecl::Trait: 793 at = new TraitDecl( *td->aggregate.name, attributes, linkage ); 794 buildList( td->aggregate.params, at->get_parameters() ); 795 break; 796 default: 1048 case ast::AggregateDecl::Struct: 1049 case ast::AggregateDecl::Coroutine: 1050 case ast::AggregateDecl::Exception: 1051 case ast::AggregateDecl::Generator: 1052 case ast::AggregateDecl::Monitor: 1053 case ast::AggregateDecl::Thread: 1054 at = new ast::StructDecl( td->location, 1055 *td->aggregate.name, 1056 td->aggregate.kind, 1057 std::move( attributes ), 1058 linkage 1059 ); 1060 buildForall( td->aggregate.params, at->params ); 1061 break; 1062 case ast::AggregateDecl::Union: 1063 at = new ast::UnionDecl( td->location, 1064 *td->aggregate.name, 1065 std::move( attributes ), 1066 linkage 1067 ); 1068 buildForall( td->aggregate.params, at->params ); 1069 break; 1070 case ast::AggregateDecl::Trait: 1071 at = new ast::TraitDecl( td->location, 1072 *td->aggregate.name, 1073 std::move( attributes ), 1074 linkage 1075 ); 1076 buildList( td->aggregate.params, at->params ); 1077 break; 1078 default: 797 1079 assert( false ); 798 1080 } // switch 799 1081 800 buildList( td->aggregate.fields, at-> get_members());1082 buildList( td->aggregate.fields, at->members ); 801 1083 at->set_body( td->aggregate.body ); 802 1084 … … 805 1087 806 1088 807 ReferenceToType * buildComAggInst( const TypeData * type, std::list< Attribute * > attributes, LinkageSpec::Spec linkage ) { 1089 ast::BaseInstType * buildComAggInst( 1090 const TypeData * type, 1091 std::vector<ast::ptr<ast::Attribute>> && attributes, 1092 ast::Linkage::Spec linkage ) { 808 1093 switch ( type->kind ) { 809 case TypeData::Enum: { 810 if ( type->enumeration.body ) { 811 EnumDecl * typedecl = buildEnum( type, attributes, linkage ); 812 return new EnumInstType( buildQualifiers( type ), typedecl ); 813 } else { 814 return new EnumInstType( buildQualifiers( type ), *type->enumeration.name ); 815 } // if 816 } 817 case TypeData::Aggregate: { 818 ReferenceToType * ret; 819 if ( type->aggregate.body ) { 820 AggregateDecl * typedecl = buildAggregate( type, attributes, linkage ); 821 switch ( type->aggregate.kind ) { 822 case AggregateDecl::Struct: 823 case AggregateDecl::Coroutine: 824 case AggregateDecl::Monitor: 825 case AggregateDecl::Thread: 826 ret = new StructInstType( buildQualifiers( type ), (StructDecl *)typedecl ); 827 break; 828 case AggregateDecl::Union: 829 ret = new UnionInstType( buildQualifiers( type ), (UnionDecl *)typedecl ); 830 break; 831 case AggregateDecl::Trait: 832 assert( false ); 833 //ret = new TraitInstType( buildQualifiers( type ), (TraitDecl *)typedecl ); 834 break; 835 default: 836 assert( false ); 837 } // switch 838 } else { 839 switch ( type->aggregate.kind ) { 840 case AggregateDecl::Struct: 841 case AggregateDecl::Coroutine: 842 case AggregateDecl::Monitor: 843 case AggregateDecl::Thread: 844 ret = new StructInstType( buildQualifiers( type ), *type->aggregate.name ); 845 break; 846 case AggregateDecl::Union: 847 ret = new UnionInstType( buildQualifiers( type ), *type->aggregate.name ); 848 break; 849 case AggregateDecl::Trait: 850 ret = new TraitInstType( buildQualifiers( type ), *type->aggregate.name ); 851 break; 852 default: 853 assert( false ); 854 } // switch 855 } // if 856 return ret; 857 } 858 default: 1094 case TypeData::Enum: 1095 if ( type->enumeration.body ) { 1096 ast::EnumDecl * typedecl = 1097 buildEnum( type, std::move( attributes ), linkage ); 1098 return new ast::EnumInstType( 1099 typedecl, 1100 buildQualifiers( type ) 1101 ); 1102 } else { 1103 return new ast::EnumInstType( 1104 *type->enumeration.name, 1105 buildQualifiers( type ) 1106 ); 1107 } // if 1108 break; 1109 case TypeData::Aggregate: 1110 if ( type->aggregate.body ) { 1111 ast::AggregateDecl * typedecl = 1112 buildAggregate( type, std::move( attributes ), linkage ); 1113 switch ( type->aggregate.kind ) { 1114 case ast::AggregateDecl::Struct: 1115 case ast::AggregateDecl::Coroutine: 1116 case ast::AggregateDecl::Monitor: 1117 case ast::AggregateDecl::Thread: 1118 return new ast::StructInstType( 1119 strict_dynamic_cast<ast::StructDecl *>( typedecl ), 1120 buildQualifiers( type ) 1121 ); 1122 case ast::AggregateDecl::Union: 1123 return new ast::UnionInstType( 1124 strict_dynamic_cast<ast::UnionDecl *>( typedecl ), 1125 buildQualifiers( type ) 1126 ); 1127 case ast::AggregateDecl::Trait: 1128 assert( false ); 1129 break; 1130 default: 1131 assert( false ); 1132 } // switch 1133 } else { 1134 switch ( type->aggregate.kind ) { 1135 case ast::AggregateDecl::Struct: 1136 case ast::AggregateDecl::Coroutine: 1137 case ast::AggregateDecl::Monitor: 1138 case ast::AggregateDecl::Thread: 1139 return new ast::StructInstType( 1140 *type->aggregate.name, 1141 buildQualifiers( type ) 1142 ); 1143 case ast::AggregateDecl::Union: 1144 return new ast::UnionInstType( 1145 *type->aggregate.name, 1146 buildQualifiers( type ) 1147 ); 1148 case ast::AggregateDecl::Trait: 1149 return new ast::TraitInstType( 1150 *type->aggregate.name, 1151 buildQualifiers( type ) 1152 ); 1153 default: 1154 assert( false ); 1155 } // switch 1156 break; 1157 } // if 1158 break; 1159 default: 859 1160 assert( false ); 860 1161 } // switch 1162 assert( false ); 861 1163 } // buildAggInst 862 1164 863 1165 864 ReferenceToType * buildAggInst( const TypeData * td ) {1166 ast::BaseInstType * buildAggInst( const TypeData * td ) { 865 1167 assert( td->kind == TypeData::AggregateInst ); 866 1168 867 // ReferenceToType * ret = buildComAggInst( td->aggInst.aggregate, std::list< Attribute * >() ); 868 ReferenceToType * ret = nullptr; 1169 ast::BaseInstType * ret = nullptr; 869 1170 TypeData * type = td->aggInst.aggregate; 870 1171 switch ( type->kind ) { 871 case TypeData::Enum: { 872 return new EnumInstType( buildQualifiers( type ), *type->enumeration.name ); 873 } 874 case TypeData::Aggregate: { 875 switch ( type->aggregate.kind ) { 876 case AggregateDecl::Struct: 877 case AggregateDecl::Coroutine: 878 case AggregateDecl::Monitor: 879 case AggregateDecl::Thread: 880 ret = new StructInstType( buildQualifiers( type ), *type->aggregate.name ); 881 break; 882 case AggregateDecl::Union: 883 ret = new UnionInstType( buildQualifiers( type ), *type->aggregate.name ); 884 break; 885 case AggregateDecl::Trait: 886 ret = new TraitInstType( buildQualifiers( type ), *type->aggregate.name ); 887 break; 888 default: 889 assert( false ); 890 } // switch 891 } 892 break; 893 default: 1172 case TypeData::Enum: 1173 return new ast::EnumInstType( 1174 *type->enumeration.name, 1175 buildQualifiers( type ) 1176 ); 1177 case TypeData::Aggregate: 1178 switch ( type->aggregate.kind ) { 1179 case ast::AggregateDecl::Struct: 1180 case ast::AggregateDecl::Coroutine: 1181 case ast::AggregateDecl::Monitor: 1182 case ast::AggregateDecl::Thread: 1183 ret = new ast::StructInstType( 1184 *type->aggregate.name, 1185 buildQualifiers( type ) 1186 ); 1187 break; 1188 case ast::AggregateDecl::Union: 1189 ret = new ast::UnionInstType( 1190 *type->aggregate.name, 1191 buildQualifiers( type ) 1192 ); 1193 break; 1194 case ast::AggregateDecl::Trait: 1195 ret = new ast::TraitInstType( 1196 *type->aggregate.name, 1197 buildQualifiers( type ) 1198 ); 1199 break; 1200 default: 1201 assert( false ); 1202 } // switch 1203 break; 1204 default: 894 1205 assert( false ); 895 1206 } // switch 896 1207 897 ret->set_hoistType( td->aggInst.hoistType ); 898 buildList( td->aggInst.params, ret->get_parameters() ); 899 buildForall( td->forall, ret->get_forall() ); 1208 ret->hoistType = td->aggInst.hoistType; 1209 buildList( td->aggInst.params, ret->params ); 900 1210 return ret; 901 1211 } // buildAggInst 902 1212 903 1213 904 NamedTypeDecl * buildSymbolic( const TypeData * td, std::list< Attribute * > attributes, const string & name, Type::StorageClasses scs, LinkageSpec::Spec linkage ) { 1214 ast::NamedTypeDecl * buildSymbolic( 1215 const TypeData * td, 1216 std::vector<ast::ptr<ast::Attribute>> attributes, 1217 const std::string & name, 1218 ast::Storage::Classes scs, 1219 ast::Linkage::Spec linkage ) { 905 1220 assert( td->kind == TypeData::Symbolic ); 906 NamedTypeDecl * ret;1221 ast::NamedTypeDecl * ret; 907 1222 assert( td->base ); 908 1223 if ( td->symbolic.isTypedef ) { 909 ret = new TypedefDecl( name, td->location, scs, typebuild( td->base ), linkage ); 1224 ret = new ast::TypedefDecl( 1225 td->location, 1226 name, 1227 scs, 1228 typebuild( td->base ), 1229 linkage 1230 ); 910 1231 } else { 911 ret = new TypeDecl( name, scs, typebuild( td->base ), TypeDecl::Dtype, true ); 1232 ret = new ast::TypeDecl( 1233 td->location, 1234 name, 1235 scs, 1236 typebuild( td->base ), 1237 ast::TypeDecl::Dtype, 1238 true 1239 ); 912 1240 } // if 913 buildList( td->symbolic.assertions, ret-> get_assertions());914 ret->base->attributes.splice( ret->base->attributes.end(), attributes );1241 buildList( td->symbolic.assertions, ret->assertions ); 1242 splice( ret->base.get_and_mutate()->attributes, attributes ); 915 1243 return ret; 916 1244 } // buildSymbolic 917 1245 918 1246 919 EnumDecl * buildEnum( const TypeData * td, std::list< Attribute * > attributes, LinkageSpec::Spec linkage ) { 1247 ast::EnumDecl * buildEnum( 1248 const TypeData * td, 1249 std::vector<ast::ptr<ast::Attribute>> && attributes, 1250 ast::Linkage::Spec linkage ) { 920 1251 assert( td->kind == TypeData::Enum ); 921 Type * baseType = td->base ? typebuild(td->base) : nullptr; 922 EnumDecl * ret = new EnumDecl( *td->enumeration.name, attributes, td->enumeration.typed, linkage, baseType ); 923 buildList( td->enumeration.constants, ret->get_members() ); 924 list< Declaration * >::iterator members = ret->get_members().begin(); 925 ret->hide = td->enumeration.hiding == EnumHiding::Hide ? EnumDecl::EnumHiding::Hide : EnumDecl::EnumHiding::Visible; 1252 ast::Type * baseType = td->base ? typebuild(td->base) : nullptr; 1253 ast::EnumDecl * ret = new ast::EnumDecl( 1254 td->location, 1255 *td->enumeration.name, 1256 td->enumeration.typed, 1257 std::move( attributes ), 1258 linkage, 1259 baseType 1260 ); 1261 buildList( td->enumeration.constants, ret->members ); 1262 auto members = ret->members.begin(); 1263 ret->hide = td->enumeration.hiding == EnumHiding::Hide ? ast::EnumDecl::EnumHiding::Hide : ast::EnumDecl::EnumHiding::Visible; 926 1264 for ( const DeclarationNode * cur = td->enumeration.constants; cur != nullptr; cur = dynamic_cast< DeclarationNode * >( cur->get_next() ), ++members ) { 927 1265 if ( cur->enumInLine ) { … … 930 1268 SemanticError( td->location, "Enumerator of enum(void) cannot have an explicit initializer value." ); 931 1269 } else if ( cur->has_enumeratorValue() ) { 932 ObjectDecl * member = dynamic_cast< ObjectDecl * >(* members); 933 member->set_init( new SingleInit( maybeMoveBuild< Expression >( cur->consume_enumeratorValue() ) ) ); 1270 ast::Decl * member = members->get_and_mutate(); 1271 ast::ObjectDecl * object = strict_dynamic_cast<ast::ObjectDecl *>( member ); 1272 object->init = new ast::SingleInit( 1273 td->location, 1274 maybeMoveBuild( cur->consume_enumeratorValue() ), 1275 ast::NoConstruct 1276 ); 934 1277 } else if ( !cur->initializer ) { 935 if ( baseType && (!dynamic_cast< BasicType *>(baseType) || !dynamic_cast<BasicType *>(baseType)->isWholeNumber())) {1278 if ( baseType && (!dynamic_cast<ast::BasicType *>(baseType) || !dynamic_cast<ast::BasicType *>(baseType)->isInteger())) { 936 1279 SemanticError( td->location, "Enumerators of an non-integer typed enum must be explicitly initialized." ); 937 1280 } … … 940 1283 // if 941 1284 } // for 942 ret-> set_body( td->enumeration.body );1285 ret->body = td->enumeration.body; 943 1286 return ret; 944 1287 } // buildEnum 945 1288 946 1289 947 TypeInstType * buildSymbolicInst( const TypeData * td ) {1290 ast::TypeInstType * buildSymbolicInst( const TypeData * td ) { 948 1291 assert( td->kind == TypeData::SymbolicInst ); 949 TypeInstType * ret = new TypeInstType( buildQualifiers( td ), *td->symbolic.name, false ); 950 buildList( td->symbolic.actuals, ret->get_parameters() ); 951 buildForall( td->forall, ret->get_forall() ); 1292 ast::TypeInstType * ret = new ast::TypeInstType( 1293 *td->symbolic.name, 1294 ast::TypeDecl::Dtype, 1295 buildQualifiers( td ) 1296 ); 1297 buildList( td->symbolic.actuals, ret->params ); 952 1298 return ret; 953 1299 } // buildSymbolicInst 954 1300 955 1301 956 TupleType * buildTuple( const TypeData * td ) {1302 ast::TupleType * buildTuple( const TypeData * td ) { 957 1303 assert( td->kind == TypeData::Tuple ); 958 std:: list< Type *> types;1304 std::vector<ast::ptr<ast::Type>> types; 959 1305 buildTypeList( td->tuple, types ); 960 TupleType * ret = new TupleType( buildQualifiers( td ), types ); 961 buildForall( td->forall, ret->get_forall() ); 1306 ast::TupleType * ret = new ast::TupleType( 1307 std::move( types ), 1308 buildQualifiers( td ) 1309 ); 962 1310 return ret; 963 1311 } // buildTuple 964 1312 965 1313 966 TypeofType * buildTypeof( const TypeData * td ) {1314 ast::TypeofType * buildTypeof( const TypeData * td ) { 967 1315 assert( td->kind == TypeData::Typeof || td->kind == TypeData::Basetypeof ); 968 1316 assert( td->typeexpr ); 969 // assert( td->typeexpr->expr ); 970 return new TypeofType{ buildQualifiers( td ), td->typeexpr->build(), td->kind == TypeData::Basetypeof }; 1317 return new ast::TypeofType( 1318 td->typeexpr->build(), 1319 td->kind == TypeData::Typeof 1320 ? ast::TypeofType::Typeof : ast::TypeofType::Basetypeof, 1321 buildQualifiers( td ) 1322 ); 971 1323 } // buildTypeof 972 1324 973 1325 974 VTableType * buildVtable( const TypeData * td ) {1326 ast::VTableType * buildVtable( const TypeData * td ) { 975 1327 assert( td->base ); 976 return new VTableType{ buildQualifiers( td ), typebuild( td->base ) }; 1328 return new ast::VTableType( 1329 typebuild( td->base ), 1330 buildQualifiers( td ) 1331 ); 977 1332 } // buildVtable 978 1333 979 1334 980 Declaration * buildDecl( const TypeData * td, const string &name, Type::StorageClasses scs, Expression * bitfieldWidth, Type::FuncSpecifiers funcSpec, LinkageSpec::Spec linkage, Expression *asmName, Initializer * init, std::list< Attribute * > attributes ) { 1335 ast::FunctionDecl * buildFunctionDecl( 1336 const TypeData * td, 1337 const string &name, 1338 ast::Storage::Classes scs, 1339 ast::Function::Specs funcSpec, 1340 ast::Linkage::Spec linkage, 1341 ast::Expr * asmName, 1342 std::vector<ast::ptr<ast::Attribute>> && attributes ) { 1343 assert( td->kind == TypeData::Function ); 1344 // For some reason FunctionDecl takes a bool instead of an ArgumentFlag. 1345 bool isVarArgs = !td->function.params || td->function.params->hasEllipsis; 1346 ast::CV::Qualifiers cvq = buildQualifiers( td ); 1347 std::vector<ast::ptr<ast::TypeDecl>> forall; 1348 std::vector<ast::ptr<ast::DeclWithType>> assertions; 1349 std::vector<ast::ptr<ast::DeclWithType>> params; 1350 std::vector<ast::ptr<ast::DeclWithType>> returns; 1351 buildList( td->function.params, params ); 1352 buildForall( td->forall, forall ); 1353 // Functions do not store their assertions there anymore. 1354 for ( ast::ptr<ast::TypeDecl> & type_param : forall ) { 1355 auto mut = type_param.get_and_mutate(); 1356 splice( assertions, mut->assertions ); 1357 } 1358 if ( td->base ) { 1359 switch ( td->base->kind ) { 1360 case TypeData::Tuple: 1361 buildList( td->base->tuple, returns ); 1362 break; 1363 default: 1364 returns.push_back( dynamic_cast<ast::DeclWithType *>( 1365 buildDecl( 1366 td->base, 1367 "", 1368 ast::Storage::Classes(), 1369 (ast::Expr *)nullptr, // bitfieldWidth 1370 ast::Function::Specs(), 1371 ast::Linkage::Cforall, 1372 (ast::Expr *)nullptr // asmName 1373 ) 1374 ) ); 1375 } // switch 1376 } else { 1377 returns.push_back( new ast::ObjectDecl( 1378 td->location, 1379 "", 1380 new ast::BasicType( ast::BasicType::SignedInt ), 1381 (ast::Init *)nullptr, 1382 ast::Storage::Classes(), 1383 ast::Linkage::Cforall 1384 ) ); 1385 } // if 1386 ast::Stmt * stmt = maybeBuild( td->function.body ); 1387 ast::CompoundStmt * body = dynamic_cast<ast::CompoundStmt *>( stmt ); 1388 ast::FunctionDecl * decl = new ast::FunctionDecl( td->location, 1389 name, 1390 std::move( forall ), 1391 std::move( assertions ), 1392 std::move( params ), 1393 std::move( returns ), 1394 body, 1395 scs, 1396 linkage, 1397 std::move( attributes ), 1398 funcSpec, 1399 (isVarArgs) ? ast::VariableArgs : ast::FixedArgs 1400 ); 1401 buildList( td->function.withExprs, decl->withExprs ); 1402 decl->asmName = asmName; 1403 // This may be redundant on a declaration. 1404 decl->type.get_and_mutate()->qualifiers = cvq; 1405 return decl; 1406 } // buildFunctionDecl 1407 1408 1409 ast::Decl * buildDecl( 1410 const TypeData * td, 1411 const string &name, 1412 ast::Storage::Classes scs, 1413 ast::Expr * bitfieldWidth, 1414 ast::Function::Specs funcSpec, 1415 ast::Linkage::Spec linkage, 1416 ast::Expr * asmName, 1417 ast::Init * init, 1418 std::vector<ast::ptr<ast::Attribute>> && attributes ) { 981 1419 if ( td->kind == TypeData::Function ) { 982 1420 if ( td->function.idList ) { // KR function ? … … 984 1422 } // if 985 1423 986 FunctionDecl * decl; 987 Statement * stmt = maybeBuild<Statement>( td->function.body ); 988 CompoundStmt * body = dynamic_cast< CompoundStmt * >( stmt ); 989 decl = new FunctionDecl( name, scs, linkage, buildFunction( td ), body, attributes, funcSpec ); 990 buildList( td->function.withExprs, decl->withExprs ); 991 return decl->set_asmName( asmName ); 1424 return buildFunctionDecl( 1425 td, name, scs, funcSpec, linkage, 1426 asmName, std::move( attributes ) ); 992 1427 } else if ( td->kind == TypeData::Aggregate ) { 993 return buildAggregate( td, attributes, linkage );1428 return buildAggregate( td, std::move( attributes ), linkage ); 994 1429 } else if ( td->kind == TypeData::Enum ) { 995 return buildEnum( td, attributes, linkage );1430 return buildEnum( td, std::move( attributes ), linkage ); 996 1431 } else if ( td->kind == TypeData::Symbolic ) { 997 return buildSymbolic( td, attributes, name, scs, linkage );1432 return buildSymbolic( td, std::move( attributes ), name, scs, linkage ); 998 1433 } else { 999 return (new ObjectDecl( name, scs, linkage, bitfieldWidth, typebuild( td ), init, attributes ))->set_asmName( asmName ); 1434 auto ret = new ast::ObjectDecl( td->location, 1435 name, 1436 typebuild( td ), 1437 init, 1438 scs, 1439 linkage, 1440 bitfieldWidth, 1441 std::move( attributes ) 1442 ); 1443 ret->asmName = asmName; 1444 return ret; 1000 1445 } // if 1001 1446 return nullptr; … … 1003 1448 1004 1449 1005 FunctionType * buildFunction( const TypeData * td ) {1450 ast::FunctionType * buildFunctionType( const TypeData * td ) { 1006 1451 assert( td->kind == TypeData::Function ); 1007 FunctionType * ft = new FunctionType( buildQualifiers( td ), ! td->function.params || td->function.params->hasEllipsis ); 1008 buildList( td->function.params, ft->parameters ); 1452 ast::FunctionType * ft = new ast::FunctionType( 1453 ( !td->function.params || td->function.params->hasEllipsis ) 1454 ? ast::VariableArgs : ast::FixedArgs, 1455 buildQualifiers( td ) 1456 ); 1457 buildTypeList( td->function.params, ft->params ); 1009 1458 buildForall( td->forall, ft->forall ); 1010 1459 if ( td->base ) { 1011 1460 switch ( td->base->kind ) { 1012 1013 build List( td->base->tuple, ft->returnVals );1461 case TypeData::Tuple: 1462 buildTypeList( td->base->tuple, ft->returns ); 1014 1463 break; 1015 default: 1016 ft->get_returnVals().push_back( dynamic_cast< DeclarationWithType * >( buildDecl( td->base, "", Type::StorageClasses(), nullptr, Type::FuncSpecifiers(), LinkageSpec::Cforall, nullptr ) ) ); 1464 default: 1465 ft->returns.push_back( typebuild( td->base ) ); 1466 break; 1017 1467 } // switch 1018 1468 } else { 1019 ft->get_returnVals().push_back( new ObjectDecl( "", Type::StorageClasses(), LinkageSpec::Cforall, nullptr, new BasicType( Type::Qualifiers(), BasicType::SignedInt ), nullptr ) ); 1469 ft->returns.push_back( 1470 new ast::BasicType( ast::BasicType::SignedInt ) ); 1020 1471 } // if 1021 1472 return ft; 1022 } // buildFunction 1473 } // buildFunctionType 1023 1474 1024 1475 … … 1051 1502 param->type = decl->type; // set copy declaration type to parameter type 1052 1503 decl->type = nullptr; // reset declaration type 1053 param->attributes.splice( param->attributes.end(), decl->attributes ); // copy and reset attributes from declaration to parameter 1504 // Copy and reset attributes from declaration to parameter: 1505 splice( param->attributes, decl->attributes ); 1054 1506 } // if 1055 1507 } // for -
src/Parser/TypeData.h
r34b4268 r24d6572 9 9 // Author : Peter A. Buhr 10 10 // Created On : Sat May 16 15:18:36 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Tue May 10 22:18:49 202213 // Update Count : 20 311 // Last Modified By : Andrew Beach 12 // Last Modified On : Wed Mar 1 10:44:00 2023 13 // Update Count : 206 14 14 // 15 15 16 16 #pragma once 17 17 18 #include <iosfwd> 19 #include <list> 20 #include <string> 18 #include <iosfwd> // for ostream 19 #include <list> // for list 20 #include <string> // for string 21 21 22 #include "ParseNode.h" // for DeclarationNode, DeclarationNode::Ag... 23 #include "SynTree/LinkageSpec.h" // for Spec 24 #include "SynTree/Type.h" // for Type, ReferenceToType (ptr only) 25 #include "SynTree/SynTree.h" // for Visitor Nodes 22 #include "AST/Type.hpp" // for Type 23 #include "DeclarationNode.h" // for DeclarationNode 26 24 27 25 struct TypeData { … … 30 28 31 29 struct Aggregate_t { 32 AggregateDecl::Aggregate kind;30 ast::AggregateDecl::Aggregate kind; 33 31 const std::string * name = nullptr; 34 32 DeclarationNode * params = nullptr; … … 37 35 bool body; 38 36 bool anon; 39 40 37 bool tagged; 41 38 const std::string * parent = nullptr; … … 94 91 DeclarationNode::BuiltinType builtintype = DeclarationNode::NoBuiltinType; 95 92 96 Type::Qualifiers qualifiers;93 ast::CV::Qualifiers qualifiers; 97 94 DeclarationNode * forall = nullptr; 98 95 … … 115 112 }; 116 113 117 Type * typebuild( const TypeData * );114 ast::Type * typebuild( const TypeData * ); 118 115 TypeData * typeextractAggregate( const TypeData * td, bool toplevel = true ); 119 Type::Qualifiers buildQualifiers( const TypeData * td ); 120 Type * buildBasicType( const TypeData * ); 121 PointerType * buildPointer( const TypeData * ); 122 ArrayType * buildArray( const TypeData * ); 123 ReferenceType * buildReference( const TypeData * ); 124 AggregateDecl * buildAggregate( const TypeData *, std::list< Attribute * > ); 125 ReferenceToType * buildComAggInst( const TypeData *, std::list< Attribute * > attributes, LinkageSpec::Spec linkage ); 126 ReferenceToType * buildAggInst( const TypeData * ); 127 TypeDecl * buildVariable( const TypeData * ); 128 EnumDecl * buildEnum( const TypeData *, std::list< Attribute * >, LinkageSpec::Spec ); 129 TypeInstType * buildSymbolicInst( const TypeData * ); 130 TupleType * buildTuple( const TypeData * ); 131 TypeofType * buildTypeof( const TypeData * ); 132 VTableType * buildVtable( const TypeData * ); 133 Declaration * buildDecl( const TypeData *, const std::string &, Type::StorageClasses, Expression *, Type::FuncSpecifiers funcSpec, LinkageSpec::Spec, Expression * asmName, 134 Initializer * init = nullptr, std::list< class Attribute * > attributes = std::list< class Attribute * >() ); 135 FunctionType * buildFunction( const TypeData * ); 136 Declaration * addEnumBase( Declaration *, const TypeData * ); 116 ast::CV::Qualifiers buildQualifiers( const TypeData * td ); 117 ast::Type * buildBasicType( const TypeData * ); 118 ast::PointerType * buildPointer( const TypeData * ); 119 ast::ArrayType * buildArray( const TypeData * ); 120 ast::ReferenceType * buildReference( const TypeData * ); 121 ast::AggregateDecl * buildAggregate( const TypeData *, std::vector<ast::ptr<ast::Attribute>> ); 122 ast::BaseInstType * buildComAggInst( const TypeData *, std::vector<ast::ptr<ast::Attribute>> && attributes, ast::Linkage::Spec linkage ); 123 ast::BaseInstType * buildAggInst( const TypeData * ); 124 ast::TypeDecl * buildVariable( const TypeData * ); 125 ast::EnumDecl * buildEnum( const TypeData *, std::vector<ast::ptr<ast::Attribute>> &&, ast::Linkage::Spec ); 126 ast::TypeInstType * buildSymbolicInst( const TypeData * ); 127 ast::TupleType * buildTuple( const TypeData * ); 128 ast::TypeofType * buildTypeof( const TypeData * ); 129 ast::VTableType * buildVtable( const TypeData * ); 130 ast::Decl * buildDecl( 131 const TypeData *, const std::string &, ast::Storage::Classes, ast::Expr *, 132 ast::Function::Specs funcSpec, ast::Linkage::Spec, ast::Expr * asmName, 133 ast::Init * init = nullptr, std::vector<ast::ptr<ast::Attribute>> && attributes = std::vector<ast::ptr<ast::Attribute>>() ); 134 ast::FunctionType * buildFunctionType( const TypeData * ); 135 ast::Decl * addEnumBase( Declaration *, const TypeData * ); 137 136 void buildKRFunction( const TypeData::Function_t & function ); 138 137 -
src/Parser/TypedefTable.cc
r34b4268 r24d6572 16 16 17 17 #include "TypedefTable.h" 18 #include <cassert> // for assert 19 #include <iostream> 18 19 #include <cassert> // for assert 20 #include <string> // for string 21 #include <iostream> // for iostream 22 23 #include "ExpressionNode.h" // for LabelNode 24 #include "ParserTypes.h" // for Token 25 #include "StatementNode.h" // for CondCtl, ForCtrl 26 // This (generated) header must come late as it is missing includes. 27 #include "parser.hh" // for IDENTIFIER, TYPEDEFname, TYPEGENname 28 20 29 using namespace std; 21 30 22 31 #if 0 23 32 #define debugPrint( code ) code 33 34 static const char *kindName( int kind ) { 35 switch ( kind ) { 36 case IDENTIFIER: return "identifier"; 37 case TYPEDIMname: return "typedim"; 38 case TYPEDEFname: return "typedef"; 39 case TYPEGENname: return "typegen"; 40 default: 41 cerr << "Error: cfa-cpp internal error, invalid kind of identifier" << endl; 42 abort(); 43 } // switch 44 } // kindName 24 45 #else 25 46 #define debugPrint( code ) 26 47 #endif 27 28 using namespace std; // string, iostream29 30 debugPrint(31 static const char *kindName( int kind ) {32 switch ( kind ) {33 case IDENTIFIER: return "identifier";34 case TYPEDIMname: return "typedim";35 case TYPEDEFname: return "typedef";36 case TYPEGENname: return "typegen";37 default:38 cerr << "Error: cfa-cpp internal error, invalid kind of identifier" << endl;39 abort();40 } // switch41 } // kindName42 );43 48 44 49 TypedefTable::~TypedefTable() { … … 78 83 typedefTable.addToEnclosingScope( name, kind, "MTD" ); 79 84 } // if 85 } // TypedefTable::makeTypedef 86 87 void TypedefTable::makeTypedef( const string & name ) { 88 return makeTypedef( name, TYPEDEFname ); 80 89 } // TypedefTable::makeTypedef 81 90 -
src/Parser/TypedefTable.h
r34b4268 r24d6572 19 19 20 20 #include "Common/ScopedMap.h" // for ScopedMap 21 #include "ParserTypes.h"22 #include "parser.hh" // for IDENTIFIER, TYPEDEFname, TYPEGENname23 21 24 22 class TypedefTable { 25 23 struct Note { size_t level; bool forall; }; 26 24 typedef ScopedMap< std::string, int, Note > KindTable; 27 KindTable kindTable; 25 KindTable kindTable; 28 26 unsigned int level = 0; 29 27 public: … … 33 31 bool existsCurr( const std::string & identifier ) const; 34 32 int isKind( const std::string & identifier ) const; 35 void makeTypedef( const std::string & name, int kind = TYPEDEFname ); 33 void makeTypedef( const std::string & name, int kind ); 34 void makeTypedef( const std::string & name ); 36 35 void addToScope( const std::string & identifier, int kind, const char * ); 37 36 void addToEnclosingScope( const std::string & identifier, int kind, const char * ); -
src/Parser/lex.ll
r34b4268 r24d6572 10 10 * Created On : Sat Sep 22 08:58:10 2001 11 11 * Last Modified By : Peter A. Buhr 12 * Last Modified On : T hu Oct 13 20:46:04 202213 * Update Count : 76 412 * Last Modified On : Tue May 2 08:45:21 2023 13 * Update Count : 769 14 14 */ 15 15 … … 23 23 // line-number directives) and C/C++ style comments, which are ignored. 24 24 25 // **************************** Includes and Defines ****************************25 // *************************** Includes and Defines **************************** 26 26 27 27 #ifdef __clang__ … … 44 44 45 45 #include "config.h" // configure info 46 #include "DeclarationNode.h" // for DeclarationNode 47 #include "ExpressionNode.h" // for LabelNode 48 #include "InitializerNode.h" // for InitializerNode 46 49 #include "ParseNode.h" 50 #include "ParserTypes.h" // for Token 51 #include "StatementNode.h" // for CondCtl, ForCtrl 47 52 #include "TypedefTable.h" 53 // This (generated) header must come late as it is missing includes. 54 #include "parser.hh" // generated info 48 55 49 56 string * build_postfix_name( string * name ); … … 214 221 __alignof { KEYWORD_RETURN(ALIGNOF); } // GCC 215 222 __alignof__ { KEYWORD_RETURN(ALIGNOF); } // GCC 223 and { QKEYWORD_RETURN(WAND); } // CFA 216 224 asm { KEYWORD_RETURN(ASM); } 217 225 __asm { KEYWORD_RETURN(ASM); } // GCC … … 250 258 enable { KEYWORD_RETURN(ENABLE); } // CFA 251 259 enum { KEYWORD_RETURN(ENUM); } 260 exception { KEYWORD_RETURN(EXCEPTION); } // CFA 252 261 __extension__ { KEYWORD_RETURN(EXTENSION); } // GCC 253 exception { KEYWORD_RETURN(EXCEPTION); } // CFA254 262 extern { KEYWORD_RETURN(EXTERN); } 255 263 fallthrough { KEYWORD_RETURN(FALLTHROUGH); } // CFA … … 340 348 vtable { KEYWORD_RETURN(VTABLE); } // CFA 341 349 waitfor { KEYWORD_RETURN(WAITFOR); } // CFA 350 waituntil { KEYWORD_RETURN(WAITUNTIL); } // CFA 342 351 when { KEYWORD_RETURN(WHEN); } // CFA 343 352 while { KEYWORD_RETURN(WHILE); } … … 502 511 SemanticErrorThrow = true; 503 512 cerr << (yyfilename ? yyfilename : "*unknown file*") << ':' << yylineno << ':' << column - yyleng + 1 504 << ": " << ErrorHelpers::error_str() << errmsg << " attoken \"" << (yytext[0] == '\0' ? "EOF" : yytext) << '"' << endl;513 << ": " << ErrorHelpers::error_str() << errmsg << " before token \"" << (yytext[0] == '\0' ? "EOF" : yytext) << '"' << endl; 505 514 } 506 515 -
src/Parser/module.mk
r34b4268 r24d6572 21 21 SRC += \ 22 22 Parser/DeclarationNode.cc \ 23 Parser/DeclarationNode.h \ 23 24 Parser/ExpressionNode.cc \ 25 Parser/ExpressionNode.h \ 24 26 Parser/InitializerNode.cc \ 27 Parser/InitializerNode.h \ 25 28 Parser/lex.ll \ 26 29 Parser/ParseNode.cc \ … … 30 33 Parser/parserutility.cc \ 31 34 Parser/parserutility.h \ 35 Parser/RunParser.cpp \ 36 Parser/RunParser.hpp \ 32 37 Parser/StatementNode.cc \ 38 Parser/StatementNode.h \ 33 39 Parser/TypeData.cc \ 34 40 Parser/TypeData.h \ -
src/Parser/parser.yy
r34b4268 r24d6572 10 10 // Created On : Sat Sep 1 20:22:55 2001 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Nov 21 22:34:30 202213 // Update Count : 584812 // Last Modified On : Wed Apr 26 16:45:37 2023 13 // Update Count : 6330 14 14 // 15 15 … … 44 44 45 45 #include <cstdio> 46 #include <sstream> 46 47 #include <stack> 47 48 using namespace std; 48 49 49 #include "SynTree/Declaration.h" 50 #include "ParseNode.h" 50 #include "SynTree/Type.h" // for Type 51 #include "DeclarationNode.h" // for DeclarationNode, ... 52 #include "ExpressionNode.h" // for ExpressionNode, ... 53 #include "InitializerNode.h" // for InitializerNode, ... 54 #include "ParserTypes.h" 55 #include "StatementNode.h" // for build_... 51 56 #include "TypedefTable.h" 52 57 #include "TypeData.h" 53 #include "SynTree/LinkageSpec.h"54 58 #include "Common/SemanticError.h" // error_str 55 59 #include "Common/utility.h" // for maybeMoveBuild, maybeBuild, CodeLo... 56 60 57 #include "SynTree/Attribute.h" 61 #include "SynTree/Attribute.h" // for Attribute 58 62 59 63 // lex uses __null in a boolean context, it's fine. … … 63 67 64 68 extern DeclarationNode * parseTree; 65 extern LinkageSpec::Spec linkage;69 extern ast::Linkage::Spec linkage; 66 70 extern TypedefTable typedefTable; 67 71 68 stack< LinkageSpec::Spec> linkageStack;72 stack<ast::Linkage::Spec> linkageStack; 69 73 70 74 bool appendStr( string & to, string & from ) { … … 199 203 } // fieldDecl 200 204 201 #define NEW_ZERO new ExpressionNode( build_constantInteger( *new string( "0" ) ) )202 #define NEW_ONE new ExpressionNode( build_constantInteger( *new string( "1" ) ) )205 #define NEW_ZERO new ExpressionNode( build_constantInteger( yylloc, *new string( "0" ) ) ) 206 #define NEW_ONE new ExpressionNode( build_constantInteger( yylloc, *new string( "1" ) ) ) 203 207 #define UPDOWN( compop, left, right ) (compop == OperKinds::LThan || compop == OperKinds::LEThan ? left : right) 204 208 #define MISSING_ANON_FIELD "Missing loop fields with an anonymous loop index is meaningless as loop index is unavailable in loop body." … … 206 210 #define MISSING_HIGH "Missing high value for down-to range so index is uninitialized." 207 211 208 ForCtrl * forCtrl( DeclarationNode * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { 212 static ForCtrl * makeForCtrl( 213 const CodeLocation & location, 214 DeclarationNode * init, 215 enum OperKinds compop, 216 ExpressionNode * comp, 217 ExpressionNode * inc ) { 218 // Wrap both comp/inc if they are non-null. 219 if ( comp ) comp = new ExpressionNode( build_binary_val( location, 220 compop, 221 new ExpressionNode( build_varref( location, new string( *init->name ) ) ), 222 comp ) ); 223 if ( inc ) inc = new ExpressionNode( build_binary_val( location, 224 // choose += or -= for upto/downto 225 compop == OperKinds::LThan || compop == OperKinds::LEThan ? OperKinds::PlusAssn : OperKinds::MinusAssn, 226 new ExpressionNode( build_varref( location, new string( *init->name ) ) ), 227 inc ) ); 228 // The StatementNode call frees init->name, it must happen later. 