Changeset 1f44196


Ignore:
Timestamp:
Nov 29, 2016, 3:30:59 PM (6 years ago)
Author:
Peter A. Buhr <pabuhr@…>
Branches:
aaron-thesis, arm-eh, cleanup-dtors, deferred_resn, demangler, enum, forall-pointer-decay, jacob/cs343-translation, jenkins-sandbox, master, new-ast, new-ast-unique-expr, new-env, no_list, persistent-indexer, pthread-emulation, qualifiedEnum, resolv-new, with_gc
Children:
8e5724e
Parents:
3a2128f (diff), 9129a84 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the (diff) links above to see all the changes relative to each parent.
Message:

Merge branch 'master' of plg2:software/cfa/cfa-cc

Conflicts:

src/Parser/parser.cc

Files:
22 added
5 deleted
70 edited

Legend:

Unmodified
Added
Removed
  • doc/proposals/concurrency/Makefile

    r3a2128f r1f44196  
    99SOURCES = ${addsuffix .tex, \
    1010concurrency \
     11style \
     12glossary \
    1113}
    1214
  • doc/proposals/concurrency/concurrency.tex

    r3a2128f r1f44196  
    1414
    1515% Latex packages used in the document.
    16 \usepackage[T1]{fontenc}                                % allow Latin1 (extended ASCII) characters
     16\usepackage[T1]{fontenc}                                        % allow Latin1 (extended ASCII) characters
    1717\usepackage{textcomp}
    1818\usepackage[latin1]{inputenc}
    1919\usepackage{fullpage,times,comment}
    2020\usepackage{epic,eepic}
    21 \usepackage{upquote}                                                                    % switch curled `'" to straight
     21\usepackage{upquote}                                            % switch curled `'" to straight
    2222\usepackage{calc}
    2323\usepackage{xspace}
     
    2525\usepackage{tabularx}
    2626\usepackage[acronym]{glossaries}
    27 \usepackage{varioref}                                                           % extended references
     27\usepackage{varioref}                                           % extended references
    2828\usepackage{inconsolata}
    29 \usepackage{listings}                                                                   % format program code
    30 \usepackage[flushmargin]{footmisc}                                              % support label/reference in footnote
    31 \usepackage{latexsym}                                   % \Box glyph
    32 \usepackage{mathptmx}                                   % better math font with "times"
     29\usepackage{listings}                                           % format program code
     30\usepackage[flushmargin]{footmisc}                              % support label/reference in footnote
     31\usepackage{latexsym}                                           % \Box glyph
     32\usepackage{mathptmx}                                           % better math font with "times"
    3333\usepackage[usenames]{color}
    3434\usepackage[pagewise]{lineno}
    3535\usepackage{fancyhdr}
    3636\renewcommand{\linenumberfont}{\scriptsize\sffamily}
    37 \input{common}                                          % bespoke macros used in the document
     37\input{style}                                                   % bespoke macros used in the document
    3838\usepackage[dvips,plainpages=false,pdfpagelabels,pdfpagemode=UseNone,colorlinks=true,pagebackref=true,linkcolor=blue,citecolor=blue,urlcolor=blue,pagebackref=true,breaklinks=true]{hyperref}
    3939\usepackage{breakurl}
     
    4444\renewcommand{\UrlFont}{\small\sf}
    4545
    46 \setlength{\topmargin}{-0.45in}                                                 % move running title into header
     46\setlength{\topmargin}{-0.45in}                         % move running title into header
    4747\setlength{\headsep}{0.25in}
    4848
     
    8686\title{Concurrency in \CFA}
    8787\author{Thierry Delisle \\
    88 Dept. of Computer Science, University of Waterloo, \\ Waterloo, Ontario, Canada
     88School of Computer Science, University of Waterloo, \\ Waterloo, Ontario, Canada
    8989}
    9090
     
    100100
    101101\section{Introduction}
    102 This proposal provides a minimal core concurrency API that is both simple, efficient and can be reused to build higher-level features. The simplest possible core is a thread and a lock but this low-level approach is hard to master. An easier approach for users is to support higher-level construct as the basis of the concurrency in \CFA.
    103 Indeed, for highly productive parallel programming high-level approaches are much more popular\cite{HPP:Study}. Examples are task based parallelism, message passing, implicit threading.
    104 
    105 There are actually two problems that need to be solved in the design of the concurrency for a language. Which concurrency tools are available to the users and which parallelism tools are available. While these two concepts are often seen together, they are in fact distinct concepts that require different sorts of tools\cite{Buhr05a}. Concurrency tools need to handle mutual exclusion and synchronization while parallelism tools are more about performance, cost and resource utilization.
     102This proposal provides a minimal core concurrency API that is both simple, efficient and can be reused to build higher-level features. The simplest possible concurrency core is a thread and a lock but this low-level approach is hard to master. An easier approach for users is to support higher-level constructs as the basis of the concurrency in \CFA. Indeed, for highly productive parallel programming, high-level approaches are much more popular~\cite{HPP:Study}. Examples are task based, message passing and implicit threading.
     103
     104There are actually two problems that need to be solved in the design of the concurrency for a programming language: which concurrency tools are available to the users and which parallelism tools are available. While these two concepts are often seen together, they are in fact distinct concepts that require different sorts of tools~\cite{Buhr05a}. Concurrency tools need to handle mutual exclusion and synchronization, while parallelism tools are more about performance, cost and resource utilization.
    106105
    107106%  #####  ####### #     #  #####  #     # ######  ######  ####### #     #  #####  #     #
     
    114113
    115114\section{Concurrency}
    116 % Several tool can be used to solve concurrency challenges. Since these challenges always appear with the use of mutable shared state, some languages and libraries simply disallow mutable shared-state (Erlang\cite{Erlang}, Haskell\cite{Haskell}, Akka (Scala)\cite{Akka}). In these paradigms, interaction among concurrent objects rely on message passing or other paradigms that often closely relate to networking concepts. However, in imperative or OO languages, these approaches entail a clear distinction between concurrent and non-concurrent paradigms (i.e. message passing versus routine call). Which in turns mean that programmers need to learn two sets of designs patterns in order to be effective. Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on non-concurrent constructs like routine calls and objects. At a lower level these can be implemented as locks and atomic operations. However, for productivity reasons it is desireable to have a higher-level construct to be the core concurrency paradigm\cite{HPP:Study}. This project proposes Monitors\cite{Hoare74} as the core concurrency construct.
    117 % \\
    118 
    119 Several tool can be used to solve concurrency challenges. Since these challenges always appear with the use of mutable shared state, some languages and libraries simply disallow mutable shared-state (Erlang\cite{Erlang}, Haskell\cite{Haskell}, Akka (Scala)\cite{Akka}). In these paradigms, interaction among concurrent objects rely on message passing\cite{Thoth,Harmony,V-Kernel} or other paradigms that often closely relate to networking concepts. However, in imperative or OO languages, these approaches entail a clear distinction between concurrent and non-concurrent paradigms (i.e. message passing versus routine call). Which in turns mean that programmers need to learn two sets of designs patterns in order to be effective. Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on non-concurrent constructs like routine calls and objects. At a lower level these can be implemented as locks and atomic operations. Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. However, for productivity reasons it is desireable to have a higher-level construct to be the core concurrency paradigm\cite{HPP:Study}. One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared memory systems, is the \emph{monitor}.
    120 
    121 Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}.
    122 Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes Monitors as the core concurrency construct.
    123 \\
    124 
    125 Finally, an approach that is worth mentionning because it is gaining in popularity is transactionnal memory\cite{Dice10}. However, the performance and feature set is currently too restrictive to be possible to add such a paradigm to a language like C or \CC\cit, which is why it was rejected as the core paradigm for concurrency in \CFA.
     115Several tool can be used to solve concurrency challenges. Since these challenges always appear with the use of mutable shared-state, some languages and libraries simply disallow mutable shared-state (Erlang~\cite{Erlang}, Haskell~\cite{Haskell}, Akka (Scala)~\cite{Akka}). In these paradigms, interaction among concurrent objects relies on message passing~\cite{Thoth,Harmony,V-Kernel} or other paradigms that closely relate to networking concepts (channels\cit for example). However, in languages that use routine calls as their core abstraction mechanism, these approaches force a clear distinction between concurrent and non-concurrent paradigms (i.e., message passing versus routine call). Which in turn means that, in order to be effective, programmers need to learn two sets of designs patterns. This distinction can be hidden away in library code, but effective use of the librairy still has to take both paradigms into account. Approaches based on shared memory are more closely related to non-concurrent paradigms since they often rely on basic constructs like routine calls and objects. At a lower level these can be implemented as locks and atomic operations. Many such mechanisms have been proposed, including semaphores~\cite{Dijkstra68b} and path expressions~\cite{Campbell74}. However, for productivity reasons it is desireable to have a higher-level construct be the core concurrency paradigm~\cite{HPP:Study}. An approach that is worth mentionning because it is gaining in popularity is transactionnal memory~\cite{Dice10}[Check citation]. While this approach is even pursued by system languages like \CC\cit, the performance and feature set is currently too restrictive to add such a paradigm to a language like C or \CC\cit, which is why it was rejected as the core paradigm for concurrency in \CFA. One of the most natural, elegant, and efficient mechanisms for synchronization and communication, especially for shared memory systems, is the \emph{monitor}. Monitors were first proposed by Brinch Hansen~\cite{Hansen73} and later described and extended by C.A.R.~Hoare~\cite{Hoare74}. Many programming languages---e.g., Concurrent Pascal~\cite{ConcurrentPascal}, Mesa~\cite{Mesa}, Modula~\cite{Modula-2}, Turing~\cite{Turing:old}, Modula-3~\cite{Modula-3}, NeWS~\cite{NeWS}, Emerald~\cite{Emerald}, \uC~\cite{Buhr92a} and Java~\cite{Java}---provide monitors as explicit language constructs. In addition, operating-system kernels and device drivers have a monitor-like structure, although they often use lower-level primitives such as semaphores or locks to simulate monitors. For these reasons, this project proposes monitors as the core concurrency construct.
    126116
    127117% #     # ####### #     # ### ####### ####### ######   #####
     