229 return new ForCtrl( new StatementNode( init ), comp, inc ); 230 } 231 232 ForCtrl * forCtrl( const CodeLocation & location, DeclarationNode * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { 209 233 if ( index->initializer ) { 210 234 SemanticError( yylloc, "Direct initialization disallowed. Use instead: type var; initialization ~ comparison ~ increment." ); … … 213 237 SemanticError( yylloc, "Multiple loop indexes disallowed in for-loop declaration." ); 214 238 } // if 215 return new ForCtrl( index->addInitializer( new InitializerNode( start ) ), 216 // NULL comp/inc => leave blank 217 comp ? new ExpressionNode( build_binary_val( compop, new ExpressionNode( build_varref( new string( *index->name ) ) ), comp ) ) : nullptr, 218 inc ? new ExpressionNode( build_binary_val( compop == OperKinds::LThan || compop == OperKinds::LEThan ? // choose += or -= for upto/downto 219 OperKinds::PlusAssn : OperKinds::MinusAssn, new ExpressionNode( build_varref( new string( *index->name ) ) ), inc ) ) : nullptr ); 239 DeclarationNode * initDecl = index->addInitializer( new InitializerNode( start ) ); 240 return makeForCtrl( location, initDecl, compop, comp, inc ); 220 241 } // forCtrl 221 242 222 ForCtrl * forCtrl( ExpressionNode * type, string * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) {223 ConstantExpr * constant = dynamic_cast<ConstantExpr *>(type->expr.get());224 if ( constant && (constant-> get_constant()->get_value() == "0" || constant->get_constant()->get_value()== "1") ) {225 type = new ExpressionNode( new CastExpr( maybeMoveBuild<Expression>(type), new BasicType( Type::Qualifiers(),BasicType::SignedInt ) ) );243 ForCtrl * forCtrl( const CodeLocation & location, ExpressionNode * type, string * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { 244 ast::ConstantExpr * constant = dynamic_cast<ast::ConstantExpr *>(type->expr.get()); 245 if ( constant && (constant->rep == "0" || constant->rep == "1") ) { 246 type = new ExpressionNode( new ast::CastExpr( location, maybeMoveBuild(type), new ast::BasicType( ast::BasicType::SignedInt ) ) ); 226 247 } // if 227 // type = new ExpressionNode( build_func( new ExpressionNode( build_varref( new string( "__for_control_index_constraints__" ) ) ), type ) ); 228 return new ForCtrl( 229 distAttr( DeclarationNode::newTypeof( type, true ), DeclarationNode::newName( index )->addInitializer( new InitializerNode( start ) ) ), 230 // NULL comp/inc => leave blank 231 comp ? new ExpressionNode( build_binary_val( compop, new ExpressionNode( build_varref( new string( *index ) ) ), comp ) ) : nullptr, 232 inc ? new ExpressionNode( build_binary_val( compop == OperKinds::LThan || compop == OperKinds::LEThan ? // choose += or -= for upto/downto 233 OperKinds::PlusAssn : OperKinds::MinusAssn, new ExpressionNode( build_varref( new string( *index ) ) ), inc ) ) : nullptr ); 248 DeclarationNode * initDecl = distAttr( 249 DeclarationNode::newTypeof( type, true ), 250 DeclarationNode::newName( index )->addInitializer( new InitializerNode( start ) ) 251 ); 252 return makeForCtrl( location, initDecl, compop, comp, inc ); 234 253 } // forCtrl 235 254 236 ForCtrl * forCtrl( ExpressionNode * type, ExpressionNode * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) {237 if ( NameExpr * identifier = dynamic_cast<NameExpr *>(index->expr.get()) ) {238 return forCtrl( type, new string( identifier->name ), start, compop, comp, inc );239 } else if ( CommaExpr * commaExpr = dynamic_cast<CommaExpr *>(index->expr.get()) ) {240 if ( NameExpr * identifier = dynamic_cast<NameExpr *>(commaExpr->arg1) ) {241 return forCtrl( type, new string( identifier->name ), start, compop, comp, inc );255 ForCtrl * forCtrl( const CodeLocation & location, ExpressionNode * type, ExpressionNode * index, ExpressionNode * start, enum OperKinds compop, ExpressionNode * comp, ExpressionNode * inc ) { 256 if ( auto identifier = dynamic_cast<ast::NameExpr *>(index->expr.get()) ) { 257 return forCtrl( location, type, new string( identifier->name ), start, compop, comp, inc ); 258 } else if ( auto commaExpr = dynamic_cast<ast::CommaExpr *>( index->expr.get() ) ) { 259 if ( auto identifier = commaExpr->arg1.as<ast::NameExpr>() ) { 260 return forCtrl( location, type, new string( identifier->name ), start, compop, comp, inc ); 242 261 } else { 243 262 SemanticError( yylloc, "Expression disallowed. Only loop-index name allowed." ); return nullptr; … … 281 300 %union { 282 301 Token tok; 283 ParseNode * pn; 284 ExpressionNode * en; 302 ExpressionNode * expr; 285 303 DeclarationNode * decl; 286 AggregateDecl::Aggregate aggKey; 287 TypeDecl::Kind tclass; 288 StatementNode * sn; 289 WaitForStmt * wfs; 290 Expression * constant; 304 ast::AggregateDecl::Aggregate aggKey; 305 ast::TypeDecl::Kind tclass; 306 StatementNode * stmt; 307 ClauseNode * clause; 308 ast::WaitForStmt * wfs; 309 ast::WaitUntilStmt::ClauseNode * wucn; 291 310 CondCtl * ifctl; 292 ForCtrl * fctl; 293 OperKinds compop; 294 LabelNode * label; 295 InitializerNode * in; 296 OperKinds op; 311 ForCtrl * forctl; 312 LabelNode * labels; 313 InitializerNode * init; 314 OperKinds oper; 297 315 std::string * str; 298 bool flag;299 EnumHiding hide;300 CatchStmt::Kind catch_kind;301 GenericExpr * genexpr;316 bool is_volatile; 317 EnumHiding enum_hiding; 318 ast::ExceptionKind except_kind; 319 ast::GenericExpr * genexpr; 302 320 } 303 321 304 // ************************* TERMINAL TOKENS ********************************322 // ************************ TERMINAL TOKENS ******************************** 305 323 306 324 // keywords … … 331 349 %token ATTRIBUTE EXTENSION // GCC 332 350 %token IF ELSE SWITCH CASE DEFAULT DO WHILE FOR BREAK CONTINUE GOTO RETURN 333 %token CHOOSE FALLTHRU FALLTHROUGH WITH WHEN WAITFOR 351 %token CHOOSE FALLTHRU FALLTHROUGH WITH WHEN WAITFOR WAITUNTIL // CFA 334 352 %token DISABLE ENABLE TRY THROW THROWRESUME AT // CFA 335 353 %token ASM // C99, extension ISO/IEC 9899:1999 Section J.5.10(1) … … 337 355 338 356 // names and constants: lexer differentiates between identifier and typedef names 339 %token<tok> IDENTIFIER QUOTED_IDENTIFIERTYPEDIMname TYPEDEFname TYPEGENname340 %token<tok> TIMEOUT W ORCATCH RECOVER CATCHRESUME FIXUP FINALLY // CFA357 %token<tok> IDENTIFIER TYPEDIMname TYPEDEFname TYPEGENname 358 %token<tok> TIMEOUT WAND WOR CATCH RECOVER CATCHRESUME FIXUP FINALLY // CFA 341 359 %token<tok> INTEGERconstant CHARACTERconstant STRINGliteral 342 360 %token<tok> DIRECTIVE … … 364 382 %type<tok> identifier identifier_at identifier_or_type_name attr_name 365 383 %type<tok> quasi_keyword 366 %type< constant> string_literal384 %type<expr> string_literal 367 385 %type<str> string_literal_list 368 386 369 %type< hide> hide_opt visible_hide_opt387 %type<enum_hiding> hide_opt visible_hide_opt 370 388 371 389 // expressions 372 %type<e n> constant373 %type<e n> tuple tuple_expression_list374 %type<op > ptrref_operator unary_operator assignment_operator simple_assignment_operator compound_assignment_operator375 %type<e n> primary_expression postfix_expression unary_expression376 %type<e n> cast_expression_list cast_expression exponential_expression multiplicative_expression additive_expression377 %type<e n> shift_expression relational_expression equality_expression378 %type<e n> AND_expression exclusive_OR_expression inclusive_OR_expression379 %type<e n> logical_AND_expression logical_OR_expression380 %type<e n> conditional_expression constant_expression assignment_expression assignment_expression_opt381 %type<e n> comma_expression comma_expression_opt382 %type<e n> argument_expression_list_opt argument_expression_list argument_expression default_initializer_opt390 %type<expr> constant 391 %type<expr> tuple tuple_expression_list 392 %type<oper> ptrref_operator unary_operator assignment_operator simple_assignment_operator compound_assignment_operator 393 %type<expr> primary_expression postfix_expression unary_expression 394 %type<expr> cast_expression_list cast_expression exponential_expression multiplicative_expression additive_expression 395 %type<expr> shift_expression relational_expression equality_expression 396 %type<expr> AND_expression exclusive_OR_expression inclusive_OR_expression 397 %type<expr> logical_AND_expression logical_OR_expression 398 %type<expr> conditional_expression constant_expression assignment_expression assignment_expression_opt 399 %type<expr> comma_expression comma_expression_opt 400 %type<expr> argument_expression_list_opt argument_expression_list argument_expression default_initializer_opt 383 401 %type<ifctl> conditional_declaration 384 %type<f ctl> for_control_expression for_control_expression_list385 %type< compop> upupeq updown updowneq downupdowneq386 %type<e n> subrange402 %type<forctl> for_control_expression for_control_expression_list 403 %type<oper> upupeq updown updowneq downupdowneq 404 %type<expr> subrange 387 405 %type<decl> asm_name_opt 388 %type<e n> asm_operands_opt asm_operands_list asm_operand389 %type<label > label_list390 %type<e n> asm_clobbers_list_opt391 %type< flag> asm_volatile_opt392 %type<e n> handler_predicate_opt406 %type<expr> asm_operands_opt asm_operands_list asm_operand 407 %type<labels> label_list 408 %type<expr> asm_clobbers_list_opt 409 %type<is_volatile> asm_volatile_opt 410 %type<expr> handler_predicate_opt 393 411 %type<genexpr> generic_association generic_assoc_list 394 412 395 413 // statements 396 %type<sn> statement labeled_statement compound_statement 397 %type<sn> statement_decl statement_decl_list statement_list_nodecl 398 %type<sn> selection_statement if_statement 399 %type<sn> switch_clause_list_opt switch_clause_list 400 %type<en> case_value 401 %type<sn> case_clause case_value_list case_label case_label_list 402 %type<sn> iteration_statement jump_statement 403 %type<sn> expression_statement asm_statement 404 %type<sn> with_statement 405 %type<en> with_clause_opt 406 %type<sn> exception_statement handler_clause finally_clause 407 %type<catch_kind> handler_key 408 %type<sn> mutex_statement 409 %type<en> when_clause when_clause_opt waitfor timeout 410 %type<sn> waitfor_statement 411 %type<wfs> waitfor_clause 414 %type<stmt> statement labeled_statement compound_statement 415 %type<stmt> statement_decl statement_decl_list statement_list_nodecl 416 %type<stmt> selection_statement if_statement 417 %type<clause> switch_clause_list_opt switch_clause_list 418 %type<expr> case_value 419 %type<clause> case_clause case_value_list case_label case_label_list 420 %type<stmt> iteration_statement jump_statement 421 %type<stmt> expression_statement asm_statement 422 %type<stmt> with_statement 423 %type<expr> with_clause_opt 424 %type<stmt> exception_statement 425 %type<clause> handler_clause finally_clause 426 %type<except_kind> handler_key 427 %type<stmt> mutex_statement 428 %type<expr> when_clause when_clause_opt waitfor waituntil timeout 429 %type<stmt> waitfor_statement waituntil_statement 430 %type<wfs> wor_waitfor_clause 431 %type<wucn> waituntil_clause wand_waituntil_clause wor_waituntil_clause 412 432 413 433 // declarations … … 421 441 %type<decl> assertion assertion_list assertion_list_opt 422 442 423 %type<e n> bit_subrange_size_opt bit_subrange_size443 %type<expr> bit_subrange_size_opt bit_subrange_size 424 444 425 445 %type<decl> basic_declaration_specifier basic_type_name basic_type_specifier direct_type indirect_type … … 434 454 435 455 %type<decl> enumerator_list enum_type enum_type_nobody 436 %type<in > enumerator_value_opt456 %type<init> enumerator_value_opt 437 457 438 458 %type<decl> external_definition external_definition_list external_definition_list_opt … … 441 461 442 462 %type<decl> field_declaration_list_opt field_declaration field_declaring_list_opt field_declarator field_abstract_list_opt field_abstract 443 %type<e n> field field_name_list field_name fraction_constants_opt463 %type<expr> field field_name_list field_name fraction_constants_opt 444 464 445 465 %type<decl> external_function_definition function_definition function_array function_declarator function_no_ptr function_ptr … … 482 502 %type<decl> typedef_name typedef_declaration typedef_expression 483 503 484 %type<decl> variable_type_redeclarator type_ptr type_array type_function 504 %type<decl> variable_type_redeclarator variable_type_ptr variable_type_array variable_type_function 505 %type<decl> general_function_declarator function_type_redeclarator function_type_array function_type_no_ptr function_type_ptr 485 506 486 507 %type<decl> type_parameter_redeclarator type_parameter_ptr type_parameter_array type_parameter_function … … 489 510 %type<decl> type_parameter type_parameter_list type_initializer_opt 490 511 491 %type<e n> type_parameters_opt type_list array_type_list512 %type<expr> type_parameters_opt type_list array_type_list 492 513 493 514 %type<decl> type_qualifier type_qualifier_name forall type_qualifier_list_opt type_qualifier_list … … 500 521 501 522 // initializers 502 %type<in > initializer initializer_list_opt initializer_opt523 %type<init> initializer initializer_list_opt initializer_opt 503 524 504 525 // designators 505 %type<e n> designator designator_list designation526 %type<expr> designator designator_list designation 506 527 507 528 … … 512 533 // Similar issues exit with the waitfor statement. 513 534 514 // Order of these lines matters (low-to-high precedence). THEN is left associative over W OR/TIMEOUT/ELSE, WOR is left515 // associative over TIMEOUT/ELSE, and TIMEOUT is left associative over ELSE.535 // Order of these lines matters (low-to-high precedence). THEN is left associative over WAND/WOR/TIMEOUT/ELSE, WAND/WOR 536 // is left associative over TIMEOUT/ELSE, and TIMEOUT is left associative over ELSE. 516 537 %precedence THEN // rule precedence for IF/WAITFOR statement 538 %precedence ANDAND // token precedence for start of WAND in WAITFOR statement 539 %precedence WAND // token precedence for start of WAND in WAITFOR statement 540 %precedence OROR // token precedence for start of WOR in WAITFOR statement 517 541 %precedence WOR // token precedence for start of WOR in WAITFOR statement 518 542 %precedence TIMEOUT // token precedence for start of TIMEOUT in WAITFOR statement … … 592 616 constant: 593 617 // ENUMERATIONconstant is not included here; it is treated as a variable with type "enumeration constant". 594 INTEGERconstant { $$ = new ExpressionNode( build_constantInteger( *$1 ) ); }595 | FLOATING_DECIMALconstant { $$ = new ExpressionNode( build_constantFloat( *$1 ) ); }596 | FLOATING_FRACTIONconstant { $$ = new ExpressionNode( build_constantFloat( *$1 ) ); }597 | FLOATINGconstant { $$ = new ExpressionNode( build_constantFloat( *$1 ) ); }598 | CHARACTERconstant { $$ = new ExpressionNode( build_constantChar( *$1 ) ); }618 INTEGERconstant { $$ = new ExpressionNode( build_constantInteger( yylloc, *$1 ) ); } 619 | FLOATING_DECIMALconstant { $$ = new ExpressionNode( build_constantFloat( yylloc, *$1 ) ); } 620 | FLOATING_FRACTIONconstant { $$ = new ExpressionNode( build_constantFloat( yylloc, *$1 ) ); } 621 | FLOATINGconstant { $$ = new ExpressionNode( build_constantFloat( yylloc, *$1 ) ); } 622 | CHARACTERconstant { $$ = new ExpressionNode( build_constantChar( yylloc, *$1 ) ); } 599 623 ; 600 624 601 625 quasi_keyword: // CFA 602 626 TIMEOUT 627 | WAND 603 628 | WOR 604 629 | CATCH … … 621 646 622 647 string_literal: 623 string_literal_list { $$ = build_constantStr( *$1); }648 string_literal_list { $$ = new ExpressionNode( build_constantStr( yylloc, *$1 ) ); } 624 649 ; 625 650 … … 638 663 primary_expression: 639 664 IDENTIFIER // typedef name cannot be used as a variable name 640 { $$ = new ExpressionNode( build_varref( $1 ) ); }665 { $$ = new ExpressionNode( build_varref( yylloc, $1 ) ); } 641 666 | quasi_keyword 642 { $$ = new ExpressionNode( build_varref( $1 ) ); }667 { $$ = new ExpressionNode( build_varref( yylloc, $1 ) ); } 643 668 | TYPEDIMname // CFA, generic length argument 644 669 // { $$ = new ExpressionNode( new TypeExpr( maybeMoveBuildType( DeclarationNode::newFromTypedef( $1 ) ) ) ); } 645 670 // { $$ = new ExpressionNode( build_varref( $1 ) ); } 646 { $$ = new ExpressionNode( build_dimensionref( $1 ) ); }671 { $$ = new ExpressionNode( build_dimensionref( yylloc, $1 ) ); } 647 672 | tuple 648 673 | '(' comma_expression ')' 649 674 { $$ = $2; } 650 675 | '(' compound_statement ')' // GCC, lambda expression 651 { $$ = new ExpressionNode( new StmtExpr( dynamic_cast<CompoundStmt *>(maybeMoveBuild<Statement>($2) ) ) ); }676 { $$ = new ExpressionNode( new ast::StmtExpr( yylloc, dynamic_cast<ast::CompoundStmt *>( maybeMoveBuild( $2 ) ) ) ); } 652 677 | type_name '.' identifier // CFA, nested type 653 { $$ = new ExpressionNode( build_qualified_expr( $1, build_varref($3 ) ) ); }678 { $$ = new ExpressionNode( build_qualified_expr( yylloc, $1, build_varref( yylloc, $3 ) ) ); } 654 679 | type_name '.' '[' field_name_list ']' // CFA, nested type / tuple field selector 655 680 { SemanticError( yylloc, "Qualified name is currently unimplemented." ); $$ = nullptr; } … … 657 682 { 658 683 // add the missing control expression to the GenericExpr and return it 659 $5->control = maybeMoveBuild <Expression>( $3 );684 $5->control = maybeMoveBuild( $3 ); 660 685 $$ = new ExpressionNode( $5 ); 661 686 } … … 683 708 { 684 709 // steal the association node from the singleton and delete the wrapper 685 $1->associations.splice($1->associations.end(), $3->associations); 710 assert( 1 == $3->associations.size() ); 711 $1->associations.push_back( $3->associations.front() ); 686 712 delete $3; 687 713 $$ = $1; … … 693 719 { 694 720 // create a GenericExpr wrapper with one association pair 695 $$ = new GenericExpr( nullptr, { { maybeMoveBuildType($1), maybeMoveBuild<Expression>( $3 ) } } );721 $$ = new ast::GenericExpr( yylloc, nullptr, { { maybeMoveBuildType( $1 ), maybeMoveBuild( $3 ) } } ); 696 722 } 697 723 | DEFAULT ':' assignment_expression 698 { $$ = new GenericExpr( nullptr, { { maybeMoveBuild<Expression>( $3 ) } } ); }724 { $$ = new ast::GenericExpr( yylloc, nullptr, { { maybeMoveBuild( $3 ) } } ); } 699 725 ; 700 726 … … 705 731 // Switching to this behaviour may help check if a C compatibilty case uses comma-exprs in subscripts. 706 732 // Current: Commas in subscripts make tuples. 707 { $$ = new ExpressionNode( build_binary_val( OperKinds::Index, $1, new ExpressionNode( build_tuple((ExpressionNode *)($3->set_last( $5 ) ) )) ) ); }733 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, new ExpressionNode( build_tuple( yylloc, (ExpressionNode *)($3->set_last( $5 ) ) )) ) ); } 708 734 | postfix_expression '[' assignment_expression ']' 709 735 // CFA, comma_expression disallowed in this context because it results in a common user error: subscripting a … … 711 737 // little advantage to this feature and many disadvantages. It is possible to write x[(i,j)] in CFA, which is 712 738 // equivalent to the old x[i,j]. 713 { $$ = new ExpressionNode( build_binary_val( OperKinds::Index, $1, $3 ) ); }739 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, $3 ) ); } 714 740 | constant '[' assignment_expression ']' // 3[a], 'a'[a], 3.5[a] 715 { $$ = new ExpressionNode( build_binary_val( OperKinds::Index, $1, $3 ) ); }741 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, $3 ) ); } 716 742 | string_literal '[' assignment_expression ']' // "abc"[3], 3["abc"] 717 { $$ = new ExpressionNode( build_binary_val( OperKinds::Index, new ExpressionNode( $1 ), $3 ) ); }743 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Index, $1, $3 ) ); } 718 744 | postfix_expression '{' argument_expression_list_opt '}' // CFA, constructor call 719 745 { 720 746 Token fn; 721 747 fn.str = new std::string( "?{}" ); // location undefined - use location of '{'? 722 $$ = new ExpressionNode( new ConstructorExpr( build_func( new ExpressionNode( build_varref(fn ) ), (ExpressionNode *)( $1 )->set_last( $3 ) ) ) );748 $$ = new ExpressionNode( new ast::ConstructorExpr( yylloc, build_func( yylloc, new ExpressionNode( build_varref( yylloc, fn ) ), (ExpressionNode *)( $1 )->set_last( $3 ) ) ) ); 723 749 } 724 750 | postfix_expression '(' argument_expression_list_opt ')' 725 { $$ = new ExpressionNode( build_func( $1, $3 ) ); }751 { $$ = new ExpressionNode( build_func( yylloc, $1, $3 ) ); } 726 752 | VA_ARG '(' primary_expression ',' declaration_specifier_nobody abstract_parameter_declarator_opt ')' 727 753 // { SemanticError( yylloc, "va_arg is currently unimplemented." ); $$ = nullptr; } 728 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref(new string( "__builtin_va_arg") ) ),754 { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, new string( "__builtin_va_arg") ) ), 729 755 (ExpressionNode *)($3->set_last( (ExpressionNode *)($6 ? $6->addType( $5 ) : $5) )) ) ); } 730 756 | postfix_expression '`' identifier // CFA, postfix call 731 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref(build_postfix_name( $3 ) ) ), $1 ) ); }757 { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, build_postfix_name( $3 ) ) ), $1 ) ); } 732 758 | constant '`' identifier // CFA, postfix call 733 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref(build_postfix_name( $3 ) ) ), $1 ) ); }759 { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, build_postfix_name( $3 ) ) ), $1 ) ); } 734 760 | string_literal '`' identifier // CFA, postfix call 735 { $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref( build_postfix_name( $3 ) ) ), new ExpressionNode( $1 )) ); }761 { $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, build_postfix_name( $3 ) ) ), $1 ) ); } 736 762 | postfix_expression '.' identifier 737 { $$ = new ExpressionNode( build_fieldSel( $1, build_varref($3 ) ) ); }763 { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_varref( yylloc, $3 ) ) ); } 738 764 | postfix_expression '.' INTEGERconstant // CFA, tuple index 739 { $$ = new ExpressionNode( build_fieldSel( $1, build_constantInteger(*$3 ) ) ); }765 { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_constantInteger( yylloc, *$3 ) ) ); } 740 766 | postfix_expression FLOATING_FRACTIONconstant // CFA, tuple index 741 { $$ = new ExpressionNode( build_fieldSel( $1, build_field_name_FLOATING_FRACTIONconstant(*$2 ) ) ); }767 { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_field_name_FLOATING_FRACTIONconstant( yylloc, *$2 ) ) ); } 742 768 | postfix_expression '.' '[' field_name_list ']' // CFA, tuple field selector 743 { $$ = new ExpressionNode( build_fieldSel( $1, build_tuple($4 ) ) ); }769 { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } 744 770 | postfix_expression '.' aggregate_control 745 { $$ = new ExpressionNode( build_keyword_cast( $3, $1 ) ); }771 { $$ = new ExpressionNode( build_keyword_cast( yylloc, $3, $1 ) ); } 746 772 | postfix_expression ARROW identifier 747 { $$ = new ExpressionNode( build_pfieldSel( $1, build_varref($3 ) ) ); }773 { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_varref( yylloc, $3 ) ) ); } 748 774 | postfix_expression ARROW INTEGERconstant // CFA, tuple index 749 { $$ = new ExpressionNode( build_pfieldSel( $1, build_constantInteger(*$3 ) ) ); }775 { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_constantInteger( yylloc, *$3 ) ) ); } 750 776 | postfix_expression ARROW '[' field_name_list ']' // CFA, tuple field selector 751 { $$ = new ExpressionNode( build_pfieldSel( $1, build_tuple($4 ) ) ); }777 { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } 752 778 | postfix_expression ICR 753 { $$ = new ExpressionNode( build_unary_ptr(OperKinds::IncrPost, $1 ) ); }779 { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::IncrPost, $1 ) ); } 754 780 | postfix_expression DECR 755 { $$ = new ExpressionNode( build_unary_ptr(OperKinds::DecrPost, $1 ) ); }781 { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::DecrPost, $1 ) ); } 756 782 | '(' type_no_function ')' '{' initializer_list_opt comma_opt '}' // C99, compound-literal 757 { $$ = new ExpressionNode( build_compoundLiteral( $2, new InitializerNode( $5, true ) ) ); }783 { $$ = new ExpressionNode( build_compoundLiteral( yylloc, $2, new InitializerNode( $5, true ) ) ); } 758 784 | '(' type_no_function ')' '@' '{' initializer_list_opt comma_opt '}' // CFA, explicit C compound-literal 759 { $$ = new ExpressionNode( build_compoundLiteral( $2, (new InitializerNode( $6, true ))->set_maybeConstructed( false ) ) ); }785 { $$ = new ExpressionNode( build_compoundLiteral( yylloc, $2, (new InitializerNode( $6, true ))->set_maybeConstructed( false ) ) ); } 760 786 | '^' primary_expression '{' argument_expression_list_opt '}' // CFA, destructor call 761 787 { 762 788 Token fn; 763 789 fn.str = new string( "^?{}" ); // location undefined 764 $$ = new ExpressionNode( build_func( new ExpressionNode( build_varref(fn ) ), (ExpressionNode *)( $2 )->set_last( $4 ) ) );790 $$ = new ExpressionNode( build_func( yylloc, new ExpressionNode( build_varref( yylloc, fn ) ), (ExpressionNode *)( $2 )->set_last( $4 ) ) ); 765 791 } 766 792 ; … … 781 807 '@' // CFA, default parameter 782 808 { SemanticError( yylloc, "Default parameter for argument is currently unimplemented." ); $$ = nullptr; } 783 809 // { $$ = new ExpressionNode( build_constantInteger( *new string( "2" ) ) ); } 784 810 | assignment_expression 785 811 ; … … 793 819 field_name 794 820 | FLOATING_DECIMALconstant field 795 { $$ = new ExpressionNode( build_fieldSel( new ExpressionNode( build_field_name_FLOATING_DECIMALconstant( *$1 ) ), maybeMoveBuild<Expression>( $2 ) ) ); }821 { $$ = new ExpressionNode( build_fieldSel( yylloc, new ExpressionNode( build_field_name_FLOATING_DECIMALconstant( yylloc, *$1 ) ), maybeMoveBuild( $2 ) ) ); } 796 822 | FLOATING_DECIMALconstant '[' field_name_list ']' 797 { $$ = new ExpressionNode( build_fieldSel( new ExpressionNode( build_field_name_FLOATING_DECIMALconstant( *$1 ) ), build_tuple($3 ) ) ); }823 { $$ = new ExpressionNode( build_fieldSel( yylloc, new ExpressionNode( build_field_name_FLOATING_DECIMALconstant( yylloc, *$1 ) ), build_tuple( yylloc, $3 ) ) ); } 798 824 | field_name '.' field 799 { $$ = new ExpressionNode( build_fieldSel( $1, maybeMoveBuild<Expression>( $3 ) ) ); }825 { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, maybeMoveBuild( $3 ) ) ); } 800 826 | field_name '.' '[' field_name_list ']' 801 { $$ = new ExpressionNode( build_fieldSel( $1, build_tuple($4 ) ) ); }827 { $$ = new ExpressionNode( build_fieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } 802 828 | field_name ARROW field 803 { $$ = new ExpressionNode( build_pfieldSel( $1, maybeMoveBuild<Expression>( $3 ) ) ); }829 { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, maybeMoveBuild( $3 ) ) ); } 804 830 | field_name ARROW '[' field_name_list ']' 805 { $$ = new ExpressionNode( build_pfieldSel( $1, build_tuple($4 ) ) ); }831 { $$ = new ExpressionNode( build_pfieldSel( yylloc, $1, build_tuple( yylloc, $4 ) ) ); } 806 832 ; 807 833 808 834 field_name: 809 835 INTEGERconstant fraction_constants_opt 810 { $$ = new ExpressionNode( build_field_name_fraction_constants( build_constantInteger(*$1 ), $2 ) ); }836 { $$ = new ExpressionNode( build_field_name_fraction_constants( yylloc, build_constantInteger( yylloc, *$1 ), $2 ) ); } 811 837 | FLOATINGconstant fraction_constants_opt 812 { $$ = new ExpressionNode( build_field_name_fraction_constants( build_field_name_FLOATINGconstant(*$1 ), $2 ) ); }838 { $$ = new ExpressionNode( build_field_name_fraction_constants( yylloc, build_field_name_FLOATINGconstant( yylloc, *$1 ), $2 ) ); } 813 839 | identifier_at fraction_constants_opt // CFA, allow anonymous fields 814 840 { 815 $$ = new ExpressionNode( build_field_name_fraction_constants( build_varref($1 ), $2 ) );841 $$ = new ExpressionNode( build_field_name_fraction_constants( yylloc, build_varref( yylloc, $1 ), $2 ) ); 816 842 } 817 843 ; … … 822 848 | fraction_constants_opt FLOATING_FRACTIONconstant 823 849 { 824 Expression * constant = build_field_name_FLOATING_FRACTIONconstant(*$2 );825 $$ = $1 != nullptr ? new ExpressionNode( build_fieldSel( $1,constant ) ) : new ExpressionNode( constant );850 ast::Expr * constant = build_field_name_FLOATING_FRACTIONconstant( yylloc, *$2 ); 851 $$ = $1 != nullptr ? new ExpressionNode( build_fieldSel( yylloc, $1, constant ) ) : new ExpressionNode( constant ); 826 852 } 827 853 ; … … 833 859 | constant 834 860 | string_literal 835 { $$ = new ExpressionNode( $1 ); }861 { $$ = $1; } 836 862 | EXTENSION cast_expression // GCC 837 863 { $$ = $2->set_extension( true ); } … … 842 868 { 843 869 switch ( $1 ) { 844 845 $$ = new ExpressionNode( new AddressExpr( maybeMoveBuild<Expression>( $2 ) ) );870 case OperKinds::AddressOf: 871 $$ = new ExpressionNode( new ast::AddressExpr( maybeMoveBuild( $2 ) ) ); 846 872 break; 847 848 $$ = new ExpressionNode( build_unary_val( $1, $2 ) );873 case OperKinds::PointTo: 874 $$ = new ExpressionNode( build_unary_val( yylloc, $1, $2 ) ); 849 875 break; 850 851 $$ = new ExpressionNode( new AddressExpr( new AddressExpr( maybeMoveBuild<Expression>( $2 ) ) ) );876 case OperKinds::And: 877 $$ = new ExpressionNode( new ast::AddressExpr( new ast::AddressExpr( maybeMoveBuild( $2 ) ) ) ); 852 878 break; 853 879 default: 854 880 assert( false ); 855 881 } 856 882 } 857 883 | unary_operator cast_expression 858 { $$ = new ExpressionNode( build_unary_val($1, $2 ) ); }884 { $$ = new ExpressionNode( build_unary_val( yylloc, $1, $2 ) ); } 859 885 | ICR unary_expression 860 { $$ = new ExpressionNode( build_unary_ptr(OperKinds::Incr, $2 ) ); }886 { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::Incr, $2 ) ); } 861 887 | DECR unary_expression 862 { $$ = new ExpressionNode( build_unary_ptr(OperKinds::Decr, $2 ) ); }888 { $$ = new ExpressionNode( build_unary_val( yylloc, OperKinds::Decr, $2 ) ); } 863 889 | SIZEOF unary_expression 864 { $$ = new ExpressionNode( new SizeofExpr( maybeMoveBuild<Expression>( $2 ) ) ); }890 { $$ = new ExpressionNode( new ast::SizeofExpr( yylloc, maybeMoveBuild( $2 ) ) ); } 865 891 | SIZEOF '(' type_no_function ')' 866 { $$ = new ExpressionNode( new SizeofExpr(maybeMoveBuildType( $3 ) ) ); }892 { $$ = new ExpressionNode( new ast::SizeofExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } 867 893 | ALIGNOF unary_expression // GCC, variable alignment 868 { $$ = new ExpressionNode( new AlignofExpr( maybeMoveBuild<Expression>( $2 ) ) ); }894 { $$ = new ExpressionNode( new ast::AlignofExpr( yylloc, maybeMoveBuild( $2 ) ) ); } 869 895 | ALIGNOF '(' type_no_function ')' // GCC, type alignment 870 { $$ = new ExpressionNode( new AlignofExpr(maybeMoveBuildType( $3 ) ) ); }896 { $$ = new ExpressionNode( new ast::AlignofExpr( yylloc, maybeMoveBuildType( $3 ) ) ); } 871 897 | OFFSETOF '(' type_no_function ',' identifier ')' 872 { $$ = new ExpressionNode( build_offsetOf( $3, build_varref($5 ) ) ); }898 { $$ = new ExpressionNode( build_offsetOf( yylloc, $3, build_varref( yylloc, $5 ) ) ); } 873 899 | TYPEID '(' type_no_function ')' 874 900 { … … 895 921 unary_expression 896 922 | '(' type_no_function ')' cast_expression 897 { $$ = new ExpressionNode( build_cast( $2, $4 ) ); }923 { $$ = new ExpressionNode( build_cast( yylloc, $2, $4 ) ); } 898 924 | '(' aggregate_control '&' ')' cast_expression // CFA 899 { $$ = new ExpressionNode( build_keyword_cast( $2, $5 ) ); }925 { $$ = new ExpressionNode( build_keyword_cast( yylloc, $2, $5 ) ); } 900 926 | '(' aggregate_control '*' ')' cast_expression // CFA 901 { $$ = new ExpressionNode( build_keyword_cast( $2, $5 ) ); }927 { $$ = new ExpressionNode( build_keyword_cast( yylloc, $2, $5 ) ); } 902 928 | '(' VIRTUAL ')' cast_expression // CFA 903 { $$ = new ExpressionNode( new VirtualCastExpr( maybeMoveBuild<Expression>( $4 ), maybeMoveBuildType( nullptr ) ) ); }929 { $$ = new ExpressionNode( new ast::VirtualCastExpr( yylloc, maybeMoveBuild( $4 ), maybeMoveBuildType( nullptr ) ) ); } 904 930 | '(' VIRTUAL type_no_function ')' cast_expression // CFA 905 { $$ = new ExpressionNode( new VirtualCastExpr( maybeMoveBuild<Expression>( $5 ), maybeMoveBuildType( $3 ) ) ); }931 { $$ = new ExpressionNode( new ast::VirtualCastExpr( yylloc, maybeMoveBuild( $5 ), maybeMoveBuildType( $3 ) ) ); } 906 932 | '(' RETURN type_no_function ')' cast_expression // CFA 907 { $$ = new ExpressionNode( build_cast( $3, $5,CastExpr::Return ) ); }933 { $$ = new ExpressionNode( build_cast( yylloc, $3, $5, ast::CastExpr::Return ) ); } 908 934 | '(' COERCE type_no_function ')' cast_expression // CFA 909 935 { SemanticError( yylloc, "Coerce cast is currently unimplemented." ); $$ = nullptr; } … … 911 937 { SemanticError( yylloc, "Qualifier cast is currently unimplemented." ); $$ = nullptr; } 912 938 // | '(' type_no_function ')' tuple 913 // { $$ = new ExpressionNode( build_cast($2, $4 ) ); }939 // { $$ = new ast::ExpressionNode( build_cast( yylloc, $2, $4 ) ); } 914 940 ; 915 941 … … 929 955 cast_expression 930 956 | exponential_expression '\\' cast_expression 931 { $$ = new ExpressionNode( build_binary_val( OperKinds::Exp, $1, $3 ) ); }957 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Exp, $1, $3 ) ); } 932 958 ; 933 959 … … 935 961 exponential_expression 936 962 | multiplicative_expression '*' exponential_expression 937 { $$ = new ExpressionNode( build_binary_val( OperKinds::Mul, $1, $3 ) ); }963 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Mul, $1, $3 ) ); } 938 964 | multiplicative_expression '/' exponential_expression 939 { $$ = new ExpressionNode( build_binary_val( OperKinds::Div, $1, $3 ) ); }965 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Div, $1, $3 ) ); } 940 966 | multiplicative_expression '%' exponential_expression 941 { $$ = new ExpressionNode( build_binary_val( OperKinds::Mod, $1, $3 ) ); }967 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Mod, $1, $3 ) ); } 942 968 ; 943 969 … … 945 971 multiplicative_expression 946 972 | additive_expression '+' multiplicative_expression 947 { $$ = new ExpressionNode( build_binary_val( OperKinds::Plus, $1, $3 ) ); }973 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Plus, $1, $3 ) ); } 948 974 | additive_expression '-' multiplicative_expression 949 { $$ = new ExpressionNode( build_binary_val( OperKinds::Minus, $1, $3 ) ); }975 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Minus, $1, $3 ) ); } 950 976 ; 951 977 … … 953 979 additive_expression 954 980 | shift_expression LS additive_expression 955 { $$ = new ExpressionNode( build_binary_val( OperKinds::LShift, $1, $3 ) ); }981 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::LShift, $1, $3 ) ); } 956 982 | shift_expression RS additive_expression 957 { $$ = new ExpressionNode( build_binary_val( OperKinds::RShift, $1, $3 ) ); }983 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::RShift, $1, $3 ) ); } 958 984 ; 959 985 … … 961 987 shift_expression 962 988 | relational_expression '<' shift_expression 963 { $$ = new ExpressionNode( build_binary_val( OperKinds::LThan, $1, $3 ) ); }989 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::LThan, $1, $3 ) ); } 964 990 | relational_expression '>' shift_expression 965 { $$ = new ExpressionNode( build_binary_val( OperKinds::GThan, $1, $3 ) ); }991 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::GThan, $1, $3 ) ); } 966 992 | relational_expression LE shift_expression 967 { $$ = new ExpressionNode( build_binary_val( OperKinds::LEThan, $1, $3 ) ); }993 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::LEThan, $1, $3 ) ); } 968 994 | relational_expression GE shift_expression 969 { $$ = new ExpressionNode( build_binary_val( OperKinds::GEThan, $1, $3 ) ); }995 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::GEThan, $1, $3 ) ); } 970 996 ; 971 997 … … 973 999 relational_expression 974 1000 | equality_expression EQ relational_expression 975 { $$ = new ExpressionNode( build_binary_val( OperKinds::Eq, $1, $3 ) ); }1001 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Eq, $1, $3 ) ); } 976 1002 | equality_expression NE relational_expression 977 { $$ = new ExpressionNode( build_binary_val( OperKinds::Neq, $1, $3 ) ); }1003 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Neq, $1, $3 ) ); } 978 1004 ; 979 1005 … … 981 1007 equality_expression 982 1008 | AND_expression '&' equality_expression 983 { $$ = new ExpressionNode( build_binary_val( OperKinds::BitAnd, $1, $3 ) ); }1009 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::BitAnd, $1, $3 ) ); } 984 1010 ; 985 1011 … … 987 1013 AND_expression 988 1014 | exclusive_OR_expression '^' AND_expression 989 { $$ = new ExpressionNode( build_binary_val( OperKinds::Xor, $1, $3 ) ); }1015 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::Xor, $1, $3 ) ); } 990 1016 ; 991 1017 … … 993 1019 exclusive_OR_expression 994 1020 | inclusive_OR_expression '|' exclusive_OR_expression 995 { $$ = new ExpressionNode( build_binary_val( OperKinds::BitOr, $1, $3 ) ); }1021 { $$ = new ExpressionNode( build_binary_val( yylloc, OperKinds::BitOr, $1, $3 ) ); } 996 1022 ; 997 1023 … … 999 1025 inclusive_OR_expression 1000 1026 | logical_AND_expression ANDAND inclusive_OR_expression 1001 { $$ = new ExpressionNode( build_and_or( $1, $3, true) ); }1027 { $$ = new ExpressionNode( build_and_or( yylloc, $1, $3, ast::AndExpr ) ); } 1002 1028 ; 1003 1029 … … 1005 1031 logical_AND_expression 1006 1032 | logical_OR_expression OROR logical_AND_expression 1007 { $$ = new ExpressionNode( build_and_or( $1, $3, false) ); }1033 { $$ = new ExpressionNode( build_and_or( yylloc, $1, $3, ast::OrExpr ) ); } 1008 1034 ; 1009 1035 … … 1011 1037 logical_OR_expression 1012 1038 | logical_OR_expression '?' comma_expression ':' conditional_expression 1013 { $$ = new ExpressionNode( build_cond( $1, $3, $5 ) ); }1039 { $$ = new ExpressionNode( build_cond( yylloc, $1, $3, $5 ) ); } 1014 1040 // FIX ME: computes $1 twice 1015 1041 | logical_OR_expression '?' /* empty */ ':' conditional_expression // GCC, omitted first operand 1016 { $$ = new ExpressionNode( build_cond( $1, $1, $4 ) ); }1042 { $$ = new ExpressionNode( build_cond( yylloc, $1, $1, $4 ) ); } 1017 1043 ; 1018 1044 … … 1029 1055 // SemanticError( yylloc, "C @= assignment is currently unimplemented." ); $$ = nullptr; 1030 1056 // } else { 1031 $$ = new ExpressionNode( build_binary_val( $2, $1, $3 ) );1057 $$ = new ExpressionNode( build_binary_val( yylloc, $2, $1, $3 ) ); 1032 1058 // } // if 1033 1059 } … … 1074 1100 // { $$ = new ExpressionNode( build_tuple( $3 ) ); } 1075 1101 '[' ',' tuple_expression_list ']' 1076 { $$ = new ExpressionNode( build_tuple( (ExpressionNode *)(new ExpressionNode( nullptr ) )->set_last( $3 ) ) ); }1102 { $$ = new ExpressionNode( build_tuple( yylloc, (ExpressionNode *)(new ExpressionNode( nullptr ) )->set_last( $3 ) ) ); } 1077 1103 | '[' push assignment_expression pop ',' tuple_expression_list ']' 1078 { $$ = new ExpressionNode( build_tuple( (ExpressionNode *)($3->set_last( $6 ) ) )); }1104 { $$ = new ExpressionNode( build_tuple( yylloc, (ExpressionNode *)($3->set_last( $6 ) ) )); } 1079 1105 ; 1080 1106 … … 1092 1118 assignment_expression 1093 1119 | comma_expression ',' assignment_expression 1094 { $$ = new ExpressionNode( new CommaExpr( maybeMoveBuild<Expression>( $1 ), maybeMoveBuild<Expression>( $3 ) ) ); }1120 { $$ = new ExpressionNode( new ast::CommaExpr( yylloc, maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } 1095 1121 ; 1096 1122 … … 1113 1139 | mutex_statement 1114 1140 | waitfor_statement 1141 | waituntil_statement 1115 1142 | exception_statement 1116 1143 | enable_disable_statement … … 1118 1145 | asm_statement 1119 1146 | DIRECTIVE 1120 { $$ = new StatementNode( build_directive( $1 ) ); }1147 { $$ = new StatementNode( build_directive( yylloc, $1 ) ); } 1121 1148 ; 1122 1149 … … 1124 1151 // labels cannot be identifiers 0 or 1 1125 1152 identifier_or_type_name ':' attribute_list_opt statement 1126 { $$ = $4->add_label( $1, $3 ); }1153 { $$ = $4->add_label( yylloc, $1, $3 ); } 1127 1154 | identifier_or_type_name ':' attribute_list_opt error // syntax error 1128 1155 { … … 1136 1163 compound_statement: 1137 1164 '{' '}' 1138 { $$ = new StatementNode( build_compound( (StatementNode *)0 ) ); }1165 { $$ = new StatementNode( build_compound( yylloc, (StatementNode *)0 ) ); } 1139 1166 | '{' push 1140 1167 local_label_declaration_opt // GCC, local labels appear at start of block 1141 1168 statement_decl_list // C99, intermix declarations and statements 1142 1169 pop '}' 1143 { $$ = new StatementNode( build_compound( $4 ) ); }1170 { $$ = new StatementNode( build_compound( yylloc, $4 ) ); } 1144 1171 ; 1145 1172 … … 1172 1199 expression_statement: 1173 1200 comma_expression_opt ';' 1174 { $$ = new StatementNode( build_expr( $1 ) ); } 1175 | MUTEX '(' ')' comma_expression ';' 1176 { $$ = new StatementNode( build_mutex( nullptr, new StatementNode( build_expr( $4 ) ) ) ); } 1201 { $$ = new StatementNode( build_expr( yylloc, $1 ) ); } 1177 1202 ; 1178 1203 … … 1183 1208 { $$ = $2; } 1184 1209 | SWITCH '(' comma_expression ')' case_clause 1185 { $$ = new StatementNode( build_switch( true, $3, $5 ) ); }1210 { $$ = new StatementNode( build_switch( yylloc, true, $3, $5 ) ); } 1186 1211 | SWITCH '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt pop '}' // CFA 1187 1212 { 1188 StatementNode *sw = new StatementNode( build_switch( true, $3, $8 ) );1213 StatementNode *sw = new StatementNode( build_switch( yylloc, true, $3, $8 ) ); 1189 1214 // The semantics of the declaration list is changed to include associated initialization, which is performed 1190 1215 // *before* the transfer to the appropriate case clause by hoisting the declarations into a compound … … 1192 1217 // therefore, are removed from the grammar even though C allows it. The change also applies to choose 1193 1218 // statement. 