    134124
    135125\subsection{Monitors}
    136 A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java\cite{Java} or \uC\cite{uC++book} but does not strictly require OOP semantics. The only requirements is the ability to declare a handle to a shared object and a set of routines that act on it :
     126A monitor is a set of routines that ensure mutual exclusion when accessing shared state. This concept is generally associated with Object-Oriented Languages like Java~\cite{Java} or \uC~\cite{uC++book} but does not strictly require OOP semantics. The only requirements is the ability to declare a handle to a shared object and a set of routines that act on it :
    137127\begin{lstlisting}
    138128        typedef /*some monitor type*/ monitor;
     
    154144
    155145\subsubsection{Call semantics} \label{call}
    156 The above example of monitors already displays some of their intrinsic caracteristics. Indeed, it is necessary to use pass-by-reference over pass-by-value for monitor routines. This semantics is important because at their core, monitors are implicit mutual exclusion objects (locks), and these objects cannot be copied. Therefore, monitors are implicitly non-copyable.
    157 \\
    158 
    159 Another aspect to consider is when a monitor acquires its mutual exclusion. Indeed, a monitor may need to be passed through multiple helper routines that do not acquire the monitor mutual exclusion on entry. Examples of this can be both generic helper routines (\code{swap}, \code{sort}, etc.) or specific helper routines like the following example :
    160 
    161 \begin{lstlisting}
    162         mutex struct counter_t { /*...*/ };
    163 
    164         void ?{}(counter_t & nomutex this);
    165         int ++?(counter_t & mutex this);
    166         void ?{}(Int * this, counter_t & mutex cnt);
    167 \end{lstlisting}
    168 *semantics of the declaration of \code{mutex struct counter_t} are discussed in details in section \ref{data}
    169 \\
    170 
    171 This example is of a monitor implementing an atomic counter. Here, the constructor uses the \code{nomutex} keyword to signify that it does not acquire the coroutine mutual exclusion when constructing. This is because object not yet constructed should never be shared and therefore do not require mutual exclusion. The prefix increment operator
    172 uses \code{mutex} to protect the incrementing process from race conditions. Finally, we have a conversion operator from \code{counter_t} to \code{Int}. This conversion may or may not require the \code{mutex} key word depending whether or not reading an \code{Int} is an atomic operation or not.
    173 \\
    174 
    175 Having both \code{mutex} and \code{nomutex} keywords could be argued to be redundant based on the meaning of a routine having neither of these keywords. If there were a meaning to routine \code{void foo(counter_t & this)} then one could argue that it should be to default to the safest option : \code{mutex}. On the other hand, the option of having routine \code{void foo(counter_t & this)} mean \code{nomutex} is unsafe by default and may easily cause subtle errors. It can be argued that this is the more "normal" behavior, \code{nomutex} effectively stating explicitly that "this routine has nothing special". An other alternative is to make one of these keywords mandatory, which would provide the same semantics but without the ambiguity of supporting routine \code{void foo(counter_t & this)}. Mandatory keywords would also have the added benefice of being more clearly self-documented but at the cost of extra typing. In the end, which solution should be picked is still up for debate. For the reminder of this proposal, the explicit approach will be used for the sake of clarity.
    176 \\
    177 
    178 Regardless of which keyword is kept, it is important to establish when mutex/nomutex may be used depending on type parameters.
     146The above monitor example displays some of the intrinsic characteristics. Indeed, it is necessary to use pass-by-reference over pass-by-value for monitor routines. This semantics is important because at their core, monitors are implicit mutual-exclusion objects (locks), and these objects cannot be copied. Therefore, monitors are implicitly non-copyable.
     147
     148Another aspect to consider is when a monitor acquires its mutual exclusion. For example, a monitor may need to be passed through multiple helper routines that do not acquire the monitor mutual-exclusion on entry. Pass through can be both generic helper routines (\code{swap}, \code{sort}, etc.) or specific helper routines like the following to implement an atomic counter :
     149
     150\begin{lstlisting}
     151        mutex struct counter_t { /*...see section §\ref{data}§...*/ };
     152
     153        void ?{}(counter_t & nomutex this); //constructor
     154        size_t ++?(counter_t & mutex this); //increment
     155
     156        //need for mutex is platform dependent here
     157        void ?{}(size_t * this, counter_t & mutex cnt); //conversion
     158\end{lstlisting}
     159
     160Here, the constructor(\code{?\{\}}) uses the \code{nomutex} keyword to signify that it does not acquire the monitor mutual exclusion when constructing. This semantics is because an object not yet constructed should never be shared and therefore does not require mutual exclusion. The prefix increment operator uses \code{mutex} to protect the incrementing process from race conditions. Finally, there is a conversion operator from \code{counter_t} to \code{size_t}. This conversion may or may not require the \code{mutex} key word depending on whether or not reading an \code{size_t} is an atomic operation or not.
     161
     162Having both \code{mutex} and \code{nomutex} keywords could be argued to be redundant based on the meaning of a routine having neither of these keywords. For example, given a routine without wualifiers \code{void foo(counter_t & this)} then one could argue that it should default to the safest option \code{mutex}. On the other hand, the option of having routine \code{void foo(counter_t & this)} mean \code{nomutex} is unsafe by default and may easily cause subtle errors. It can be argued that \code{nomutex} is the more "normal" behaviour, the \code{nomutex} keyword effectively stating explicitly that "this routine has nothing special". Another alternative is to make having exactly one of these keywords mandatory, which would provide the same semantics but without the ambiguity of supporting routine \code{void foo(counter_t & this)}. Mandatory keywords would also have the added benefice of being self-documented but at the cost of extra typing. In the end, which solution should be picked is still up for debate. For the reminder of this proposal, the explicit approach is used for clarity.
     163
     164The next semantic decision is to establish when mutex/nomutex may be used as a type qualifier. Consider the following declarations:
    179165\begin{lstlisting}
    180166        int f1(monitor & mutex m);
     