1194 $$ = $7 ? new StatementNode( build_compound( (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw;1219 $$ = $7 ? new StatementNode( build_compound( yylloc, (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw; 1195 1220 } 1196 1221 | SWITCH '(' comma_expression ')' '{' error '}' // CFA, syntax error 1197 1222 { SemanticError( yylloc, "Only declarations can appear before the list of case clauses." ); $$ = nullptr; } 1198 1223 | CHOOSE '(' comma_expression ')' case_clause // CFA 1199 { $$ = new StatementNode( build_switch( false, $3, $5 ) ); }1224 { $$ = new StatementNode( build_switch( yylloc, false, $3, $5 ) ); } 1200 1225 | CHOOSE '(' comma_expression ')' '{' push declaration_list_opt switch_clause_list_opt pop '}' // CFA 1201 1226 { 1202 StatementNode *sw = new StatementNode( build_switch( false, $3, $8 ) );1203 $$ = $7 ? new StatementNode( build_compound( (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw;1227 StatementNode *sw = new StatementNode( build_switch( yylloc, false, $3, $8 ) ); 1228 $$ = $7 ? new StatementNode( build_compound( yylloc, (StatementNode *)((new StatementNode( $7 ))->set_last( sw )) ) ) : sw; 1204 1229 } 1205 1230 | CHOOSE '(' comma_expression ')' '{' error '}' // CFA, syntax error … … 1210 1235 IF '(' conditional_declaration ')' statement %prec THEN 1211 1236 // explicitly deal with the shift/reduce conflict on if/else 1212 { $$ = new StatementNode( build_if( $3, maybe_build_compound($5 ), nullptr ) ); }1237 { $$ = new StatementNode( build_if( yylloc, $3, maybe_build_compound( yylloc, $5 ), nullptr ) ); } 1213 1238 | IF '(' conditional_declaration ')' statement ELSE statement 1214 { $$ = new StatementNode( build_if( $3, maybe_build_compound( $5 ), maybe_build_compound($7 ) ) ); }1239 { $$ = new StatementNode( build_if( yylloc, $3, maybe_build_compound( yylloc, $5 ), maybe_build_compound( yylloc, $7 ) ) ); } 1215 1240 ; 1216 1241 … … 1224 1249 | declaration comma_expression // semi-colon separated 1225 1250 { $$ = new CondCtl( $1, $2 ); } 1226 1251 ; 1227 1252 1228 1253 // CASE and DEFAULT clauses are only allowed in the SWITCH statement, precluding Duff's device. In addition, a case … … 1232 1257 constant_expression { $$ = $1; } 1233 1258 | constant_expression ELLIPSIS constant_expression // GCC, subrange 1234 { $$ = new ExpressionNode( new RangeExpr( maybeMoveBuild<Expression>( $1 ), maybeMoveBuild<Expression>( $3 ) ) ); }1259 { $$ = new ExpressionNode( new ast::RangeExpr( yylloc, maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } 1235 1260 | subrange // CFA, subrange 1236 1261 ; 1237 1262 1238 1263 case_value_list: // CFA 1239 case_value { $$ = new StatementNode( build_case($1 ) ); }1264 case_value { $$ = new ClauseNode( build_case( yylloc, $1 ) ); } 1240 1265 // convert case list, e.g., "case 1, 3, 5:" into "case 1: case 3: case 5" 1241 | case_value_list ',' case_value { $$ = (StatementNode *)($1->set_last( new StatementNode( build_case( $3 )) ) ); }1266 | case_value_list ',' case_value { $$ = $1->set_last( new ClauseNode( build_case( yylloc, $3 ) ) ); } 1242 1267 ; 1243 1268 … … 1248 1273 | CASE case_value_list error // syntax error 1249 1274 { SemanticError( yylloc, "Missing colon after case list." ); $$ = nullptr; } 1250 | DEFAULT ':' { $$ = new StatementNode( build_default() ); }1275 | DEFAULT ':' { $$ = new ClauseNode( build_default( yylloc ) ); } 1251 1276 // A semantic check is required to ensure only one default clause per switch/choose statement. 1252 1277 | DEFAULT error // syntax error … … 1256 1281 case_label_list: // CFA 1257 1282 case_label 1258 | case_label_list case_label { $$ = (StatementNode *)( $1->set_last( $2 )); }1283 | case_label_list case_label { $$ = $1->set_last( $2 ); } 1259 1284 ; 1260 1285 1261 1286 case_clause: // CFA 1262 case_label_list statement { $$ = $1->append_last_case( maybe_build_compound( $2 ) ); }1287 case_label_list statement { $$ = $1->append_last_case( maybe_build_compound( yylloc, $2 ) ); } 1263 1288 ; 1264 1289 … … 1271 1296 switch_clause_list: // CFA 1272 1297 case_label_list statement_list_nodecl 1273 { $$ = $1->append_last_case( new StatementNode( build_compound( $2 ) ) ); }1298 { $$ = $1->append_last_case( new StatementNode( build_compound( yylloc, $2 ) ) ); } 1274 1299 | switch_clause_list case_label_list statement_list_nodecl 1275 { $$ = (StatementNode *)( $1->set_last( $2->append_last_case( new StatementNode( build_compound( $3 )) ) ) ); }1300 { $$ = $1->set_last( $2->append_last_case( new StatementNode( build_compound( yylloc, $3 ) ) ) ); } 1276 1301 ; 1277 1302 1278 1303 iteration_statement: 1279 1304 WHILE '(' ')' statement %prec THEN // CFA => while ( 1 ) 1280 { $$ = new StatementNode( build_while( new CondCtl( nullptr, NEW_ONE ), maybe_build_compound($4 ) ) ); }1305 { $$ = new StatementNode( build_while( yylloc, new CondCtl( nullptr, NEW_ONE ), maybe_build_compound( yylloc, $4 ) ) ); } 1281 1306 | WHILE '(' ')' statement ELSE statement // CFA 1282 1307 { 1283 $$ = new StatementNode( build_while( new CondCtl( nullptr, NEW_ONE ), maybe_build_compound($4 ) ) );1284 SemanticWarning( yylloc, Warning::SuperfluousElse , "");1308 $$ = new StatementNode( build_while( yylloc, new CondCtl( nullptr, NEW_ONE ), maybe_build_compound( yylloc, $4 ) ) ); 1309 SemanticWarning( yylloc, Warning::SuperfluousElse ); 1285 1310 } 1286 1311 | WHILE '(' conditional_declaration ')' statement %prec THEN 1287 { $$ = new StatementNode( build_while( $3, maybe_build_compound($5 ) ) ); }1312 { $$ = new StatementNode( build_while( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } 1288 1313 | WHILE '(' conditional_declaration ')' statement ELSE statement // CFA 1289 { $$ = new StatementNode( build_while( $3, maybe_build_compound($5 ), $7 ) ); }1314 { $$ = new StatementNode( build_while( yylloc, $3, maybe_build_compound( yylloc, $5 ), $7 ) ); } 1290 1315 | DO statement WHILE '(' ')' ';' // CFA => do while( 1 ) 1291 { $$ = new StatementNode( build_do_while( NEW_ONE, maybe_build_compound($2 ) ) ); }1316 { $$ = new StatementNode( build_do_while( yylloc, NEW_ONE, maybe_build_compound( yylloc, $2 ) ) ); } 1292 1317 | DO statement WHILE '(' ')' ELSE statement // CFA 1293 1318 { 1294 $$ = new StatementNode( build_do_while( NEW_ONE, maybe_build_compound($2 ) ) );1295 SemanticWarning( yylloc, Warning::SuperfluousElse , "");1319 $$ = new StatementNode( build_do_while( yylloc, NEW_ONE, maybe_build_compound( yylloc, $2 ) ) ); 1320 SemanticWarning( yylloc, Warning::SuperfluousElse ); 1296 1321 } 1297 1322 | DO statement WHILE '(' comma_expression ')' ';' 1298 { $$ = new StatementNode( build_do_while( $5, maybe_build_compound($2 ) ) ); }1323 { $$ = new StatementNode( build_do_while( yylloc, $5, maybe_build_compound( yylloc, $2 ) ) ); } 1299 1324 | DO statement WHILE '(' comma_expression ')' ELSE statement // CFA 1300 { $$ = new StatementNode( build_do_while( $5, maybe_build_compound($2 ), $8 ) ); }1325 { $$ = new StatementNode( build_do_while( yylloc, $5, maybe_build_compound( yylloc, $2 ), $8 ) ); } 1301 1326 | FOR '(' ')' statement %prec THEN // CFA => for ( ;; ) 1302 { $$ = new StatementNode( build_for( new ForCtrl( (ExpressionNode * )nullptr, (ExpressionNode * )nullptr, (ExpressionNode * )nullptr ), maybe_build_compound($4 ) ) ); }1327 { $$ = new StatementNode( build_for( yylloc, new ForCtrl( nullptr, nullptr, nullptr ), maybe_build_compound( yylloc, $4 ) ) ); } 1303 1328 | FOR '(' ')' statement ELSE statement // CFA 1304 1329 { 1305 $$ = new StatementNode( build_for( new ForCtrl( (ExpressionNode * )nullptr, (ExpressionNode * )nullptr, (ExpressionNode * )nullptr ), maybe_build_compound($4 ) ) );1306 SemanticWarning( yylloc, Warning::SuperfluousElse , "");1330 $$ = new StatementNode( build_for( yylloc, new ForCtrl( nullptr, nullptr, nullptr ), maybe_build_compound( yylloc, $4 ) ) ); 1331 SemanticWarning( yylloc, Warning::SuperfluousElse ); 1307 1332 } 1308 1333 | FOR '(' for_control_expression_list ')' statement %prec THEN 1309 { $$ = new StatementNode( build_for( $3, maybe_build_compound($5 ) ) ); }1334 { $$ = new StatementNode( build_for( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } 1310 1335 | FOR '(' for_control_expression_list ')' statement ELSE statement // CFA 1311 { $$ = new StatementNode( build_for( $3, maybe_build_compound($5 ), $7 ) ); }1336 { $$ = new StatementNode( build_for( yylloc, $3, maybe_build_compound( yylloc, $5 ), $7 ) ); } 1312 1337 ; 1313 1338 … … 1323 1348 if ( $1->condition ) { 1324 1349 if ( $3->condition ) { 1325 $1->condition->expr.reset( new LogicalExpr( $1->condition->expr.release(), $3->condition->expr.release(), true) );1350 $1->condition->expr.reset( new ast::LogicalExpr( yylloc, $1->condition->expr.release(), $3->condition->expr.release(), ast::AndExpr ) ); 1326 1351 } // if 1327 1352 } else $1->condition = $3->condition; 1328 1353 if ( $1->change ) { 1329 1354 if ( $3->change ) { 1330 $1->change->expr.reset( new CommaExpr($1->change->expr.release(), $3->change->expr.release() ) );1355 $1->change->expr.reset( new ast::CommaExpr( yylloc, $1->change->expr.release(), $3->change->expr.release() ) ); 1331 1356 } // if 1332 1357 } else $1->change = $3->change; … … 1337 1362 for_control_expression: 1338 1363 ';' comma_expression_opt ';' comma_expression_opt 1339 { $$ = new ForCtrl( (ExpressionNode * )nullptr, $2, $4 ); }1364 { $$ = new ForCtrl( nullptr, $2, $4 ); } 1340 1365 | comma_expression ';' comma_expression_opt ';' comma_expression_opt 1341 { $$ = new ForCtrl( $1, $3, $5 ); } 1366 { 1367 StatementNode * init = $1 ? new StatementNode( new ast::ExprStmt( yylloc, maybeMoveBuild( $1 ) ) ) : nullptr; 1368 $$ = new ForCtrl( init, $3, $5 ); 1369 } 1342 1370 | declaration comma_expression_opt ';' comma_expression_opt // C99, declaration has ';' 1343 { $$ = new ForCtrl( $1, $2, $4 ); }1371 { $$ = new ForCtrl( new StatementNode( $1 ), $2, $4 ); } 1344 1372 1345 1373 | '@' ';' comma_expression // CFA, empty loop-index 1346 { $$ = new ForCtrl( (ExpressionNode *)nullptr, $3, nullptr ); }1374 { $$ = new ForCtrl( nullptr, $3, nullptr ); } 1347 1375 | '@' ';' comma_expression ';' comma_expression // CFA, empty loop-index 1348 { $$ = new ForCtrl( (ExpressionNode *)nullptr, $3, $5 ); }1376 { $$ = new ForCtrl( nullptr, $3, $5 ); } 1349 1377 1350 1378 | comma_expression // CFA, anonymous loop-index 1351 { $$ = forCtrl( $1, new string( DeclarationNode::anonymous.newName() ), NEW_ZERO, OperKinds::LThan, $1->clone(), NEW_ONE ); }1379 { $$ = forCtrl( yylloc, $1, new string( DeclarationNode::anonymous.newName() ), NEW_ZERO, OperKinds::LThan, $1->clone(), NEW_ONE ); } 1352 1380 | downupdowneq comma_expression // CFA, anonymous loop-index 1353 { $$ = forCtrl( $2, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $1, NEW_ZERO, $2->clone() ), $1, UPDOWN( $1, $2->clone(), NEW_ZERO ), NEW_ONE ); }1381 { $$ = forCtrl( yylloc, $2, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $1, NEW_ZERO, $2->clone() ), $1, UPDOWN( $1, $2->clone(), NEW_ZERO ), NEW_ONE ); } 1354 1382 1355 1383 | comma_expression updowneq comma_expression // CFA, anonymous loop-index 1356 { $$ = forCtrl( $1, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $2, $1->clone(), $3 ), $2, UPDOWN( $2, $3->clone(), $1->clone() ), NEW_ONE ); }1384 { $$ = forCtrl( yylloc, $1, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $2, $1->clone(), $3 ), $2, UPDOWN( $2, $3->clone(), $1->clone() ), NEW_ONE ); } 1357 1385 | '@' updowneq comma_expression // CFA, anonymous loop-index 1358 1386 { 1359 1387 if ( $2 == OperKinds::LThan || $2 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1360 else $$ = forCtrl( $3, new string( DeclarationNode::anonymous.newName() ), $3->clone(), $2, nullptr, NEW_ONE );1388 else $$ = forCtrl( yylloc, $3, new string( DeclarationNode::anonymous.newName() ), $3->clone(), $2, nullptr, NEW_ONE ); 1361 1389 } 1362 1390 | comma_expression updowneq '@' // CFA, anonymous loop-index … … 1366 1394 } 1367 1395 | comma_expression updowneq comma_expression '~' comma_expression // CFA, anonymous loop-index 1368 { $$ = forCtrl( $1, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $2, $1->clone(), $3 ), $2, UPDOWN( $2, $3->clone(), $1->clone() ), $5 ); }1396 { $$ = forCtrl( yylloc, $1, new string( DeclarationNode::anonymous.newName() ), UPDOWN( $2, $1->clone(), $3 ), $2, UPDOWN( $2, $3->clone(), $1->clone() ), $5 ); } 1369 1397 | '@' updowneq comma_expression '~' comma_expression // CFA, anonymous loop-index 1370 1398 { 1371 1399 if ( $2 == OperKinds::LThan || $2 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1372 else $$ = forCtrl( $3, new string( DeclarationNode::anonymous.newName() ), $3->clone(), $2, nullptr, $5 );1400 else $$ = forCtrl( yylloc, $3, new string( DeclarationNode::anonymous.newName() ), $3->clone(), $2, nullptr, $5 ); 1373 1401 } 1374 1402 | comma_expression updowneq '@' '~' comma_expression // CFA, anonymous loop-index … … 1389 1417 1390 1418 | comma_expression ';' comma_expression // CFA 1391 { $$ = forCtrl( $3, $1, NEW_ZERO, OperKinds::LThan, $3->clone(), NEW_ONE ); }1419 { $$ = forCtrl( yylloc, $3, $1, NEW_ZERO, OperKinds::LThan, $3->clone(), NEW_ONE ); } 1392 1420 | comma_expression ';' downupdowneq comma_expression // CFA 1393 { $$ = forCtrl( $4, $1, UPDOWN( $3, NEW_ZERO, $4->clone() ), $3, UPDOWN( $3, $4->clone(), NEW_ZERO ), NEW_ONE ); }1421 { $$ = forCtrl( yylloc, $4, $1, UPDOWN( $3, NEW_ZERO, $4->clone() ), $3, UPDOWN( $3, $4->clone(), NEW_ZERO ), NEW_ONE ); } 1394 1422 1395 1423 | comma_expression ';' comma_expression updowneq comma_expression // CFA 1396 { $$ = forCtrl( $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), NEW_ONE ); }1424 { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), NEW_ONE ); } 1397 1425 | comma_expression ';' '@' updowneq comma_expression // CFA 1398 1426 { 1399 1427 if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1400 else $$ = forCtrl( $5, $1, $5->clone(), $4, nullptr, NEW_ONE );1428 else $$ = forCtrl( yylloc, $5, $1, $5->clone(), $4, nullptr, NEW_ONE ); 1401 1429 } 1402 1430 | comma_expression ';' comma_expression updowneq '@' // CFA … … 1404 1432 if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } 1405 1433 else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } 1406 else $$ = forCtrl( $3, $1, $3->clone(), $4, nullptr, NEW_ONE );1434 else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, NEW_ONE ); 1407 1435 } 1408 1436 | comma_expression ';' '@' updowneq '@' // CFA, error … … 1410 1438 1411 1439 | comma_expression ';' comma_expression updowneq comma_expression '~' comma_expression // CFA 1412 { $$ = forCtrl( $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), $7 ); }1440 { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), $7 ); } 1413 1441 | comma_expression ';' '@' updowneq comma_expression '~' comma_expression // CFA, error 1414 1442 { 1415 1443 if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1416 else $$ = forCtrl( $5, $1, $5->clone(), $4, nullptr, $7 );1444 else $$ = forCtrl( yylloc, $5, $1, $5->clone(), $4, nullptr, $7 ); 1417 1445 } 1418 1446 | comma_expression ';' comma_expression updowneq '@' '~' comma_expression // CFA … … 1420 1448 if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } 1421 1449 else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } 1422 else $$ = forCtrl( $3, $1, $3->clone(), $4, nullptr, $7 );1450 else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, $7 ); 1423 1451 } 1424 1452 | comma_expression ';' comma_expression updowneq comma_expression '~' '@' // CFA 1425 { $$ = forCtrl( $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), nullptr ); }1453 { $$ = forCtrl( yylloc, $3, $1, UPDOWN( $4, $3->clone(), $5 ), $4, UPDOWN( $4, $5->clone(), $3->clone() ), nullptr ); } 1426 1454 | comma_expression ';' '@' updowneq comma_expression '~' '@' // CFA, error 1427 1455 { 1428 1456 if ( $4 == OperKinds::LThan || $4 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1429 else $$ = forCtrl( $5, $1, $5->clone(), $4, nullptr, nullptr );1457 else $$ = forCtrl( yylloc, $5, $1, $5->clone(), $4, nullptr, nullptr ); 1430 1458 } 1431 1459 | comma_expression ';' comma_expression updowneq '@' '~' '@' // CFA … … 1433 1461 if ( $4 == OperKinds::GThan || $4 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } 1434 1462 else if ( $4 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } 1435 else $$ = forCtrl( $3, $1, $3->clone(), $4, nullptr, nullptr );1463 else $$ = forCtrl( yylloc, $3, $1, $3->clone(), $4, nullptr, nullptr ); 1436 1464 } 1437 1465 | comma_expression ';' '@' updowneq '@' '~' '@' // CFA … … 1439 1467 1440 1468 | declaration comma_expression // CFA 1441 { $$ = forCtrl( $1, NEW_ZERO, OperKinds::LThan, $2, NEW_ONE ); }1469 { $$ = forCtrl( yylloc, $1, NEW_ZERO, OperKinds::LThan, $2, NEW_ONE ); } 1442 1470 | declaration downupdowneq comma_expression // CFA 1443 { $$ = forCtrl( $1, UPDOWN( $2, NEW_ZERO, $3 ), $2, UPDOWN( $2, $3->clone(), NEW_ZERO ), NEW_ONE ); }1471 { $$ = forCtrl( yylloc, $1, UPDOWN( $2, NEW_ZERO, $3 ), $2, UPDOWN( $2, $3->clone(), NEW_ZERO ), NEW_ONE ); } 1444 1472 1445 1473 | declaration comma_expression updowneq comma_expression // CFA 1446 { $$ = forCtrl( $1, UPDOWN( $3, $2->clone(), $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), NEW_ONE ); }1474 { $$ = forCtrl( yylloc, $1, UPDOWN( $3, $2->clone(), $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), NEW_ONE ); } 1447 1475 | declaration '@' updowneq comma_expression // CFA 1448 1476 { 1449 1477 if ( $3 == OperKinds::LThan || $3 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1450 else $$ = forCtrl( $1, $4, $3, nullptr, NEW_ONE );1478 else $$ = forCtrl( yylloc, $1, $4, $3, nullptr, NEW_ONE ); 1451 1479 } 1452 1480 | declaration comma_expression updowneq '@' // CFA … … 1454 1482 if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } 1455 1483 else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } 1456 else $$ = forCtrl( $1, $2, $3, nullptr, NEW_ONE );1484 else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, NEW_ONE ); 1457 1485 } 1458 1486 1459 1487 | declaration comma_expression updowneq comma_expression '~' comma_expression // CFA 1460 { $$ = forCtrl( $1, UPDOWN( $3, $2, $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), $6 ); }1488 { $$ = forCtrl( yylloc, $1, UPDOWN( $3, $2, $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), $6 ); } 1461 1489 | declaration '@' updowneq comma_expression '~' comma_expression // CFA 1462 1490 { 1463 1491 if ( $3 == OperKinds::LThan || $3 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1464 else $$ = forCtrl( $1, $4, $3, nullptr, $6 );1492 else $$ = forCtrl( yylloc, $1, $4, $3, nullptr, $6 ); 1465 1493 } 1466 1494 | declaration comma_expression updowneq '@' '~' comma_expression // CFA … … 1468 1496 if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } 1469 1497 else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } 1470 else $$ = forCtrl( $1, $2, $3, nullptr, $6 );1498 else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, $6 ); 1471 1499 } 1472 1500 | declaration comma_expression updowneq comma_expression '~' '@' // CFA 1473 { $$ = forCtrl( $1, UPDOWN( $3, $2, $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), nullptr ); }1501 { $$ = forCtrl( yylloc, $1, UPDOWN( $3, $2, $4 ), $3, UPDOWN( $3, $4->clone(), $2->clone() ), nullptr ); } 1474 1502 | declaration '@' updowneq comma_expression '~' '@' // CFA 1475 1503 { 1476 1504 if ( $3 == OperKinds::LThan || $3 == OperKinds::LEThan ) { SemanticError( yylloc, MISSING_LOW ); $$ = nullptr; } 1477 else $$ = forCtrl( $1, $4, $3, nullptr, nullptr );1505 else $$ = forCtrl( yylloc, $1, $4, $3, nullptr, nullptr ); 1478 1506 } 1479 1507 | declaration comma_expression updowneq '@' '~' '@' // CFA … … 1481 1509 if ( $3 == OperKinds::GThan || $3 == OperKinds::GEThan ) { SemanticError( yylloc, MISSING_HIGH ); $$ = nullptr; } 1482 1510 else if ( $3 == OperKinds::LEThan ) { SemanticError( yylloc, "Equality with missing high value is meaningless. Use \"~\"." ); $$ = nullptr; } 1483 else $$ = forCtrl( $1, $2, $3, nullptr, nullptr );1511 else $$ = forCtrl( yylloc, $1, $2, $3, nullptr, nullptr ); 1484 1512 } 1485 1513 | declaration '@' updowneq '@' '~' '@' // CFA, error … … 1496 1524 SemanticError( yylloc, "Type iterator is currently unimplemented." ); $$ = nullptr; 1497 1525 } 1498 1526 ; 1499 1527 1500 1528 downupdowneq: … … 1505 1533 | ErangeDownEq 1506 1534 { $$ = OperKinds::GEThan; } 1507 1535 ; 1508 1536 1509 1537 updown: … … 1512 1540 | ErangeDown 1513 1541 { $$ = OperKinds::GThan; } 1514 1542 ; 1515 1543 1516 1544 updowneq: … … 1520 1548 | ErangeDownEq 1521 1549 { $$ = OperKinds::GEThan; } 1522 1550 ; 1523 1551 1524 1552 jump_statement: 1525 1553 GOTO identifier_or_type_name ';' 1526 { $$ = new StatementNode( build_branch( $2,BranchStmt::Goto ) ); }1554 { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::Goto ) ); } 1527 1555 | GOTO '*' comma_expression ';' // GCC, computed goto 1528 1556 // The syntax for the GCC computed goto violates normal expression precedence, e.g., goto *i+3; => goto *(i+3); … … 1531 1559 // A semantic check is required to ensure fallthru appears only in the body of a choose statement. 1532 1560 | fall_through_name ';' // CFA 1533 { $$ = new StatementNode( build_branch( BranchStmt::FallThrough ) ); }1561 { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::FallThrough ) ); } 1534 1562 | fall_through_name identifier_or_type_name ';' // CFA 1535 { $$ = new StatementNode( build_branch( $2,BranchStmt::FallThrough ) ); }1563 { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::FallThrough ) ); } 1536 1564 | fall_through_name DEFAULT ';' // CFA 1537 { $$ = new StatementNode( build_branch( BranchStmt::FallThroughDefault ) ); }1565 { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::FallThroughDefault ) ); } 1538 1566 | CONTINUE ';' 1539 1567 // A semantic check is required to ensure this statement appears only in the body of an iteration statement. 1540 { $$ = new StatementNode( build_branch( BranchStmt::Continue ) ); }1568 { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::Continue ) ); } 1541 1569 | CONTINUE identifier_or_type_name ';' // CFA, multi-level continue 1542 1570 // A semantic check is required to ensure this statement appears only in the body of an iteration statement, and 1543 1571 // the target of the transfer appears only at the start of an iteration statement. 1544 { $$ = new StatementNode( build_branch( $2,BranchStmt::Continue ) ); }1572 { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::Continue ) ); } 1545 1573 | BREAK ';' 1546 1574 // A semantic check is required to ensure this statement appears only in the body of an iteration statement. 1547 { $$ = new StatementNode( build_branch( BranchStmt::Break ) ); }1575 { $$ = new StatementNode( build_branch( yylloc, ast::BranchStmt::Break ) ); } 1548 1576 | BREAK identifier_or_type_name ';' // CFA, multi-level exit 1549 1577 // A semantic check is required to ensure this statement appears only in the body of an iteration statement, and 1550 1578 // the target of the transfer appears only at the start of an iteration statement. 1551 { $$ = new StatementNode( build_branch( $2,BranchStmt::Break ) ); }1579 { $$ = new StatementNode( build_branch( yylloc, $2, ast::BranchStmt::Break ) ); } 1552 1580 | RETURN comma_expression_opt ';' 1553 { $$ = new StatementNode( build_return( $2 ) ); }1581 { $$ = new StatementNode( build_return( yylloc, $2 ) ); } 1554 1582 | RETURN '{' initializer_list_opt comma_opt '}' ';' 1555 1583 { SemanticError( yylloc, "Initializer return is currently unimplemented." ); $$ = nullptr; } 1556 1584 | SUSPEND ';' 1557 { $$ = new StatementNode( build_suspend( nullptr) ); }1585 { $$ = new StatementNode( build_suspend( yylloc, nullptr, ast::SuspendStmt::None ) ); } 1558 1586 | SUSPEND compound_statement 1559 { $$ = new StatementNode( build_suspend( $2) ); }1587 { $$ = new StatementNode( build_suspend( yylloc, $2, ast::SuspendStmt::None ) ); } 1560 1588 | SUSPEND COROUTINE ';' 1561 { $$ = new StatementNode( build_suspend( nullptr,SuspendStmt::Coroutine ) ); }1589 { $$ = new StatementNode( build_suspend( yylloc, nullptr, ast::SuspendStmt::Coroutine ) ); } 1562 1590 | SUSPEND COROUTINE compound_statement 1563 { $$ = new StatementNode( build_suspend( $3,SuspendStmt::Coroutine ) ); }1591 { $$ = new StatementNode( build_suspend( yylloc, $3, ast::SuspendStmt::Coroutine ) ); } 1564 1592 | SUSPEND GENERATOR ';' 1565 { $$ = new StatementNode( build_suspend( nullptr,SuspendStmt::Generator ) ); }1593 { $$ = new StatementNode( build_suspend( yylloc, nullptr, ast::SuspendStmt::Generator ) ); } 1566 1594 | SUSPEND GENERATOR compound_statement 1567 { $$ = new StatementNode( build_suspend( $3,SuspendStmt::Generator ) ); }1595 { $$ = new StatementNode( build_suspend( yylloc, $3, ast::SuspendStmt::Generator ) ); } 1568 1596 | THROW assignment_expression_opt ';' // handles rethrow 1569 { $$ = new StatementNode( build_throw( $2 ) ); }1597 { $$ = new StatementNode( build_throw( yylloc, $2 ) ); } 1570 1598 | THROWRESUME assignment_expression_opt ';' // handles reresume 1571 { $$ = new StatementNode( build_resume( $2 ) ); }1599 { $$ = new StatementNode( build_resume( yylloc, $2 ) ); } 1572 1600 | THROWRESUME assignment_expression_opt AT assignment_expression ';' // handles reresume 1573 1601 { $$ = new StatementNode( build_resume_at( $2, $4 ) ); } … … 1581 1609 with_statement: 1582 1610 WITH '(' tuple_expression_list ')' statement 1583 { $$ = new StatementNode( build_with( $3, $5 ) ); }1584 ; 1585 1586 // If MUTEX becomes a general qualifier, there are shift/reduce conflicts, so change syntax to "with mutex".1611 { $$ = new StatementNode( build_with( yylloc, $3, $5 ) ); } 1612 ; 1613 1614 // If MUTEX becomes a general qualifier, there are shift/reduce conflicts, so possibly change syntax to "with mutex". 1587 1615 mutex_statement: 1588 MUTEX '(' argument_expression_list ')' statement 1589 { $$ = new StatementNode( build_mutex( $3, $5 ) ); } 1616 MUTEX '(' argument_expression_list_opt ')' statement 1617 { 1618 if ( ! $3 ) { SemanticError( yylloc, "mutex argument list cannot be empty." ); $$ = nullptr; } 1619 $$ = new StatementNode( build_mutex( yylloc, $3, $5 ) ); 1620 } 1590 1621 ; 1591 1622 … … 1598 1629 { $$ = nullptr; } 1599 1630 | when_clause 1600 ;1601 1602 waitfor:1603 WAITFOR '(' cast_expression ')'1604 { $$ = $3; }1605 // | WAITFOR '(' cast_expression ',' argument_expression_list_opt ')'1606 // { $$ = (ExpressionNode *)$3->set_last( $5 ); }1607 | WAITFOR '(' cast_expression_list ':' argument_expression_list_opt ')'1608 { $$ = (ExpressionNode *)($3->set_last( $5 )); }1609 1631 ; 1610 1632 … … 1617 1639 1618 1640 timeout: 1619 TIMEOUT '(' comma_expression ')' { $$ = $3; } 1620 ; 1621 1622 waitfor_clause: 1641 TIMEOUT '(' comma_expression ')' { $$ = $3; } 1642 ; 1643 1644 wor: 1645 OROR 1646 | WOR 1647 1648 waitfor: 1649 WAITFOR '(' cast_expression ')' 1650 { $$ = $3; } 1651 | WAITFOR '(' cast_expression_list ':' argument_expression_list_opt ')' 1652 { $$ = (ExpressionNode *)($3->set_last( $5 )); } 1653 ; 1654 1655 wor_waitfor_clause: 1623 1656 when_clause_opt waitfor statement %prec THEN 1624 { $$ = build_waitfor( $2, maybe_build_compound( $3 ), $1 ); } 1625 | when_clause_opt waitfor statement WOR waitfor_clause 1626 { $$ = build_waitfor( $2, maybe_build_compound( $3 ), $1, $5 ); } 1627 | when_clause_opt timeout statement %prec THEN 1628 { $$ = build_waitfor_timeout( $2, maybe_build_compound( $3 ), $1 ); } 1629 | when_clause_opt ELSE statement 1630 { $$ = build_waitfor_timeout( nullptr, maybe_build_compound( $3 ), $1 ); } 1657 // Called first: create header for WaitForStmt. 1658 { $$ = build_waitfor( yylloc, new ast::WaitForStmt( yylloc ), $1, $2, maybe_build_compound( yylloc, $3 ) ); } 1659 | wor_waitfor_clause wor when_clause_opt waitfor statement 1660 { $$ = build_waitfor( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ); } 1661 | wor_waitfor_clause wor when_clause_opt ELSE statement 1662 { $$ = build_waitfor_else( yylloc, $1, $3, maybe_build_compound( yylloc, $5 ) ); } 1663 | wor_waitfor_clause wor when_clause_opt timeout statement %prec THEN 1664 { $$ = build_waitfor_timeout( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ); } 1631 1665 // "else" must be conditional after timeout or timeout is never triggered (i.e., it is meaningless) 1632 | w hen_clause_opt timeout statement WORELSE statement // syntax error1666 | wor_waitfor_clause wor when_clause_opt timeout statement wor ELSE statement // syntax error 1633 1667 { SemanticError( yylloc, "else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; } 1634 | w hen_clause_opt timeout statement WORwhen_clause ELSE statement1635 { $$ = build_waitfor_ timeout( $2, maybe_build_compound( $3 ), $1, maybe_build_compound( $7 ), $5); }1668 | wor_waitfor_clause wor when_clause_opt timeout statement wor when_clause ELSE statement 1669 { $$ = build_waitfor_else( yylloc, build_waitfor_timeout( yylloc, $1, $3, $4, maybe_build_compound( yylloc, $5 ) ), $7, maybe_build_compound( yylloc, $9 ) ); } 1636 1670 ; 1637 1671 1638 1672 waitfor_statement: 1639 when_clause_opt waitfor statement %prec THEN 1640 { $$ = new StatementNode( build_waitfor( $2, $3, $1 ) ); } 1641 | when_clause_opt waitfor statement WOR waitfor_clause 1642 { $$ = new StatementNode( build_waitfor( $2, $3, $1, $5 ) ); } 1673 wor_waitfor_clause %prec THEN 1674 { $$ = new StatementNode( $1 ); } 1675 ; 1676 1677 wand: 1678 ANDAND 1679 | WAND 1680 ; 1681 1682 waituntil: 1683 WAITUNTIL '(' comma_expression ')' 1684 { $$ = $3; } 1685 ; 1686 1687 waituntil_clause: 1688 when_clause_opt waituntil statement 1689 { $$ = build_waituntil_clause( yylloc, $1, $2, maybe_build_compound( yylloc, $3 ) ); } 1690 | '(' wor_waituntil_clause ')' 1691 { $$ = $2; } 1692 ; 1693 1694 wand_waituntil_clause: 1695 waituntil_clause %prec THEN 1696 { $$ = $1; } 1697 | waituntil_clause wand wand_waituntil_clause 1698 { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::AND, $1, $3 ); } 1699 ; 1700 1701 wor_waituntil_clause: 1702 wand_waituntil_clause 1703 { $$ = $1; } 1704 | wor_waituntil_clause wor wand_waituntil_clause 1705 { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::OR, $1, $3 ); } 1706 | wor_waituntil_clause wor when_clause_opt ELSE statement 1707 { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::LEFT_OR, $1, build_waituntil_else( yylloc, $3, maybe_build_compound( yylloc, $5 ) ) ); } 1708 | wor_waituntil_clause wor when_clause_opt timeout statement %prec THEN 1709 { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::LEFT_OR, $1, build_waituntil_timeout( yylloc, $3, $4, maybe_build_compound( yylloc, $5 ) ) ); } 1710 // "else" must be conditional after timeout or timeout is never triggered (i.e., it is meaningless) 1711 | wor_waituntil_clause wor when_clause_opt timeout statement wor ELSE statement // syntax error 1712 { SemanticError( yylloc, "else clause must be conditional after timeout or timeout never triggered." ); $$ = nullptr; } 1713 | wor_waituntil_clause wor when_clause_opt timeout statement wor when_clause ELSE statement 1714 { $$ = new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::LEFT_OR, $1, 1715 new ast::WaitUntilStmt::ClauseNode( ast::WaitUntilStmt::ClauseNode::Op::OR, 1716 build_waituntil_timeout( yylloc, $3, $4, maybe_build_compound( yylloc, $5 ) ), 1717 build_waituntil_else( yylloc, $7, maybe_build_compound( yylloc, $9 ) ) ) ); } 1718 ; 1719 1720 waituntil_statement: 1721 wor_waituntil_clause %prec THEN 1722 // SKULLDUGGERY: create an empty compound statement to test parsing of waituntil statement. 1723 { 1724 $$ = new StatementNode( build_waituntil_stmt( yylloc, $1 ) ); 1725 // $$ = new StatementNode( build_compound( yylloc, nullptr ) ); 1726 } 1643 1727 ; 1644 1728 1645 1729 exception_statement: 1646 TRY compound_statement handler_clause 1647 { $$ = new StatementNode( build_try( $2, $3, 0) ); }1730 TRY compound_statement handler_clause %prec THEN 1731 { $$ = new StatementNode( build_try( yylloc, $2, $3, nullptr ) ); } 1648 1732 | TRY compound_statement finally_clause 1649 { $$ = new StatementNode( build_try( $2, 0, $3 ) ); }1733 { $$ = new StatementNode( build_try( yylloc, $2, nullptr, $3 ) ); } 1650 1734 | TRY compound_statement handler_clause finally_clause 1651 { $$ = new StatementNode( build_try( $2, $3, $4 ) ); }1735 { $$ = new StatementNode( build_try( yylloc, $2, $3, $4 ) ); } 1652 1736 ; 1653 1737 1654 1738 handler_clause: 1655 1739 handler_key '(' push exception_declaration pop handler_predicate_opt ')' compound_statement 1656 { $$ = new StatementNode( build_catch($1, $4, $6, $8 ) ); }1740 { $$ = new ClauseNode( build_catch( yylloc, $1, $4, $6, $8 ) ); } 1657 1741 | handler_clause handler_key '(' push exception_declaration pop handler_predicate_opt ')' compound_statement 1658 { $$ = (StatementNode *)$1->set_last( new StatementNode( build_catch($2, $5, $7, $9 ) ) ); }1742 { $$ = $1->set_last( new ClauseNode( build_catch( yylloc, $2, $5, $7, $9 ) ) ); } 1659 1743 ; 1660 1744 … … 1666 1750 1667 1751 handler_key: 1668 CATCH { $$ = CatchStmt::Terminate; }1669 | RECOVER { $$ = CatchStmt::Terminate; }1670 | CATCHRESUME { $$ = CatchStmt::Resume; }1671 | FIXUP { $$ = CatchStmt::Resume; }1752 CATCH { $$ = ast::Terminate; } 1753 | RECOVER { $$ = ast::Terminate; } 1754 | CATCHRESUME { $$ = ast::Resume; } 1755 | FIXUP { $$ = ast::Resume; } 1672 1756 ; 1673 1757 1674 1758 finally_clause: 1675 FINALLY compound_statement { $$ = new StatementNode( build_finally($2 ) ); }1759 FINALLY compound_statement { $$ = new ClauseNode( build_finally( yylloc, $2 ) ); } 1676 1760 ; 1677 1761 … … 1699 1783 asm_statement: 1700 1784 ASM asm_volatile_opt '(' string_literal ')' ';' 1701 { $$ = new StatementNode( build_asm( $2, $4, 0) ); }1785 { $$ = new StatementNode( build_asm( yylloc, $2, $4, nullptr ) ); } 1702 1786 | ASM asm_volatile_opt '(' string_literal ':' asm_operands_opt ')' ';' // remaining GCC 1703 { $$ = new StatementNode( build_asm( $2, $4, $6 ) ); }1787 { $$ = new StatementNode( build_asm( yylloc, $2, $4, $6 ) ); } 1704 1788 | ASM asm_volatile_opt '(' string_literal ':' asm_operands_opt ':' asm_operands_opt ')' ';' 1705 { $$ = new StatementNode( build_asm( $2, $4, $6, $8 ) ); }1789 { $$ = new StatementNode( build_asm( yylloc, $2, $4, $6, $8 ) ); } 1706 1790 | ASM asm_volatile_opt '(' string_literal ':' asm_operands_opt ':' asm_operands_opt ':' asm_clobbers_list_opt ')' ';' 1707 { $$ = new StatementNode( build_asm( $2, $4, $6, $8, $10 ) ); }1791 { $$ = new StatementNode( build_asm( yylloc, $2, $4, $6, $8, $10 ) ); } 1708 1792 | ASM asm_volatile_opt GOTO '(' string_literal ':' ':' asm_operands_opt ':' asm_clobbers_list_opt ':' label_list ')' ';' 1709 { $$ = new StatementNode( build_asm( $2, $5, 0, $8, $10, $12 ) ); }1793 { $$ = new StatementNode( build_asm( yylloc, $2, $5, nullptr, $8, $10, $12 ) ); } 1710 1794 ; 1711 1795 … … 1731 1815 asm_operand: // GCC 1732 1816 string_literal '(' constant_expression ')' 1733 { $$ = new ExpressionNode( new AsmExpr( nullptr, $1, maybeMoveBuild<Expression>( $3 ) ) ); }1817 { $$ = new ExpressionNode( new ast::AsmExpr( yylloc, "", maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } 1734 1818 | '[' IDENTIFIER ']' string_literal '(' constant_expression ')' 1735 { $$ = new ExpressionNode( new AsmExpr( $2, $4, maybeMoveBuild<Expression>( $6 ) ) ); } 1819 { 1820 $$ = new ExpressionNode( new ast::AsmExpr( yylloc, *$2.str, maybeMoveBuild( $4 ), maybeMoveBuild( $6 ) ) ); 1821 delete $2.str; 1822 } 1736 1823 ; 1737 1824 … … 1740 1827 { $$ = nullptr; } // use default argument 1741 1828 | string_literal 1742 { $$ = new ExpressionNode( $1 ); }1829 { $$ = $1; } 1743 1830 | asm_clobbers_list_opt ',' string_literal 1744 { $$ = (ExpressionNode *)( $1->set_last( new ExpressionNode( $3 ) )); }1831 { $$ = (ExpressionNode *)( $1->set_last( $3 ) ); } 1745 1832 ; 1746 1833 … … 1748 1835 identifier 1749 1836 { 1750 $$ = new LabelNode(); $$->labels. push_back(*$1 );1837 $$ = new LabelNode(); $$->labels.emplace_back( yylloc, *$1 ); 1751 1838 delete $1; // allocated by lexer 1752 1839 } 1753 1840 | label_list ',' identifier 1754 1841 { 1755 $$ = $1; $1->labels. push_back(*$3 );1842 $$ = $1; $1->labels.emplace_back( yylloc, *$3 ); 1756 1843 delete $3; // allocated by lexer 1757 1844 } … … 1804 1891 { 1805 1892 // printf( "C_DECLARATION1 %p %s\n", $$, $$->name ? $$->name->c_str() : "(nil)" ); 1806 1893 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) { 1807 1894 // printf( "\tattr %s\n", attr->name.c_str() ); 1808 1895 // } // for … … 1814 1901 static_assert: 1815 1902 STATICASSERT '(' constant_expression ',' string_literal ')' ';' // C11 1816 { $$ = DeclarationNode::newStaticAssert( $3, $5); }1903 { $$ = DeclarationNode::newStaticAssert( $3, maybeMoveBuild( $5 ) ); } 1817 1904 | STATICASSERT '(' constant_expression ')' ';' // CFA 1818 { $$ = DeclarationNode::newStaticAssert( $3, build_constantStr( *new string( "\"\"" ) ) ); }1905 { $$ = DeclarationNode::newStaticAssert( $3, build_constantStr( yylloc, *new string( "\"\"" ) ) ); } 1819 1906 1820 1907 // C declaration syntax is notoriously confusing and error prone. Cforall provides its own type, variable and function … … 1880 1967 // '[' ']' identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' // S/R conflict 1881 1968 // { 1882 // $$ = DeclarationNode::newFunction( $3, DeclarationNode::newTuple( 0 ), $6, 0, true );1969 // $$ = DeclarationNode::newFunction( $3, DeclarationNode::newTuple( 0 ), $6, nullptr, true ); 1883 1970 // } 1884 1971 // '[' ']' identifier '(' push cfa_parameter_ellipsis_list_opt pop ')' 1885 1972 // { 1886 1973 // typedefTable.setNextIdentifier( *$5 ); 1887 // $$ = DeclarationNode::newFunction( $5, DeclarationNode::newTuple( 0 ), $8, 0, true );1974 // $$ = DeclarationNode::newFunction( $5, DeclarationNode::newTuple( 0 ), $8, nullptr, true ); 1888 1975 // } 1889 1976 // | '[' ']' TYPEDEFname '(' push cfa_parameter_ellipsis_list_opt pop ')' 1890 1977 // { 1891 1978 // typedefTable.setNextIdentifier( *$5 ); 1892 // $$ = DeclarationNode::newFunction( $5, DeclarationNode::newTuple( 0 ), $8, 0, true );1979 // $$ = DeclarationNode::newFunction( $5, DeclarationNode::newTuple( 0 ), $8, nullptr, true ); 1893 1980 // } 1894 1981 // | '[' ']' typegen_name … … 1902 1989 cfa_abstract_tuple identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' attribute_list_opt 1903 1990 // To obtain LR(1 ), this rule must be factored out from function return type (see cfa_abstract_declarator). 