    184170        int f5(graph(monitor*) & mutex m);
    185171\end{lstlisting}
    186 
    187 The problem is to indentify which object(s) should be acquired. Furthermore we also need to acquire each objects only once. In case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entering. Adding indirections (\code{f3}) still allows the compiler and programmer to indentify which object will be acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths aren't necessarily known in C and even then making sure we only acquire objects once becomes also none trivial. This can be extended to absurd limits like \code{f5} which uses a custom graph of monitors. To keep everyone as sane as possible\cite{Chicken}, this projects imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter (ignoring potential qualifiers and indirections).
     172The problem is to indentify which object(s) should be acquired. Furthermore, each object needs to be acquired only once. In the case of simple routines like \code{f1} and \code{f2} it is easy to identify an exhaustive list of objects to acquire on entry. Adding indirections (\code{f3}) still allows the compiler and programmer to indentify which object is acquired. However, adding in arrays (\code{f4}) makes it much harder. Array lengths are not necessarily known in C and even then making sure we only acquire objects once becomes also none trivial. This can be extended to absurd limits like \code{f5}, which uses a graph of monitors. To keep everyone as sane as possible~\cite{Chicken}, this projects imposes the requirement that a routine may only acquire one monitor per parameter and it must be the type of the parameter (ignoring potential qualifiers and indirections). Also note that while routine \code{f3} can be supported, meaning that monitor \code{**m} is be acquired, passing an array to this routine would be type safe and yet result in undefined behavior because only the first element of the array is acquired. However, this ambiguity is part of the C type system with respects to arrays. For this reason, it would also be reasonnable to disallow mutex in the context where arrays may be passed.
    188173
    189174% ######     #    #######    #
     
    196181
    197182\subsubsection{Data semantics} \label{data}
    198 Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contian shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appripriate protection. For example here is a more fleshed-out version of the counter showed in \ref{call}:
     183Once the call semantics are established, the next step is to establish data semantics. Indeed, until now a monitor is used simply as a generic handle but in most cases monitors contian shared data. This data should be intrinsic to the monitor declaration to prevent any accidental use of data without its appropriate protection. For example, here is a complete version of the counter showed in section \ref{call}:
    199184\begin{lstlisting}
    200185        mutex struct counter_t {
     
    207192
    208193        int ++?(counter_t & mutex this) {
    209                 return ++this->value;
    210         }
    211 
     194                return ++this.value;
     195        }
     196
     197        //need for mutex is platform dependent here
    212198        void ?{}(int * this, counter_t & mutex cnt) {
    213199                *this = (int)cnt;
    214200        }
    215201\end{lstlisting}
    216 \begin{tabular}{ c c }
    217 Thread 1 & Thread 2 \\
    218 \begin{lstlisting}
    219         void f(counter_t & mutex c) {
    220                 for(;;) {
    221                         sout | (int)c | endl;
    222                 }
    223         }
    224 \end{lstlisting} &\begin{lstlisting}
    225         void g(counter_t & mutex c) {
    226                 for(;;) {
    227                         ++c;
    228                 }
    229         }
    230 
     202
     203This simple counter is used as follows:
     204\begin{center}
     205\begin{tabular}{c @{\hskip 0.35in} c @{\hskip 0.35in} c}
     206\begin{lstlisting}
     207        //shared counter
     208        counter_t cnt;
     209
     210        //multiple threads access counter
     211        thread 1 : cnt++;
     212        thread 2 : cnt++;
     213        thread 3 : cnt++;
     214          ...
     215        thread N : cnt++;
    231216\end{lstlisting}
    232217\end{tabular}
    233 \\
    234 
    235 
    236 This simple counter offers an example of monitor usage. Notice how the counter is used without any explicit synchronisation and yet supports thread-safe semantics for both reading and writting. \\
    237 
    238 These simple mutual exclusion semantics also naturally expand to multi-monitor calls.
     218\end{center}
     219
     220Notice how the counter is used without any explicit synchronisation and yet supports thread-safe semantics for both reading and writting. Unlike object-oriented monitors, where calling a mutex member \emph{implicitly} acquires mutual-exclusion, \CFA uses an explicit mechanism to acquire mutual-exclusion. A consequence of this approach is that it extends to multi-monitor calls.
    239221\begin{lstlisting}
    240222        int f(MonitorA & mutex a, MonitorB & mutex b);
     
    244226        f(a,b);
    245227\end{lstlisting}
    246 
    247 This code acquires both locks before entering the critical section. In practice, writing multi-locking routines that can not lead to deadlocks can be very tricky. Having language level support for such feature is therefore a significant asset for \CFA. However, this does have significant repercussions relating to scheduling (see \ref{insched} and \ref{extsched}). Furthermore, the ability to acquire multiple monitors at the same time does incur a significant pitfall even without looking into scheduling. For example :
    248 \begin{lstlisting}
    249         void foo(A & mutex a, B & mutex a) {
    250                 //...
    251         }
    252 
    253         void bar(A & mutex a, B & nomutex a)
    254                 //...
    255                 foo(a, b);
    256                 //...
    257         }
    258 
    259         void baz(A & nomutex a, B & mutex a)
    260                 //...
    261                 foo(a, b);
    262                 //...
    263         }
    264 \end{lstlisting}
    265 
    266 Recursive mutex routine calls are allowed in \CFA but if not done carefully it can lead to nested monitor call problems\cite{Lister77}. These problems which are a specific  implementation of the lock acquiring order problem. In the example above, the user uses implicit ordering in the case of function \code{bar} but explicit ordering in the case of \code{baz}. This subtle mistake can mean that calling these two functions concurrently will lead to deadlocks, depending on the implicit ordering matching the explicit ordering. As shown on several occasion\cit, there isn't really any solutions to this problem, users simply need to be carefull when acquiring multiple monitors at the same time.
     228This code acquires both locks before entering the critical section, called \emph{\gls{group-acquire}}. In practice, writing multi-locking routines that do not lead to deadlocks is tricky. Having language support for such a feature is therefore a significant asset for \CFA. In the case presented above, \CFA guarantees that the order of aquisition is consistent across calls to routines using the same monitors as arguments. However, since \CFA monitors use multi-acquisition locks, users can effectively force the acquiring order. For example, notice which routines use \code{mutex}/\code{nomutex} and how this affects aquiring order :
     229\begin{lstlisting}
     230        void foo(A & mutex a, B & mutex b) { //acquire a & b
     231                //...
     232        }
     233
     234        void bar(A & mutex a, B & nomutex b) { //acquire a
     235                //...
     236                foo(a, b); //acquire b
     237                //...
     238        }
     239
     240        void baz(A & nomutex a, B & mutex b) { //acquire b
     241                //...
     242                foo(a, b); //acquire a
     243                //...
     244        }
     245\end{lstlisting}
     246
     247The multi-acquisition monitor lock allows a monitor lock to be acquired by both \code{bar} or \code{baz} and acquired again in \code{foo}. In the calls to \code{bar} and \code{baz} the monitors are acquired in opposite order. such use leads to nested monitor call problems~\cite{Lister77}, which is a specific implementation of the lock acquiring order problem. In the example above, the user uses implicit ordering in the case of function \code{foo} but explicit ordering in the case of \code{bar} and \code{baz}. This subtle mistake means that calling these routines concurrently may lead to deadlock and is therefore undefined behavior. As shown on several occasion\cit, solving this problem requires :
     248\begin{enumerate}
     249        \item Dynamically tracking of the monitor-call order.
     250        \item Implement rollback semantics.
     251\end{enumerate}
     252
     253While the first requirement is already a significant constraint on the system, implementing a general rollback semantics in a C-like language is prohibitively complex \cit. In \CFA, users simply need to be carefull when acquiring multiple monitors at the same time.
    267254
    268255% ######  ####### #######    #    ### #        #####
     
    283270
    284271\subsubsection{Implementation Details: Interaction with polymorphism}
    285 At first glance, interaction between monitors and \CFA's concept of polymorphism seem complexe to support. However, it can be reasoned that entry-point locking can solve most of the issues that could be present with polymorphism.
    286 
    287 First of all, interaction between \code{otype} polymorphism and monitors is impossible since monitors do not support copying. Therefore the main question is how to support \code{dtype} polymorphism. We must remember that monitors' main purpose is to ensure mutual exclusion when accessing shared data. This implies that mutual exclusion is only required for routines that do in fact access shared data. However, since \code{dtype} polymorphism always handle incomplete types (by definition) no \code{dtype} polymorphic routine can access shared data since the data would require knowledge about the type. Therefore the only concern when combining \code{dtype} polymorphism and monitors is to protect access to routines. With callsite-locking, this would require significant amount of work since any \code{dtype} routine could have to obtain some lock before calling a routine. However, with entry-point-locking calling a monitor routine becomes exactly the same as calling it from anywhere else.
     272At first glance, interaction between monitors and \CFA's concept of polymorphism seems complex to support. However, it is shown that entry-point locking can solve most of the issues.
     273
     274Before looking into complex control flow, it is important to present the difference between the two acquiring options : \gls{callsite-locking} and \gls{entry-point-locking}, i.e. acquiring the monitors before making a mutex call or as the first instruction of the mutex call. For example:
     275
     276\begin{center}
     277\begin{tabular}{|c|c|c|}
     278Code & \gls{callsite-locking} & \gls{entry-point-locking} \\
     279\CFA & pseudo-code & pseudo-code \\
     280\hline
     281\begin{lstlisting}
     282void foo(monitor & mutex a) {
     283
     284
     285
     286        //Do Work
     287        //...
     288
     289}
     290
     291void main() {
     292        monitor a;
     293
     294
     295
     296        foo(a);
     297
     298}
     299\end{lstlisting} &\begin{lstlisting}
     300foo(& a) {
     301
     302
     303
     304        //Do Work
     305        //...
     306
     307}
     308
     309main() {
     310        monitor a;
     311        //calling routine
     312        //handles concurrency
     313        acquire(a);
     314        foo(a);
     315        release(a);
     316}
     317\end{lstlisting} &\begin{lstlisting}
     318foo(& a) {
     319        //called routine
     320        //handles concurrency
     321        acquire(a);
     322        //Do Work
     323        //...
     324        release(a);
     325}
     326
     327main() {
     328        monitor a;
     329
     330
     331
     332        foo(a);
     333
     334}
     335\end{lstlisting}
     336\end{tabular}
     337\end{center}
     338
     339First of all, interaction between \code{otype} polymorphism and monitors is impossible since monitors do not support copying. Therefore, the main question is how to support \code{dtype} polymorphism. Since a monitor's main purpose is to ensure mutual exclusion when accessing shared data, this implies that mutual exclusion is only required for routines that do in fact access shared data. However, since \code{dtype} polymorphism always handles incomplete types (by definition), no \code{dtype} polymorphic routine can access shared data since the data requires knowledge about the type. Therefore, the only concern when combining \code{dtype} polymorphism and monitors is to protect access to routines. \Gls{callsite-locking} would require a significant amount of work, since any \code{dtype} routine may have to obtain some lock before calling a routine, depending on whether or not the type passed is a monitor. However, with \gls{entry-point-locking} calling a monitor routine becomes exactly the same as calling it from anywhere else.
     340
     341
    288342
    289343% ### #     # #######         #####   #####  #     # ####### ######
     
    296350
    297351\subsection{Internal scheduling} \label{insched}
    298 Monitors should also be able to schedule what threads access it as a mean of synchronization. Internal scheduling is one of the simple examples of such a feature. It allows users to declare condition variables and wait for them to be signaled. Here is a simple example of such a technique :
     352Monitors also need to schedule waiting threads internally as a mean of synchronization. Internal scheduling is one of the simple examples of such a feature. It allows users to declare condition variables and have threads wait and signaled from them. Here is a simple example of such a technique :
    299353
    300354\begin{lstlisting}
     
    314368\end{lstlisting}
    315369
    316 Here routine \code{foo} waits on the \code{signal} from \code{bar} before making further progress, effectively ensuring a basic ordering. This semantic can easily be extended to multi-monitor calls by offering the same guarantee.
    317 
     370Note that in \CFA, \code{condition} have no particular need to be stored inside a monitor, beyond any software engineering reasons. Here routine \code{foo} waits for the \code{signal} from \code{bar} before making further progress, effectively ensuring a basic ordering. This semantic can easily be extended to multi-monitor calls by offering the same guarantee.
    318371\begin{center}
    319372\begin{tabular}{ c @{\hskip 0.65in} c }
     
    321374\begin{lstlisting}
    322375void foo(monitor & mutex a,
    323          monitor & mutex b) {
     376           monitor & mutex b) {
    324377        //...
    325378        wait(a.e);
     
    330383\end{lstlisting} &\begin{lstlisting}
    331384void bar(monitor & mutex a,
    332          monitor & mutex b) {
     385           monitor & mutex b) {
    333386        signal(a.e);
    334387}
     
    340393\end{tabular}
    341394\end{center}
    342 
    343 A direct extension of the single monitor semantics would be to release all locks when waiting and transferring ownership of all locks when signalling. However, for the purpose of synchronization it may be usefull to only release some of the locks but keep others. On the technical side, partially releasing lock is feasible but from the user perspective a choice must be made for the syntax of this feature. It is possible to do without any extra syntax by relying on order of acquisition (Note that here the use of helper routines is irrelevant, only routines the acquire mutual exclusion have an impact on internal scheduling):
     395A direct extension of the single monitor semantics is to release all locks when waiting and transferring ownership of all locks when signalling. However, for the purpose of synchronization it may be usefull to only release some of the locks but keep others. It is possible to support internal scheduling and \gls{group-acquire} without any extra syntax by relying on order of acquisition. Here is an example of the different contexts in which internal scheduling can be used. (Note that here the use of helper routines is irrelevant, only routines acquire mutual exclusion have an impact on internal scheduling):
    344396
    345397\begin{center}
     
    350402condition e;
    351403
     404//acquire a & b
    352405void foo(monitor & mutex a,
    353          monitor & mutex b) {
    354         wait(e);
     406           monitor & mutex b) {
     407
     408        wait(e); //release a & b
    355409}
    356410
     
    364418condition e;
    365419
     420//acquire a
    366421void bar(monitor & mutex a,
    367          monitor & nomutex b) {
     422           monitor & nomutex b) {
    368423        foo(a,b);
    369424}
    370425
     426//acquire a & b
    371427void foo(monitor & mutex a,
    372          monitor & mutex b) {
    373         wait(e);
     428           monitor & mutex b) {
     429        wait(e);  //release a & b
    374430}
    375431
     
    378434condition e;
    379435
     436//acquire a
    380437void bar(monitor & mutex a,
    381          monitor & nomutex b) {
    382         foo(a,b);
    383 }
    384 
     438           monitor & nomutex b) {
     439        baz(a,b);
     440}
     441
     442//acquire b
    385443void baz(monitor & nomutex a,
    386          monitor & mutex b) {
    387         wait(e);
     444           monitor & mutex b) {
     445        wait(e);  //release b
    388446}
    389447
     