1904 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0)->addQualifiers( $8 ); }1991 { $$ = DeclarationNode::newFunction( $2, $1, $5, nullptr )->addQualifiers( $8 ); } 1905 1992 | cfa_function_return identifier_or_type_name '(' push cfa_parameter_ellipsis_list_opt pop ')' attribute_list_opt 1906 { $$ = DeclarationNode::newFunction( $2, $1, $5, 0)->addQualifiers( $8 ); }1993 { $$ = DeclarationNode::newFunction( $2, $1, $5, nullptr )->addQualifiers( $8 ); } 1907 1994 ; 1908 1995 … … 1940 2027 { 1941 2028 typedefTable.addToEnclosingScope( *$3->name, TYPEDEFname, "4" ); 1942 $$ = $3->addType( $2 )->addTypedef(); 2029 if ( $2->type->forall || ($2->type->kind == TypeData::Aggregate && $2->type->aggregate.params) ) { 2030 SemanticError( yylloc, "forall qualifier in typedef is currently unimplemented." ); $$ = nullptr; 2031 } else $$ = $3->addType( $2 )->addTypedef(); // watchout frees $2 and $3 1943 2032 } 1944 2033 | typedef_declaration pop ',' push declarator … … 1948 2037 } 1949 2038 | type_qualifier_list TYPEDEF type_specifier declarator // remaining OBSOLESCENT (see 2 ) 1950 { 1951 typedefTable.addToEnclosingScope( *$4->name, TYPEDEFname, "6" ); 1952 $$ = $4->addType( $3 )->addQualifiers( $1 )->addTypedef(); 1953 } 2039 { SemanticError( yylloc, "Type qualifiers/specifiers before TYPEDEF is deprecated, move after TYPEDEF." ); $$ = nullptr; } 1954 2040 | type_specifier TYPEDEF declarator 1955 { 1956 typedefTable.addToEnclosingScope( *$3->name, TYPEDEFname, "7" ); 1957 $$ = $3->addType( $1 )->addTypedef(); 1958 } 2041 { SemanticError( yylloc, "Type qualifiers/specifiers before TYPEDEF is deprecated, move after TYPEDEF." ); $$ = nullptr; } 1959 2042 | type_specifier TYPEDEF type_qualifier_list declarator 1960 { 1961 typedefTable.addToEnclosingScope( *$4->name, TYPEDEFname, "8" ); 1962 $$ = $4->addQualifiers( $1 )->addTypedef()->addType( $1 ); 1963 } 2043 { SemanticError( yylloc, "Type qualifiers/specifiers before TYPEDEF is deprecated, move after TYPEDEF." ); $$ = nullptr; } 1964 2044 ; 1965 2045 … … 1968 2048 TYPEDEF identifier '=' assignment_expression 1969 2049 { 1970 SemanticError( yylloc, "T ypedefexpression is deprecated, use typeof(...) instead." ); $$ = nullptr;2050 SemanticError( yylloc, "TYPEDEF expression is deprecated, use typeof(...) instead." ); $$ = nullptr; 1971 2051 } 1972 2052 | typedef_expression pop ',' push identifier '=' assignment_expression 1973 2053 { 1974 SemanticError( yylloc, "T ypedefexpression is deprecated, use typeof(...) instead." ); $$ = nullptr;2054 SemanticError( yylloc, "TYPEDEF expression is deprecated, use typeof(...) instead." ); $$ = nullptr; 1975 2055 } 1976 2056 ; … … 1982 2062 | typedef_expression // deprecated GCC, naming expression type 1983 2063 | sue_declaration_specifier 2064 { 2065 assert( $1->type ); 2066 if ( $1->type->qualifiers.any() ) { // CV qualifiers ? 2067 SemanticError( yylloc, "Useless type qualifier(s) in empty declaration." ); $$ = nullptr; 2068 } 2069 // enums are never empty declarations because there must have at least one enumeration. 2070 if ( $1->type->kind == TypeData::AggregateInst && $1->storageClasses.any() ) { // storage class ? 2071 SemanticError( yylloc, "Useless storage qualifier(s) in empty aggregate declaration." ); $$ = nullptr; 2072 } 2073 } 1984 2074 ; 1985 2075 … … 1987 2077 // A semantic check is required to ensure asm_name only appears on declarations with implicit or explicit static 1988 2078 // storage-class 1989 declarator asm_name_opt initializer_opt2079 variable_declarator asm_name_opt initializer_opt 1990 2080 { $$ = $1->addAsmName( $2 )->addInitializer( $3 ); } 2081 | variable_type_redeclarator asm_name_opt initializer_opt 2082 { $$ = $1->addAsmName( $2 )->addInitializer( $3 ); } 2083 2084 | general_function_declarator asm_name_opt 2085 { $$ = $1->addAsmName( $2 )->addInitializer( nullptr ); } 2086 | general_function_declarator asm_name_opt '=' VOID 2087 { $$ = $1->addAsmName( $2 )->addInitializer( new InitializerNode( true ) ); } 2088 1991 2089 | declaring_list ',' attribute_list_opt declarator asm_name_opt initializer_opt 1992 2090 { $$ = $1->appendList( $4->addQualifiers( $3 )->addAsmName( $5 )->addInitializer( $6 ) ); } 1993 2091 ; 1994 2092 2093 general_function_declarator: 2094 function_type_redeclarator 2095 | function_declarator 2096 ; 2097 1995 2098 declaration_specifier: // type specifier + storage class 1996 2099 basic_declaration_specifier 2100 | type_declaration_specifier 1997 2101 | sue_declaration_specifier 1998 | type_declaration_specifier 2102 | sue_declaration_specifier invalid_types 2103 { 2104 SemanticError( yylloc, ::toString( "Missing ';' after end of ", 2105 $1->type->enumeration.name ? "enum" : ast::AggregateDecl::aggrString( $1->type->aggregate.kind ), 2106 " declaration" ) ); 2107 $$ = nullptr; 2108 } 2109 ; 2110 2111 invalid_types: 2112 aggregate_key 2113 | basic_type_name 2114 | indirect_type 1999 2115 ; 2000 2116 … … 2013 2129 basic_type_specifier 2014 2130 | sue_type_specifier 2015 {2016 // printf( "sue_type_specifier2 %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" );2017 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) {2018 // printf( "\tattr %s\n", attr->name.c_str() );2019 // } // for2020 }2021 2131 | type_type_specifier 2022 2132 ; … … 2065 2175 { $$ = DeclarationNode::newTypeQualifier( Type::Atomic ); } 2066 2176 | forall 2177 { $$ = DeclarationNode::newForall( $1 ); } 2067 2178 ; 2068 2179 2069 2180 forall: 2070 2181 FORALL '(' type_parameter_list ')' // CFA 2071 { $$ = DeclarationNode::newForall( $3 ); }2182 { $$ = $3; } 2072 2183 ; 2073 2184 … … 2226 2337 { $$ = DeclarationNode::newTypeof( $3 ); } 2227 2338 | BASETYPEOF '(' type ')' // CFA: basetypeof( x ) y; 2228 { $$ = DeclarationNode::newTypeof( new ExpressionNode( new TypeExpr(maybeMoveBuildType( $3 ) ) ), true ); }2339 { $$ = DeclarationNode::newTypeof( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ), true ); } 2229 2340 | BASETYPEOF '(' comma_expression ')' // CFA: basetypeof( a+b ) y; 2230 2341 { $$ = DeclarationNode::newTypeof( $3, true ); } … … 2239 2350 { 2240 2351 // printf( "sue_declaration_specifier %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" ); 2241 2352 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) { 2242 2353 // printf( "\tattr %s\n", attr->name.c_str() ); 2243 2354 // } // for … … 2255 2366 { 2256 2367 // printf( "sue_type_specifier %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" ); 2257 2368 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) { 2258 2369 // printf( "\tattr %s\n", attr->name.c_str() ); 2259 2370 // } // for … … 2333 2444 { 2334 2445 // printf( "elaborated_type %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" ); 2335 2446 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) { 2336 2447 // printf( "\tattr %s\n", attr->name.c_str() ); 2337 2448 // } // for … … 2357 2468 '{' field_declaration_list_opt '}' type_parameters_opt 2358 2469 { 2359 // printf( "aggregate_type1 %s\n", $3.str->c_str() );2360 // if ( $2 )2361 // for ( Attribute * attr: reverseIterate( $2->attributes ) ) {2362 // printf( "copySpecifiers12 %s\n", attr->name.c_str() );2363 // } // for2364 2470 $$ = DeclarationNode::newAggregate( $1, $3, $8, $6, true )->addQualifiers( $2 ); 2365 // printf( "aggregate_type2 %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" );2366 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) {2367 // printf( "aggregate_type3 %s\n", attr->name.c_str() );2368 // } // for2369 2471 } 2370 2472 | aggregate_key attribute_list_opt TYPEDEFname // unqualified type name … … 2375 2477 '{' field_declaration_list_opt '}' type_parameters_opt 2376 2478 { 2377 // printf( "AGG3\n" );2378 2479 DeclarationNode::newFromTypedef( $3 ); 2379 2480 $$ = DeclarationNode::newAggregate( $1, $3, $8, $6, true )->addQualifiers( $2 ); … … 2386 2487 '{' field_declaration_list_opt '}' type_parameters_opt 2387 2488 { 2388 // printf( "AGG4\n" );2389 2489 DeclarationNode::newFromTypeGen( $3, nullptr ); 2390 2490 $$ = DeclarationNode::newAggregate( $1, $3, $8, $6, true )->addQualifiers( $2 ); … … 2413 2513 // switched to a TYPEGENname. Link any generic arguments from typegen_name to new generic declaration and 2414 2514 // delete newFromTypeGen. 2415 $$ = DeclarationNode::newAggregate( $1, $3->type->symbolic.name, $3->type->symbolic.actuals, nullptr, false )->addQualifiers( $2 ); 2416 $3->type->symbolic.name = nullptr; 2417 $3->type->symbolic.actuals = nullptr; 2418 delete $3; 2515 if ( $3->type->kind == TypeData::SymbolicInst && ! $3->type->symbolic.isTypedef ) { 2516 $$ = $3->addQualifiers( $2 ); 2517 } else { 2518 $$ = DeclarationNode::newAggregate( $1, $3->type->symbolic.name, $3->type->symbolic.actuals, nullptr, false )->addQualifiers( $2 ); 2519 $3->type->symbolic.name = nullptr; // copied to $$ 2520 $3->type->symbolic.actuals = nullptr; 2521 delete $3; 2522 } 2419 2523 } 2420 2524 ; … … 2427 2531 aggregate_data: 2428 2532 STRUCT vtable_opt 2429 { $$ = AggregateDecl::Struct; }2533 { $$ = ast::AggregateDecl::Struct; } 2430 2534 | UNION 2431 { $$ = AggregateDecl::Union; }2535 { $$ = ast::AggregateDecl::Union; } 2432 2536 | EXCEPTION // CFA 2433 { $$ = AggregateDecl::Exception; }2434 // { SemanticError( yylloc, "exception aggregate is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; }2537 { $$ = ast::AggregateDecl::Exception; } 2538 // { SemanticError( yylloc, "exception aggregate is currently unimplemented." ); $$ = ast::AggregateDecl::NoAggregate; } 2435 2539 ; 2436 2540 2437 2541 aggregate_control: // CFA 2438 2542 MONITOR 2439 { $$ = AggregateDecl::Monitor; }2543 { $$ = ast::AggregateDecl::Monitor; } 2440 2544 | MUTEX STRUCT 2441 { $$ = AggregateDecl::Monitor; }2545 { $$ = ast::AggregateDecl::Monitor; } 2442 2546 | GENERATOR 2443 { $$ = AggregateDecl::Generator; }2547 { $$ = ast::AggregateDecl::Generator; } 2444 2548 | MUTEX GENERATOR 2445 { SemanticError( yylloc, "monitor generator is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2549 { 2550 SemanticError( yylloc, "monitor generator is currently unimplemented." ); 2551 $$ = ast::AggregateDecl::NoAggregate; 2552 } 2446 2553 | COROUTINE 2447 { $$ = AggregateDecl::Coroutine; }2554 { $$ = ast::AggregateDecl::Coroutine; } 2448 2555 | MUTEX COROUTINE 2449 { SemanticError( yylloc, "monitor coroutine is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2556 { 2557 SemanticError( yylloc, "monitor coroutine is currently unimplemented." ); 2558 $$ = ast::AggregateDecl::NoAggregate; 2559 } 2450 2560 | THREAD 2451 { $$ = AggregateDecl::Thread; }2561 { $$ = ast::AggregateDecl::Thread; } 2452 2562 | MUTEX THREAD 2453 { SemanticError( yylloc, "monitor thread is currently unimplemented." ); $$ = AggregateDecl::NoAggregate; } 2563 { 2564 SemanticError( yylloc, "monitor thread is currently unimplemented." ); 2565 $$ = ast::AggregateDecl::NoAggregate; 2566 } 2454 2567 ; 2455 2568 … … 2467 2580 $$ = fieldDecl( $1, $2 ); 2468 2581 // printf( "type_specifier2 %p %s\n", $$, $$->type->aggregate.name ? $$->type->aggregate.name->c_str() : "(nil)" ); 2469 2582 // for ( Attribute * attr: reverseIterate( $$->attributes ) ) { 2470 2583 // printf( "\tattr %s\n", attr->name.c_str() ); 2471 2584 // } // for … … 2473 2586 | EXTENSION type_specifier field_declaring_list_opt ';' // GCC 2474 2587 { $$ = fieldDecl( $2, $3 ); distExt( $$ ); } 2588 | STATIC type_specifier field_declaring_list_opt ';' // CFA 2589 { SemanticError( yylloc, "STATIC aggregate field qualifier currently unimplemented." ); $$ = nullptr; } 2475 2590 | INLINE type_specifier field_abstract_list_opt ';' // CFA 2476 2591 { … … 2483 2598 } 2484 2599 | INLINE aggregate_control ';' // CFA 2485 2600 { SemanticError( yylloc, "INLINE aggregate control currently unimplemented." ); $$ = nullptr; } 2486 2601 | typedef_declaration ';' // CFA 2487 2602 | cfa_field_declaring_list ';' // CFA, new style field declaration … … 2509 2624 { $$ = $1->addBitfield( $2 ); } 2510 2625 | variable_type_redeclarator bit_subrange_size_opt 2626 // A semantic check is required to ensure bit_subrange only appears on integral types. 2627 { $$ = $1->addBitfield( $2 ); } 2628 | function_type_redeclarator bit_subrange_size_opt 2511 2629 // A semantic check is required to ensure bit_subrange only appears on integral types. 2512 2630 { $$ = $1->addBitfield( $2 ); } … … 2563 2681 { $$ = DeclarationNode::newEnum( $3->name, $6, true, false, nullptr, $4 )->addQualifiers( $2 ); } 2564 2682 | ENUM '(' cfa_abstract_parameter_declaration ')' attribute_list_opt '{' enumerator_list comma_opt '}' 2565 2566 if ( $3->storageClasses.val != 0 || $3->type->qualifiers. val != 0)2683 { 2684 if ( $3->storageClasses.val != 0 || $3->type->qualifiers.any() ) 2567 2685 { SemanticError( yylloc, "storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); } 2568 2686 … … 2575 2693 | ENUM '(' cfa_abstract_parameter_declaration ')' attribute_list_opt identifier attribute_list_opt 2576 2694 { 2577 if ( $3->storageClasses. val != 0|| $3->type->qualifiers.val != 0 ) { SemanticError( yylloc, "storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); }2695 if ( $3->storageClasses.any() || $3->type->qualifiers.val != 0 ) { SemanticError( yylloc, "storage-class and CV qualifiers are not meaningful for enumeration constants, which are const." ); } 2578 2696 typedefTable.makeTypedef( *$6 ); 2579 2697 } … … 2609 2727 enum_type_nobody: // enum - {...} 2610 2728 ENUM attribute_list_opt identifier 2611 { typedefTable.makeTypedef( *$3 ); $$ = DeclarationNode::newEnum( $3, 0, false, false )->addQualifiers( $2 ); }2729 { typedefTable.makeTypedef( *$3 ); $$ = DeclarationNode::newEnum( $3, nullptr, false, false )->addQualifiers( $2 ); } 2612 2730 | ENUM attribute_list_opt type_name 2613 { typedefTable.makeTypedef( *$3->type->symbolic.name ); $$ = DeclarationNode::newEnum( $3->type->symbolic.name, 0, false, false )->addQualifiers( $2 ); }2731 { typedefTable.makeTypedef( *$3->type->symbolic.name ); $$ = DeclarationNode::newEnum( $3->type->symbolic.name, nullptr, false, false )->addQualifiers( $2 ); } 2614 2732 ; 2615 2733 … … 2751 2869 type_no_function: // sizeof, alignof, cast (constructor) 2752 2870 cfa_abstract_declarator_tuple // CFA 2753 | type_specifier 2871 | type_specifier // cannot be type_specifier_nobody, e.g., (struct S {}){} is a thing 2754 2872 | type_specifier abstract_declarator 2755 2873 { $$ = $2->addType( $1 ); } … … 2796 2914 designator_list ':' // C99, CFA uses ":" instead of "=" 2797 2915 | identifier_at ':' // GCC, field name 2798 { $$ = new ExpressionNode( build_varref( $1 ) ); }2916 { $$ = new ExpressionNode( build_varref( yylloc, $1 ) ); } 2799 2917 ; 2800 2918 … … 2808 2926 designator: 2809 2927 '.' identifier_at // C99, field name 2810 { $$ = new ExpressionNode( build_varref( $2 ) ); }2928 { $$ = new ExpressionNode( build_varref( yylloc, $2 ) ); } 2811 2929 | '[' push assignment_expression pop ']' // C99, single array element 2812 2930 // assignment_expression used instead of constant_expression because of shift/reduce conflicts with tuple. … … 2815 2933 { $$ = $3; } 2816 2934 | '[' push constant_expression ELLIPSIS constant_expression pop ']' // GCC, multiple array elements 2817 { $$ = new ExpressionNode( new RangeExpr( maybeMoveBuild<Expression>( $3 ), maybeMoveBuild<Expression>( $5 ) ) ); }2935 { $$ = new ExpressionNode( new ast::RangeExpr( yylloc, maybeMoveBuild( $3 ), maybeMoveBuild( $5 ) ) ); } 2818 2936 | '.' '[' push field_name_list pop ']' // CFA, tuple field selector 2819 2937 { $$ = $4; } … … 2855 2973 { 2856 2974 typedefTable.addToScope( *$2, TYPEDEFname, "9" ); 2857 if ( $1 == TypeDecl::Otype ) { SemanticError( yylloc, "otype keyword is deprecated, use T " ); }2858 if ( $1 == TypeDecl::Dtype ) { SemanticError( yylloc, "dtype keyword is deprecated, use T &" ); }2859 if ( $1 == TypeDecl::Ttype ) { SemanticError( yylloc, "ttype keyword is deprecated, use T ..." ); }2975 if ( $1 == ast::TypeDecl::Otype ) { SemanticError( yylloc, "otype keyword is deprecated, use T " ); } 2976 if ( $1 == ast::TypeDecl::Dtype ) { SemanticError( yylloc, "dtype keyword is deprecated, use T &" ); } 2977 if ( $1 == ast::TypeDecl::Ttype ) { SemanticError( yylloc, "ttype keyword is deprecated, use T ..." ); } 2860 2978 } 2861 2979 type_initializer_opt assertion_list_opt … … 2868 2986 { 2869 2987 typedefTable.addToScope( *$2, TYPEDIMname, "9" ); 2870 $$ = DeclarationNode::newTypeParam( TypeDecl::Dimension, $2 );2988 $$ = DeclarationNode::newTypeParam( ast::TypeDecl::Dimension, $2 ); 2871 2989 } 2872 2990 // | type_specifier identifier_parameter_declarator 2873 2991 | assertion_list 2874 { $$ = DeclarationNode::newTypeParam( TypeDecl::Dtype, new string( DeclarationNode::anonymous.newName() ) )->addAssertions( $1 ); }2992 { $$ = DeclarationNode::newTypeParam( ast::TypeDecl::Dtype, new string( DeclarationNode::anonymous.newName() ) )->addAssertions( $1 ); } 2875 2993 ; 2876 2994 2877 2995 new_type_class: // CFA 2878 2996 // empty 2879 { $$ = TypeDecl::Otype; }2997 { $$ = ast::TypeDecl::Otype; } 2880 2998 | '&' 2881 { $$ = TypeDecl::Dtype; }2999 { $$ = ast::TypeDecl::Dtype; } 2882 3000 | '*' 2883 { $$ = TypeDecl::DStype; } // dtype + sized3001 { $$ = ast::TypeDecl::DStype; } // dtype + sized 2884 3002 // | '(' '*' ')' 2885 // { $$ = TypeDecl::Ftype; }3003 // { $$ = ast::TypeDecl::Ftype; } 2886 3004 | ELLIPSIS 2887 { $$ = TypeDecl::Ttype; }3005 { $$ = ast::TypeDecl::Ttype; } 2888 3006 ; 2889 3007 2890 3008 type_class: // CFA 2891 3009 OTYPE 2892 { $$ = TypeDecl::Otype; }3010 { $$ = ast::TypeDecl::Otype; } 2893 3011 | DTYPE 2894 { $$ = TypeDecl::Dtype; }3012 { $$ = ast::TypeDecl::Dtype; } 2895 3013 | FTYPE 2896 { $$ = TypeDecl::Ftype; }3014 { $$ = ast::TypeDecl::Ftype; } 2897 3015 | TTYPE 2898 { $$ = TypeDecl::Ttype; }3016 { $$ = ast::TypeDecl::Ttype; } 2899 3017 ; 2900 3018 … … 2922 3040 type_list: // CFA 2923 3041 type 2924 { $$ = new ExpressionNode( new TypeExpr(maybeMoveBuildType( $1 ) ) ); }3042 { $$ = new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $1 ) ) ); } 2925 3043 | assignment_expression 2926 3044 | type_list ',' type 2927 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( new TypeExpr(maybeMoveBuildType( $3 ) ) ) )); }3045 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ) )); } 2928 3046 | type_list ',' assignment_expression 2929 3047 { $$ = (ExpressionNode *)( $1->set_last( $3 )); } … … 2950 3068 { 2951 3069 typedefTable.addToEnclosingScope( *$1, TYPEDEFname, "10" ); 2952 $$ = DeclarationNode::newTypeDecl( $1, 0);3070 $$ = DeclarationNode::newTypeDecl( $1, nullptr ); 2953 3071 } 2954 3072 | identifier_or_type_name '(' type_parameter_list ')' … … 2961 3079 trait_specifier: // CFA 2962 3080 TRAIT identifier_or_type_name '(' type_parameter_list ')' '{' '}' 2963 { $$ = DeclarationNode::newTrait( $2, $4, 0 ); } 3081 { 3082 SemanticWarning( yylloc, Warning::DeprecTraitSyntax ); 3083 $$ = DeclarationNode::newTrait( $2, $4, nullptr ); 3084 } 3085 | forall TRAIT identifier_or_type_name '{' '}' // alternate 3086 { $$ = DeclarationNode::newTrait( $3, $1, nullptr ); } 2964 3087 | TRAIT identifier_or_type_name '(' type_parameter_list ')' '{' push trait_declaration_list pop '}' 2965 { $$ = DeclarationNode::newTrait( $2, $4, $8 ); } 3088 { 3089 SemanticWarning( yylloc, Warning::DeprecTraitSyntax ); 3090 $$ = DeclarationNode::newTrait( $2, $4, $8 ); 3091 } 3092 | forall TRAIT identifier_or_type_name '{' push trait_declaration_list pop '}' // alternate 3093 { $$ = DeclarationNode::newTrait( $3, $1, $6 ); } 2966 3094 ; 2967 3095 … … 3022 3150 external_definition: 3023 3151 DIRECTIVE 3024 { $$ = DeclarationNode::newDirectiveStmt( new StatementNode( build_directive( $1 ) ) ); }3152 { $$ = DeclarationNode::newDirectiveStmt( new StatementNode( build_directive( yylloc, $1 ) ) ); } 3025 3153 | declaration 3154 { 3155 // Variable declarations of anonymous types requires creating a unique type-name across multiple translation 3156 // unit, which is a dubious task, especially because C uses name rather than structural typing; hence it is 3157 // disallowed at the moment. 3158 if ( $1->linkage == ast::Linkage::Cforall && ! $1->storageClasses.is_static && $1->type && $1->type->kind == TypeData::AggregateInst ) { 3159 if ( $1->type->aggInst.aggregate->kind == TypeData::Enum && $1->type->aggInst.aggregate->enumeration.anon ) { 3160 SemanticError( yylloc, "extern anonymous enumeration is currently unimplemented." ); $$ = nullptr; 3161 } else if ( $1->type->aggInst.aggregate->aggregate.anon ) { // handles struct or union 3162 SemanticError( yylloc, "extern anonymous struct/union is currently unimplemented." ); $$ = nullptr; 3163 } 3164 } 3165 } 3026 3166 | IDENTIFIER IDENTIFIER 3027 3167 { IdentifierBeforeIdentifier( *$1.str, *$2.str, " declaration" ); $$ = nullptr; } … … 3043 3183 } 3044 3184 | ASM '(' string_literal ')' ';' // GCC, global assembler statement 3045 { $$ = DeclarationNode::newAsmStmt( new StatementNode( build_asm( false, $3, 0) ) ); }3185 { $$ = DeclarationNode::newAsmStmt( new StatementNode( build_asm( yylloc, false, $3, nullptr ) ) ); } 3046 3186 | EXTERN STRINGliteral 3047 3187 { 3048 3188 linkageStack.push( linkage ); // handle nested extern "C"/"Cforall" 3049 linkage = LinkageSpec::update( yylloc, linkage, $2 );3189 linkage = ast::Linkage::update( yylloc, linkage, $2 ); 3050 3190 } 3051 3191 up external_definition down … … 3058 3198 { 3059 3199 linkageStack.push( linkage ); // handle nested extern "C"/"Cforall" 3060 linkage = LinkageSpec::update( yylloc, linkage, $2 );3200 linkage = ast::Linkage::update( yylloc, linkage, $2 ); 3061 3201 } 3062 3202 '{' up external_definition_list_opt down '}' … … 3069 3209 | type_qualifier_list 3070 3210 { 3071 if ( $1->type->qualifiers. val) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); }3211 if ( $1->type->qualifiers.any() ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); } 3072 3212 if ( $1->type->forall ) forall = true; // remember generic type 3073 3213 } … … 3075 3215 { 3076 3216 distQual( $5, $1 ); 3077 3217 forall = false; 3078 3218 $$ = $5; 3079 3219 } 3080 3220 | declaration_qualifier_list 3081 3221 { 3082 if ( $1->type && $1->type->qualifiers. val) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); }3222 if ( $1->type && $1->type->qualifiers.any() ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); } 3083 3223 if ( $1->type && $1->type->forall ) forall = true; // remember generic type 3084 3224 } … … 3086 3226 { 3087 3227 distQual( $5, $1 ); 3088 3228 forall = false; 3089 3229 $$ = $5; 3090 3230 } 3091 3231 | declaration_qualifier_list type_qualifier_list 3092 3232 { 3093 if ( ($1->type && $1->type->qualifiers. val) || ($2->type && $2->type->qualifiers.val) ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); }3233 if ( ($1->type && $1->type->qualifiers.any()) || ($2->type && $2->type->qualifiers.any()) ) { SemanticError( yylloc, "CV qualifiers cannot be distributed; only storage-class and forall qualifiers." ); } 3094 3234 if ( ($1->type && $1->type->forall) || ($2->type && $2->type->forall) ) forall = true; // remember generic type 3095 3235 } … … 3097 3237 { 3098 3238 distQual( $6, $1->addQualifiers( $2 ) ); 3099 3239 forall = false; 3100 3240 $$ = $6; 3101 3241 } … … 3141 3281 $$ = $2->addFunctionBody( $4, $3 )->addType( $1 ); 3142 3282 } 3143 | declaration_specifier variable_type_redeclarator with_clause_opt compound_statement3283 | declaration_specifier function_type_redeclarator with_clause_opt compound_statement 3144 3284 { 3145 3285 rebindForall( $1, $2 ); … … 3177 3317 | variable_type_redeclarator 3178 3318 | function_declarator 3319 | function_type_redeclarator 3179 3320 ; 3180 3321 3181 3322 subrange: 3182 3323 constant_expression '~' constant_expression // CFA, integer subrange 3183 { $$ = new ExpressionNode( new RangeExpr( maybeMoveBuild<Expression>( $1 ), maybeMoveBuild<Expression>( $3 ) ) ); }3324 { $$ = new ExpressionNode( new ast::RangeExpr( yylloc, maybeMoveBuild( $1 ), maybeMoveBuild( $3 ) ) ); } 3184 3325 ; 3185 3326 … … 3190 3331 { 3191 3332 DeclarationNode * name = new DeclarationNode(); 3192 name->asmName = $3;3333 name->asmName = maybeMoveBuild( $3 ); 3193 3334 $$ = name->addQualifiers( $5 ); 3194 3335 } … … 3287 3428 variable_ptr: 3288 3429 ptrref_operator variable_declarator 3289 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3430 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3290 3431 | ptrref_operator type_qualifier_list variable_declarator 3291 3432 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3303 3444 | '(' attribute_list variable_ptr ')' array_dimension 3304 3445 { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } 3305 | '(' variable_array ')' multi_array_dimension 3446 | '(' variable_array ')' multi_array_dimension // redundant parenthesis 3306 3447 { $$ = $2->addArray( $4 ); } 3307 3448 | '(' attribute_list variable_array ')' multi_array_dimension // redundant parenthesis … … 3351 3492 function_ptr: 3352 3493 ptrref_operator function_declarator 3353 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3494 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3354 3495 | ptrref_operator type_qualifier_list function_declarator 3355 3496 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3403 3544 KR_function_ptr: 3404 3545 ptrref_operator KR_function_declarator 3405 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3546 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3406 3547 | ptrref_operator type_qualifier_list KR_function_declarator 3407 3548 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3427 3568 ; 3428 3569 3429 // This pattern parses a declaration for a variable or function prototypethat redefines a type name, e.g.:3570 // This pattern parses a declaration for a variable that redefines a type name, e.g.: 3430 3571 // 3431 3572 // typedef int foo; … … 3433 3574 // int foo; // redefine typedef name in new scope 3434 3575 // } 3435 //3436 // The pattern precludes declaring an array of functions versus a pointer to an array of functions, and returning arrays3437 // and functions versus pointers to arrays and functions.3438 3576 3439 3577 paren_type: … … 3450 3588 paren_type attribute_list_opt 3451 3589 { $$ = $1->addQualifiers( $2 ); } 3452 | type_ptr3453 | type_array attribute_list_opt3590 | variable_type_ptr 3591 | variable_type_array attribute_list_opt 3454 3592 { $$ = $1->addQualifiers( $2 ); } 3455 | type_function attribute_list_opt3593 | variable_type_function attribute_list_opt 3456 3594 { $$ = $1->addQualifiers( $2 ); } 3457 3595 ; 3458 3596 3459 type_ptr:3597 variable_type_ptr: 3460 3598 ptrref_operator variable_type_redeclarator 3461 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3599 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3462 3600 | ptrref_operator type_qualifier_list variable_type_redeclarator 3463 3601 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } 3464 | '(' type_ptr ')' attribute_list_opt// redundant parenthesis3602 | '(' variable_type_ptr ')' attribute_list_opt // redundant parenthesis 3465 3603 { $$ = $2->addQualifiers( $4 ); } 3466 | '(' attribute_list type_ptr ')' attribute_list_opt // redundant parenthesis3604 | '(' attribute_list variable_type_ptr ')' attribute_list_opt // redundant parenthesis 3467 3605 { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); } 3468 3606 ; 3469 3607 3470 type_array:3608 variable_type_array: 3471 3609 paren_type array_dimension 3472 3610 { $$ = $1->addArray( $2 ); } 3473 | '(' type_ptr ')' array_dimension3611 | '(' variable_type_ptr ')' array_dimension 3474 3612 { $$ = $2->addArray( $4 ); } 3475 | '(' attribute_list type_ptr ')' array_dimension3613 | '(' attribute_list variable_type_ptr ')' array_dimension 3476 3614 { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } 3477 | '(' type_array ')' multi_array_dimension// redundant parenthesis3615 | '(' variable_type_array ')' multi_array_dimension // redundant parenthesis 3478 3616 { $$ = $2->addArray( $4 ); } 3479 | '(' attribute_list type_array ')' multi_array_dimension // redundant parenthesis3617 | '(' attribute_list variable_type_array ')' multi_array_dimension // redundant parenthesis 3480 3618 { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } 3481 | '(' type_array ')'// redundant parenthesis3619 | '(' variable_type_array ')' // redundant parenthesis 3482 3620 { $$ = $2; } 3483 | '(' attribute_list type_array ')'// redundant parenthesis3621 | '(' attribute_list variable_type_array ')' // redundant parenthesis 3484 3622 { $$ = $3->addQualifiers( $2 ); } 3485 3623 ; 3486 3624 3487 type_function: 3625 variable_type_function: 3626 '(' variable_type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) 3627 { $$ = $2->addParamList( $6 ); } 3628 | '(' attribute_list variable_type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) 3629 { $$ = $3->addQualifiers( $2 )->addParamList( $7 ); } 3630 | '(' variable_type_function ')' // redundant parenthesis 3631 { $$ = $2; } 3632 | '(' attribute_list variable_type_function ')' // redundant parenthesis 3633 { $$ = $3->addQualifiers( $2 ); } 3634 ; 3635 3636 // This pattern parses a declaration for a function prototype that redefines a type name. It precludes declaring an 3637 // array of functions versus a pointer to an array of functions, and returning arrays and functions versus pointers to 3638 // arrays and functions. 3639 3640 function_type_redeclarator: 3641 function_type_no_ptr attribute_list_opt 3642 { $$ = $1->addQualifiers( $2 ); } 3643 | function_type_ptr 3644 | function_type_array attribute_list_opt 3645 { $$ = $1->addQualifiers( $2 ); } 3646 ; 3647 3648 function_type_no_ptr: 3488 3649 paren_type '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3) 3489 3650 { $$ = $1->addParamList( $4 ); } 3490 | '(' type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)3651 | '(' function_type_ptr ')' '(' push parameter_type_list_opt pop ')' 3491 3652 { $$ = $2->addParamList( $6 ); } 3492 | '(' attribute_list type_ptr ')' '(' push parameter_type_list_opt pop ')' // empty parameter list OBSOLESCENT (see 3)3653 | '(' attribute_list function_type_ptr ')' '(' push parameter_type_list_opt pop ')' 3493 3654 { $$ = $3->addQualifiers( $2 )->addParamList( $7 ); } 3494 | '(' type_function ')'// redundant parenthesis3655 | '(' function_type_no_ptr ')' // redundant parenthesis 3495 3656 { $$ = $2; } 3496 | '(' attribute_list type_function ')' // redundant parenthesis 3657 | '(' attribute_list function_type_no_ptr ')' // redundant parenthesis 3658 { $$ = $3->addQualifiers( $2 ); } 3659 ; 3660 3661 function_type_ptr: 3662 ptrref_operator function_type_redeclarator 3663 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3664 | ptrref_operator type_qualifier_list function_type_redeclarator 3665 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } 3666 | '(' function_type_ptr ')' attribute_list_opt 3667 { $$ = $2->addQualifiers( $4 ); } 3668 | '(' attribute_list function_type_ptr ')' attribute_list_opt 3669 { $$ = $3->addQualifiers( $2 )->addQualifiers( $5 ); } 3670 ; 3671 3672 function_type_array: 3673 '(' function_type_ptr ')' array_dimension 3674 { $$ = $2->addArray( $4 ); } 3675 | '(' attribute_list function_type_ptr ')' array_dimension 3676 { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } 3677 | '(' function_type_array ')' multi_array_dimension // redundant parenthesis 3678 { $$ = $2->addArray( $4 ); } 3679 | '(' attribute_list function_type_array ')' multi_array_dimension // redundant parenthesis 3680 { $$ = $3->addQualifiers( $2 )->addArray( $5 ); } 3681 | '(' function_type_array ')' // redundant parenthesis 3682 { $$ = $2; } 3683 | '(' attribute_list function_type_array ')' // redundant parenthesis 3497 3684 { $$ = $3->addQualifiers( $2 ); } 3498 3685 ; … … 3517 3704 identifier_parameter_ptr: 3518 3705 ptrref_operator identifier_parameter_declarator 3519 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3706 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3520 3707 | ptrref_operator type_qualifier_list identifier_parameter_declarator 3521 3708 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3574 3761 type_parameter_ptr: 3575 3762 ptrref_operator type_parameter_redeclarator 3576 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3763 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3577 3764 | ptrref_operator type_qualifier_list type_parameter_redeclarator 3578 3765 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3617 3804 abstract_ptr: 3618 3805 ptrref_operator 3619 { $$ = DeclarationNode::newPointer( 0, $1 ); }3806 { $$ = DeclarationNode::newPointer( nullptr, $1 ); } 3620 3807 | ptrref_operator type_qualifier_list 3621 3808 { $$ = DeclarationNode::newPointer( $2, $1 ); } 3622 3809 | ptrref_operator abstract_declarator 3623 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }3810 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3624 3811 | ptrref_operator type_qualifier_list abstract_declarator 3625 3812 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3650 3837 // Only the first dimension can be empty. 