    393451\end{center}
    394452
    395 This can be interpreted in two different ways :
    396 \begin{flushleft}
    397 \begin{enumerate}
    398         \item \code{wait} atomically releases the monitors acquired by the inner-most routine, \underline{ignoring} nested calls.
    399         \item \code{wait} atomically releases the monitors acquired by the inner-most routine, \underline{considering} nested calls.
    400 \end{enumerate}
    401 \end{flushleft}
    402 While the difference between these two is subtle, it has a significant impact. In the first case it means that the calls to \code{foo} would behave the same in Context 1 and 2. This semantic would also mean that the call to \code{wait} in routine \code{baz} would only release \code{monitor b}. While this may seem intuitive with these examples, it does have one significant implication, it creates a strong distinction between acquiring multiple monitors in sequence and acquiring the same monitors simulatenously, i.e. :
     453Context 1 is the simplest way of acquiring more than one monitor (\gls{group-acquire}), using a routine with multiple parameters having the \code{mutex} keyword. Context 2 also uses \gls{group-acquire} as well in routine \code{foo}. However, the routine is called by routine \code{bar}, which only acquires monitor \code{a}. Since monitors can be acquired multiple times this does not cause a deadlock by itself but it does force the acquiring order to \code{a} then \code{b}. Context 3 also forces the acquiring order to be \code{a} then \code{b} but does not use \gls{group-acquire}. The previous example tries to illustrate the semantics that must be established to support releasing monitors in a \code{wait} statement. In all cases, the behavior of the wait statment is to release all the locks that were acquired my the inner-most monitor call. That is \code{a & b} in context 1 and 2 and \code{b} only in context 3. Here are a few other examples of this behavior.
     454
    403455
    404456\begin{center}
    405 \begin{tabular}{c @{\hskip 0.35in} c @{\hskip 0.35in} c}
    406 \begin{lstlisting}
    407 enterMonitor(a);
    408 enterMonitor(b);
    409 // do stuff
    410 leaveMonitor(b);
    411 leaveMonitor(a);
    412 \end{lstlisting} & != &\begin{lstlisting}
    413 enterMonitor(a);
    414 enterMonitor(a, b);
    415 // do stuff
    416 leaveMonitor(a, b);
    417 leaveMonitor(a);
     457\begin{tabular}{|c|c|c|}
     458\begin{lstlisting}
     459condition e;
     460
     461//acquire b
     462void foo(monitor & nomutex a,
     463           monitor & mutex b) {
     464        bar(a,b);
     465}
     466
     467//acquire a
     468void bar(monitor & mutex a,
     469           monitor & nomutex b) {
     470
     471        wait(e); //release a
     472                  //keep b
     473}
     474
     475foo(a, b);
     476\end{lstlisting} &\begin{lstlisting}
     477condition e;
     478
     479//acquire a & b
     480void foo(monitor & mutex a,
     481           monitor & mutex b) {
     482        bar(a,b);
     483}
     484
     485//acquire b
     486void bar(monitor & mutex a,
     487           monitor & nomutex b) {
     488
     489        wait(e); //release b
     490                  //keep a
     491}
     492
     493foo(a, b);
     494\end{lstlisting} &\begin{lstlisting}
     495condition e;
     496
     497//acquire a & b
     498void foo(monitor & mutex a,
     499           monitor & mutex b) {
     500        bar(a,b);
     501}
     502
     503//acquire none
     504void bar(monitor & nomutex a,
     505           monitor & nomutex b) {
     506
     507        wait(e); //release a & b
     508                  //keep none
     509}
     510
     511foo(a, b);
    418512\end{lstlisting}
    419513\end{tabular}
    420514\end{center}
    421 
    422 This is not intuitive because even if both methods display the same monitors state both inside and outside the critical section respectively, the behavior is different. Furthermore, the actual acquiring order will be exaclty the same since acquiring a monitor from inside its mutual exclusion is a no-op. This means that even if the data and the actual control flow are the same using both methods, the behavior of the \code{wait} will be different. The alternative is option 2, that is releasing acquired monitors, \underline{considering} nesting. This solves the issue of having the two acquiring method differ at the cost of making routine \code{foo} behave differently depending on from which context it is called (Context 1 or 2). Indeed in Context 2, routine \code{foo} actually behaves like routine \code{baz} rather than having the same behavior than in Context 1. The fact that both implicit approaches can be unintuitive depending on the perspective may be a sign that the explicit approach is superior. For this reason this \CFA does not support implicit monitor releasing and uses explicit semantics.
    423 \\
    424 
    425 The following examples shows three alternatives of explicit wait semantics :
    426 \\
    427 
     515Note the right-most example is actually a trick pulled on the reader. Monitor state information is stored in thread local storage rather then in the routine context, which means that helper routines and other \code{nomutex} routines are invisible to the runtime system in regards to concurrency. This means that in the right-most example, the routine parameters are completly unnecessary. However, calling this routine from outside a valid monitor context is undefined.
     516
     517These semantics imply that in order to release of subset of the monitors currently held, users must write (and name) a routine that only acquires the desired subset and simply calls wait. While users can use this method, \CFA offers the \code{wait_release}\footnote{Not sure if an overload of \code{wait} would work...} which will release only the specified monitors. In the center previous examples, the code in the center uses the \code{bar} routine to only release monitor \code{b}. Using the \code{wait_release} helper, this can be rewritten without having the name two routines :
    428518\begin{center}
    429 \begin{tabular}{|c|c|c|}
    430 Case 1 & Case 2 & Case 3 \\
    431 Branding on construction & Explicit release list & Explicit ignore list \\
    432 \hline
    433 \begin{lstlisting}
    434 void foo(monitor & mutex a,
    435          monitor & mutex b,
    436            condition & c)
    437 {
    438         // Releases monitors
    439         // branded in ctor
    440         wait(c);
    441 }
    442 
    443 monitor a;
    444 monitor b;
    445 condition1 c1 = {a};
    446 condition2 c2 = {a, b};
    447 
    448 //Will release only a
    449 foo(a,b,c1);
    450 
    451 //Will release a and b
    452 foo(a,b,c2);
     519\begin{tabular}{ c c c }
     520\begin{lstlisting}
     521        condition e;
     522
     523        //acquire a & b
     524        void foo(monitor & mutex a,
     525                   monitor & mutex b) {
     526                bar(a,b);
     527        }
     528
     529        //acquire b
     530        void bar(monitor & mutex a,
     531                   monitor & nomutex b) {
     532
     533                wait(e); //release b
     534                          //keep a
     535        }
     536
     537        foo(a, b);
    453538\end{lstlisting} &\begin{lstlisting}
    454 void foo(monitor & mutex a,
    455          monitor & mutex b,
    456            condition & c)
    457 {
    458         // Releases monitor a
    459         // Holds monitor b
    460         waitRelease(c, [a]);
    461 }
    462 
    463 monitor a;
    464 monitor b;
    465 condition c;
    466 
    467 
    468 
    469 foo(a,b,c);
    470 
    471 
    472 
     539        =>
    473540\end{lstlisting} &\begin{lstlisting}
    474 void foo(monitor & mutex a,
    475          monitor & mutex b,
    476            condition & c)
    477 {
    478         // Releases monitor a
    479         // Holds monitor b
    480         waitHold(c, [b]);
    481 }
    482 
    483 monitor a;
    484 monitor b;
    485 condition c;
    486 
    487 
    488 
    489 foo(a,b,c);
    490 
    491 
    492 
     541        condition e;
     542
     543        //acquire a & b
     544        void foo(monitor & mutex a,
     545                   monitor & mutex b) {
     546                wait_release(e,b); //release b
     547                                         //keep a
     548        }
     549
     550        foo(a, b);
    493551\end{lstlisting}
    494552\end{tabular}
    495553\end{center}
    496 (Note : Case 2 and 3 use tuple semantics to pass a variable length list of elements.)
    497 \\
    498 
    499 All these cases have their pros and cons. Case 1 is more distinct because it means programmers need to be carefull about where the condition is initialized as well as where it is used. On the other hand, it is very clear and explicitly states which monitor is released and which monitor stays acquired. This is similar to Case 2, which releases only the monitors explictly listed. However, in Case 2, calling the \code{wait} routine instead of the \code{waitRelease} routine releases all the acquired monitor. The Case 3 is an improvement on that since it releases all the monitors except those specified. The result is that the \code{wait} routine can be written as follows :
    500 \begin{lstlisting}
    501 void wait(condition & cond) {
    502         waitHold(cond, []);
    503 }
    504 \end{lstlisting}
    505 This alternative offers nice and consistent behavior between \code{wait} and \code{waitHold}. However, one large pitfall is that mutual exclusion can now be violated by calls to library code. Indeed, even if the following example seems benign there is one significant problem :
    506 \begin{lstlisting}
    507 monitor global;
    508 
    509 extern void doStuff(); //uses global
    510 
    511 void foo(monitor & mutex m) {
    512         //...
    513         doStuff(); //warning can release monitor m
    514         //...
    515 }
    516 
    517 foo(global);
    518 \end{lstlisting}
    519 
    520 Indeed, if Case 2 or 3 are chosen it any code can violate the mutual exclusion of the calling code by issuing calls to \code{wait} or \code{waitHold} in a nested monitor context. Case 2 can be salvaged by removing the \code{wait} routine from the API but Case 3 cannot prevent users from calling \code{waitHold(someCondition, [])}. For this reason the syntax proposed in Case 3 is rejected. Note that the syntax proposed in case 1 and 2 are not exclusive. Indeed, by supporting two types of condition both cases can be supported :
    521 \begin{lstlisting}
    522 struct condition { /*...*/ };
    523 
    524 // Second argument is a variable length tuple.
    525 void wait(condition & cond, [...] monitorsToRelease);
    526 void signal(condition & cond);
    527 
    528 struct conditionN { /*...*/ };
    529 
    530 void ?{}(conditionN* this, /*list of N monitors to release*/);
    531 void wait(conditionN & cond);
    532 void signal(conditionN & cond);
    533 \end{lstlisting}
    534 
    535 Regardless of the option chosen for wait semantics, signal must be symmetrical. In all cases, signal only needs a single parameter, the condition variable that needs to be signalled. But \code{signal} needs to be called from the same monitor(s) that call to \code{wait}. Otherwise, mutual exclusion cannot be properly transferred back to the waiting monitor.
    536 
    537 Finally, an additionnal semantic which can be very usefull is the \code{signalBlock} routine. This routine behaves like signal for all of the semantics discussed above, but with the subtelty that mutual exclusion is transferred to the waiting task immediately rather than wating for the end of the critical section.
     554
     555Regardless of the context in which the \code{wait} statement is used, \code{signal} must be called holding the same set of monitors. In all cases, signal only needs a single parameter, the condition variable that needs to be signalled. But \code{signal} needs to be called from the same monitor(s) that call to \code{wait}. Otherwise, mutual exclusion cannot be properly transferred back to the waiting monitor.
     556
     557Finally, an additional semantic which can be very usefull is the \code{signal_block} routine. This routine behaves like signal for all of the semantics discussed above, but with the subtelty that mutual exclusion is transferred to the waiting task immediately rather than wating for the end of the critical section.
    538558\\
    539559
     