3651 3838 '[' ']' 3652 { $$ = DeclarationNode::newArray( 0, 0, false ); }3839 { $$ = DeclarationNode::newArray( nullptr, nullptr, false ); } 3653 3840 | '[' ']' multi_array_dimension 3654 { $$ = DeclarationNode::newArray( 0, 0, false )->addArray( $3 ); }3841 { $$ = DeclarationNode::newArray( nullptr, nullptr, false )->addArray( $3 ); } 3655 3842 // Cannot use constant_expression because of tuples => semantic check 3656 3843 | '[' push assignment_expression pop ',' comma_expression ']' // CFA 3657 { $$ = DeclarationNode::newArray( $3, 0, false )->addArray( DeclarationNode::newArray( $6, 0, false ) ); }3844 { $$ = DeclarationNode::newArray( $3, nullptr, false )->addArray( DeclarationNode::newArray( $6, nullptr, false ) ); } 3658 3845 // { SemanticError( yylloc, "New array dimension is currently unimplemented." ); $$ = nullptr; } 3659 3846 | '[' push array_type_list pop ']' // CFA … … 3664 3851 array_type_list: 3665 3852 basic_type_name 3666 { $$ = new ExpressionNode( new TypeExpr(maybeMoveBuildType( $1 ) ) ); }3853 { $$ = new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $1 ) ) ); } 3667 3854 | type_name 3668 { $$ = new ExpressionNode( new TypeExpr(maybeMoveBuildType( $1 ) ) ); }3855 { $$ = new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $1 ) ) ); } 3669 3856 | assignment_expression upupeq assignment_expression 3670 3857 | array_type_list ',' basic_type_name 3671 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( new TypeExpr(maybeMoveBuildType( $3 ) ) ) )); }3672 | array_type_list ',' type_name 3673 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( new TypeExpr(maybeMoveBuildType( $3 ) ) ) )); }3858 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ) )); } 3859 | array_type_list ',' type_name 3860 { $$ = (ExpressionNode *)($1->set_last( new ExpressionNode( new ast::TypeExpr( yylloc, maybeMoveBuildType( $3 ) ) ) )); } 3674 3861 | array_type_list ',' assignment_expression upupeq assignment_expression 3675 3862 ; … … 3680 3867 | ErangeUpEq 3681 3868 { $$ = OperKinds::LEThan; } 3682 3869 ; 3683 3870 3684 3871 multi_array_dimension: 3685 3872 '[' push assignment_expression pop ']' 3686 { $$ = DeclarationNode::newArray( $3, 0, false ); }3873 { $$ = DeclarationNode::newArray( $3, nullptr, false ); } 3687 3874 | '[' push '*' pop ']' // C99 3688 3875 { $$ = DeclarationNode::newVarArray( 0 ); } 3689 3876 | multi_array_dimension '[' push assignment_expression pop ']' 3690 { $$ = $1->addArray( DeclarationNode::newArray( $4, 0, false ) ); }3877 { $$ = $1->addArray( DeclarationNode::newArray( $4, nullptr, false ) ); } 3691 3878 | multi_array_dimension '[' push '*' pop ']' // C99 3692 3879 { $$ = $1->addArray( DeclarationNode::newVarArray( 0 ) ); } … … 3785 3972 array_parameter_1st_dimension: 3786 3973 '[' ']' 3787 { $$ = DeclarationNode::newArray( 0, 0, false ); }3974 { $$ = DeclarationNode::newArray( nullptr, nullptr, false ); } 3788 3975 // multi_array_dimension handles the '[' '*' ']' case 3789 3976 | '[' push type_qualifier_list '*' pop ']' // remaining C99 3790 3977 { $$ = DeclarationNode::newVarArray( $3 ); } 3791 3978 | '[' push type_qualifier_list pop ']' 3792 { $$ = DeclarationNode::newArray( 0, $3, false ); }3979 { $$ = DeclarationNode::newArray( nullptr, $3, false ); } 3793 3980 // multi_array_dimension handles the '[' assignment_expression ']' case 3794 3981 | '[' push type_qualifier_list assignment_expression pop ']' … … 3819 4006 variable_abstract_ptr: 3820 4007 ptrref_operator 3821 { $$ = DeclarationNode::newPointer( 0, $1 ); }4008 { $$ = DeclarationNode::newPointer( nullptr, $1 ); } 3822 4009 | ptrref_operator type_qualifier_list 3823 4010 { $$ = DeclarationNode::newPointer( $2, $1 ); } 3824 4011 | ptrref_operator variable_abstract_declarator 3825 { $$ = $2->addPointer( DeclarationNode::newPointer( 0, $1 ) ); }4012 { $$ = $2->addPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3826 4013 | ptrref_operator type_qualifier_list variable_abstract_declarator 3827 4014 { $$ = $3->addPointer( DeclarationNode::newPointer( $2, $1 ) ); } … … 3865 4052 // No SUE declaration in parameter list. 3866 4053 ptrref_operator type_specifier_nobody 3867 { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0, $1 ) ); }4054 { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3868 4055 | type_qualifier_list ptrref_operator type_specifier_nobody 3869 4056 { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } 3870 4057 | ptrref_operator cfa_abstract_function 3871 { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0, $1 ) ); }4058 { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3872 4059 | type_qualifier_list ptrref_operator cfa_abstract_function 3873 4060 { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } 3874 4061 | ptrref_operator cfa_identifier_parameter_declarator_tuple 3875 { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0, $1 ) ); }4062 { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3876 4063 | type_qualifier_list ptrref_operator cfa_identifier_parameter_declarator_tuple 3877 4064 { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } … … 3882 4069 // shift/reduce conflict with new-style empty (void) function return type. 3883 4070 '[' ']' type_specifier_nobody 3884 { $$ = $3->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); }4071 { $$ = $3->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } 3885 4072 | cfa_array_parameter_1st_dimension type_specifier_nobody 3886 4073 { $$ = $2->addNewArray( $1 ); } 3887 4074 | '[' ']' multi_array_dimension type_specifier_nobody 3888 { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); }4075 { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } 3889 4076 | cfa_array_parameter_1st_dimension multi_array_dimension type_specifier_nobody 3890 4077 { $$ = $3->addNewArray( $2 )->addNewArray( $1 ); } … … 3893 4080 3894 4081 | '[' ']' cfa_identifier_parameter_ptr 3895 { $$ = $3->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); }4082 { $$ = $3->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } 3896 4083 | cfa_array_parameter_1st_dimension cfa_identifier_parameter_ptr 3897 4084 { $$ = $2->addNewArray( $1 ); } 3898 4085 | '[' ']' multi_array_dimension cfa_identifier_parameter_ptr 3899 { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( 0, 0, false ) ); }4086 { $$ = $4->addNewArray( $3 )->addNewArray( DeclarationNode::newArray( nullptr, nullptr, false ) ); } 3900 4087 | cfa_array_parameter_1st_dimension multi_array_dimension cfa_identifier_parameter_ptr 3901 4088 { $$ = $3->addNewArray( $2 )->addNewArray( $1 ); } … … 3953 4140 cfa_abstract_ptr: // CFA 3954 4141 ptrref_operator type_specifier 3955 { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0, $1 ) ); }4142 { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3956 4143 | type_qualifier_list ptrref_operator type_specifier 3957 4144 { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } 3958 4145 | ptrref_operator cfa_abstract_function 3959 { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0, $1 ) ); }4146 { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3960 4147 | type_qualifier_list ptrref_operator cfa_abstract_function 3961 4148 { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } 3962 4149 | ptrref_operator cfa_abstract_declarator_tuple 3963 { $$ = $2->addNewPointer( DeclarationNode::newPointer( 0, $1 ) ); }4150 { $$ = $2->addNewPointer( DeclarationNode::newPointer( nullptr, $1 ) ); } 3964 4151 | type_qualifier_list ptrref_operator cfa_abstract_declarator_tuple 3965 4152 { $$ = $3->addNewPointer( DeclarationNode::newPointer( $1, $2 ) ); } -
src/Parser/parserutility.cc
r34b4268 r24d6572 10 10 // Created On : Sat May 16 15:30:39 2015 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Tus Jul 18 10:12:00 201713 // Update Count : 812 // Last Modified On : Wed Mar 1 10:42:00 2023 13 // Update Count : 9 14 14 // 15 15 … … 19 19 #include <string> // for string 20 20 21 #include "SynTree/Constant.h" // for Constant 22 #include "SynTree/Expression.h" // for UntypedExpr, CastExpr, ConstantExpr 23 #include "SynTree/Type.h" // for BasicType, ZeroType, BasicType::Kind... 21 #include "AST/Expr.hpp" // for UntypedExpr, CastExpr, ConstantExpr 22 #include "AST/Type.hpp" // for BasicType, ZeroType, BasicType::Kind... 24 23 25 24 // rewrite … … 28 27 // if ( (int)(x != 0) ) ... 29 28 30 Expression *notZeroExpr( Expression *orig ) { 31 if( !orig ) return nullptr; 32 UntypedExpr *comparison = new UntypedExpr( new NameExpr( "?!=?" ) ); 33 comparison->get_args().push_back( orig ); 34 comparison->get_args().push_back( new ConstantExpr( Constant( new ZeroType( noQualifiers ), "0", (unsigned long long int)0 ) ) ); 35 return new CastExpr( comparison, new BasicType( Type::Qualifiers(), BasicType::SignedInt ) ); 29 ast::Expr * notZeroExpr( ast::Expr * orig ) { 30 return ( !orig ) ? nullptr : new ast::CastExpr( orig->location, 31 ast::UntypedExpr::createCall( orig->location, 32 "?!=?", 33 { 34 orig, 35 new ast::ConstantExpr( orig->location, 36 new ast::ZeroType(), 37 "0", 38 std::optional<unsigned long long>( 0 ) 39 ), 40 } 41 ), 42 new ast::BasicType( ast::BasicType::SignedInt ) 43 ); 36 44 } 37 45 -
src/Parser/parserutility.h
r34b4268 r24d6572 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // parserutility.h -- 7 // parserutility.h -- Collected utilities for the parser. 8 8 // 9 9 // Author : Rodolfo G. Esteves 10 10 // Created On : Sat May 16 15:31:46 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sat Jul 22 09:32:58 201713 // Update Count : 411 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Apr 4 14:03:00 2023 13 // Update Count : 7 14 14 // 15 15 16 16 #pragma once 17 17 18 class Expression; 18 #include "AST/Copy.hpp" // for shallowCopy 19 namespace ast { 20 class Expr; 21 } 19 22 20 Expression *notZeroExpr( Expression *orig ); 23 ast::Expr * notZeroExpr( ast::Expr *orig ); 24 25 template< typename T > 26 static inline auto maybeBuild( T * orig ) -> decltype(orig->build()) { 27 return (orig) ? orig->build() : nullptr; 28 } 29 30 template< typename T > 31 static inline auto maybeMoveBuild( T * orig ) -> decltype(orig->build()) { 32 auto ret = maybeBuild<T>(orig); 33 delete orig; 34 return ret; 35 } 36 37 template<typename node_t> 38 node_t * maybeCopy( node_t const * node ) { 39 return node ? ast::shallowCopy( node ) : nullptr; 40 } 21 41 22 42 // Local Variables: // -
src/ResolvExpr/AlternativeFinder.cc
r34b4268 r24d6572 14 14 // 15 15 16 #include "AlternativeFinder.h" 17 16 18 #include <algorithm> // for copy 17 19 #include <cassert> // for strict_dynamic_cast, assert, assertf … … 26 28 27 29 #include "CompilationState.h" // for resolvep 30 #include "AdjustExprType.hpp" // for adjustExprType 28 31 #include "Alternative.h" // for AltList, Alternative 29 #include "AlternativeFinder.h"30 32 #include "AST/Expr.hpp" 31 33 #include "AST/SymbolTable.hpp" 32 34 #include "AST/Type.hpp" 35 #include "CastCost.hpp" // for castCost 33 36 #include "Common/SemanticError.h" // for SemanticError 34 37 #include "Common/utility.h" // for deleteAll, printAll, CodeLocation 38 #include "ConversionCost.h" // for conversionCost 35 39 #include "Cost.h" // for Cost, Cost::zero, operator<<, Cost... 36 40 #include "ExplodedActual.h" // for ExplodedActual 37 41 #include "InitTweak/InitTweak.h" // for getFunctionName 42 #include "PolyCost.hpp" // for polyCost 38 43 #include "RenameVars.h" // for RenameVars, global_renamer 39 44 #include "ResolveAssertions.h" // for resolveAssertions 40 45 #include "ResolveTypeof.h" // for resolveTypeof 41 46 #include "Resolver.h" // for resolveStmtExpr 47 #include "SpecCost.hpp" // for specCost 42 48 #include "SymTab/Indexer.h" // for Indexer 43 49 #include "SymTab/Mangler.h" // for Mangler … … 51 57 #include "Tuples/Explode.h" // for explode 52 58 #include "Tuples/Tuples.h" // for isTtype, handleTupleAssignment 59 #include "typeops.h" // for combos 53 60 #include "Unify.h" // for unify 54 #include "typeops.h" // for adjustExprType, polyCost, castCost55 61 56 62 #define PRINT( text ) if ( resolvep ) { text } -
src/ResolvExpr/AlternativeFinder.h
r34b4268 r24d6572 34 34 namespace ResolvExpr { 35 35 struct ArgPack; 36 37 Cost computeConversionCost( Type * actualType, Type * formalType, bool actualIsLvalue, 38 const SymTab::Indexer & indexer, const TypeEnvironment & env ); 39 40 void referenceToRvalueConversion( Expression *& expr, Cost & cost ); 36 41 37 42 /// First index is which argument, second index is which alternative for that argument, -
src/ResolvExpr/Candidate.cpp
r34b4268 r24d6572 17 17 18 18 #include <iostream> 19 #include <sstream> 19 20 20 21 #include "AST/Print.hpp" … … 44 45 sorted.reserve(cands.size()); 45 46 for(const auto & c : cands) { 46 std:: stringstream ss;47 std::ostringstream ss; 47 48 print( ss, *c, indent ); 48 49 sorted.push_back(ss.str()); -
src/ResolvExpr/CandidateFinder.cpp
r34b4268 r24d6572 23 23 #include <vector> 24 24 25 #include "AdjustExprType.hpp" 25 26 #include "Candidate.hpp" 26 27 #include "CompilationState.h" 27 28 #include "Cost.h" 29 #include "CastCost.hpp" 30 #include "PolyCost.hpp" 31 #include "SpecCost.hpp" 32 #include "ConversionCost.h" 28 33 #include "ExplodedArg.hpp" 29 34 #include "RenameVars.h" // for renameTyVars … … 403 408 unify( 404 409 ttype, argType, newResult.env, newResult.need, newResult.have, 405 newResult.open , symtab)410 newResult.open ) 406 411 ) { 407 412 finalResults.emplace_back( std::move( newResult ) ); … … 474 479 ) 475 480 476 if ( unify( paramType, argType, env, need, have, open , symtab) ) {481 if ( unify( paramType, argType, env, need, have, open ) ) { 477 482 unsigned nextExpl = results[i].nextExpl + 1; 478 483 if ( nextExpl == expl.exprs.size() ) { nextExpl = 0; } … … 493 498 ast::OpenVarSet open = results[i].open; 494 499 495 if ( unify( paramType, cnst->result, env, need, have, open , symtab) ) {500 if ( unify( paramType, cnst->result, env, need, have, open ) ) { 496 501 results.emplace_back( 497 502 i, new ast::DefaultArgExpr{ cnst->location, cnst }, std::move( env ), … … 536 541 537 542 // attempt to unify types 538 if ( unify( paramType, argType, env, need, have, open , symtab) ) {543 if ( unify( paramType, argType, env, need, have, open ) ) { 539 544 // add new result 540 545 results.emplace_back( … … 703 708 if ( selfFinder.strictMode ) { 704 709 if ( ! unifyExact( 705 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() , symtab) // xxx - is no widening correct?710 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen, noWiden() ) // xxx - is no widening correct? 706 711 ) { 707 712 // unification failed, do not pursue this candidate … … 711 716 else { 712 717 if ( ! unify( 713 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen , symtab)718 returnType, targetType, funcEnv, funcNeed, funcHave, funcOpen ) 714 719 ) { 715 720 // unification failed, do not pursue this candidate … … 1156 1161 1157 1162 // unification run for side-effects 1158 unify( toType, cand->expr->result, cand->env, need, have, open , symtab);1163 unify( toType, cand->expr->result, cand->env, need, have, open ); 1159 1164 Cost thisCost = 1160 1165 (castExpr->isGenerated == ast::GeneratedFlag::GeneratedCast) … … 1497 1502 if ( 1498 1503 unify( 1499 r2->expr->result, r3->expr->result, env, need, have, open, symtab,1504 r2->expr->result, r3->expr->result, env, need, have, open, 1500 1505 common ) 1501 1506 ) { … … 1571 1576 if ( 1572 1577 unify( 1573 r1->expr->result, r2->expr->result, env, need, have, open, symtab,1578 r1->expr->result, r2->expr->result, env, need, have, open, 1574 1579 common ) 1575 1580 ) { … … 1677 1682 1678 1683 // unification run for side-effects 1679 bool canUnify = unify( toType, cand->expr->result, env, need, have, open , symtab);1684 bool canUnify = unify( toType, cand->expr->result, env, need, have, open ); 1680 1685 (void) canUnify; 1681 1686 Cost thisCost = computeConversionCost( cand->expr->result, toType, cand->expr->get_lvalue(), -
src/ResolvExpr/CandidateFinder.hpp
r34b4268 r24d6572 65 65 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env ); 66 66 67 /// Create an expression that preforms reference to rvalue conversion on 68 /// the given expression and update the cost of the expression. 69 const ast::Expr * referenceToRvalueConversion( 70 const ast::Expr * expr, Cost & cost ); 71 67 72 } // namespace ResolvExpr 68 73 -
src/ResolvExpr/CastCost.cc
r34b4268 r24d6572 13 13 // Update Count : 9 14 14 // 15 16 #include "CastCost.hpp" 15 17 16 18 #include <cassert> // for assert … … 22 24 #include "ConversionCost.h" // for ConversionCost 23 25 #include "Cost.h" // for Cost, Cost::infinity 26 #include "ResolvExpr/ConversionCost.h" // for conversionCost 27 #include "ResolvExpr/PtrsCastable.hpp" // for ptrsCastable 24 28 #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment, EqvClass 29 #include "ResolvExpr/typeops.h" // for ptrsCastable 30 #include "ResolvExpr/Unify.h" // for typesCompatibleIgnoreQualifiers 25 31 #include "SymTab/Indexer.h" // for Indexer 26 32 #include "SynTree/Declaration.h" // for TypeDecl, NamedTypeDecl 27 33 #include "SynTree/Type.h" // for PointerType, Type, TypeInstType 28 #include "typeops.h" // for typesCompatibleIgnoreQualifiers29 34 30 35 #if 0 … … 160 165 if ( 161 166 pointerType->qualifiers <= ptr->qualifiers 162 && typesCompatibleIgnoreQualifiers( pointerType->base, ptr->base, symtab,env )167 && typesCompatibleIgnoreQualifiers( pointerType->base, ptr->base, env ) 163 168 ) { 164 169 cost = Cost::safe; … … 227 232 ) 228 233 229 if ( typesCompatibleIgnoreQualifiers( src, dst, symtab,env ) ) {234 if ( typesCompatibleIgnoreQualifiers( src, dst, env ) ) { 230 235 PRINT( std::cerr << "compatible!" << std::endl; ) 231 236 if (dynamic_cast<const ast::ZeroType *>(dst) || dynamic_cast<const ast::OneType *>(dst)) { -
src/ResolvExpr/CommonType.cc
r34b4268 r24d6572 14 14 // 15 15 16 #include "CommonType.hpp" 17 16 18 #include <cassert> // for strict_dynamic_cast 17 19 #include <map> // for _Rb_tree_const_iterator … … 19 21 20 22 #include "AST/Decl.hpp" 23 #include "AST/Pass.hpp" 21 24 #include "AST/Type.hpp" 22 25 #include "Common/PassVisitor.h" … … 673 676 const ast::Type * type2; 674 677 WidenMode widen; 675 const ast::SymbolTable & symtab;676 678 ast::TypeEnvironment & tenv; 677 679 const ast::OpenVarSet & open; … … 683 685 684 686 CommonType_new( 685 const ast::Type * t2, WidenMode w, const ast::SymbolTable & st,687 const ast::Type * t2, WidenMode w, 686 688 ast::TypeEnvironment & env, const ast::OpenVarSet & o, 687 689 ast::AssertionSet & need, ast::AssertionSet & have ) 688 : type2( t2 ), widen( w ), symtab( st ),tenv( env ), open( o ), need (need), have (have) ,result() {}690 : type2( t2 ), widen( w ), tenv( env ), open( o ), need (need), have (have) ,result() {} 689 691 690 692 void previsit( const ast::Node * ) { visit_children = false; } … … 764 766 ast::AssertionSet need, have; 765 767 if ( ! tenv.bindVar( 766 var, voidPtr->base, entry->second, need, have, open, widen , symtab)768 var, voidPtr->base, entry->second, need, have, open, widen ) 767 769 ) return; 768 770 } … … 777 779 ast::OpenVarSet newOpen{ open }; 778 780 if (enumInst->base->base 779 && unifyExact(type1, enumInst->base->base, tenv, need, have, newOpen, widen , symtab)) {781 && unifyExact(type1, enumInst->base->base, tenv, need, have, newOpen, widen)) { 780 782 result = type1; 781 783 return true; … … 814 816 815 817 ast::OpenVarSet newOpen{ open }; 816 if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden() , symtab) ) {818 if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden() ) ) { 817 819 result = pointer; 818 820 if ( q1.val != q2.val ) { … … 857 859 if (unifyExact( 858 860 arg1, tupleFromTypes( crnt2, end2 ), tenv, need, have, open, 859 noWiden() , symtab)) {861 noWiden() )) { 860 862 break; 861 863 … … 866 868 if (unifyExact( 867 869 tupleFromTypes( crnt1, end1 ), arg2, tenv, need, have, open, 868 noWiden() , symtab)) {870 noWiden() )) { 869 871 break; 870 872 … … 890 892 891 893 if ( ! unifyExact( 892 base1, base2, tenv, need, have, open, noWiden() , symtab)894 base1, base2, tenv, need, have, open, noWiden() ) 893 895 ) return; 894 896 } … … 910 912 911 913 if ( ! unifyExact( 912 base1, base2, tenv, need, have, open, noWiden() , symtab)914 base1, base2, tenv, need, have, open, noWiden() ) 913 915 ) return; 914 916 } … … 918 920 } 919 921 else if (! unifyExact( 920 arg1, arg2, tenv, need, have, open, noWiden() , symtab)) return;922 arg1, arg2, tenv, need, have, open, noWiden() )) return; 921 923 922 924 ++crnt1; ++crnt2; … … 928 930 if (! unifyExact( 929 931 t1, tupleFromTypes( crnt2, end2 ), tenv, need, have, open, 930 noWiden() , symtab)) return;932 noWiden() )) return; 931 933 } else if ( crnt2 != end2 ) { 932 934 // try unifying empty tuple with ttype … … 935 937 if (! unifyExact( 936 938 tupleFromTypes( crnt1, end1 ), t2, tenv, need, have, open, 937 noWiden() , symtab)) return;939 noWiden() )) return; 938 940 } 939 941 if ((f1->returns.size() == 0 && f2->returns.size() == 0) 940 || (f1->returns.size() == 1 && f2->returns.size() == 1 && unifyExact(f1->returns[0], f2->returns[0], tenv, need, have, open, noWiden() , symtab))) {942 || (f1->returns.size() == 1 && f2->returns.size() == 1 && unifyExact(f1->returns[0], f2->returns[0], tenv, need, have, open, noWiden()))) { 941 943 result = pointer; 942 944 … … 995 997 996 998 ast::OpenVarSet newOpen{ open }; 997 if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden() , symtab) ) {999 if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden() ) ) { 998 1000 result = ref; 999 1001 if ( q1.val != q2.val ) { … … 1010 1012 } else { 1011 1013 if (!dynamic_cast<const ast::EnumInstType *>(type2)) 1012 result = commonType( type2, ref, tenv, need, have, open, widen , symtab);1014 result = commonType( type2, ref, tenv, need, have, open, widen ); 1013 1015 } 1014 1016 } … … 1028 1030 void postvisit( const ast::EnumInstType * enumInst ) { 1029 1031 if (!dynamic_cast<const ast::EnumInstType *>(type2)) 1030 result = commonType( type2, enumInst, tenv, need, have, open, widen , symtab);1032 result = commonType( type2, enumInst, tenv, need, have, open, widen); 1031 1033 } 1032 1034 1033 1035 void postvisit( const ast::TraitInstType * ) {} 1034 1036 1035 void postvisit( const ast::TypeInstType * inst ) { 1036 if ( ! widen.first ) return; 1037 if ( const ast::NamedTypeDecl * nt = symtab.lookupType( inst->name ) ) { 1038 if ( const ast::Type * base = 1039 strict_dynamic_cast< const ast::TypeDecl * >( nt )->base 1040 ) { 1041 ast::CV::Qualifiers q1 = inst->qualifiers, q2 = type2->qualifiers; 1042 1043 // force t{1,2} to be cloned if their qualifiers must be mutated 1044 ast::ptr< ast::Type > t1{ base }, t2{ type2 }; 1045 reset_qualifiers( t1, q1 ); 1046 reset_qualifiers( t2 ); 1047 1048 ast::OpenVarSet newOpen{ open }; 1049 if ( unifyExact( t1, t2, tenv, have, need, newOpen, noWiden(), symtab ) ) { 1050 result = type2; 1051 reset_qualifiers( result, q1 | q2 ); 1052 } else { 1053 tryResolveWithTypedEnum( t1 ); 1054 } 1055 } 1056 } 1057 } 1037 void postvisit( const ast::TypeInstType * inst ) {} 1058 1038 1059 1039 void postvisit( const ast::TupleType * tuple) { … … 1118 1098 ast::ptr< ast::Type > handleReference( 1119 1099 const ast::ptr< ast::Type > & t1, const ast::ptr< ast::Type > & t2, WidenMode widen, 1120 const ast::SymbolTable & symtab,ast::TypeEnvironment & env,1100 ast::TypeEnvironment & env, 1121 1101 const ast::OpenVarSet & open 1122 1102 ) { … … 1126 1106 1127 1107 // need unify to bind type variables 1128 if ( unify( t1, t2, env, have, need, newOpen, symtab,common ) ) {1108 if ( unify( t1, t2, env, have, need, newOpen, common ) ) { 1129 1109 ast::CV::Qualifiers q1 = t1->qualifiers, q2 = t2->qualifiers; 1130 1110 PRINT( … … 1150 1130 const ast::ptr< ast::Type > & type1, const ast::ptr< ast::Type > & type2, 1151 1131 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1152 const ast::OpenVarSet & open, WidenMode widen , const ast::SymbolTable & symtab1132 const ast::OpenVarSet & open, WidenMode widen 1153 1133 ) { 1154 1134 unsigned depth1 = type1->referenceDepth(); … … 1165 1145 if ( depth1 > depth2 ) { 1166 1146 assert( ref1 ); 1167 result = handleReference( ref1->base, type2, widen, symtab,env, open );1147 result = handleReference( ref1->base, type2, widen, env, open ); 1168 1148 } else { // implies depth1 < depth2 1169 1149 assert( ref2 ); 1170 result = handleReference( type1, ref2->base, widen, symtab,env, open );1150 result = handleReference( type1, ref2->base, widen, env, open ); 1171 1151 } 1172 1152 … … 1186 1166 } 1187 1167 // otherwise both are reference types of the same depth and this is handled by the visitor 1188 ast::Pass<CommonType_new> visitor{ type2, widen, symtab,env, open, need, have };1168 ast::Pass<CommonType_new> visitor{ type2, widen, env, open, need, have }; 1189 1169 type1->accept( visitor ); 1190 ast::ptr< ast::Type > result = visitor.core.result; 1191 1192 // handling for opaque type declarations (?) 1193 if ( ! result && widen.second ) { 1194 if ( const ast::TypeInstType * inst = type2.as< ast::TypeInstType >() ) { 1195 if ( const ast::NamedTypeDecl * nt = symtab.lookupType( inst->name ) ) { 1196 auto type = strict_dynamic_cast< const ast::TypeDecl * >( nt ); 1197 if ( type->base ) { 1198 ast::CV::Qualifiers q1 = type1->qualifiers, q2 = type2->qualifiers; 1199 ast::OpenVarSet newOpen{ open }; 1200 1201 // force t{1,2} to be cloned if its qualifiers must be stripped, so that 1202 // type1 and type->base are left unchanged; calling convention forces 1203 // {type1,type->base}->strong_ref >= 1 1204 ast::ptr<ast::Type> t1{ type1 }, t2{ type->base }; 1205 reset_qualifiers( t1 ); 1206 reset_qualifiers( t2, q1 ); 1207 1208 if ( unifyExact( t1, t2, env, have, need, newOpen, noWiden(), symtab ) ) { 1209 result = t1; 1210 reset_qualifiers( result, q1 | q2 ); 1211 } 1212 } 1213 } 1214 } 1215 } 1216 1217 return result; 1170 // ast::ptr< ast::Type > result = visitor.core.result; 1171 1172 return visitor.core.result; 1218 1173 } 1219 1174 -
src/ResolvExpr/ConversionCost.cc
r34b4268 r24d6572 22 22 #include "ResolvExpr/Cost.h" // for Cost 23 23 #include "ResolvExpr/TypeEnvironment.h" // for EqvClass, TypeEnvironment 24 #include "ResolvExpr/Unify.h" 24 #include "ResolvExpr/Unify.h" // for typesCompatibleIgnoreQualifiers 25 #include "ResolvExpr/PtrsAssignable.hpp" // for ptrsAssignable 25 26 #include "SymTab/Indexer.h" // for Indexer 26 27 #include "SynTree/Declaration.h" // for TypeDecl, NamedTypeDecl 27 28 #include "SynTree/Type.h" // for Type, BasicType, TypeInstType 28 #include "typeops.h" // for typesCompatibleIgnoreQualifiers29 29 30 30 … … 532 532 } 533 533 } 534 if ( typesCompatibleIgnoreQualifiers( src, dst, symtab,env ) ) {534 if ( typesCompatibleIgnoreQualifiers( src, dst, env ) ) { 535 535 return Cost::zero; 536 536 } else if ( dynamic_cast< const ast::VoidType * >( dst ) ) { … … 566 566 ast::CV::Qualifiers tq2 = dstAsRef->base->qualifiers; 567 567 if ( tq1 <= tq2 && typesCompatibleIgnoreQualifiers( 568 srcAsRef->base, dstAsRef->base, symtab,env ) ) {568 srcAsRef->base, dstAsRef->base, env ) ) { 569 569 if ( tq1 == tq2 ) { 570 570 return Cost::zero; … … 587 587 const ast::ReferenceType * dstAsRef = dynamic_cast< const ast::ReferenceType * >( dst ); 588 588 assert( dstAsRef ); 589 if ( typesCompatibleIgnoreQualifiers( src, dstAsRef->base, symtab,env ) ) {589 if ( typesCompatibleIgnoreQualifiers( src, dstAsRef->base, env ) ) { 590 590 if ( srcIsLvalue ) { 591 591 if ( src->qualifiers == dstAsRef->base->qualifiers ) { … … 653 653 ast::CV::Qualifiers tq2 = dstAsPtr->base->qualifiers; 654 654 if ( tq1 <= tq2 && typesCompatibleIgnoreQualifiers( 655 pointerType->base, dstAsPtr->base, symtab,env ) ) {655 pointerType->base, dstAsPtr->base, env ) ) { 656 656 if ( tq1 == tq2 ) { 657 657 cost = Cost::zero; -
src/ResolvExpr/ConversionCost.h
r34b4268 r24d6572 32 32 namespace ResolvExpr { 33 33 class TypeEnvironment; 34 35 Cost conversionCost( 36 const Type * src, const Type * dest, bool srcIsLvalue, 37 const SymTab::Indexer & indexer, const TypeEnvironment & env ); 34 38 35 39 typedef std::function<Cost(const Type *, const Type *, bool, … … 80 84 const ast::SymbolTable &, const ast::TypeEnvironment &)>; 81 85 86 Cost conversionCost( 87 const ast::Type * src, const ast::Type * dst, bool srcIsLvalue, 88 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env ); 89 90 Cost convertToReferenceCost( const ast::Type * src, const ast::ReferenceType * dest, 91 bool srcIsLvalue, const ast::SymbolTable & indexer, const ast::TypeEnvironment & env, 92 PtrsCalculation func ); 93 82 94 #warning when the old ConversionCost is removed, get ride of the _new suffix. 83 95 class ConversionCost_new : public ast::WithShortCircuiting { … … 119 131 }; 120 132 121 Cost convertToReferenceCost( const ast::Type * src, const ast::ReferenceType * dest,122 bool srcIsLvalue, const ast::SymbolTable & indexer, const ast::TypeEnvironment & env,123 PtrsCalculation func );124 125 133 } // namespace ResolvExpr 126 134 -
src/ResolvExpr/CurrentObject.cc
r34b4268 r24d6572 9 9 // Author : Rob Schluntz 10 10 // Created On : Tue Jun 13 15:28:32 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Jul 1 09:16:01 202213 // Update Count : 1 511 // Last Modified By : Andrew Beach 12 // Last Modified On : Mon Apr 10 9:40:00 2023 13 // Update Count : 18 14 14 // 15 15 … … 26 26 #include "AST/Init.hpp" // for Designation 27 27 #include "AST/Node.hpp" // for readonly 28 #include "AST/Print.hpp" 28 #include "AST/Print.hpp" // for readonly 29 29 #include "AST/Type.hpp" 30 #include "Common/Eval.h" // for eval 30 31 #include "Common/Indenter.h" // for Indenter, operator<< 31 32 #include "Common/SemanticError.h" // for SemanticError … … 592 593 593 594 namespace ast { 595 /// Iterates members of a type by initializer. 596 class MemberIterator { 597 public: 598 virtual ~MemberIterator() {} 599 600 /// Internal set position based on iterator ranges. 601 virtual void setPosition( 602 std::deque< ptr< Expr > >::const_iterator it, 603 std::deque< ptr< Expr > >::const_iterator end ) = 0; 604 605 /// Walks the current object using the given designators as a guide. 606 void setPosition( const std::deque< ptr< Expr > > & designators ) { 607 setPosition( designators.begin(), designators.end() ); 608 } 609 610 /// Retrieve the list of possible (Type,Designation) pairs for the 611 /// current position in the current object. 612 virtual std::deque< InitAlternative > operator* () const = 0; 613 614 /// True if the iterator is not currently at the end. 615 virtual operator bool() const = 0; 616 617 /// Moves the iterator by one member in the current object. 618 virtual MemberIterator & bigStep() = 0; 619 620 /// Moves the iterator by one member in the current subobject. 621 virtual MemberIterator & smallStep() = 0; 622 623 /// The type of the current object. 624 virtual const Type * getType() = 0; 625 626 /// The type of the current subobject. 627 virtual const Type * getNext() = 0; 628 629 /// Helper for operator*; aggregates must add designator to each init 630 /// alternative, but adding designators in operator* creates duplicates. 631 virtual std::deque< InitAlternative > first() const = 0; 632 }; 633 594 634 /// create a new MemberIterator that traverses a type correctly 595 635 MemberIterator * createMemberIterator( const CodeLocation & loc, const Type * type ); … … 631 671 }; 632 672 633 /// Iterates array types 634 class ArrayIterator final : public MemberIterator { 673 /// Iterates over an indexed type: 674 class IndexIterator : public MemberIterator { 675 protected: 635 676 CodeLocation location; 636 const ArrayType * array = nullptr;637 const Type * base = nullptr;638 677 size_t index = 0; 639 678 size_t size = 0; 640 std::unique_ptr< MemberIterator > memberIter; 641 642 void setSize( const Expr * expr ) { 643 auto res = eval( expr ); 644 if ( ! res.second ) { 645 SemanticError( location, toString( "Array designator must be a constant expression: ", expr ) ); 646 } 647 size = res.first; 648 } 649 650 public: 651 ArrayIterator( const CodeLocation & loc, const ArrayType * at ) : location( loc ), array( at ), base( at->base ) { 652 PRINT( std::cerr << "Creating array iterator: " << at << std::endl; ) 653 memberIter.reset( createMemberIterator( loc, base ) ); 654 if ( at->isVarLen ) { 655 SemanticError( location, at, "VLA initialization does not support @=: " ); 656 } 657 setSize( at->dimension ); 658 } 679 std::unique_ptr<MemberIterator> memberIter; 680 public: 681 IndexIterator( const CodeLocation & loc, size_t size ) : 682 location( loc ), size( size ) 683 {} 659 684 660 685 void setPosition( const Expr * expr ) { … … 665 690 auto arg = eval( expr ); 666 691 index = arg.first; 667 return;668 692 669 693 // if ( auto constExpr = dynamic_cast< const ConstantExpr * >( expr ) ) { … … 683 707 684 708 void setPosition( 685 std::deque< ptr< Expr >>::const_iterator begin,686 std::deque< ptr< Expr >>::const_iterator end709 std::deque<ast::ptr<ast::Expr>>::const_iterator begin, 710 std::deque<ast::ptr<ast::Expr>>::const_iterator end 687 711 ) override { 688 712 if ( begin == end ) return; … … 695 719 696 720 operator bool() const override { return index < size; } 721 }; 722 723 /// Iterates over the members of array types: 724 class ArrayIterator final : public IndexIterator { 725 const ArrayType * array = nullptr; 726 const Type * base = nullptr; 727 728 size_t getSize( const Expr * expr ) { 729 auto res = eval( expr ); 730 if ( !res.second ) { 731 SemanticError( location, toString( "Array designator must be a constant expression: ", expr ) ); 732 } 733 return res.first; 734 } 735 736 public: 737 ArrayIterator( const CodeLocation & loc, const ArrayType * at ) : 738 IndexIterator( loc, getSize( at->dimension) ), 739 array( at ), base( at->base ) { 740 PRINT( std::cerr << "Creating array iterator: " << at << std::endl; ) 741 memberIter.reset( createMemberIterator( loc, base ) ); 742 if ( at->isVarLen ) { 743 SemanticError( location, at, "VLA initialization does not support @=: " ); 744 } 745 } 697 746 698 747 ArrayIterator & bigStep() override { … … 833 882 834 883 const Type * getNext() final { 835 return ( memberIter && *memberIter ) ? memberIter->getType() : nullptr; 884 bool hasMember = memberIter && *memberIter; 885 return hasMember ? memberIter->getType() : nullptr; 836 886 } 837 887 … … 897 947 }; 898 948 899 class TupleIterator final : public AggregateIterator { 900 public: 901 TupleIterator( const CodeLocation & loc, const TupleType * inst ) 902 : AggregateIterator( 903 loc, "TupleIterator", toString("Tuple", inst->size()), inst, inst->members 904 ) {} 905 906 operator bool() const override { 907 return curMember != members.end() || (memberIter && *memberIter); 949 /// Iterates across the positions in a tuple: 950 class TupleIterator final : public IndexIterator { 951 ast::TupleType const * const tuple; 952 953 const ast::Type * typeAtIndex() const { 954 assert( index < size ); 955 return tuple->types[ index ].get(); 956 } 957 958 public: 959 TupleIterator( const CodeLocation & loc, const TupleType * type ) 960 : IndexIterator( loc, type->size() ), tuple( type ) { 961 PRINT( std::cerr << "Creating tuple iterator: " << type << std::endl; ) 962 memberIter.reset( createMemberIterator( loc, typeAtIndex() ) ); 908 963 } 909 964 910 965 TupleIterator & bigStep() override { 911 PRINT( std::cerr << "bigStep in " << kind << std::endl; ) 912 atbegin = false; 913 memberIter = nullptr; 914 curType = nullptr; 915 while ( curMember != members.end() ) { 916 ++curMember; 917 if ( init() ) return *this; 918 } 966 ++index; 967 memberIter.reset( index < size ? 968 createMemberIterator( location, typeAtIndex() ) : nullptr ); 919 969 return *this; 970 } 971 972 TupleIterator & smallStep() override { 973 if ( memberIter ) { 974 PRINT( std::cerr << "has member iter: " << *memberIter << std::endl; ) 975 memberIter->smallStep(); 976 if ( !memberIter ) { 977 PRINT( std::cerr << "has valid member iter" << std::endl; ) 978 return *this; 979 } 980 } 981 return bigStep(); 982 } 983 984 const ast::Type * getType() override { 985 return tuple; 986 } 987 988 const ast::Type * getNext() override { 989 bool hasMember = memberIter && *memberIter; 990 return hasMember ? memberIter->getType() : nullptr; 991 } 992 993 std::deque< InitAlternative > first() const override { 994 PRINT( std::cerr << "first in TupleIterator (" << index << "/" << size << ")" << std::endl; ) 995 if ( memberIter && *memberIter ) { 996 std::deque< InitAlternative > ret = memberIter->first(); 997 for ( InitAlternative & alt : ret ) { 998 alt.designation.get_and_mutate()->designators.emplace_front( 999 ConstantExpr::from_ulong( location, index ) ); 1000 } 1001 return ret; 1002 } 1003 return {}; 920 1004 } 921 1005 }; -
src/ResolvExpr/CurrentObject.h
r34b4268 r24d6572 9 9 // Author : Rob Schluntz 10 10 // Created On : Thu Jun 8 11:07:25 2017 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Sat Jul 22 09:36:48 201713 // Update Count : 311 // Last Modified By : Andrew Beach 12 // Last Modified On : Thu Apr 6 16:14:00 2023 13 // Update Count : 4 14 14 // 15 15 … … 65 65 66 66 /// Iterates members of a type by initializer 67 class MemberIterator { 68 public: 69 virtual ~MemberIterator() {} 70 71 /// Internal set position based on iterator ranges 72 virtual void setPosition( 73 std::deque< ptr< Expr > >::const_iterator it, 74 std::deque< ptr< Expr > >::const_iterator end ) = 0; 75 76 /// walks the current object using the given designators as a guide 77 void setPosition( const std::deque< ptr< Expr > > & designators ) { 78 setPosition( designators.begin(), designators.end() ); 79 } 80 81 /// retrieve the list of possible (Type,Designation) pairs for the current position in the 82 /// current object 83 virtual std::deque< InitAlternative > operator* () const = 0; 84 85 /// true if the iterator is not currently at the end 86 virtual operator bool() const = 0; 87 88 /// moves the iterator by one member in the current object 89 virtual MemberIterator & bigStep() = 0; 90 91 /// moves the iterator by one member in the current subobject 92 virtual MemberIterator & smallStep() = 0; 93 94 /// the type of the current object 95 virtual const Type * getType() = 0; 96 97 /// the type of the current subobject 98 virtual const Type * getNext() = 0; 99 100 /// helper for operator*; aggregates must add designator to each init alternative, but 101 /// adding designators in operator* creates duplicates 102 virtual std::deque< InitAlternative > first() const = 0; 103 }; 67 class MemberIterator; 104 68 105 69 /// Builds initializer lists in resolution -
src/ResolvExpr/ExplodedArg.hpp
r34b4268 r24d6572 35 35 ExplodedArg() : env(), cost( Cost::zero ), exprs() {} 36 36 ExplodedArg( const Candidate & arg, const ast::SymbolTable & symtab ); 37 37 38 38 ExplodedArg( ExplodedArg && ) = default; 39 39 ExplodedArg & operator= ( ExplodedArg && ) = default; -
src/ResolvExpr/PolyCost.cc
r34b4268 r24d6572 15 15 16 16 #include "AST/SymbolTable.hpp" 17 #include "AST/Pass.hpp" 17 18 #include "AST/Type.hpp" 18 19 #include "AST/TypeEnvironment.hpp" -
src/ResolvExpr/PtrsAssignable.cc
r34b4268 r24d6572 14 14 // 15 15 16 #include " typeops.h"16 #include "PtrsAssignable.hpp" 17 17 18 18 #include "AST/Pass.hpp" -
src/ResolvExpr/PtrsCastable.cc
r34b4268 r24d6572 14 14 // 15 15 16 #include "PtrsCastable.hpp" 17 16 18 #include "AST/Decl.hpp" 17 19 #include "AST/Pass.hpp" … … 19 21 #include "AST/TypeEnvironment.hpp" 20 22 #include "Common/PassVisitor.h" 23 #include "ResolvExpr/PtrsAssignable.hpp" // for ptrsAssignable 21 24 #include "ResolvExpr/TypeEnvironment.h" // for EqvClass, TypeEnvironment 22 25 #include "SymTab/Indexer.h" // for Indexer … … 24 27 #include "SynTree/Type.h" // for TypeInstType, Type, BasicType 25 28 #include "SynTree/Visitor.h" // for Visitor 26 #include "typeops.h" // for ptrsAssignable27 29 28 30 namespace ResolvExpr { … … 291 293 return objectCast( src, env, symtab ); 292 294 } else { 293 ast::Pass< PtrsCastable_new > ptrs{ dst, env, symtab }; 294 src->accept( ptrs ); 295 return ptrs.core.result; 295 return ast::Pass<PtrsCastable_new>::read( src, dst, env, symtab ); 296 296 } 297 297 } -
src/ResolvExpr/RenameVars.cc
r34b4268 r24d6572 83 83 84 84 const ast::TypeInstType * rename( const ast::TypeInstType * type ) { 85 // rename86 85 auto it = idMap.find( type->name ); 87 if ( it != idMap.end() ) { 88 // unconditionally mutate because map will *always* have different name 89 ast::TypeInstType * mut = ast::shallowCopy( type ); 90 // reconcile base node since some copies might have been made 91 mut->base = it->second.base; 92 mut->formal_usage = it->second.formal_usage; 93 mut->expr_id = it->second.expr_id; 94 type = mut; 95 } 96 97 return type; 86 if ( it == idMap.end() ) return type; 87 88 // Unconditionally mutate because map will *always* have different name. 89 ast::TypeInstType * mut = ast::shallowCopy( type ); 90 // Reconcile base node since some copies might have been made. 91 mut->base = it->second.base; 92 mut->formal_usage = it->second.formal_usage; 93 mut->expr_id = it->second.expr_id; 94 return mut; 98 95 } 99 96 … … 187 184 188 185 const ast::Type * renameTyVars( const ast::Type * t, RenameMode mode, bool reset ) { 189 // ast::Type *tc = ast::deepCopy(t);190 186 ast::Pass<RenameVars_new> renamer; 191 187 renamer.core.mode = mode; -
src/ResolvExpr/ResolveAssertions.cc
r34b4268 r24d6572 26 26 #include <vector> // for vector 27 27 28 #include "AdjustExprType.hpp" // for adjustExprType 28 29 #include "Alternative.h" // for Alternative, AssertionItem, AssertionList 29 30 #include "Common/FilterCombos.h" // for filterCombos 30 31 #include "Common/Indenter.h" // for Indenter 31 #include "Common/utility.h" // for sort_mins32 32 #include "GenPoly/GenPoly.h" // for getFunctionType 33 #include "ResolvExpr/AlternativeFinder.h" // for computeConversionCost 33 34 #include "ResolvExpr/RenameVars.h" // for renameTyVars 35 #include "SpecCost.hpp" // for specCost 34 36 #include "SymTab/Indexer.h" // for Indexer 35 37 #include "SymTab/Mangler.h" // for Mangler 36 38 #include "SynTree/Expression.h" // for InferredParams 37 39 #include "TypeEnvironment.h" // for TypeEnvironment, etc. 38 #include "typeops.h" // for adjustExprType, specCost39 40 #include "Unify.h" // for unify 40 41 -
src/ResolvExpr/Resolver.cc
r34b4268 r24d6572 38 38 #include "AST/SymbolTable.hpp" 39 39 #include "AST/Type.hpp" 40 #include "Common/Eval.h" // for eval 41 #include "Common/Iterate.hpp" // for group_iterate 40 42 #include "Common/PassVisitor.h" // for PassVisitor 41 43 #include "Common/SemanticError.h" // for SemanticError 42 44 #include "Common/Stats/ResolveTime.h" // for ResolveTime::start(), ResolveTime::stop() 43 #include "Common/ utility.h" // for ValueGuard, group_iterate45 #include "Common/ToString.hpp" // for toCString 44 46 #include "InitTweak/GenInit.h" 45 47 #include "InitTweak/InitTweak.h" // for isIntrinsicSingleArgCallStmt … … 1107 1109 void removeExtraneousCast( ast::ptr<ast::Expr> & expr, const ast::SymbolTable & symtab ) { 1108 1110 if ( const ast::CastExpr * castExpr = expr.as< ast::CastExpr >() ) { 1109 if ( typesCompatible( castExpr->arg->result, castExpr->result , symtab) ) {1111 if ( typesCompatible( castExpr->arg->result, castExpr->result ) ) { 1110 1112 // cast is to the same type as its argument, remove it 1111 1113 swap_and_save_env( expr, castExpr->arg ); … … 1729 1731 1730 1732 // Find all candidates for a function in canonical form 1731 funcFinder.find( clause.target _func, ResolvMode::withAdjustment() );1733 funcFinder.find( clause.target, ResolvMode::withAdjustment() ); 1732 1734 1733 1735 if ( funcFinder.candidates.empty() ) { 1734 1736 stringstream ss; 1735 1737 ss << "Use of undeclared indentifier '"; 1736 ss << clause.target _func.strict_as< ast::NameExpr >()->name;1738 ss << clause.target.strict_as< ast::NameExpr >()->name; 1737 1739 ss << "' in call to waitfor"; 1738 1740 SemanticError( stmt->location, ss.str() ); … … 1833 1835 if ( 1834 1836 ! unify( 1835 arg->expr->result, *param, resultEnv, need, have, open, 1836 symtab ) 1837 arg->expr->result, *param, resultEnv, need, have, open ) 1837 1838 ) { 1838 1839 // Type doesn't match … … 1921 1922 auto clause2 = new ast::WaitForClause( clause.location ); 1922 1923 1923 clause2->target _func= funcCandidates.front()->expr;1924 clause2->target = funcCandidates.front()->expr; 1924 1925 1925 1926 clause2->target_args.reserve( clause.target_args.size() ); … … 1944 1945 1945 1946 // Resolve the conditions as if it were an IfStmt, statements normally 1946 clause2-> cond = findSingleExpression( clause.cond, context );1947 clause2->when_cond = findSingleExpression( clause.when_cond, context ); 1947 1948 clause2->stmt = clause.stmt->accept( *visitor ); 1948 1949 -
src/ResolvExpr/Resolver.h
r34b4268 r24d6572 34 34 class Decl; 35 35 class DeletedExpr; 36 class Expr; 36 37 class Init; 37 38 class StmtExpr; -
src/ResolvExpr/SatisfyAssertions.cpp
r34b4268 r24d6572 24 24 #include <vector> 25 25 26 #include "AdjustExprType.hpp" 26 27 #include "Candidate.hpp" 27 28 #include "CandidateFinder.hpp" 29 #include "CommonType.hpp" 28 30 #include "Cost.h" 29 31 #include "RenameVars.h" 32 #include "SpecCost.hpp" 30 33 #include "typeops.h" 31 34 #include "Unify.h" … … 181 184 .strict_as<ast::FunctionType>()->params[0] 182 185 .strict_as<ast::ReferenceType>()->base; 183 sat.cand->env.apply(thisArgType); 186 // sat.cand->env.apply(thisArgType); 187 188 if (auto inst = thisArgType.as<ast::TypeInstType>()) { 189 auto cls = sat.cand->env.lookup(*inst); 190 if (cls && cls->bound) thisArgType = cls->bound; 191 } 184 192 185 193 std::string otypeKey = ""; … … 218 226 ast::TypeEnvironment tempNewEnv {newEnv}; 219 227 220 if ( unifyExact( toType, adjType, tempNewEnv, newNeed, have, newOpen, WidenMode {true, true} , sat.symtab) ) {228 if ( unifyExact( toType, adjType, tempNewEnv, newNeed, have, newOpen, WidenMode {true, true} ) ) { 221 229 // set up binding slot for recursive assertions 222 230 ast::UniqueId crntResnSlot = 0; … … 234 242 // newEnv = sat.cand->env; 235 243 // newNeed.clear(); 236 if ( auto c = commonType( toType, adjType, newEnv, newNeed, have, newOpen, WidenMode {true, true} , sat.symtab) ) {244 if ( auto c = commonType( toType, adjType, newEnv, newNeed, have, newOpen, WidenMode {true, true} ) ) { 237 245 // set up binding slot for recursive assertions 238 246 ast::UniqueId crntResnSlot = 0; … … 398 406 mergeOpenVars( open, i.match.open ); 399 407 400 if ( ! env.combine( i.match.env, open , symtab) ) return false;408 if ( ! env.combine( i.match.env, open ) ) return false; 401 409 402 410 crnt.emplace_back( i ); -
src/ResolvExpr/Unify.cc
r34b4268 r24d6572 33 33 #include "AST/TypeEnvironment.hpp" 34 34 #include "Common/PassVisitor.h" // for PassVisitor 35 #include "CommonType.hpp" // for commonType 35 36 #include "FindOpenVars.h" // for findOpenVars 37 #include "SpecCost.hpp" // for SpecCost 36 38 #include "SynTree/LinkageSpec.h" // for C 37 39 #include "SynTree/Constant.h" // for Constant … … 43 45 #include "Tuples/Tuples.h" // for isTtype 44 46 #include "TypeEnvironment.h" // for EqvClass, AssertionSet, OpenVarSet 45 #include "typeops.h" // for flatten, occurs , commonType47 #include "typeops.h" // for flatten, occurs 46 48 47 49 namespace ast { … … 50 52 51 53 namespace SymTab { 52 class Indexer;54 class Indexer; 53 55 } // namespace SymTab 54 56 … … 56 58 57 59 namespace ResolvExpr { 60 61 // Template Helpers: 62 template< typename Iterator1, typename Iterator2 > 63 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, std::list< Type* > &commonTypes ) { 64 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) { 65 Type *commonType = 0; 66 if ( ! unify( *list1Begin, *list2Begin, env, needAssertions, haveAssertions, openVars, indexer, commonType ) ) { 67 return false; 68 } // if 69 commonTypes.push_back( commonType ); 70 } // for 71 return ( list1Begin == list1End && list2Begin == list2End ); 72 } 73 74 template< typename Iterator1, typename Iterator2 > 75 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) { 76 std::list< Type* > commonTypes; 77 if ( unifyList( list1Begin, list1End, list2Begin, list2End, env, needAssertions, haveAssertions, openVars, indexer, commonTypes ) ) { 78 deleteAll( commonTypes ); 79 return true; 80 } else { 81 return false; 82 } // if 83 } 58 84 59 85 struct Unify_old : public WithShortCircuiting { … … 102 128 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env, 103 129 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 104 WidenMode widen , const ast::SymbolTable & symtab);130 WidenMode widen ); 105 131 106 132 bool typesCompatible( const Type * first, const Type * second, const SymTab::Indexer & indexer, const TypeEnvironment & env ) { … … 124 150 125 151 bool typesCompatible( 126 const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab,152 const ast::Type * first, const ast::Type * second, 127 153 const ast::TypeEnvironment & env ) { 128 154 ast::TypeEnvironment newEnv; … … 137 163 findOpenVars( newSecond, open, closed, need, have, newEnv, FirstOpen ); 138 164 139 return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden() , symtab);165 return unifyExact(newFirst, newSecond, newEnv, need, have, open, noWiden() ); 140 166 } 141 167 … … 157 183 158 184 bool typesCompatibleIgnoreQualifiers( 159 const ast::Type * first, const ast::Type * second, const ast::SymbolTable & symtab,185 const ast::Type * first, const ast::Type * second, 160 186 const ast::TypeEnvironment & env ) { 161 187 ast::TypeEnvironment newEnv; … … 190 216 subFirst, 191 217 subSecond, 192 newEnv, need, have, open, noWiden() , symtab);218 newEnv, need, have, open, noWiden() ); 193 219 } 194 220 … … 760 786 const ast::OpenVarSet & open; 761 787 WidenMode widen; 762 const ast::SymbolTable & symtab;763 788 public: 764 789 static size_t traceId; … … 767 792 Unify_new( 768 793 const ast::Type * type2, ast::TypeEnvironment & env, ast::AssertionSet & need, 769 ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen, 770 const ast::SymbolTable & symtab ) 794 ast::AssertionSet & have, const ast::OpenVarSet & open, WidenMode widen ) 771 795 : type2(type2), tenv(env), need(need), have(have), open(open), widen(widen), 772 symtab(symtab),result(false) {}796 result(false) {} 773 797 774 798 void previsit( const ast::Node * ) { visit_children = false; } … … 788 812 result = unifyExact( 789 813 pointer->base, pointer2->base, tenv, need, have, open, 790 noWiden() , symtab);814 noWiden()); 791 815 } 792 816 } … … 811 835 812 836 result = unifyExact( 813 array->base, array2->base, tenv, need, have, open, noWiden(), 814 symtab ); 837 array->base, array2->base, tenv, need, have, open, noWiden()); 815 838 } 816 839 … … 818 841 if ( auto ref2 = dynamic_cast< const ast::ReferenceType * >( type2 ) ) { 819 842 result = unifyExact( 820 ref->base, ref2->base, tenv, need, have, open, noWiden(), 821 symtab ); 843 ref->base, ref2->base, tenv, need, have, open, noWiden()); 822 844 } 823 845 } … … 828 850 static bool unifyTypeList( 829 851 Iter crnt1, Iter end1, Iter crnt2, Iter end2, ast::TypeEnvironment & env, 830 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 831 const ast::SymbolTable & symtab 852 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open 832 853 ) { 833 854 while ( crnt1 != end1 && crnt2 != end2 ) { … … 842 863 return unifyExact( 843 864 t1, tupleFromTypes( crnt2, end2 ), env, need, have, open, 844 noWiden() , symtab);865 noWiden() ); 845 866 } else if ( ! isTuple1 && isTuple2 ) { 846 867 // combine remainder of list1, then unify 847 868 return unifyExact( 848 869 tupleFromTypes( crnt1, end1 ), t2, env, need, have, open, 849 noWiden() , symtab);870 noWiden() ); 850 871 } 851 872 852 873 if ( ! unifyExact( 853 t1, t2, env, need, have, open, noWiden() , symtab)874 t1, t2, env, need, have, open, noWiden() ) 854 875 ) return false; 855 876 … … 865 886 return unifyExact( 866 887 t1, tupleFromTypes( crnt2, end2 ), env, need, have, open, 867 noWiden() , symtab);888 noWiden() ); 868 889 } else if ( crnt2 != end2 ) { 869 890 // try unifying empty tuple with ttype … … 872 893 return unifyExact( 873 894 tupleFromTypes( crnt1, end1 ), t2, env, need, have, open, 874 noWiden() , symtab);895 noWiden() ); 875 896 } 876 897 … … 882 903 const std::vector< ast::ptr< ast::Type > > & list2, 883 904 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 884 const ast::OpenVarSet & open , const ast::SymbolTable & symtab905 const ast::OpenVarSet & open 885 906 ) { 886 907 return unifyTypeList( 887 list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open, 888 symtab ); 908 list1.begin(), list1.end(), list2.begin(), list2.end(), env, need, have, open); 889 909 } 890 910 … … 927 947 ) return; 928 948 929 if ( ! unifyTypeList( params, params2, tenv, need, have, open , symtab) ) return;949 if ( ! unifyTypeList( params, params2, tenv, need, have, open ) ) return; 930 950 if ( ! unifyTypeList( 931 func->returns, func2->returns, tenv, need, have, open , symtab) ) return;951 func->returns, func2->returns, tenv, need, have, open ) ) return; 932 952 933 953 markAssertions( have, need, func ); … … 944 964 // check that the other type is compatible and named the same 945 965 auto otherInst = dynamic_cast< const XInstType * >( other ); 946 if (otherInst && inst->name == otherInst->name) this->result = otherInst; 966 if (otherInst && inst->name == otherInst->name) 967 this->result = otherInst; 947 968 return otherInst; 948 969 } … … 1000 1021 1001 1022 if ( ! unifyExact( 1002 pty, pty2, tenv, need, have, open, noWiden() , symtab) ) {1023 pty, pty2, tenv, need, have, open, noWiden() ) ) { 1003 1024 result = false; 1004 1025 return; … … 1030 1051 void postvisit( const ast::TypeInstType * typeInst ) { 1031 1052 // assert( open.find( *typeInst ) == open.end() ); 1032 handleRefType( typeInst, type2 ); 1053 auto otherInst = dynamic_cast< const ast::TypeInstType * >( type2 ); 1054 if (otherInst && typeInst->name == otherInst->name) 1055 this->result = otherInst; 1056 // return otherInst; 1033 1057 } 1034 1058 … … 1039 1063 const std::vector< ast::ptr< ast::Type > > & list1, 1040 1064 const std::vector< ast::ptr< ast::Type > > & list2, ast::TypeEnvironment & env, 1041 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 1042 const ast::SymbolTable & symtab 1065 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open 1043 1066 ) { 1044 1067 auto crnt1 = list1.begin(); … … 1055 1078 return unifyExact( 1056 1079 t1, tupleFromTypes( list2 ), env, need, have, open, 1057 noWiden() , symtab);1080 noWiden() ); 1058 1081 } else if ( ! isTuple1 && isTuple2 ) { 1059 1082 // combine entirety of list1, then unify 1060 1083 return unifyExact( 1061 1084 tupleFromTypes( list1 ), t2, env, need, have, open, 1062 noWiden() , symtab);1085 noWiden() ); 1063 1086 } 1064 1087 1065 1088 if ( ! unifyExact( 1066 t1, t2, env, need, have, open, noWiden() , symtab)1089 t1, t2, env, need, have, open, noWiden() ) 1067 1090 ) return false; 1068 1091 … … 1078 1101 return unifyExact( 1079 1102 t1, tupleFromTypes( list2 ), env, need, have, open, 1080 noWiden() , symtab);1103 noWiden() ); 1081 1104 } else if ( crnt2 != list2.end() ) { 1082 1105 // try unifying empty tuple with ttype … … 1087 1110 return unifyExact( 1088 1111 tupleFromTypes( list1 ), t2, env, need, have, open, 1089 noWiden() , symtab);1112 noWiden() ); 1090 1113 } 1091 1114 … … 1106 1129 auto types2 = flatten( flat2 ); 1107 1130 1108 result = unifyList( types, types2, tenv, need, have, open , symtab);1131 result = unifyList( types, types2, tenv, need, have, open ); 1109 1132 } 1110 1133 … … 1130 1153 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 1131 1154 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1132 ast::OpenVarSet & open , const ast::SymbolTable & symtab1155 ast::OpenVarSet & open 1133 1156 ) { 1134 1157 ast::ptr<ast::Type> common; 1135 return unify( type1, type2, env, need, have, open, symtab,common );1158 return unify( type1, type2, env, need, have, open, common ); 1136 1159 } 1137 1160 … … 1139 1162 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 1140 1163 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1141 ast::OpenVarSet & open, const ast::SymbolTable & symtab,ast::ptr<ast::Type> & common1164 ast::OpenVarSet & open, ast::ptr<ast::Type> & common 1142 1165 ) { 1143 1166 ast::OpenVarSet closed; … … 1145 1168 findOpenVars( type2, open, closed, need, have, env, FirstOpen ); 1146 1169 return unifyInexact( 1147 type1, type2, env, need, have, open, WidenMode{ true, true }, symtab,common );1170 type1, type2, env, need, have, open, WidenMode{ true, true }, common ); 1148 1171 } 1149 1172 … … 1151 1174 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env, 1152 1175 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 1153 WidenMode widen , const ast::SymbolTable & symtab1176 WidenMode widen 1154 1177 ) { 1155 1178 if ( type1->qualifiers != type2->qualifiers ) return false; … … 1170 1193 return env.bindVarToVar( 1171 1194 var1, var2, ast::TypeData{ entry1->second, entry2->second }, need, have, 1172 open, widen , symtab);1195 open, widen ); 1173 1196 } else if ( isopen1 ) { 1174 return env.bindVar( var1, type2, entry1->second, need, have, open, widen , symtab);1197 return env.bindVar( var1, type2, entry1->second, need, have, open, widen ); 1175 1198 } else if ( isopen2 ) { 1176 1199 return env.bindVar( var2, type1, entry2->second, need, have, open, widen, symtab ); … … 1180 1203 return env.bindVarToVar( 1181 1204 var1, var2, ast::TypeData{ var1->base->kind, var1->base->sized||var2->base->sized }, need, have, 1182 open, widen , symtab);1205 open, widen ); 1183 1206 } else if ( isopen1 ) { 1184 return env.bindVar( var1, type2, ast::TypeData{var1->base}, need, have, open, widen , symtab);1207 return env.bindVar( var1, type2, ast::TypeData{var1->base}, need, have, open, widen ); 1185 1208 } else if ( isopen2 ) { 1186 return env.bindVar( var2, type1, ast::TypeData{var2->base}, need, have, open, widen , symtab);1209 return env.bindVar( var2, type1, ast::TypeData{var2->base}, need, have, open, widen ); 1187 1210 }else { 1188 1211 return ast::Pass<Unify_new>::read( 1189 type1, type2, env, need, have, open, widen , symtab);1212 type1, type2, env, need, have, open, widen ); 1190 1213 } 1191 1214 … … 1195 1218 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 1196 1219 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 1197 const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab,1220 const ast::OpenVarSet & open, WidenMode widen, 1198 1221 ast::ptr<ast::Type> & common 1199 1222 ) { … … 1209 1232 ast::ptr< ast::Type > t2_(t2); 1210 1233 1211 if ( unifyExact( t1, t2, env, need, have, open, widen , symtab) ) {1234 if ( unifyExact( t1, t2, env, need, have, open, widen ) ) { 1212 1235 // if exact unification on unqualified types, try to merge qualifiers 1213 1236 if ( q1 == q2 || ( ( q1 > q2 || widen.first ) && ( q2 > q1 || widen.second ) ) ) { … … 1219 1242 } 1220 1243 1221 } else if (( common = commonType( t1, t2, env, need, have, open, widen , symtab))) {1244 } else if (( common = commonType( t1, t2, env, need, have, open, widen ))) { 1222 1245 // no exact unification, but common type 1223 1246 auto c = shallowCopy(common.get()); -
src/ResolvExpr/Unify.h
r34b4268 r24d6572 9 9 // Author : Richard C. Bilson 10 10 // Created On : Sun May 17 13:09:04 2015 11 // Last Modified By : A aron B. Moss12 // Last Modified On : Mon Jun 18 11:58:00 201813 // Update Count : 411 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Jan 17 11:12:00 2023 13 // Update Count : 5 14 14 // 15 15 … … 37 37 38 38 namespace ResolvExpr { 39 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer );40 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, Type *&commonType );41 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer );42 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer, Type *&common );43 39 44 template< typename Iterator1, typename Iterator2 > 45 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, std::list< Type* > &commonTypes ) { 46 for ( ; list1Begin != list1End && list2Begin != list2End; ++list1Begin, ++list2Begin ) { 47 Type *commonType = 0; 48 if ( ! unify( *list1Begin, *list2Begin, env, needAssertions, haveAssertions, openVars, indexer, commonType ) ) { 49 return false; 50 } // if 51 commonTypes.push_back( commonType ); 52 } // for 53 if ( list1Begin != list1End || list2Begin != list2End ) { 54 return false; 55 } else { 56 return true; 57 } // if 58 } 40 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ); 41 bool unify( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer, Type *&commonType ); 42 bool unifyExact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ); 43 bool unifyInexact( Type *type1, Type *type2, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, const OpenVarSet &openVars, WidenMode widen, const SymTab::Indexer &indexer, Type *&common ); 59 44 60 template< typename Iterator1, typename Iterator2 > 61 bool unifyList( Iterator1 list1Begin, Iterator1 list1End, Iterator2 list2Begin, Iterator2 list2End, TypeEnvironment &env, AssertionSet &needAssertions, AssertionSet &haveAssertions, OpenVarSet &openVars, const SymTab::Indexer &indexer ) { 62 std::list< Type* > commonTypes; 63 if ( unifyList( list1Begin, list1End, list2Begin, list2End, env, needAssertions, haveAssertions, openVars, indexer, commonTypes ) ) { 64 deleteAll( commonTypes ); 65 return true; 66 } else { 67 return false; 68 } // if 69 } 45 bool typesCompatible( const Type *, const Type *, const SymTab::Indexer & indexer, const TypeEnvironment & env ); 46 bool typesCompatibleIgnoreQualifiers( const Type *, const Type *, const SymTab::Indexer & indexer, const TypeEnvironment & env ); 70 47 71 bool unify( 72 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,73 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,74 ast::OpenVarSet & open, const ast::SymbolTable & symtab ); 48 inline bool typesCompatible( const Type * t1, const Type * t2, const SymTab::Indexer & indexer ) { 49 TypeEnvironment env; 50 return typesCompatible( t1, t2, indexer, env ); 51 } 75 52 76 bool unify( 77 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2,78 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,79 ast::OpenVarSet & open, const ast::SymbolTable & symtab, ast::ptr<ast::Type> & common ); 53 inline bool typesCompatibleIgnoreQualifiers( const Type * t1, const Type * t2, const SymTab::Indexer & indexer ) { 54 TypeEnvironment env; 55 return typesCompatibleIgnoreQualifiers( t1, t2, indexer, env ); 56 } 80 57 81 bool unifyExact( 82 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env,83 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open,84 WidenMode widen, const ast::SymbolTable & symtab);58 bool unify( 59 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 60 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 61 ast::OpenVarSet & open ); 85 62 86 bool unifyInexact( 87 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 88 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 89 const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab, 90 ast::ptr<ast::Type> & common ); 63 bool unify( 64 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 65 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 66 ast::OpenVarSet & open, ast::ptr<ast::Type> & common ); 67 68 bool unifyExact( 69 const ast::Type * type1, const ast::Type * type2, ast::TypeEnvironment & env, 70 ast::AssertionSet & need, ast::AssertionSet & have, const ast::OpenVarSet & open, 71 WidenMode widen ); 72 73 bool unifyInexact( 74 const ast::ptr<ast::Type> & type1, const ast::ptr<ast::Type> & type2, 75 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have, 76 const ast::OpenVarSet & open, WidenMode widen, 77 ast::ptr<ast::Type> & common ); 78 79 bool typesCompatible( 80 const ast::Type *, const ast::Type *, 81 const ast::TypeEnvironment & env = {} ); 82 83 bool typesCompatibleIgnoreQualifiers( 84 const ast::Type *, const ast::Type *, 85 const ast::TypeEnvironment & env = {} ); 86 87 /// Creates the type represented by the list of returnVals in a FunctionType. 88 /// The caller owns the return value. 89 Type * extractResultType( FunctionType * functionType ); 90 /// Creates or extracts the type represented by returns in a `FunctionType`. 91 ast::ptr<ast::Type> extractResultType( const ast::FunctionType * func ); 92 93 std::vector<ast::ptr<ast::Type>> flattenList( 94 const std::vector<ast::ptr<ast::Type>> & src, ast::TypeEnvironment & env 95 ); 91 96 92 97 } // namespace ResolvExpr -
src/ResolvExpr/WidenMode.h
r34b4268 r24d6572 19 19 struct WidenMode { 20 20 WidenMode( bool first, bool second ): first( first ), second( second ) {} 21 21 22 22 WidenMode &operator|=( const WidenMode &other ) { 23 23 first |= other.first; second |= other.second; return *this; … … 35 35 WidenMode newWM( *this ); newWM &= other; return newWM; 36 36 } 37 37 38 38 operator bool() { return first && second; } 39 39 -
src/ResolvExpr/module.mk
r34b4268 r24d6572 17 17 SRC_RESOLVEXPR = \ 18 18 ResolvExpr/AdjustExprType.cc \ 19 ResolvExpr/AdjustExprType.hpp \ 19 20 ResolvExpr/Alternative.cc \ 20 21 ResolvExpr/AlternativeFinder.cc \ … … 26 27 ResolvExpr/Candidate.hpp \ 27 28 ResolvExpr/CastCost.cc \ 29 ResolvExpr/CastCost.hpp \ 28 30 ResolvExpr/CommonType.cc \ 31 ResolvExpr/CommonType.hpp \ 29 32 ResolvExpr/ConversionCost.cc \ 30 33 ResolvExpr/ConversionCost.h \ … … 40 43 ResolvExpr/Occurs.cc \ 41 44 ResolvExpr/PolyCost.cc \ 45 ResolvExpr/PolyCost.hpp \ 42 46 ResolvExpr/PtrsAssignable.cc \ 47 ResolvExpr/PtrsAssignable.hpp \ 43 48 ResolvExpr/PtrsCastable.cc \ 49 ResolvExpr/PtrsCastable.hpp \ 44 50 ResolvExpr/RenameVars.cc \ 45 51 ResolvExpr/RenameVars.h \ … … 54 60 ResolvExpr/SatisfyAssertions.hpp \ 55 61 ResolvExpr/SpecCost.cc \ 62 ResolvExpr/SpecCost.hpp \ 56 63 ResolvExpr/TypeEnvironment.cc \ 57 64 ResolvExpr/TypeEnvironment.h \ -
src/ResolvExpr/typeops.h
r34b4268 r24d6572 10 10 // Created On : Sun May 17 07:28:22 2015 11 11 // Last Modified By : Andrew Beach 12 // Last Modified On : Tue Oct 1 09:45:00 201913 // Update Count : 612 // Last Modified On : Wed Jan 18 11:54:00 2023 13 // Update Count : 7 14 14 // 15 15 … … 18 18 #include <vector> 19 19 20 #include "Cost.h"21 #include "TypeEnvironment.h"22 #include "WidenMode.h"23 #include "AST/Fwd.hpp"24 #include "AST/Node.hpp"25 #include "AST/SymbolTable.hpp"26 20 #include "AST/Type.hpp" 27 #include "AST/TypeEnvironment.hpp"28 #include "SynTree/SynTree.h"29 21 #include "SynTree/Type.h" 30 22 … … 34 26 35 27 namespace ResolvExpr { 28 class TypeEnvironment; 29 36 30 // combos: takes a list of sets and returns a set of lists representing every possible way of forming a list by 37 31 // picking one element out of each set … … 61 55 } 62 56 63 // in AdjustExprType.cc64 /// Replaces array types with the equivalent pointer, and function types with a pointer-to-function65 void adjustExprType( Type *& type, const TypeEnvironment & env, const SymTab::Indexer & indexer );66 67 /// Replaces array types with the equivalent pointer, and function types with a pointer-to-function using empty TypeEnvironment and Indexer68 void adjustExprType( Type *& type );69 70 template< typename ForwardIterator >71 void adjustExprTypeList( ForwardIterator begin, ForwardIterator end, const TypeEnvironment & env, const SymTab::Indexer & indexer ) {72 while ( begin != end ) {73 adjustExprType( *begin++, env, indexer );74 } // while75 }76 77 /// Replaces array types with equivalent pointer, and function types with a pointer-to-function78 const ast::Type * adjustExprType(79 const ast::Type * type, const ast::TypeEnvironment & env, const ast::SymbolTable & symtab );80 81 // in CastCost.cc82 Cost castCost( const Type * src, const Type * dest, bool srcIsLvalue,83 const SymTab::Indexer & indexer, const TypeEnvironment & env );84 Cost castCost(85 const ast::Type * src, const ast::Type * dst, bool srcIsLvalue,86 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env );87 88 // in ConversionCost.cc89 Cost conversionCost( const Type * src, const Type * dest, bool srcIsLvalue,90 const SymTab::Indexer & indexer, const TypeEnvironment & env );91 Cost conversionCost(92 const ast::Type * src, const ast::Type * dst, bool srcIsLvalue,93 const ast::SymbolTable & symtab, const ast::TypeEnvironment & env );94 95 // in AlternativeFinder.cc96 Cost computeConversionCost( Type * actualType, Type * formalType, bool actualIsLvalue,97 const SymTab::Indexer & indexer, const TypeEnvironment & env );98 99 // in PtrsAssignable.cc100 int ptrsAssignable( const Type * src, const Type * dest, const TypeEnvironment & env );101 int ptrsAssignable( const ast::Type * src, const ast::Type * dst,102 const ast::TypeEnvironment & env );103 104 // in PtrsCastable.cc105 int ptrsCastable( const Type * src, const Type * dest, const TypeEnvironment & env, const SymTab::Indexer & indexer );106 int ptrsCastable(107 const ast::Type * src, const ast::Type * dst, const ast::SymbolTable & symtab,108 const ast::TypeEnvironment & env );109 110 // in Unify.cc111 bool typesCompatible( const Type *, const Type *, const SymTab::Indexer & indexer, const TypeEnvironment & env );112 bool typesCompatibleIgnoreQualifiers( const Type *, const Type *, const SymTab::Indexer & indexer, const TypeEnvironment & env );113 114 inline bool typesCompatible( const Type * t1, const Type * t2, const SymTab::Indexer & indexer ) {115 TypeEnvironment env;116 return typesCompatible( t1, t2, indexer, env );117 }118 119 inline bool typesCompatibleIgnoreQualifiers( const Type * t1, const Type * t2, const SymTab::Indexer & indexer ) {120 TypeEnvironment env;121 return typesCompatibleIgnoreQualifiers( t1, t2, indexer, env );122 }123 124 bool typesCompatible(125 const ast::Type *, const ast::Type *, const ast::SymbolTable & symtab = {},126 const ast::TypeEnvironment & env = {} );127 128 bool typesCompatibleIgnoreQualifiers(129 const ast::Type *, const ast::Type *, const ast::SymbolTable &,130 const ast::TypeEnvironment & env = {} );131 132 /// creates the type represented by the list of returnVals in a FunctionType. The caller owns the return value.133 Type * extractResultType( FunctionType * functionType );134 /// Creates or extracts the type represented by the list of returns in a `FunctionType`.135 ast::ptr<ast::Type> extractResultType( const ast::FunctionType * func );136 137 // in CommonType.cc138 Type * commonType( Type * type1, Type * type2, bool widenFirst, bool widenSecond, const SymTab::Indexer & indexer, TypeEnvironment & env, const OpenVarSet & openVars );139 ast::ptr< ast::Type > commonType(140 const ast::ptr< ast::Type > & type1, const ast::ptr< ast::Type > & type2,141 ast::TypeEnvironment & env, ast::AssertionSet & need, ast::AssertionSet & have,142 const ast::OpenVarSet & open, WidenMode widen, const ast::SymbolTable & symtab143 );144 // in Unify.cc145 std::vector< ast::ptr< ast::Type > > flattenList(146 const std::vector< ast::ptr< ast::Type > > & src, ast::TypeEnvironment & env147 );148 149 // in PolyCost.cc150 int polyCost( Type * type, const TypeEnvironment & env, const SymTab::Indexer & indexer );151 int polyCost(152 const ast::Type * type, const ast::SymbolTable & symtab, const ast::TypeEnvironment & env );153 154 // in SpecCost.cc155 int specCost( Type * type );156 int specCost( const ast::Type * type );157 158 57 // in Occurs.cc 159 58 bool occurs( const Type * type, const std::string & varName, const TypeEnvironment & env ); … … 168 67 return false; 169 68 } 170 171 // in AlternativeFinder.cc172 void referenceToRvalueConversion( Expression *& expr, Cost & cost );173 // in CandidateFinder.cpp174 const ast::Expr * referenceToRvalueConversion( const ast::Expr * expr, Cost & cost );175 69 176 70 /// flatten tuple type into list of types … … 218 112 } 219 113 220 221 114 return new ast::TupleType{ std::move(types) }; 222 115 } … … 227 120 return tupleFromTypes( tys.begin(), tys.end() ); 228 121 } 229 230 231 122 232 123 // in TypeEnvironment.cc -
src/SymTab/Autogen.cc
r34b4268 r24d6572 10 10 // Created On : Thu Mar 03 15:45:56 2016 11 11 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Fri Apr 27 14:39:06 201813 // Update Count : 6 312 // Last Modified On : Fri Apr 14 15:03:00 2023 13 // Update Count : 64 14 14 // 15 15 … … 211 211 } 212 212 213 bool isUnnamedBitfield( const ast::ObjectDecl * obj ) {214 return obj && obj->name.empty() && obj->bitfieldWidth;215 }216 217 213 /// inserts a forward declaration for functionDecl into declsToAdd 218 214 void addForwardDecl( FunctionDecl * functionDecl, std::list< Declaration * > & declsToAdd ) { … … 234 230 } 235 231 236 // shallow copy the pointer list for return237 std::vector<ast::ptr<ast::TypeDecl>> getGenericParams (const ast::Type * t) {238 if (auto structInst = dynamic_cast<const ast::StructInstType*>(t)) {239 return structInst->base->params;240 }241 if (auto unionInst = dynamic_cast<const ast::UnionInstType*>(t)) {242 return unionInst->base->params;243 }244 return {};245 }246 247 232 /// given type T, generate type of default ctor/dtor, i.e. function type void (*) (T *) 248 233 FunctionType * genDefaultType( Type * paramType, bool maybePolymorphic ) { … … 256 241 ftype->parameters.push_back( dstParam ); 257 242 return ftype; 258 }259 260 /// Given type T, generate type of default ctor/dtor, i.e. function type void (*) (T &).261 ast::FunctionDecl * genDefaultFunc(const CodeLocation loc, const std::string fname, const ast::Type * paramType, bool maybePolymorphic) {262 std::vector<ast::ptr<ast::TypeDecl>> typeParams;263 if (maybePolymorphic) typeParams = getGenericParams(paramType);264 auto dstParam = new ast::ObjectDecl(loc, "_dst", new ast::ReferenceType(paramType), nullptr, {}, ast::Linkage::Cforall);265 return new ast::FunctionDecl(loc, fname, std::move(typeParams), {dstParam}, {}, new ast::CompoundStmt(loc), {}, ast::Linkage::Cforall);266 243 } 267 244 -
src/SymTab/Autogen.h