    545565% #        #   #     #    ###    #     # #     # #     # #       #     #
    546566% ####### #     #    #    ###     #####   #####  #     # ####### ######
    547 
     567\newpage
    548568\subsection{External scheduling} \label{extsched}
    549 As one might expect, the alternative to Internal scheduling is to use External scheduling instead. This method is somewhat more robust to deadlocks since one of the threads keeps a relatively tight control on scheduling. Indeed, as the following examples will demonstrate, external scheduling allows users to wait for events from other threads without the concern of unrelated events occuring. External scheduling can generally be done either in terms of control flow (ex: \uC) or in terms of data (ex: Go). Of course, both of these paradigms have their own strenghts and weaknesses but for this project control flow semantics where chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multi-monitor routines. The following example shows what a simple use \code{accept} versus \code{wait}/\code{signal} and its advantages.
     569An alternative to internal scheduling is to use external scheduling instead. This method is more constrained and explicit which may help users tone down the undeterministic nature of concurrency. Indeed, as the following examples demonstrates, external scheduling allows users to wait for events from other threads without the concern of unrelated events occuring. External scheduling can generally be done either in terms of control flow (ex: \uC) or in terms of data (ex: Go). Of course, both of these paradigms have their own strenghts and weaknesses but for this project control flow semantics where chosen to stay consistent with the rest of the languages semantics. Two challenges specific to \CFA arise when trying to add external scheduling with loose object definitions and multi-monitor routines. The following example shows a simple use \code{accept} versus \code{wait}/\code{signal} and its advantages.
    550570
    551571\begin{center}
     
    565585
    566586        public:
    567                 void f();
     587                void f() { /*...*/ }
    568588                void g() { _Accept(f); }
    569589        private:
     
    573593\end{center}
    574594
    575 In the case of internal scheduling, the call to \code{wait} only guarantees that \code{g} was the last routine to access the monitor. This intails that the routine \code{f} may have acquired mutual exclusion several times while routine \code{h} was waiting. On the other hand, external scheduling guarantees that while routine \code{h} was waiting, no routine other than \code{g} could acquire the monitor.
     595In the case of internal scheduling, the call to \code{wait} only guarantees that \code{g} is the last routine to access the monitor. This intails that the routine \code{f} may have acquired mutual exclusion several times while routine \code{h} was waiting. On the other hand, external scheduling guarantees that while routine \code{h} was waiting, no routine other than \code{g} could acquire the monitor.
    576596\\
    577597
     