r34b4268 r24d6572 9 9 // Author : Rob Schluntz 10 10 // Created On : Sun May 17 21:53:34 2015 11 // Last Modified By : Peter A. Buhr12 // Last Modified On : Fri Dec 13 16:38:06 201913 // Update Count : 1 611 // Last Modified By : Andrew Beach 12 // Last Modified On : Fri Apr 14 15:06:00 2023 13 // Update Count : 17 14 14 // 15 15 … … 20 20 #include <string> // for string 21 21 22 #include "AST/Decl.hpp"23 #include "AST/Expr.hpp"24 #include "AST/Init.hpp"25 #include "AST/Node.hpp"26 #include "AST/Stmt.hpp"27 #include "AST/Type.hpp"28 22 #include "CodeGen/OperatorTable.h" 29 23 #include "Common/UniqueName.h" // for UniqueName … … 45 39 /// returns true if obj's name is the empty string and it has a bitfield width 46 40 bool isUnnamedBitfield( ObjectDecl * obj ); 47 bool isUnnamedBitfield( const ast::ObjectDecl * obj );48 41 49 42 /// generate the type of an assignment function for paramType. … … 55 48 FunctionType * genDefaultType( Type * paramType, bool maybePolymorphic = true ); 56 49 57 ast::FunctionDecl * genDefaultFunc(const CodeLocation loc, const std::string fname, const ast::Type * paramType, bool maybePolymorphic = true);58 59 50 /// generate the type of a copy constructor for paramType. 60 51 /// maybePolymorphic is true if the resulting FunctionType is allowed to be polymorphic 61 52 FunctionType * genCopyType( Type * paramType, bool maybePolymorphic = true ); 62 53 63 /// Enum for loop direction64 enum LoopDirection { LoopBackward, LoopForward };65 66 54 /// inserts into out a generated call expression to function fname with arguments dstParam and srcParam. Intended to be used with generated ?=?, ?{}, and ^?{} calls. 67 55 template< typename OutputIterator > 68 56 Statement * genCall( InitTweak::InitExpander_old & srcParam, Expression * dstParam, const std::string & fname, OutputIterator out, Type * type, Type * addCast = nullptr, bool forward = true ); 69 70 template< typename OutIter >71 ast::ptr< ast::Stmt > genCall(72 InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,73 const CodeLocation & loc, const std::string & fname, OutIter && out,74 const ast::Type * type, const ast::Type * addCast, LoopDirection forward = LoopForward );75 57 76 58 /// inserts into out a generated call expression to function fname with arguments dstParam and srcParam. Should only be called with non-array types. … … 121 103 122 104 *out++ = new ExprStmt( fExpr ); 123 124 srcParam.clearArrayIndices();125 126 return listInit;127 }128 129 /// inserts into out a generated call expression to function fname with arguments dstParam and130 /// srcParam. Should only be called with non-array types.131 /// optionally returns a statement which must be inserted prior to the containing loop, if132 /// there is one133 template< typename OutIter >134 ast::ptr< ast::Stmt > genScalarCall(135 InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,136 const CodeLocation & loc, std::string fname, OutIter && out, const ast::Type * type,137 const ast::Type * addCast = nullptr138 ) {139 bool isReferenceCtorDtor = false;140 if ( dynamic_cast< const ast::ReferenceType * >( type ) && CodeGen::isCtorDtor( fname ) ) {141 // reference constructors are essentially application of the rebind operator.142 // apply & to both arguments, do not need a cast143 fname = "?=?";144 dstParam = new ast::AddressExpr{ dstParam };145 addCast = nullptr;146 isReferenceCtorDtor = true;147 }148 149 // want to be able to generate assignment, ctor, and dtor generically, so fname is one of150 // "?=?", "?{}", or "^?{}"151 ast::UntypedExpr * fExpr = new ast::UntypedExpr{ loc, new ast::NameExpr{ loc, fname } };152 153 if ( addCast ) {154 // cast to T& with qualifiers removed, so that qualified objects can be constructed and155 // destructed with the same functions as non-qualified objects. Unfortunately, lvalue156 // is considered a qualifier - for AddressExpr to resolve, its argument must have an157 // lvalue-qualified type, so remove all qualifiers except lvalue.158 // xxx -- old code actually removed lvalue too...159 ast::ptr< ast::Type > guard = addCast; // prevent castType from mutating addCast160 ast::ptr< ast::Type > castType = addCast;161 ast::remove_qualifiers(162 castType,163 ast::CV::Const | ast::CV::Volatile | ast::CV::Restrict | ast::CV::Atomic );164 dstParam = new ast::CastExpr{ dstParam, new ast::ReferenceType{ castType } };165 }166 fExpr->args.emplace_back( dstParam );167 168 ast::ptr<ast::Stmt> listInit = srcParam.buildListInit( fExpr );169 170 // fetch next set of arguments171 ++srcParam;172 173 // return if adding reference fails -- will happen on default ctor and dtor174 if ( isReferenceCtorDtor && ! srcParam.addReference() ) return listInit;175 176 std::vector< ast::ptr< ast::Expr > > args = *srcParam;177 splice( fExpr->args, args );178 179 *out++ = new ast::ExprStmt{ loc, fExpr };180 105 181 106 srcParam.clearArrayIndices(); … … 248 173 } 249 174 250 /// Store in out a loop which calls fname on each element of the array with srcParam and251 /// dstParam as arguments. If forward is true, loop goes from 0 to N-1, else N-1 to 0252 template< typename OutIter >253 void genArrayCall(254 InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,255 const CodeLocation & loc, const std::string & fname, OutIter && out,256 const ast::ArrayType * array, const ast::Type * addCast = nullptr,257 LoopDirection forward = LoopForward258 ) {259 static UniqueName indexName( "_index" );260 261 // for a flexible array member nothing is done -- user must define own assignment262 if ( ! array->dimension ) return;263 264 if ( addCast ) {265 // peel off array layer from cast266 addCast = strict_dynamic_cast< const ast::ArrayType * >( addCast )->base;267 }268 269 ast::ptr< ast::Expr > begin, end;270 std::string cmp, update;271 272 if ( forward ) {273 // generate: for ( int i = 0; i < N; ++i )274 begin = ast::ConstantExpr::from_int( loc, 0 );275 end = array->dimension;276 cmp = "?<?";277 update = "++?";278 } else {279 // generate: for ( int i = N-1; i >= 0; --i )280 begin = ast::UntypedExpr::createCall( loc, "?-?",281 { array->dimension, ast::ConstantExpr::from_int( loc, 1 ) } );282 end = ast::ConstantExpr::from_int( loc, 0 );283 cmp = "?>=?";284 update = "--?";285 }286 287 ast::ptr< ast::DeclWithType > index = new ast::ObjectDecl{288 loc, indexName.newName(), new ast::BasicType{ ast::BasicType::SignedInt },289 new ast::SingleInit{ loc, begin } };290 ast::ptr< ast::Expr > indexVar = new ast::VariableExpr{ loc, index };291 292 ast::ptr< ast::Expr > cond = ast::UntypedExpr::createCall(293 loc, cmp, { indexVar, end } );294 295 ast::ptr< ast::Expr > inc = ast::UntypedExpr::createCall(296 loc, update, { indexVar } );297 298 ast::ptr< ast::Expr > dstIndex = ast::UntypedExpr::createCall(299 loc, "?[?]", { dstParam, indexVar } );300 301 // srcParam must keep track of the array indices to build the source parameter and/or302 // array list initializer303 srcParam.addArrayIndex( indexVar, array->dimension );304 305 // for stmt's body, eventually containing call306 ast::CompoundStmt * body = new ast::CompoundStmt{ loc };307 ast::ptr< ast::Stmt > listInit = genCall(308 srcParam, dstIndex, loc, fname, std::back_inserter( body->kids ), array->base, addCast,309 forward );310 311 // block containing the stmt and index variable312 ast::CompoundStmt * block = new ast::CompoundStmt{ loc };313 block->push_back( new ast::DeclStmt{ loc, index } );314 if ( listInit ) { block->push_back( listInit ); }315 block->push_back( new ast::ForStmt{ loc, {}, cond, inc, body } );316 317 *out++ = block;318 }319 320 175 template< typename OutputIterator > 321 176 Statement * genCall( InitTweak::InitExpander_old & srcParam, Expression * dstParam, const std::string & fname, OutputIterator out, Type * type, Type * addCast, bool forward ) { … … 325 180 } else { 326 181 return genScalarCall( srcParam, dstParam, fname, out, type, addCast ); 327 }328 }329 330 template< typename OutIter >331 ast::ptr< ast::Stmt > genCall(332 InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,333 const CodeLocation & loc, const std::string & fname, OutIter && out,334 const ast::Type * type, const ast::Type * addCast, LoopDirection forward335 ) {336 if ( auto at = dynamic_cast< const ast::ArrayType * >( type ) ) {337 genArrayCall(338 srcParam, dstParam, loc, fname, std::forward< OutIter >(out), at, addCast,339 forward );340 return {};341 } else {342 return genScalarCall(343 srcParam, dstParam, loc, fname, std::forward< OutIter >( out ), type, addCast );344 182 } 345 183 } … … 379 217 } 380 218 381 static inline ast::ptr< ast::Stmt > genImplicitCall(382 InitTweak::InitExpander_new & srcParam, const ast::Expr * dstParam,383 const CodeLocation & loc, const std::string & fname, const ast::ObjectDecl * obj,384 LoopDirection forward = LoopForward385 ) {386 // unnamed bit fields are not copied as they cannot be accessed387 if ( isUnnamedBitfield( obj ) ) return {};388 389 ast::ptr< ast::Type > addCast;390 if ( (fname == "?{}" || fname == "^?{}") && ( ! obj || ( obj && ! obj->bitfieldWidth ) ) ) {391 assert( dstParam->result );392 addCast = dstParam->result;393 }394 395 std::vector< ast::ptr< ast::Stmt > > stmts;396 genCall(397 srcParam, dstParam, loc, fname, back_inserter( stmts ), obj->type, addCast, forward );398 399 if ( stmts.empty() ) {400 return {};401 } else if ( stmts.size() == 1 ) {402 const ast::Stmt * callStmt = stmts.front();403 if ( addCast ) {404 // implicitly generated ctor/dtor calls should be wrapped so that later passes are405 // aware they were generated.406 callStmt = new ast::ImplicitCtorDtorStmt{ callStmt->location, callStmt };407 }408 return callStmt;409 } else {410 assert( false );411 return {};412 }413 }414 219 } // namespace SymTab 415 220 -
src/SymTab/FixFunction.cc
r34b4268 r24d6572 21 21 #include "AST/Pass.hpp" 22 22 #include "AST/Type.hpp" 23 #include "Common/utility.h" // for maybeClone,copy23 #include "Common/utility.h" // for copy 24 24 #include "SynTree/Declaration.h" // for FunctionDecl, ObjectDecl, Declarati... 25 25 #include "SynTree/Expression.h" // for Expression -
src/SymTab/Indexer.cc
r34b4268 r24d6572 31 31 #include "InitTweak/InitTweak.h" // for isConstructor, isCopyFunction, isC... 32 32 #include "Mangler.h" // for Mangler 33 #include "ResolvExpr/typeops.h" // for typesCompatible 33 #include "ResolvExpr/AlternativeFinder.h" // for referenceToRvalueConversion 34 #include "ResolvExpr/Unify.h" // for typesCompatible 34 35 #include "SynTree/LinkageSpec.h" // for isMangled, isOverridable, Spec 35 36 #include "SynTree/Constant.h" // for Constant -
src/SymTab/Mangler.cc
r34b4268 r24d6572 24 24 #include "CodeGen/OperatorTable.h" // for OperatorInfo, operatorLookup 25 25 #include "Common/PassVisitor.h" 26 #include "Common/ToString.hpp" // for toCString 26 27 #include "Common/SemanticError.h" // for SemanticError 27 #include "Common/utility.h" // for toString28 28 #include "ResolvExpr/TypeEnvironment.h" // for TypeEnvironment 29 29 #include "SynTree/LinkageSpec.h" // for Spec, isOverridable, AutoGen, Int... … … 439 439 private: 440 440 void mangleDecl( const ast::DeclWithType *declaration ); 441 void mangleRef( const ast::BaseInstType *refType, std::stringprefix );441 void mangleRef( const ast::BaseInstType *refType, const std::string & prefix ); 442 442 443 443 void printQualifiers( const ast::Type *type ); … … 535 535 } 536 536 537 __attribute__((unused))538 inline std::vector< ast::ptr< ast::Type > > getTypes( const std::vector< ast::ptr< ast::DeclWithType > > & decls ) {539 std::vector< ast::ptr< ast::Type > > ret;540 std::transform( decls.begin(), decls.end(), std::back_inserter( ret ),541 std::mem_fun( &ast::DeclWithType::get_type ) );542 return ret;543 }544 545 537 void Mangler_new::postvisit( const ast::FunctionType * functionType ) { 546 538 printQualifiers( functionType ); … … 558 550 } 559 551 560 void Mangler_new::mangleRef( const ast::BaseInstType * refType, std::string prefix ) { 552 void Mangler_new::mangleRef( 553 const ast::BaseInstType * refType, const std::string & prefix ) { 561 554 printQualifiers( refType ); 562 555 563 556 mangleName += prefix + std::to_string( refType->name.length() ) + refType->name; 564 557 565 if ( mangleGenericParams ) { 566 if ( ! refType->params.empty() ) { 567 mangleName += "_"; 568 for ( const ast::Expr * param : refType->params ) { 569 auto paramType = dynamic_cast< const ast::TypeExpr * >( param ); 570 assertf(paramType, "Aggregate parameters should be type expressions: %s", toCString(param)); 571 maybeAccept( paramType->type.get(), *visitor ); 572 } 573 mangleName += "_"; 558 if ( mangleGenericParams && ! refType->params.empty() ) { 559 mangleName += "_"; 560 for ( const ast::Expr * param : refType->params ) { 561 auto paramType = dynamic_cast< const ast::TypeExpr * >( param ); 562 assertf(paramType, "Aggregate parameters should be type expressions: %s", toCString(param)); 563 maybeAccept( paramType->type.get(), *visitor ); 574 564 } 565 mangleName += "_"; 575 566 } 576 567 } … … 656 647 } 657 648 649 // For debugging: 658 650 __attribute__((unused)) void printVarMap( const std::map< std::string, std::pair< int, int > > &varMap, std::ostream &os ) { 659 651 for ( std::map< std::string, std::pair< int, int > >::const_iterator i = varMap.begin(); i != varMap.end(); ++i ) { … … 665 657 // skip if not including qualifiers 666 658 if ( typeMode ) return; 667 if ( auto ptype = dynamic_cast< const ast::FunctionType * >(type) ) { 668 if ( ! ptype->forall.empty() ) { 669 std::list< std::string > assertionNames; 670 int dcount = 0, fcount = 0, vcount = 0, acount = 0; 671 mangleName += Encoding::forall; 672 for ( auto & decl : ptype->forall ) { 673 switch ( decl->kind ) { 674 case ast::TypeDecl::Kind::Dtype: 675 dcount++; 676 break; 677 case ast::TypeDecl::Kind::Ftype: 678 fcount++; 679 break; 680 case ast::TypeDecl::Kind::Ttype: 681 vcount++; 682 break; 683 default: 684 assertf( false, "unimplemented kind for type variable %s", SymTab::Mangler::Encoding::typeVariables[decl->kind].c_str() ); 685 } // switch 686 varNums[ decl->name ] = std::make_pair( nextVarNum, (int)decl->kind ); 687 } // for 688 for ( auto & assert : ptype->assertions ) { 689 assertionNames.push_back( ast::Pass<Mangler_new>::read( 690 assert->var.get(), 691 mangleOverridable, typeMode, mangleGenericParams, nextVarNum, varNums ) ); 692 acount++; 693 } // for 694 mangleName += std::to_string( dcount ) + "_" + std::to_string( fcount ) + "_" + std::to_string( vcount ) + "_" + std::to_string( acount ) + "_"; 695 for(const auto & a : assertionNames) mangleName += a; 696 // std::copy( assertionNames.begin(), assertionNames.end(), std::ostream_iterator< std::string >( mangleName, "" ) ); 697 mangleName += "_"; 698 } // if 659 auto funcType = dynamic_cast<const ast::FunctionType *>( type ); 660 if ( funcType && !funcType->forall.empty() ) { 661 std::list< std::string > assertionNames; 662 int dcount = 0, fcount = 0, vcount = 0, acount = 0; 663 mangleName += Encoding::forall; 664 for ( auto & decl : funcType->forall ) { 665 switch ( decl->kind ) { 666 case ast::TypeDecl::Dtype: 667 dcount++; 668 break; 669 case ast::TypeDecl::Ftype: 670 fcount++; 671 break; 672 case ast::TypeDecl::Ttype: 673 vcount++; 674 break; 675 default: 676 assertf( false, "unimplemented kind for type variable %s", SymTab::Mangler::Encoding::typeVariables[decl->kind].c_str() ); 677 } // switch 678 varNums[ decl->name ] = std::make_pair( nextVarNum, (int)decl->kind ); 679 } // for 680 for ( auto & assert : funcType->assertions ) { 681 assertionNames.push_back( ast::Pass<Mangler_new>::read( 682 assert->var.get(), 683 mangleOverridable, typeMode, mangleGenericParams, nextVarNum, varNums ) ); 684 acount++; 685 } // for 686 mangleName += std::to_string( dcount ) + "_" + std::to_string( fcount ) + "_" + std::to_string( vcount ) + "_" + std::to_string( acount ) + "_"; 687 for ( const auto & a : assertionNames ) mangleName += a; 688 mangleName += "_"; 699 689 } // if 700 690 if ( ! inFunctionType ) { -
src/SymTab/Validate.cc
r34b4268 r24d6572 55 55 #include "Common/ScopedMap.h" // for ScopedMap 56 56 #include "Common/SemanticError.h" // for SemanticError 57 #include "Common/ToString.hpp" // for toCString 57 58 #include "Common/UniqueName.h" // for UniqueName 58 #include "Common/utility.h" // for operator+,cloneAll, deleteAll59 #include "Common/utility.h" // for cloneAll, deleteAll 59 60 #include "CompilationState.h" // skip some passes in new-ast build 60 61 #include "Concurrency/Keywords.h" // for applyKeywords … … 63 64 #include "InitTweak/GenInit.h" // for fixReturnStatements 64 65 #include "InitTweak/InitTweak.h" // for isCtorDtorAssign 65 #include "ResolvExpr/typeops.h" // for typesCompatible 66 #include "ResolvExpr/typeops.h" // for extractResultType 67 #include "ResolvExpr/Unify.h" // for typesCompatible 66 68 #include "ResolvExpr/Resolver.h" // for findSingleExpression 67 69 #include "ResolvExpr/ResolveTypeof.h" // for resolveTypeof … … 862 864 863 865 void ReplaceTypedef::premutate( TypeDecl * typeDecl ) { 864 TypedefMap::iterator i = typedefNames.find( typeDecl->name ); 865 if ( i != typedefNames.end() ) { 866 typedefNames.erase( i ) ; 867 } // if 868 866 typedefNames.erase( typeDecl->name ); 869 867 typedeclNames.insert( typeDecl->name, typeDecl ); 870 868 } -
src/SymTab/ValidateType.cc
r34b4268 r24d6572 18 18 #include "CodeGen/OperatorTable.h" 19 19 #include "Common/PassVisitor.h" 20 #include "Common/ToString.hpp" 20 21 #include "SymTab/FixFunction.h" 21 22 #include "SynTree/Declaration.h" -
src/SymTab/module.mk
r34b4268 r24d6572 20 20 SymTab/FixFunction.cc \ 21 21 SymTab/FixFunction.h \ 22 SymTab/GenImplicitCall.cpp \ 23 SymTab/GenImplicitCall.hpp \ 22 24 SymTab/Indexer.cc \ 23 25 SymTab/Indexer.h \ -
src/SynTree/AggregateDecl.cc
r34b4268 r24d6572 19 19 20 20 #include "Attribute.h" // for Attribute 21 #include "Common/Eval.h" // for eval 21 22 #include "Common/utility.h" // for printAll, cloneAll, deleteAll 22 23 #include "Declaration.h" // for AggregateDecl, TypeDecl, Declaration -
src/SynTree/ApplicationExpr.cc
r34b4268 r24d6572 5 5 // file "LICENCE" distributed with Cforall. 6 6 // 7 // ApplicationExpr.cc .cc--7 // ApplicationExpr.cc -- 8 8 // 9 9 // Author : Richard C. Bilson … … 26 26 #include "Expression.h" // for ParamEntry, ApplicationExpr, Expression 27 27 #include "InitTweak/InitTweak.h" // for getFunction 28 #include "ResolvExpr/ typeops.h"// for extractResultType28 #include "ResolvExpr/Unify.h" // for extractResultType 29 29 #include "Type.h" // for Type, PointerType, FunctionType 30 30 -
src/SynTree/BasicType.cc
r34b4268 r24d6572 29 29 } 30 30 31 bool BasicType::isWholeNumber() const {32 return kind == Bool ||33 kind ==Char ||34 kind == SignedChar ||35 kind == UnsignedChar ||36 kind == ShortSignedInt ||37 kind == ShortUnsignedInt ||38 kind == SignedInt ||39 kind == UnsignedInt ||40 kind == LongSignedInt ||41 kind == LongUnsignedInt ||42 kind == LongLongSignedInt ||43 kind ==LongLongUnsignedInt ||44 kind == SignedInt128 ||45 kind == UnsignedInt128;46 }47 48 31 bool BasicType::isInteger() const { 49 32 return kind <= UnsignedInt128; -
src/SynTree/FunctionDecl.cc
r34b4268 r24d6572 87 87 } // if 88 88 89 if ( !withExprs.empty() ) { 90 os << indent << "... with clause" << std::endl; 91 os << indent + 1; 92 printAll( withExprs, os, indent + 1 ); 93 } 94 89 95 if ( statements ) { 90 96 os << indent << "... with body" << endl << indent+1; -
src/SynTree/Type.cc
r34b4268 r24d6572 16 16 17 17 #include "Attribute.h" // for Attribute 18 #include "Common/ToString.hpp" // for toCString 18 19 #include "Common/utility.h" // for cloneAll, deleteAll, printAll 19 20 #include "InitTweak/InitTweak.h" // for getPointerBase … … 105 106 int Type::referenceDepth() const { return 0; } 106 107 108 AggregateDecl * Type::getAggr() const { 109 assertf( false, "Non-aggregate type: %s", toCString( this ) ); 110 } 111 107 112 TypeSubstitution Type::genericSubstitution() const { assertf( false, "Non-aggregate type: %s", toCString( this ) ); } 108 113 -
src/SynTree/Type.h
r34b4268 r24d6572 9 9 // Author : Richard C. Bilson 10 10 // Created On : Mon May 18 07:44:20 2015 11 // Last Modified By : Andrew Beach12 // Last Modified On : Wed Jul 14 15:40:00 202113 // Update Count : 17 111 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Sun Feb 19 22:37:10 2023 13 // Update Count : 176 14 14 // 15 15 … … 23 23 24 24 #include "BaseSyntaxNode.h" // for BaseSyntaxNode 25 #include "Common/ utility.h"// for operator+25 #include "Common/Iterate.hpp"// for operator+ 26 26 #include "Mutator.h" // for Mutator 27 27 #include "SynTree.h" // for AST nodes … … 124 124 bool operator!=( Qualifiers other ) const { return (val & Mask) != (other.val & Mask); } 125 125 bool operator<=( Qualifiers other ) const { 126 return is_const <= other.is_const // Any non-const converts to const without cost127 && is_volatile <= other.is_volatile //Any non-volatile converts to volatile without cost128 && is_mutex >= other.is_mutex //Any mutex converts to non-mutex without cost129 && is_atomic == other.is_atomic; //No conversion from atomic to non atomic is free126 return is_const <= other.is_const // Any non-const converts to const without cost 127 && is_volatile <= other.is_volatile // Any non-volatile converts to volatile without cost 128 && is_mutex >= other.is_mutex // Any mutex converts to non-mutex without cost 129 && is_atomic == other.is_atomic; // No conversion from atomic to non atomic is free 130 130 } 131 131 bool operator<( Qualifiers other ) const { return *this != other && *this <= other; } … … 185 185 virtual bool isComplete() const { return true; } 186 186 187 virtual AggregateDecl * getAggr() const { assertf( false, "Non-aggregate type: %s", toCString( this ) ); }187 virtual AggregateDecl * getAggr() const; 188 188 189 189 virtual TypeSubstitution genericSubstitution() const; 190 190 191 virtual Type * clone() const = 0;191 virtual Type * clone() const = 0; 192 192 virtual void accept( Visitor & v ) = 0; 193 193 virtual void accept( Visitor & v ) const = 0; 194 virtual Type * acceptMutator( Mutator & m ) = 0;194 virtual Type * acceptMutator( Mutator & m ) = 0; 195 195 virtual void print( std::ostream & os, Indenter indent = {} ) const; 196 196 }; … … 207 207 virtual bool isComplete() const override { return false; } 208 208 209 virtual VoidType * clone() const override { return new VoidType( *this ); }210 virtual void accept( Visitor & v ) override { v.visit( this ); } 211 virtual void accept( Visitor & v ) const override { v.visit( this ); } 212 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }209 virtual VoidType * clone() const override { return new VoidType( *this ); } 210 virtual void accept( Visitor & v ) override { v.visit( this ); } 211 virtual void accept( Visitor & v ) const override { v.visit( this ); } 212 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 213 213 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 214 214 }; … … 259 259 // GENERATED END 260 260 261 static const char * typeNames[];// string names for basic types, MUST MATCH with Kind261 static const char * typeNames[]; // string names for basic types, MUST MATCH with Kind 262 262 263 263 BasicType( const Type::Qualifiers & tq, Kind bt, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); … … 266 266 void set_kind( Kind newValue ) { kind = newValue; } 267 267 268 virtual BasicType *clone() const override { return new BasicType( *this ); } 269 virtual void accept( Visitor & v ) override { v.visit( this ); } 270 virtual void accept( Visitor & v ) const override { v.visit( this ); } 271 virtual Type *acceptMutator( Mutator & m ) override { return m.mutate( this ); } 272 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 273 bool isWholeNumber() const; 268 virtual BasicType * clone() const override { return new BasicType( *this ); } 269 virtual void accept( Visitor & v ) override { v.visit( this ); } 270 virtual void accept( Visitor & v ) const override { v.visit( this ); } 271 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 272 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 274 273 bool isInteger() const; 275 274 }; … … 280 279 281 280 // In C99, pointer types can be qualified in many ways e.g., int f( int a[ static 3 ] ) 282 Expression * dimension;281 Expression * dimension; 283 282 bool isVarLen; 284 283 bool isStatic; 285 284 286 PointerType( const Type::Qualifiers & tq, Type * base, const std::list< Attribute * > & attributes = std::list< Attribute * >() );287 PointerType( const Type::Qualifiers & tq, Type * base, Expression *dimension, bool isVarLen, bool isStatic, const std::list< Attribute * > & attributes = std::list< Attribute * >() );285 PointerType( const Type::Qualifiers & tq, Type * base, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 286 PointerType( const Type::Qualifiers & tq, Type * base, Expression * dimension, bool isVarLen, bool isStatic, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 288 287 PointerType( const PointerType& ); 289 288 virtual ~PointerType(); 290 289 291 Type * get_base() { return base; }292 void set_base( Type * newValue ) { base = newValue; }293 Expression * get_dimension() { return dimension; }294 void set_dimension( Expression * newValue ) { dimension = newValue; }290 Type * get_base() { return base; } 291 void set_base( Type * newValue ) { base = newValue; } 292 Expression * get_dimension() { return dimension; } 293 void set_dimension( Expression * newValue ) { dimension = newValue; } 295 294 bool get_isVarLen() { return isVarLen; } 296 295 void set_isVarLen( bool newValue ) { isVarLen = newValue; } … … 302 301 virtual bool isComplete() const override { return ! isVarLen; } 303 302 304 virtual PointerType * clone() const override { return new PointerType( *this ); }305 virtual void accept( Visitor & v ) override { v.visit( this ); } 306 virtual void accept( Visitor & v ) const override { v.visit( this ); } 307 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }303 virtual PointerType * clone() const override { return new PointerType( * this ); } 304 virtual void accept( Visitor & v ) override { v.visit( this ); } 305 virtual void accept( Visitor & v ) const override { v.visit( this ); } 306 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 308 307 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 309 308 }; … … 311 310 class ArrayType : public Type { 312 311 public: 313 Type * base;314 Expression * dimension;312 Type * base; 313 Expression * dimension; 315 314 bool isVarLen; 316 315 bool isStatic; 317 316 318 ArrayType( const Type::Qualifiers & tq, Type * base, Expression *dimension, bool isVarLen, bool isStatic, const std::list< Attribute * > & attributes = std::list< Attribute * >() );317 ArrayType( const Type::Qualifiers & tq, Type * base, Expression * dimension, bool isVarLen, bool isStatic, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 319 318 ArrayType( const ArrayType& ); 320 319 virtual ~ArrayType(); 321 320 322 Type * get_base() { return base; }323 void set_base( Type * newValue ) { base = newValue; }324 Expression * get_dimension() { return dimension; }325 void set_dimension( Expression * newValue ) { dimension = newValue; }321 Type * get_base() { return base; } 322 void set_base( Type * newValue ) { base = newValue; } 323 Expression * get_dimension() { return dimension; } 324 void set_dimension( Expression * newValue ) { dimension = newValue; } 326 325 bool get_isVarLen() { return isVarLen; } 327 326 void set_isVarLen( bool newValue ) { isVarLen = newValue; } … … 334 333 virtual bool isComplete() const override { return dimension || isVarLen; } 335 334 336 virtual ArrayType * clone() const override { return new ArrayType( *this ); }337 virtual void accept( Visitor & v ) override { v.visit( this ); } 338 virtual void accept( Visitor & v ) const override { v.visit( this ); } 339 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }335 virtual ArrayType * clone() const override { return new ArrayType( *this ); } 336 virtual void accept( Visitor & v ) override { v.visit( this ); } 337 virtual void accept( Visitor & v ) const override { v.visit( this ); } 338 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 340 339 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 341 340 }; … … 349 348 virtual ~QualifiedType(); 350 349 351 virtual QualifiedType * clone() const override { return new QualifiedType( *this ); }352 virtual void accept( Visitor & v ) override { v.visit( this ); } 353 virtual void accept( Visitor & v ) const override { v.visit( this ); } 354 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }350 virtual QualifiedType * clone() const override { return new QualifiedType( *this ); } 351 virtual void accept( Visitor & v ) override { v.visit( this ); } 352 virtual void accept( Visitor & v ) const override { v.visit( this ); } 353 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 355 354 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 356 355 }; … … 358 357 class ReferenceType : public Type { 359 358 public: 360 Type * base;361 362 ReferenceType( const Type::Qualifiers & tq, Type * base, const std::list< Attribute * > & attributes = std::list< Attribute * >() );359 Type * base; 360 361 ReferenceType( const Type::Qualifiers & tq, Type * base, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 363 362 ReferenceType( const ReferenceType & ); 364 363 virtual ~ReferenceType(); 365 364 366 Type * get_base() { return base; }367 void set_base( Type * newValue ) { base = newValue; }365 Type * get_base() { return base; } 366 void set_base( Type * newValue ) { base = newValue; } 368 367 369 368 virtual int referenceDepth() const override; … … 376 375 virtual TypeSubstitution genericSubstitution() const override; 377 376 378 virtual ReferenceType * clone() const override { return new ReferenceType( *this ); }379 virtual void accept( Visitor & v ) override { v.visit( this ); } 380 virtual void accept( Visitor & v ) const override { v.visit( this ); } 381 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }377 virtual ReferenceType * clone() const override { return new ReferenceType( *this ); } 378 virtual void accept( Visitor & v ) override { v.visit( this ); } 379 virtual void accept( Visitor & v ) const override { v.visit( this ); } 380 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 382 381 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 383 382 }; … … 406 405 bool isUnprototyped() const { return isVarArgs && parameters.size() == 0; } 407 406 408 virtual FunctionType * clone() const override { return new FunctionType( *this ); }409 virtual void accept( Visitor & v ) override { v.visit( this ); } 410 virtual void accept( Visitor & v ) const override { v.visit( this ); } 411 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }407 virtual FunctionType * clone() const override { return new FunctionType( *this ); } 408 virtual void accept( Visitor & v ) override { v.visit( this ); } 409 virtual void accept( Visitor & v ) const override { v.visit( this ); } 410 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 412 411 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 413 412 }; … … 415 414 class ReferenceToType : public Type { 416 415 public: 417 std::list< Expression * > parameters;416 std::list< Expression * > parameters; 418 417 std::string name; 419 418 bool hoistType; … … 429 428 void set_hoistType( bool newValue ) { hoistType = newValue; } 430 429 431 virtual ReferenceToType * clone() const override = 0;430 virtual ReferenceToType * clone() const override = 0; 432 431 virtual void accept( Visitor & v ) override = 0; 433 virtual Type * acceptMutator( Mutator & m ) override = 0;432 virtual Type * acceptMutator( Mutator & m ) override = 0; 434 433 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 435 434 … … 444 443 // this decl is not "owned" by the struct inst; it is merely a pointer to elsewhere in the tree, 445 444 // where the structure used in this type is actually defined 446 StructDecl * baseStruct;445 StructDecl * baseStruct; 447 446 448 447 StructInstType( const Type::Qualifiers & tq, const std::string & name, const std::list< Attribute * > & attributes = std::list< Attribute * >() ) : Parent( tq, name, attributes ), baseStruct( 0 ) {} … … 450 449 StructInstType( const StructInstType & other ) : Parent( other ), baseStruct( other.baseStruct ) {} 451 450 452 StructDecl * get_baseStruct() const { return baseStruct; }453 void set_baseStruct( StructDecl * newValue ) { baseStruct = newValue; }451 StructDecl * get_baseStruct() const { return baseStruct; } 452 void set_baseStruct( StructDecl * newValue ) { baseStruct = newValue; } 454 453 455 454 /// Accesses generic parameters of base struct (NULL if none such) … … 467 466 void lookup( const std::string & name, std::list< Declaration* > & foundDecls ) const override; 468 467 469 virtual StructInstType * clone() const override { return new StructInstType( *this ); }470 virtual void accept( Visitor & v ) override { v.visit( this ); } 471 virtual void accept( Visitor & v ) const override { v.visit( this ); } 472 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }468 virtual StructInstType * clone() const override { return new StructInstType( *this ); } 469 virtual void accept( Visitor & v ) override { v.visit( this ); } 470 virtual void accept( Visitor & v ) const override { v.visit( this ); } 471 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 473 472 474 473 virtual void print( std::ostream & os, Indenter indent = {} ) const override; … … 482 481 // this decl is not "owned" by the union inst; it is merely a pointer to elsewhere in the tree, 483 482 // where the union used in this type is actually defined 484 UnionDecl * baseUnion;483 UnionDecl * baseUnion; 485 484 486 485 UnionInstType( const Type::Qualifiers & tq, const std::string & name, const std::list< Attribute * > & attributes = std::list< Attribute * >() ) : Parent( tq, name, attributes ), baseUnion( 0 ) {} … … 488 487 UnionInstType( const UnionInstType & other ) : Parent( other ), baseUnion( other.baseUnion ) {} 489 488 490 UnionDecl * get_baseUnion() const { return baseUnion; }489 UnionDecl * get_baseUnion() const { return baseUnion; } 491 490 void set_baseUnion( UnionDecl * newValue ) { baseUnion = newValue; } 492 491 … … 505 504 void lookup( const std::string & name, std::list< Declaration* > & foundDecls ) const override; 506 505 507 virtual UnionInstType * clone() const override { return new UnionInstType( *this ); }508 virtual void accept( Visitor & v ) override { v.visit( this ); } 509 virtual void accept( Visitor & v ) const override { v.visit( this ); } 510 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }506 virtual UnionInstType * clone() const override { return new UnionInstType( *this ); } 507 virtual void accept( Visitor & v ) override { v.visit( this ); } 508 virtual void accept( Visitor & v ) const override { v.visit( this ); } 509 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 511 510 512 511 virtual void print( std::ostream & os, Indenter indent = {} ) const override; … … 520 519 // this decl is not "owned" by the enum inst; it is merely a pointer to elsewhere in the tree, 521 520 // where the enum used in this type is actually defined 522 EnumDecl * baseEnum = nullptr;521 EnumDecl * baseEnum = nullptr; 523 522 524 523 EnumInstType( const Type::Qualifiers & tq, const std::string & name, const std::list< Attribute * > & attributes = std::list< Attribute * >() ) : Parent( tq, name, attributes ) {} … … 526 525 EnumInstType( const EnumInstType & other ) : Parent( other ), baseEnum( other.baseEnum ) {} 527 526 528 EnumDecl * get_baseEnum() const { return baseEnum; }529 void set_baseEnum( EnumDecl * newValue ) { baseEnum = newValue; }527 EnumDecl * get_baseEnum() const { return baseEnum; } 528 void set_baseEnum( EnumDecl * newValue ) { baseEnum = newValue; } 530 529 531 530 virtual bool isComplete() const override; … … 533 532 virtual AggregateDecl * getAggr() const override; 534 533 535 virtual EnumInstType * clone() const override { return new EnumInstType( *this ); }536 virtual void accept( Visitor & v ) override { v.visit( this ); } 537 virtual void accept( Visitor & v ) const override { v.visit( this ); } 538 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }534 virtual EnumInstType * clone() const override { return new EnumInstType( *this ); } 535 virtual void accept( Visitor & v ) override { v.visit( this ); } 536 virtual void accept( Visitor & v ) const override { v.visit( this ); } 537 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 539 538 540 539 virtual void print( std::ostream & os, Indenter indent = {} ) const override; … … 557 556 virtual bool isComplete() const override; 558 557 559 virtual TraitInstType * clone() const override { return new TraitInstType( *this ); }560 virtual void accept( Visitor & v ) override { v.visit( this ); } 561 virtual void accept( Visitor & v ) const override { v.visit( this ); } 562 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }558 virtual TraitInstType * clone() const override { return new TraitInstType( *this ); } 559 virtual void accept( Visitor & v ) override { v.visit( this ); } 560 virtual void accept( Visitor & v ) const override { v.visit( this ); } 561 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 563 562 private: 564 563 virtual std::string typeString() const override; … … 570 569 // this decl is not "owned" by the type inst; it is merely a pointer to elsewhere in the tree, 571 570 // where the type used here is actually defined 572 TypeDecl * baseType;571 TypeDecl * baseType; 573 572 bool isFtype; 574 573 575 TypeInstType( const Type::Qualifiers & tq, const std::string & name, TypeDecl * baseType, const std::list< Attribute * > & attributes = std::list< Attribute * >() );574 TypeInstType( const Type::Qualifiers & tq, const std::string & name, TypeDecl * baseType, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 576 575 TypeInstType( const Type::Qualifiers & tq, const std::string & name, bool isFtype, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 577 576 TypeInstType( const TypeInstType & other ); 578 577 ~TypeInstType(); 579 578 580 TypeDecl * get_baseType() const { return baseType; }581 void set_baseType( TypeDecl * newValue );579 TypeDecl * get_baseType() const { return baseType; } 580 void set_baseType( TypeDecl * newValue ); 582 581 bool get_isFtype() const { return isFtype; } 583 582 void set_isFtype( bool newValue ) { isFtype = newValue; } … … 585 584 virtual bool isComplete() const override; 586 585 587 virtual TypeInstType * clone() const override { return new TypeInstType( *this ); }588 virtual void accept( Visitor & v ) override { v.visit( this ); } 589 virtual void accept( Visitor & v ) const override { v.visit( this ); } 590 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }586 virtual TypeInstType * clone() const override { return new TypeInstType( *this ); } 587 virtual void accept( Visitor & v ) override { v.visit( this ); } 588 virtual void accept( Visitor & v ) const override { v.visit( this ); } 589 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 591 590 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 592 591 private: … … 623 622 // virtual bool isComplete() const override { return true; } // xxx - not sure if this is right, might need to recursively check complete-ness 624 623 625 virtual TupleType * clone() const override { return new TupleType( *this ); }626 virtual void accept( Visitor & v ) override { v.visit( this ); } 627 virtual void accept( Visitor & v ) const override { v.visit( this ); } 628 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }624 virtual TupleType * clone() const override { return new TupleType( *this ); } 625 virtual void accept( Visitor & v ) override { v.visit( this ); } 626 virtual void accept( Visitor & v ) const override { v.visit( this ); } 627 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 629 628 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 630 629 }; … … 632 631 class TypeofType : public Type { 633 632 public: 634 Expression * expr;///< expression to take the type of635 bool is_basetypeof; 636 637 TypeofType( const Type::Qualifiers & tq, Expression * expr, const std::list< Attribute * > & attributes = std::list< Attribute * >() );638 TypeofType( const Type::Qualifiers & tq, Expression * expr, bool is_basetypeof,633 Expression * expr; ///< expression to take the type of 634 bool is_basetypeof; ///< true iff is basetypeof type 635 636 TypeofType( const Type::Qualifiers & tq, Expression * expr, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 637 TypeofType( const Type::Qualifiers & tq, Expression * expr, bool is_basetypeof, 639 638 const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 640 639 TypeofType( const TypeofType& ); 641 640 virtual ~TypeofType(); 642 641 643 Expression * get_expr() const { return expr; }644 void set_expr( Expression * newValue ) { expr = newValue; }642 Expression * get_expr() const { return expr; } 643 void set_expr( Expression * newValue ) { expr = newValue; } 645 644 646 645 virtual bool isComplete() const override { assert( false ); return false; } 647 646 648 virtual TypeofType * clone() const override { return new TypeofType( *this ); }649 virtual void accept( Visitor & v ) override { v.visit( this ); } 650 virtual void accept( Visitor & v ) const override { v.visit( this ); } 651 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }647 virtual TypeofType * clone() const override { return new TypeofType( *this ); } 648 virtual void accept( Visitor & v ) override { v.visit( this ); } 649 virtual void accept( Visitor & v ) const override { v.visit( this ); } 650 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 652 651 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 653 652 }; … … 655 654 class VTableType : public Type { 656 655 public: 657 Type * base;658 659 VTableType( const Type::Qualifiers & tq, Type * base,656 Type * base; 657 658 VTableType( const Type::Qualifiers & tq, Type * base, 660 659 const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 661 660 VTableType( const VTableType & ); 662 661 virtual ~VTableType(); 663 662 664 Type * get_base() { return base; }665 void set_base( Type * newValue ) { base = newValue; }666 667 virtual VTableType * clone() const override { return new VTableType( *this ); }668 virtual void accept( Visitor & v ) override { v.visit( this ); } 669 virtual void accept( Visitor & v ) const override { v.visit( this ); } 670 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }663 Type * get_base() { return base; } 664 void set_base( Type * newValue ) { base = newValue; } 665 666 virtual VTableType * clone() const override { return new VTableType( *this ); } 667 virtual void accept( Visitor & v ) override { v.visit( this ); } 668 virtual void accept( Visitor & v ) const override { v.visit( this ); } 669 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 671 670 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 672 671 }; … … 675 674 public: 676 675 std::string name; 677 Expression * expr;678 Type * type;676 Expression * expr; 677 Type * type; 679 678 bool isType; 680 679 681 AttrType( const Type::Qualifiers & tq, const std::string & name, Expression * expr, const std::list< Attribute * > & attributes = std::list< Attribute * >() );682 AttrType( const Type::Qualifiers & tq, const std::string & name, Type * type, const std::list< Attribute * > & attributes = std::list< Attribute * >() );680 AttrType( const Type::Qualifiers & tq, const std::string & name, Expression * expr, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 681 AttrType( const Type::Qualifiers & tq, const std::string & name, Type * type, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 683 682 AttrType( const AttrType& ); 684 683 virtual ~AttrType(); … … 686 685 const std::string & get_name() const { return name; } 687 686 void set_name( const std::string & newValue ) { name = newValue; } 688 Expression * get_expr() const { return expr; }689 void set_expr( Expression * newValue ) { expr = newValue; }690 Type * get_type() const { return type; }691 void set_type( Type * newValue ) { type = newValue; }687 Expression * get_expr() const { return expr; } 688 void set_expr( Expression * newValue ) { expr = newValue; } 689 Type * get_type() const { return type; } 690 void set_type( Type * newValue ) { type = newValue; } 692 691 bool get_isType() const { return isType; } 693 692 void set_isType( bool newValue ) { isType = newValue; } … … 695 694 virtual bool isComplete() const override { assert( false ); } // xxx - not sure what to do here 696 695 697 virtual AttrType * clone() const override { return new AttrType( *this ); }698 virtual void accept( Visitor & v ) override { v.visit( this ); } 699 virtual void accept( Visitor & v ) const override { v.visit( this ); } 700 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }696 virtual AttrType * clone() const override { return new AttrType( *this ); } 697 virtual void accept( Visitor & v ) override { v.visit( this ); } 698 virtual void accept( Visitor & v ) const override { v.visit( this ); } 699 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 701 700 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 702 701 }; … … 710 709 virtual bool isComplete() const override{ return true; } // xxx - is this right? 711 710 712 virtual VarArgsType * clone() const override { return new VarArgsType( *this ); }713 virtual void accept( Visitor & v ) override { v.visit( this ); } 714 virtual void accept( Visitor & v ) const override { v.visit( this ); } 715 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }711 virtual VarArgsType * clone() const override { return new VarArgsType( *this ); } 712 virtual void accept( Visitor & v ) override { v.visit( this ); } 713 virtual void accept( Visitor & v ) const override { v.visit( this ); } 714 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 716 715 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 717 716 }; … … 723 722 ZeroType( Type::Qualifiers tq, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 724 723 725 virtual ZeroType * clone() const override { return new ZeroType( *this ); }726 virtual void accept( Visitor & v ) override { v.visit( this ); } 727 virtual void accept( Visitor & v ) const override { v.visit( this ); } 728 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }724 virtual ZeroType * clone() const override { return new ZeroType( *this ); } 725 virtual void accept( Visitor & v ) override { v.visit( this ); } 726 virtual void accept( Visitor & v ) const override { v.visit( this ); } 727 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 729 728 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 730 729 }; … … 736 735 OneType( Type::Qualifiers tq, const std::list< Attribute * > & attributes = std::list< Attribute * >() ); 737 736 738 virtual OneType * clone() const override { return new OneType( *this ); }739 virtual void accept( Visitor & v ) override { v.visit( this ); } 740 virtual void accept( Visitor & v ) const override { v.visit( this ); } 741 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }737 virtual OneType * clone() const override { return new OneType( *this ); } 738 virtual void accept( Visitor & v ) override { v.visit( this ); } 739 virtual void accept( Visitor & v ) const override { v.visit( this ); } 740 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 742 741 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 743 742 }; … … 747 746 GlobalScopeType(); 748 747 749 virtual GlobalScopeType * clone() const override { return new GlobalScopeType( *this ); }750 virtual void accept( Visitor & v ) override { v.visit( this ); } 751 virtual void accept( Visitor & v ) const override { v.visit( this ); } 752 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); }748 virtual GlobalScopeType * clone() const override { return new GlobalScopeType( *this ); } 749 virtual void accept( Visitor & v ) override { v.visit( this ); } 750 virtual void accept( Visitor & v ) const override { v.visit( this ); } 751 virtual Type * acceptMutator( Mutator & m ) override { return m.mutate( this ); } 753 752 virtual void print( std::ostream & os, Indenter indent = {} ) const override; 754 753 }; -
src/Tuples/Explode.cc
r34b4268 r24d6572 17 17 #include <list> // for list 18 18 19 #include "AST/Pass.hpp" // for Pass 19 20 #include "SynTree/Mutator.h" // for Mutator 20 21 #include "Common/PassVisitor.h" // for PassVisitor -
src/Validate/Autogen.cpp
r34b4268 r24d6572 25 25 26 26 #include "AST/Attribute.hpp" 27 #include "AST/Copy.hpp" 27 28 #include "AST/Create.hpp" 28 29 #include "AST/Decl.hpp" … … 39 40 #include "InitTweak/GenInit.h" // for fixReturnStatements 40 41 #include "InitTweak/InitTweak.h" // for isAssignment, isCopyConstructor 42 #include "SymTab/GenImplicitCall.hpp" // for genImplicitCall 41 43 #include "SymTab/Mangler.h" // for Mangler 42 44 #include "CompilationState.h" 43 44 // TODO: The other new ast function should be moved over to this file.45 #include "SymTab/Autogen.h"46 45 47 46 namespace Validate { … … 94 93 95 94 const CodeLocation& getLocation() const { return getDecl()->location; } 96 ast::FunctionDecl * genProto( const std::string& name,95 ast::FunctionDecl * genProto( std::string&& name, 97 96 std::vector<ast::ptr<ast::DeclWithType>>&& params, 98 97 std::vector<ast::ptr<ast::DeclWithType>>&& returns ) const; … … 322 321 void FuncGenerator::produceDecl( const ast::FunctionDecl * decl ) { 323 322 assert( nullptr != decl->stmts ); 323 const auto & oldParams = getGenericParams(type); 324 assert( decl->type_params.size() == oldParams.size()); 325 326 /* 327 ast::DeclReplacer::TypeMap typeMap; 328 for (auto it = oldParams.begin(), jt = decl->type_params.begin(); it != oldParams.end(); ++it, ++jt) { 329 typeMap.emplace(*it, *jt); 330 } 331 332 const ast::FunctionDecl * mut = strict_dynamic_cast<const ast::FunctionDecl *>(ast::DeclReplacer::replace(decl, typeMap)); 333 assert (mut == decl); 334 */ 324 335 325 336 definitions.push_back( decl ); … … 335 346 } 336 347 348 void replaceAll( std::vector<ast::ptr<ast::DeclWithType>> & dwts, 349 const ast::DeclReplacer::TypeMap & map ) { 350 for ( auto & dwt : dwts ) { 351 dwt = strict_dynamic_cast<const ast::DeclWithType *>( 352 ast::DeclReplacer::replace( dwt, map ) ); 353 } 354 } 355 337 356 /// Generates a basic prototype function declaration. 338 ast::FunctionDecl * FuncGenerator::genProto( const std::string& name,357 ast::FunctionDecl * FuncGenerator::genProto( std::string&& name, 339 358 std::vector<ast::ptr<ast::DeclWithType>>&& params, 340 359 std::vector<ast::ptr<ast::DeclWithType>>&& returns ) const { … … 342 361 // Handle generic prameters and assertions, if any. 343 362 auto const & old_type_params = getGenericParams( type ); 363 ast::DeclReplacer::TypeMap oldToNew; 344 364 std::vector<ast::ptr<ast::TypeDecl>> type_params; 345 365 std::vector<ast::ptr<ast::DeclWithType>> assertions; 366 367 ast::DeclReplacer::TypeMap typeMap; 346 368 for ( auto & old_param : old_type_params ) { 347 369 ast::TypeDecl * decl = ast::deepCopy( old_param ); 348 for ( auto assertion : decl->assertions ) { 349 assertions.push_back( assertion ); 350 } 351 decl->assertions.clear(); 370 decl->init = nullptr; 371 splice( assertions, decl->assertions ); 372 oldToNew.emplace( std::make_pair( old_param, decl ) ); 352 373 type_params.push_back( decl ); 353 } 354 // TODO: The values in params and returns still may point at the old 355 // generic params, that does not appear to be an issue but perhaps it 356 // should be addressed. 374 typeMap.emplace(old_param, decl); 375 } 376 377 for (auto & param : params) { 378 param = ast::DeclReplacer::replace(param, typeMap); 379 } 380 for (auto & param : returns) { 381 param = ast::DeclReplacer::replace(param, typeMap); 382 } 383 replaceAll( params, oldToNew ); 384 replaceAll( returns, oldToNew ); 385 replaceAll( assertions, oldToNew ); 357 386 358 387 ast::FunctionDecl * decl = new ast::FunctionDecl( 359 388 // Auto-generated routines use the type declaration's location. 360 389 getLocation(), 361 name,390 std::move( name ), 362 391 std::move( type_params ), 363 392 std::move( assertions ), … … 423 452 for ( unsigned int index = 0 ; index < fields ; ++index ) { 424 453 auto member = aggr->members[index].strict_as<ast::DeclWithType>(); 425 if ( SymTab::isUnnamedBitfield(454 if ( ast::isUnnamedBitfield( 426 455 dynamic_cast<const ast::ObjectDecl *>( member ) ) ) { 427 456 if ( index == fields - 1 ) { … … 515 544 InitTweak::InitExpander_new srcParam( src ); 516 545 // Assign to destination. 517 ast:: Expr * dstSelect = new ast::MemberExpr(546 ast::MemberExpr * dstSelect = new ast::MemberExpr( 518 547 location, 519 548 field, … … 567 596 } 568 597 569 ast:: Expr * srcSelect = (srcParam) ? new ast::MemberExpr(598 ast::MemberExpr * srcSelect = (srcParam) ? new ast::MemberExpr( 570 599 location, field, new ast::VariableExpr( location, srcParam ) 571 600 ) : nullptr; … … 599 628 // Not sure why it could be null. 600 629 // Don't make a function for a parameter that is an unnamed bitfield. 601 if ( nullptr == field || SymTab::isUnnamedBitfield( field ) ) {630 if ( nullptr == field || ast::isUnnamedBitfield( field ) ) { 602 631 continue; 603 632 // Matching Parameter: Initialize the field by copy. -
src/Validate/FixQualifiedTypes.cpp
r34b4268 r24d6572 16 16 #include "Validate/FixQualifiedTypes.hpp" 17 17 18 #include "AST/Copy.hpp" 19 #include "AST/LinkageSpec.hpp" // for Linkage 18 20 #include "AST/Pass.hpp" 19 21 #include "AST/TranslationUnit.hpp" 22 #include "Common/ToString.hpp" // for toString 23 #include "SymTab/Mangler.h" // for Mangler 20 24 #include "Validate/NoIdSymbolTable.hpp" 21 #include "SymTab/Mangler.h" // for Mangler22 #include "AST/LinkageSpec.hpp" // for Linkage23 25 24 26 namespace Validate { -
src/Validate/FixReturnTypes.cpp
r34b4268 r24d6572 20 20 #include "AST/Type.hpp" 21 21 #include "CodeGen/CodeGenerator.h" 22 #include "ResolvExpr/ typeops.h"22 #include "ResolvExpr/Unify.h" 23 23 24 24 namespace ast { -
src/Validate/ForallPointerDecay.cpp
r34b4268 r24d6572 22 22 #include "CodeGen/OperatorTable.h" 23 23 #include "Common/CodeLocation.h" 24 #include "Common/ToString.hpp" 24 25 #include "SymTab/FixFunction.h" 25 26 -
src/Validate/GenericParameter.cpp
r34b4268 r24d6572 16 16 #include "GenericParameter.hpp" 17 17 18 #include "AST/Copy.hpp" 18 19 #include "AST/Decl.hpp" 19 20 #include "AST/Expr.hpp" -
src/Validate/HandleAttributes.cc
r34b4268 r24d6572 17 17 18 18 #include "CompilationState.h" 19 #include "Common/Eval.h" 19 20 #include "Common/PassVisitor.h" 21 #include "Common/ToString.hpp" 20 22 #include "Common/SemanticError.h" 21 23 #include "ResolvExpr/Resolver.h" -
src/Validate/HoistStruct.cpp
r34b4268 r24d6572 16 16 #include "Validate/HoistStruct.hpp" 17 17 18 #include <sstream> 19 18 20 #include "AST/Pass.hpp" 19 21 #include "AST/TranslationUnit.hpp" 20 #include "Common/utility.h"21 22 22 23 namespace Validate { -
src/Validate/ReplaceTypedef.cpp
r34b4268 r24d6572 16 16 #include "ReplaceTypedef.hpp" 17 17 18 #include "AST/Copy.hpp" 18 19 #include "AST/Pass.hpp" 19 20 #include "Common/ScopedMap.h" 20 21 #include "Common/UniqueName.h" 21 22 #include "Common/utility.h" 22 #include "ResolvExpr/ typeops.h"23 #include "ResolvExpr/Unify.h" 23 24 24 25 namespace Validate { … … 149 150 // constant/enumerator. The effort required to fix this corner case 150 151 // likely outweighs the utility of allowing it. 151 if ( !ResolvExpr::typesCompatible( t0, t1 , ast::SymbolTable())152 if ( !ResolvExpr::typesCompatible( t0, t1 ) 152 153 || ast::Pass<VarLenChecker>::read( t0 ) 153 154 || ast::Pass<VarLenChecker>::read( t1 ) ) { … … 186 187 187 188 void ReplaceTypedefCore::previsit( ast::TypeDecl const * decl ) { 188 TypedefMap::iterator iter = typedefNames.find( decl->name ); 189 if ( iter != typedefNames.end() ) { 190 typedefNames.erase( iter ); 191 } 189 typedefNames.erase( decl->name ); 192 190 typedeclNames.insert( decl->name, decl ); 193 191 } -
src/Virtual/ExpandCasts.cc
r34b4268 r24d6572 20 20 #include <string> // for string, allocator, operator==, ope... 21 21 22 #include "AST/Copy.hpp" 22 23 #include "AST/Decl.hpp" 23 24 #include "AST/Expr.hpp" -
src/Virtual/module.mk
r34b4268 r24d6572 19 19 Virtual/ExpandCasts.h \ 20 20 Virtual/Tables.cc \ 21 Virtual/Tables.h 21 Virtual/Tables.h \ 22 Virtual/VirtualDtor.cpp \ 23 Virtual/VirtualDtor.hpp -
src/include/cassert
r34b4268 r24d6572 20 20 #include_next <cassert> 21 21 22 #include <string> 23 24 template < typename ... Params > 25 std::string toString( const Params & ... params ); 22 #include "Common/ToString.hpp" 26 23 27 24 #ifdef NDEBUG -
src/main.cc
r34b4268 r24d6572 9 9 // Author : Peter Buhr and Rob Schluntz 10 10 // Created On : Fri May 15 23:12:02 2015 11 // Last Modified By : Andrew Beach12 // Last Modified On : Wed Oct 5 12:06:00 202213 // Update Count : 6 7911 // Last Modified By : Peter A. Buhr 12 // Last Modified On : Mon Apr 10 21:12:17 2023 13 // Update Count : 682 14 14 // 15 15 … … 32 32 33 33 #include "AST/Convert.hpp" 34 #include "AST/Pass.hpp" // for pass_visitor_stats 35 #include "AST/TranslationUnit.hpp" // for TranslationUnit 36 #include "AST/Util.hpp" // for checkInvariants 34 37 #include "CompilationState.h" 35 38 #include "../config.h" // for CFA_LIBDIR … … 40 43 #include "CodeTools/TrackLoc.h" // for fillLocations 41 44 #include "Common/CodeLocationTools.hpp" // for forceFillCodeLocations 42 #include "Common/CompilerError.h" // for CompilerError43 45 #include "Common/DeclStats.hpp" // for printDeclStats 44 46 #include "Common/ResolvProtoDump.hpp" // for dumpAsResolverProto 45 47 #include "Common/Stats.h" // for Stats 46 #include "Common/UnimplementedError.h" // for UnimplementedError47 48 #include "Common/utility.h" // for deleteAll, filter, printAll 49 #include "Concurrency/Actors.hpp" // for implementActors 48 50 #include "Concurrency/Keywords.h" // for implementMutex, implement... 49 51 #include "Concurrency/Waitfor.h" // for generateWaitfor 52 #include "Concurrency/Waituntil.hpp" // for generateWaitUntil 50 53 #include "ControlStruct/ExceptDecl.h" // for translateExcept 51 54 #include "ControlStruct/ExceptTranslate.h" // for translateThrows, translat... … … 59 62 #include "InitTweak/GenInit.h" // for genInit 60 63 #include "MakeLibCfa.h" // for makeLibCfa 61 #include "Parser/ParseNode.h" // for DeclarationNode, buildList 62 #include "Parser/TypedefTable.h" // for TypedefTable 64 #include "Parser/RunParser.hpp" // for buildList, dumpParseTree,... 63 65 #include "ResolvExpr/CandidatePrinter.hpp" // for printCandidates 64 66 #include "ResolvExpr/Resolver.h" // for resolve … … 84 86 #include "Validate/VerifyCtorDtorAssign.hpp" // for verifyCtorDtorAssign 85 87 #include "Virtual/ExpandCasts.h" // for expandCasts 88 #include "Virtual/VirtualDtor.hpp" // for implementVirtDtors 86 89 87 90 static void NewPass( const char * const name ) { … … 102 105 } 103 106 104 #define PASS( name, pass ) \ 107 // Helpers for checkInvariant: 108 void checkInvariants( std::list< Declaration * > & ) {} 109 using ast::checkInvariants; 110 111 #define PASS( name, pass, unit, ... ) \ 105 112 if ( errorp ) { cerr << name << endl; } \ 106 113 NewPass(name); \ 107 114 Stats::Time::StartBlock(name); \ 108 pass; \ 109 Stats::Time::StopBlock(); 110 111 LinkageSpec::Spec linkage = LinkageSpec::Cforall; 112 TypedefTable typedefTable; 113 DeclarationNode * parseTree = nullptr; // program parse tree 115 pass(unit,##__VA_ARGS__); \ 116 Stats::Time::StopBlock(); \ 117 if ( invariant ) { \ 118 checkInvariants(unit); \ 119 } 120 121 #define DUMP( cond, unit ) \ 122 if ( cond ) { \ 123 dump(unit); \ 124 return EXIT_SUCCESS; \ 125 } 114 126 115 127 static bool waiting_for_gdb = false; // flag to set cfa-cpp to wait for gdb on start … … 118 130 119 131 static void parse_cmdline( int argc, char * argv[] ); 120 static void parse( FILE * input, LinkageSpec::Spec linkage, bool shouldExit = false );121 132 static void dump( list< Declaration * > & translationUnit, ostream & out = cout ); 122 133 static void dump( ast::TranslationUnit && transUnit, ostream & out = cout ); … … 234 245 ostream * output = & cout; 235 246 list< Declaration * > translationUnit; 247 ast::TranslationUnit transUnit; 236 248 237 249 Signal( SIGSEGV, sigSegvBusHandler, SA_SIGINFO ); … … 278 290 FILE * gcc_builtins = fopen( (PreludeDirector + "/gcc-builtins.cf").c_str(), "r" ); 279 291 assertf( gcc_builtins, "cannot open gcc-builtins.cf\n" ); 280 parse( gcc_builtins, LinkageSpec::Compiler );292 parse( gcc_builtins, ast::Linkage::Compiler ); 281 293 282 294 // read the extra prelude in, if not generating the cfa library 283 295 FILE * extras = fopen( (PreludeDirector + "/extras.cf").c_str(), "r" ); 284 296 assertf( extras, "cannot open extras.cf\n" ); 285 parse( extras, LinkageSpec::BuiltinC );297 parse( extras, ast::Linkage::BuiltinC ); 286 298 287 299 if ( ! libcfap ) { … … 289 301 FILE * prelude = fopen( (PreludeDirector + "/prelude.cfa").c_str(), "r" ); 290 302 assertf( prelude, "cannot open prelude.cfa\n" ); 291 parse( prelude, LinkageSpec::Intrinsic );303 parse( prelude, ast::Linkage::Intrinsic ); 292 304 293 305 // Read to cfa builtins, if not generating the cfa library 294 306 FILE * builtins = fopen( (PreludeDirector + "/builtins.cf").c_str(), "r" ); 295 307 assertf( builtins, "cannot open builtins.cf\n" ); 296 parse( builtins, LinkageSpec::BuiltinCFA ); 297 } // if 298 } // if 299 300 parse( input, libcfap ? LinkageSpec::Intrinsic : LinkageSpec::Cforall, yydebug ); 301 302 if ( parsep ) { 303 parseTree->printList( cout ); 304 delete parseTree; 305 return EXIT_SUCCESS; 306 } // if 307 308 buildList( parseTree, translationUnit ); 309 delete parseTree; 310 parseTree = nullptr; 311 312 if ( astp ) { 313 dump( translationUnit ); 314 return EXIT_SUCCESS; 315 } // if 316 317 // Temporary: fill locations after parsing so that every node has a location, for early error messages. 318 // Eventually we should pass the locations from the parser to every node, but this quick and dirty solution 319 // works okay for now. 320 CodeTools::fillLocations( translationUnit ); 308 parse( builtins, ast::Linkage::BuiltinCFA ); 309 } // if 310 } // if 311 312 parse( input, libcfap ? ast::Linkage::Intrinsic : ast::Linkage::Cforall, yydebug ); 313 314 transUnit = buildUnit(); 315 316 DUMP( astp, std::move( transUnit ) ); 317 321 318 Stats::Time::StopBlock(); 322 319 … … 325 322 ast::pass_visitor_stats.max = Stats::Counters::build<Stats::Counters::MaxCounter<double>>("Max depth - New"); 326 323 } 327 auto transUnit = convert( std::move( translationUnit ) ); 328 329 forceFillCodeLocations( transUnit ); 330 331 PASS( "Translate Exception Declarations", ControlStruct::translateExcept( transUnit ) ); 332 if ( exdeclp ) { 333 dump( std::move( transUnit ) ); 334 return EXIT_SUCCESS; 335 } 336 337 PASS( "Verify Ctor, Dtor & Assign", Validate::verifyCtorDtorAssign( transUnit ) ); 338 PASS( "Hoist Type Decls", Validate::hoistTypeDecls( transUnit ) ); 339 // Hoist Type Decls pulls some declarations out of contexts where 340 // locations are not tracked. Perhaps they should be, but for now 341 // the full fill solves it. 342 forceFillCodeLocations( transUnit ); 343 344 PASS( "Replace Typedefs", Validate::replaceTypedef( transUnit ) ); 345 PASS( "Fix Return Types", Validate::fixReturnTypes( transUnit ) ); 346 PASS( "Enum and Pointer Decay", Validate::decayEnumsAndPointers( transUnit ) ); 347 348 PASS( "Link Reference To Types", Validate::linkReferenceToTypes( transUnit ) ); 349 350 PASS( "Fix Qualified Types", Validate::fixQualifiedTypes( transUnit ) ); 351 PASS( "Hoist Struct", Validate::hoistStruct( transUnit ) ); 352 PASS( "Eliminate Typedef", Validate::eliminateTypedef( transUnit ) ); 353 PASS( "Validate Generic Parameters", Validate::fillGenericParameters( transUnit ) ); 354 PASS( "Translate Dimensions", Validate::translateDimensionParameters( transUnit ) ); 355 PASS( "Check Function Returns", Validate::checkReturnStatements( transUnit ) ); 356 PASS( "Fix Return Statements", InitTweak::fixReturnStatements( transUnit ) ); 357 PASS( "Implement Concurrent Keywords", Concurrency::implementKeywords( transUnit ) ); 358 PASS( "Forall Pointer Decay", Validate::decayForallPointers( transUnit ) ); 359 PASS( "Hoist Control Declarations", ControlStruct::hoistControlDecls( transUnit ) ); 360 361 PASS( "Generate Autogen Routines", Validate::autogenerateRoutines( transUnit ) ); 362 363 PASS( "Implement Mutex", Concurrency::implementMutex( transUnit ) ); 364 PASS( "Implement Thread Start", Concurrency::implementThreadStarter( transUnit ) ); 365 PASS( "Compound Literal", Validate::handleCompoundLiterals( transUnit ) ); 366 PASS( "Set Length From Initializer", Validate::setLengthFromInitializer( transUnit ) ); 367 PASS( "Find Global Decls", Validate::findGlobalDecls( transUnit ) ); 368 PASS( "Fix Label Address", Validate::fixLabelAddresses( transUnit ) ); 324 325 PASS( "Hoist Type Decls", Validate::hoistTypeDecls, transUnit ); 326 327 PASS( "Translate Exception Declarations", ControlStruct::translateExcept, transUnit ); 328 DUMP( exdeclp, std::move( transUnit ) ); 329 PASS( "Verify Ctor, Dtor & Assign", Validate::verifyCtorDtorAssign, transUnit ); 330 PASS( "Replace Typedefs", Validate::replaceTypedef, transUnit ); 331 PASS( "Fix Return Types", Validate::fixReturnTypes, transUnit ); 332 PASS( "Enum and Pointer Decay", Validate::decayEnumsAndPointers, transUnit ); 333 334 PASS( "Link Reference To Types", Validate::linkReferenceToTypes, transUnit ); 335 336 PASS( "Fix Qualified Types", Validate::fixQualifiedTypes, transUnit ); 337 PASS( "Hoist Struct", Validate::hoistStruct, transUnit ); 338 PASS( "Eliminate Typedef", Validate::eliminateTypedef, transUnit ); 339 PASS( "Validate Generic Parameters", Validate::fillGenericParameters, transUnit ); 340 PASS( "Translate Dimensions", Validate::translateDimensionParameters, transUnit ); 341 PASS( "Check Function Returns", Validate::checkReturnStatements, transUnit ); 342 PASS( "Fix Return Statements", InitTweak::fixReturnStatements, transUnit ); 343 PASS( "Implement Concurrent Keywords", Concurrency::implementKeywords, transUnit ); 344 PASS( "Forall Pointer Decay", Validate::decayForallPointers, transUnit ); 345 PASS( "Implement Waituntil", Concurrency::generateWaitUntil, transUnit ); 346 PASS( "Hoist Control Declarations", ControlStruct::hoistControlDecls, transUnit ); 347 348 PASS( "Generate Autogen Routines", Validate::autogenerateRoutines, transUnit ); 349 350 PASS( "Implement Actors", Concurrency::implementActors, transUnit ); 351 PASS( "Implement Virtual Destructors", Virtual::implementVirtDtors, transUnit ); 352 PASS( "Implement Mutex", Concurrency::implementMutex, transUnit ); 353 PASS( "Implement Thread Start", Concurrency::implementThreadStarter, transUnit ); 354 PASS( "Compound Literal", Validate::handleCompoundLiterals, transUnit ); 355 PASS( "Set Length From Initializer", Validate::setLengthFromInitializer, transUnit ); 356 PASS( "Find Global Decls", Validate::findGlobalDecls, transUnit ); 357 PASS( "Fix Label Address", Validate::fixLabelAddresses, transUnit ); 369 358 370 359 if ( symtabp ) { … … 377 366 } // if 378 367 379 if ( validp ) { 380 dump( std::move( transUnit ) ); 381 return EXIT_SUCCESS; 382 } // if 383 384 PASS( "Translate Throws", ControlStruct::translateThrows( transUnit ) ); 385 PASS( "Fix Labels", ControlStruct::fixLabels( transUnit ) ); 386 PASS( "Fix Names", CodeGen::fixNames( transUnit ) ); 387 PASS( "Gen Init", InitTweak::genInit( transUnit ) ); 388 PASS( "Expand Member Tuples" , Tuples::expandMemberTuples( transUnit ) ); 368 DUMP( validp, std::move( transUnit ) ); 369 370 PASS( "Translate Throws", ControlStruct::translateThrows, transUnit ); 371 PASS( "Fix Labels", ControlStruct::fixLabels, transUnit ); 372 PASS( "Fix Names", CodeGen::fixNames, transUnit ); 373 PASS( "Gen Init", InitTweak::genInit, transUnit ); 374 PASS( "Expand Member Tuples" , Tuples::expandMemberTuples, transUnit ); 389 375 390 376 if ( libcfap ) { … … 398 384 } // if 399 385 400 if ( bresolvep ) { 401 dump( std::move( transUnit ) ); 402 return EXIT_SUCCESS; 403 } // if 386 DUMP( bresolvep, std::move( transUnit ) ); 404 387 405 388 if ( resolvprotop ) { … … 408 391 } // if 409 392 410 PASS( "Resolve", ResolvExpr::resolve( transUnit ) ); 411 if ( exprp ) { 412 dump( std::move( transUnit ) ); 413 return EXIT_SUCCESS; 414 } // if 415 416 forceFillCodeLocations( transUnit ); 417 418 PASS( "Fix Init", InitTweak::fix(transUnit, buildingLibrary())); 393 PASS( "Resolve", ResolvExpr::resolve, transUnit ); 394 DUMP( exprp, std::move( transUnit ) ); 395 396 PASS( "Fix Init", InitTweak::fix, transUnit, buildingLibrary() ); 419 397 420 398 // fix ObjectDecl - replaces ConstructorInit nodes 421 if ( ctorinitp ) { 422 dump( std::move( transUnit ) ); 423 return EXIT_SUCCESS; 424 } // if 399 DUMP( ctorinitp, std::move( transUnit ) ); 425 400 426 401 // Currently not working due to unresolved issues with UniqueExpr 427 PASS( "Expand Unique Expr", Tuples::expandUniqueExpr ( transUnit )); // xxx - is this the right place for this? want to expand ASAP so tha, sequent passes don't need to worry about double-visiting a unique expr - needs to go after InitTweak::fix so that copy constructed return declarations are reused428 429 PASS( "Translate Tries", ControlStruct::translateTries ( transUnit ));430 PASS( "Gen Waitfor", Concurrency::generateWaitFor ( transUnit ));402 PASS( "Expand Unique Expr", Tuples::expandUniqueExpr, transUnit ); // xxx - is this the right place for this? want to expand ASAP so tha, sequent passes don't need to worry about double-visiting a unique expr - needs to go after InitTweak::fix so that copy constructed return declarations are reused 403 404 PASS( "Translate Tries", ControlStruct::translateTries, transUnit ); 405 PASS( "Gen Waitfor", Concurrency::generateWaitFor, transUnit ); 431 406 432 407 // Needs to happen before tuple types are expanded. 433 PASS( "Convert Specializations", GenPoly::convertSpecializations( transUnit ) ); 434 435 PASS( "Expand Tuples", Tuples::expandTuples( transUnit ) ); 436 437 if ( tuplep ) { 438 dump( std::move( transUnit ) ); 439 return EXIT_SUCCESS; 440 } // if 408 PASS( "Convert Specializations", GenPoly::convertSpecializations, transUnit ); 409 410 PASS( "Expand Tuples", Tuples::expandTuples, transUnit ); 411 DUMP( tuplep, std::move( transUnit ) ); 441 412 442 413 // Must come after Translate Tries. 443 PASS( "Virtual Expand Casts", Virtual::expandCasts( transUnit ) ); 444 445 PASS( "Instantiate Generics", GenPoly::instantiateGeneric( transUnit ) ); 446 if ( genericsp ) { 447 dump( std::move( transUnit ) ); 448 return EXIT_SUCCESS; 449 } // if 450 451 PASS( "Convert L-Value", GenPoly::convertLvalue( transUnit ) ); 414 PASS( "Virtual Expand Casts", Virtual::expandCasts, transUnit ); 415 416 PASS( "Instantiate Generics", GenPoly::instantiateGeneric, transUnit ); 417 DUMP( genericsp, std::move( transUnit ) ); 418 419 PASS( "Convert L-Value", GenPoly::convertLvalue, transUnit ); 452 420 453 421 translationUnit = convert( std::move( transUnit ) ); 454 422 455 if ( bboxp ) { 456 dump( translationUnit ); 457 return EXIT_SUCCESS; 458 } // if 459 PASS( "Box", GenPoly::box( translationUnit ) ); 460 461 PASS( "Link-Once", CodeGen::translateLinkOnce( translationUnit ) ); 423 DUMP( bboxp, translationUnit ); 424 PASS( "Box", GenPoly::box, translationUnit ); 425 426 PASS( "Link-Once", CodeGen::translateLinkOnce, translationUnit ); 462 427 463 428 // Code has been lowered to C, now we can start generation. 464 429 465 if ( bcodegenp ) { 466 dump( translationUnit ); 467 return EXIT_SUCCESS; 468 } // if 430 DUMP( bcodegenp, translationUnit ); 469 431 470 432 if ( optind < argc ) { // any commands after the flags and input file ? => output file name … … 473 435 474 436 CodeTools::fillLocations( translationUnit ); 475 PASS( "Code Gen", CodeGen::generate ( translationUnit, *output, ! genproto, prettycodegenp, true, linemarks ));437 PASS( "Code Gen", CodeGen::generate, translationUnit, *output, ! genproto, prettycodegenp, true, linemarks ); 476 438 477 439 CodeGen::FixMain::fix( translationUnit, *output, … … 483 445 if ( errorp ) { 484 446 cerr << "---AST at error:---" << endl; 485 dump( translationUnit, cerr ); 447 // We check which section the errors came from without looking at 448 // transUnit because std::move means it could look like anything. 449 if ( !translationUnit.empty() ) { 450 dump( translationUnit, cerr ); 451 } else { 452 dump( std::move( transUnit ), cerr ); 453 } 486 454 cerr << endl << "---End of AST, begin error message:---\n" << endl; 487 455 } // if 488 456 e.print(); 489 if ( output != &cout ) {490 delete output;491 } // if492 return EXIT_FAILURE;493 } catch ( UnimplementedError & e ) {494 cout << "Sorry, " << e.get_what() << " is not currently implemented" << endl;495 if ( output != &cout ) {496 delete output;497 } // if498 return EXIT_FAILURE;499 } catch ( CompilerError & e ) {500 cerr << "Compiler Error: " << e.get_what() << endl;501 cerr << "(please report bugs to [REDACTED])" << endl;502 457 if ( output != &cout ) { 503 458 delete output; … … 528 483 529 484 530 static const char optstring[] = ":c:gh lLmNnpdP:S:twW:D:";485 static const char optstring[] = ":c:ghilLmNnpdP:S:twW:D:"; 531 486 532 487 enum { PreludeDir = 128 }; … … 535 490 { "gdb", no_argument, nullptr, 'g' }, 536 491 { "help", no_argument, nullptr, 'h' }, 492 { "invariant", no_argument, nullptr, 'i' }, 537 493 { "libcfa", no_argument, nullptr, 'l' }, 538 494 { "linemarks", no_argument, nullptr, 'L' }, 539 { "no-main", no_argument, 0, 'm' },495 { "no-main", no_argument, nullptr, 'm' }, 540 496 { "no-linemarks", no_argument, nullptr, 'N' }, 541 497 { "no-prelude", no_argument, nullptr, 'n' }, … … 556 512 "wait for gdb to attach", // -g 557 513 "print translator help message", // -h 514 "invariant checking during AST passes", // -i 558 515 "generate libcfa.c", // -l 559 516 "generate line marks", // -L … … 587 544 { "rproto", resolvprotop, true, "resolver-proto instance" }, 588 545 { "rsteps", resolvep, true, "print resolver steps" }, 589 { "tree", parsep, true, "print parse tree" },590 546 // code dumps 591 547 { "ast", astp, true, "print AST after parsing" }, … … 650 606 usage( argv ); // no return 651 607 break; 608 case 'i': // invariant checking 609 invariant = true; 610 break; 652 611 case 'l': // generate libcfa.c 653 612 libcfap = true; … … 748 707 } // parse_cmdline 749 708 750 static void parse( FILE * input, LinkageSpec::Spec linkage, bool shouldExit ) {751 extern int yyparse( void );752 extern FILE * yyin;753 extern int yylineno;754 755 ::linkage = linkage; // set globals756 yyin = input;757 yylineno = 1;758 int parseStatus = yyparse();759 760 fclose( input );761 if ( shouldExit || parseStatus != 0 ) {762 exit( parseStatus );763 } // if764 } // parse765 766 709 static bool notPrelude( Declaration * decl ) { 767 710 return ! LinkageSpec::isBuiltin( decl->get_linkage() );
Note:
See TracChangeset
for help on using the changeset viewer.