    756776% #       #     # #     # #     # ####### ####### ####### ####### ###  #####  #     #
    757777\section{Parallelism}
    758 Historically, computer performance was about processor speeds and instructions count. However, with heat dissipation being an ever growing challenge, parallelism has become the new source of greatest performance \cite{Sutter05, Sutter05b}. In this decade, it is not longer reasonnable to create high-performance application without caring about parallelism. Indeed, parallelism is an important aspect of performance and more specifically throughput and hardware utilization. The lowest level approach of parallelism is to use \glspl{kthread}. However since these have significant costs and limitations \glspl{kthread} are now mostly used as an implementation tool rather than a user oriented one. There are several alternatives to solve these issues which all have strengths and weaknesses.
     778Historically, computer performance was about processor speeds and instructions count. However, with heat dissipation being a direct consequence of speed increase, parallelism has become the new source for increased performance~\cite{Sutter05, Sutter05b}. In this decade, it is not longer reasonnable to create a high-performance application without caring about parallelism. Indeed, parallelism is an important aspect of performance and more specifically throughput and hardware utilization. The lowest-level approach of parallelism is to use \glspl{kthread} in combination with semantics like \code{fork}, \code{join}, etc. However, since these have significant costs and limitations, \glspl{kthread} are now mostly used as an implementation tool rather than a user oriented one. There are several alternatives to solve these issues that all have strengths and weaknesses. While there are many variations of the presented paradigms, most of these variations do not actually change the guarantees or the semantics, they simply move costs in order to achieve better performance for certain workloads.
    759779
    760780\subsection{User-level threads}
    761 A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provide but can be used on a much larger scale. This is the most powerfull solution as it allows all the features of multi-threading while removing several of the more expensives costs of using kernel threads. The down side is that almost none of the low-level threading complexities are hidden, users still have to think about data races, deadlocks and synchronization issues. This can be somewhat alleviated by a concurrency toolkit with strong garantees but the parallelism toolkit offers very little to reduce complexity in itself.
    762 
    763 Examples of languages that support are Java\cite{Java}, Haskell\cite{Haskell} and \uC\cite{uC++book}.
     781A direct improvement on the \gls{kthread} approach is to use \glspl{uthread}. These threads offer most of the same features that the operating system already provide but can be used on a much larger scale. This approach is the most powerfull solution as it allows all the features of multi-threading, while removing several of the more expensives costs of using kernel threads. The down side is that almost none of the low-level threading problems are hidden, users still have to think about data races, deadlocks and synchronization issues. These issues can be somewhat alleviated by a concurrency toolkit with strong garantees but the parallelism toolkit offers very little to reduce complexity in itself.
     782
     783Examples of languages that support \glspl{uthread} are Erlang~\cite{Erlang} and \uC~\cite{uC++book}.
     784
     785\subsubsection{Fibers : user-level threads without preemption}
     786A popular varient of \glspl{uthread} is what is often reffered to as \glspl{fiber}. However, \glspl{fiber} do not present meaningful semantical differences with \glspl{uthread}. Advocates of \glspl{fiber} list their high performance and ease of implementation as majors strenghts of \glspl{fiber} but the performance difference between \glspl{uthread} and \glspl{fiber} is controversial and the ease of implementation, while true, is a weak argument in the context of language design. Therefore this proposal largely ignore fibers.
     787
     788An example of a language that uses fibers is Go~\cite{Go}
    764789
    765790\subsection{Jobs and thread pools}
    766 The approach on the opposite end of the spectrum is to base parallelism on \glspl{job}. Indeed, \glspl{job} offer limited flexibility but at the benefit of a simpler user interface. In \gls{job} based systems users express parallelism as units of work and the dependency graph (either explicit or implicit) that tie them together. This means users need not to worry about concurrency but significantly limits the interaction that can occur between different jobs. Indeed, any \gls{job} that blocks also blocks the underlying \gls{kthread}, this effectively mean the CPU utilization, and therefore throughput, will suffer noticeably.
    767 The golden standard of this implementation is Intel's TBB library\cite{TBB}.
    768 
    769 \subsection{Fibers : user-level threads without preemption}
    770 Finally, in the middle of the flexibility versus complexity spectrum lay \glspl{fiber} which offer \glspl{uthread} without the complexity of preemption. This means users don't have to worry about other \glspl{fiber} suddenly executing between two instructions which signficantly reduces complexity. However, any call to IO or other concurrency primitives can lead to context switches. Furthermore, users can also block \glspl{fiber} in the middle of their execution without blocking a full processor core. This means users still have to worry about mutual exclusion, deadlocks and race conditions in their code, raising the complexity significantly.
    771 An example of a language that uses fibers is Go\cite{Go}
     791The approach on the opposite end of the spectrum is to base parallelism on \glspl{pool}. Indeed, \glspl{pool} offer limited flexibility but at the benefit of a simpler user interface. In \gls{pool} based systems, users express parallelism as units of work and a dependency graph (either explicit or implicit) that tie them together. This approach means users need not worry about concurrency but significantly limits the interaction that can occur among jobs. Indeed, any \gls{job} that blocks also blocks the underlying worker, which effectively means the CPU utilization, and therefore throughput, suffers noticeably. It can be argued that a solution to this problem is to use more workers than available cores. However, unless the number of jobs and the number of workers are comparable, having a significant amount of blocked jobs always results in idles cores.
     792
     793The gold standard of this implementation is Intel's TBB library~\cite{TBB}.
    772794
    773795\subsection{Paradigm performance}
    774 While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pin the performance implications of chosing a model at the language level. Indeed, in many situations one of these paradigms will show better performance but it all strongly depends on the usage. Having mostly indepent units of work to execute almost guarantess that the \gls{job} based system will have the best performance. However, add interactions between jobs and the processor utilisation might suffer. User-level threads may allow maximum ressource utilisation but context switches will be more expansive and it is also harder for users to get perfect tunning. As with every example, fibers sit somewhat in the middle of the spectrum. Furthermore, if the units of uninterrupted work are large enough the paradigm choice will be largely amorticised by the actual work done.
     796While the choice between the three paradigms listed above may have significant performance implication, it is difficult to pindown the performance implications of chosing a model at the language level. Indeed, in many situations one of these paradigms may show better performance but it all strongly depends on the workload. Having a large amount of mostly independent units of work to execute almost guarantess that the \gls{pool} based system has the best performance thanks to the lower memory overhead. However, interactions between jobs can easily exacerbate contention. User-level threads allow fine-grain context switching, which results in better resource utilisation, but context switches will be more expansive and the extra control means users need to tweak more variables to get the desired performance. Furthermore, if the units of uninterrupted work are large enough the paradigm choice is largely amorticised by the actual work done.
    775797
    776798%  #####  #######    #          ####### ######  ######
     
    783805
    784806\section{\CFA 's Thread Building Blocks}
    785 As a system level language, \CFA should offer both performance and flexibilty as its primary goals, simplicity and user-friendliness being a secondary concern. Therefore, the core of parallelism in \CFA should prioritize power and efficiency. With this said, it is possible to deconstruct the three paradigms details aboved in order to get simple building blocks. Here is a table showing the core caracteristics of the mentionned paradigms :
    786 \begin{center}
    787 \begin{tabular}[t]{| r | c | c |}
    788 \cline{2-3}
    789 \multicolumn{1}{ c| }{} & Has a stack & Preemptive \\
    790 \hline
    791 \Glspl{job} & X & X \\
    792 \hline
    793 \Glspl{fiber} & \checkmark & X \\
    794 \hline
    795 \Glspl{uthread} & \checkmark & \checkmark \\
    796 \hline
    797 \end{tabular}
    798 \end{center}
    799 
    800 As shown in section \ref{cfaparadigms} these different blocks being available in \CFA it is trivial to reproduce any of these paradigm.
     807As a system-level language, \CFA should offer both performance and flexibilty as its primary goals, simplicity and user-friendliness being a secondary concern. Therefore, the core of parallelism in \CFA should prioritize power and efficiency. With this said, deconstructing popular paradigms in order to get simple building blocks yields \glspl{uthread} as the core parallelism block. \Glspl{pool} and other parallelism paradigms can then be built on top of the underlying threading model.
    801808
    802809% ####### #     # ######  #######    #    ######   #####
     
    809816
    810817\subsection{Thread Interface}
    811 The basic building blocks of \CFA are \glspl{cfathread}. By default these are implemented as \glspl{uthread} and as such offer a flexible and lightweight threading interface (lightweight comparatievely to \glspl{kthread}). A thread can be declared using a struct declaration prefix with the \code{thread} as follows :
     818The basic building blocks of \CFA are \glspl{cfathread}. By default these are implemented as \glspl{uthread}, and as such, offer a flexible and lightweight threading interface (lightweight compared to \glspl{kthread}). A thread can be declared using a struct declaration with prefix \code{thread} as follows :
    812819
    813820\begin{lstlisting}
     
    815822\end{lstlisting}
    816823
    817 Obviously, for this thread implementation to be usefull it must run some user code. Several other threading interfaces use some function pointer representation as the interface of threads (for example : \Csharp \cite{Csharp} and Scala \cite{Scala}). However, we consider that statically tying a \code{main} routine to a thread superseeds this approach. Since the \code{main} routine is definetely a special routine in \CFA, we can reuse the existing syntax for declaring routines with unordinary name, i.e. operator overloading. As such the \code{main} routine of a thread can be defined as such :
     824Obviously, for this thread implementation to be usefull it must run some user code. Several other threading interfaces use a function-pointer representation as the interface of threads (for example : \Csharp~\cite{Csharp} and Scala~\cite{Scala}). However, this proposal considers that statically tying a \code{main} routine to a thread superseeds this approach. Since the \code{main} routine is already a special routine in \CFA (where the program begins), the existing syntax for declaring routines names with special semantics can be extended, i.e. operator overloading. As such the \code{main} routine of a thread can be defined as :
    818825\begin{lstlisting}
    819826        thread struct foo {};
    820827
    821         void ?main(thread foo* this) {
    822                 /*... Some useful code ...*/
    823         }
    824 \end{lstlisting}
    825 
    826 With these semantics it is trivial to write a thread type that takes a function pointer as parameter and executes it on its stack asynchronously :
     828        void ?main(foo* this) {
     829                sout | "Hello World!" | endl;
     830        }
     831\end{lstlisting}
     832
     833In this example, threads of type \code{foo} will start there execution in the \code{void ?main(foo*)} routine which in this case prints \code{"Hello World!"}. While this proposoal encourages this approach which is enforces strongly type programming. Users may prefer to use the routine based thread semantics for the sake of simplicity. With these semantics it is trivial to write a thread type that takes a function pointer as parameter and executes it on its stack asynchronously :
    827834\begin{lstlisting}
    828835        typedef void (*voidFunc)(void);
     
    833840
    834841        //ctor
    835         void ?{}(thread FuncRunner* this, voidFunc inFunc) {
     842        void ?{}(FuncRunner* this, voidFunc inFunc) {
    836843                func = inFunc;
    837844        }
    838845
    839846        //main
    840         void ?main(thread FuncRunner* this) {
     847        void ?main(FuncRunner* this) {
    841848                this->func();
    842849        }
    843850\end{lstlisting}
    844851
    845 % In this example \code{func} is a function pointer stored in \acrfull{tls}, which is \CFA is both easy to use and completly typesafe.
    846 
    847 Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is not needed. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} once the constructor has completed and \code{join} before the destructor runs.
    848 \begin{lstlisting}
    849 thread struct FuncRunner; //FuncRunner declared above
    850 
    851 void world() {
     852Of course for threads to be useful, it must be possible to start and stop threads and wait for them to complete execution. While using an \acrshort{api} such as \code{fork} and \code{join} is relatively common in the literature, such an interface is unnecessary. Indeed, the simplest approach is to use \acrshort{raii} principles and have threads \code{fork} once the constructor has completed and \code{join} before the destructor runs.
     853\begin{lstlisting}
     854thread struct World; //FuncRunner declared above
     855
     856void ?main(thread World* this) {
    852857        sout | "World!" | endl;
    853858}
    854859
    855860void main() {
    856         FuncRunner run = {world};
     861        World w;
    857862        //Thread run forks here
    858863
     
    863868}
    864869\end{lstlisting}
    865 This semantic has several advantages over explicit semantics : typesafety is guaranteed, any thread will always be started and stopped exaclty once and users can't make any progamming errors. Furthermore it naturally follows the memory allocation semantics which means users don't need to learn multiple semantics.
    866 
    867 These semantics also naturally scale to multiple threads meaning basic synchronisation is very simple :
     870This semantic has several advantages over explicit semantics : typesafety is guaranteed, a thread is always started and stopped exaclty once and users cannot make any progamming errors. However, one of the apparent drawbacks of this system is that threads now always form a lattice, that is they are always destroyed in opposite order of construction. While this seems like a significant limitation, existing \CFA semantics can solve this problem. Indeed, by using dynamic allocation to create threads will naturally let threads outlive the scope in which the thread was created much like dynamically allocating memory will let objects outlive the scope in which thy were created :
     871
    868872\begin{lstlisting}
    869873        thread struct MyThread {
     
    872876
    873877        //ctor
    874         void ?{}(thread MyThread* this) {}
     878        void ?{}(MyThread* this,
     879                     bool is_special = false) {
     880                //...
     881        }
    875882
    876883        //main
    877         void ?main(thread MyThread* this) {
     884        void ?main(MyThread* this) {
     885                //...
     886        }
     887
     888        void foo() {
     889                MyThread* special_thread;
     890                {
     891                        MyThread thrds = {false};
     892                        //Start a thread at the beginning of the scope
     893
     894                        DoStuff();
     895
     896                        //create a other thread that will outlive the thread in this scope
     897                        special_thread = new MyThread{true};
     898
     899                        //Wait for the thread to finish
     900                }
     901                DoMoreStuff();
     902
     903                //Now wait for the special
     904        }
     905\end{lstlisting}
     906
     907Another advantage of this semantic is that it naturally scale to multiple threads meaning basic synchronisation is very simple :
     908
     909\begin{lstlisting}
     910        thread struct MyThread {
     911                //...
     912        };
     913
     914        //ctor
     915        void ?{}(MyThread* this) {}
     916
     917        //main
     918        void ?main(MyThread* this) {
    878919                //...
    879920        }
     
    889930\end{lstlisting}
    890931
     932\subsection{Coroutines : A stepping stone}\label{coroutine}
     933While the main focus of this proposal is concurrency and paralellism, it is important to adress coroutines which are actually a significant underlying aspect of the concurrency system. Indeed, while having nothing todo with parallelism and arguably very little to do with concurrency, coroutines need to deal with context-switchs and and other context management operations. Therefore, this proposal includes coroutines both as an intermediate step for the implementation of threads and a first class feature of \CFA.
     934
     935The core API of coroutines revolve around two features : independent stacks and suspedn/resume. Much like threads the syntax for declaring a coroutine is declaring a type and a main routine for it to start :
     936\begin{lstlisting}
     937        coroutine struct MyCoroutine {
     938                //...
     939        };
     940
     941        //ctor
     942        void ?{}(MyCoroutine* this) {
     943
     944        }
     945
     946        //main
     947        void ?main(MyCoroutine* this) {
     948                sout | "Hello World!" | endl;
     949        }
     950\end{lstlisting}
     951
     952One a coroutine is created, users can context switch to it using \code{suspend} and come back using \code{resume}. Here is an example of a solution to the fibonnaci problem using coroutines :
     953\begin{lstlisting}
     954        coroutine struct Fibonacci {
     955                int fn; // used for communication
     956        };
     957
     958        void ?main(Fibonacci* this) {
     959                int fn1, fn2;           // retained between resumes
     960                this->fn = 0;
     961                fn1 = this->fn;
     962                suspend(this);          // return to last resume
     963
     964                this->fn = 1;
     965                fn2 = fn1;
     966                fn1 = this->fn;
     967                suspend(this);          // return to last resume
     968
     969                for ( ;; ) {
     970                        this->fn = fn1 + fn2;
     971                        fn2 = fn1;
     972                        fn1 = this->fn;
     973                        suspend(this);  // return to last resume
     974                }
     975        }
     976
     977        int next(Fibonacci& this) {
     978                resume(&this); // transfer to last suspend
     979                return this.fn;
     980        }
     981
     982        void main() {
     983                Fibonacci f1, f2;
     984                for ( int i = 1; i <= 10; i += 1 ) {
     985                        sout | next(f1) | '§\verb+ +§' | next(f2) | endl;
     986                }
     987        }
     988\end{lstlisting}
     989
    891990\newpage
    892 \large{\textbf{WORK IN PROGRESS}}
     991\bf{WORK IN PROGRESS}
    893992\subsection{The \CFA Kernel : Processors, Clusters and Threads}\label{kernel}
    894993
  • doc/proposals/concurrency/glossary.tex

    r3a2128f r1f44196  
    11\makeglossaries
     2
     3\longnewglossaryentry{callsite-locking}
     4{name={callsite-locking}}
     5{
     6Locking done by the calling routine. With this technique, a routine calling a monitor routine will aquire the monitor \emph{before} making the call to the actuall routine.
     7}
     8
     9\longnewglossaryentry{entry-point-locking}
     10{name={entry-point-locking}}
     11{
     12Locking done by the called routine. With this technique, a monitor routine called by another routine will aquire the monitor \emph{after} entering the routine body but prior to any other code.
     13}
     14
     15\longnewglossaryentry{group-acquire}
     16{name={bulked acquiring}}
     17{
     18Implicitly acquiring several monitors when entering a monitor.
     19}
     20
     21
    222\longnewglossaryentry{uthread}
    323{name={user-level thread}}
     
    3050
    3151\textit{Synonyms : Tasks.}
     52}
     53
     54\longnewglossaryentry{pool}
     55{name={thread-pool}}
     56{
     57Group of homogeneuous threads that loop executing units of works after another.
     58
     59\textit{Synonyms : }
    3260}
    3361
  • doc/proposals/concurrency/version

    r3a2128f r1f44196  
    1 0.4.99
     10.7.48
  • doc/working/resolver_design.md

    r3a2128f r1f44196  
    13821382hypothesis needs to be empirically validated.
    13831383
     1384Another approach would be to abandon expression-tree ordering for
     1385subexpression matching, and order by "most constrained symbol"; symbols would 
     1386be more constrained if there were fewer matching declarations, fewer
     1387subexpressions yet to resolve, or possibly fewer possible types the expression
     1388could resolve to. Ordering the expressions in a priority-queue by this metric
     1389would not necessarily produce a top-down or a bottom-up order, but would add
     1390opportunities for pruning based on memoized upper and lower bounds.
     1391
    13841392Both Baker and Cormack explicitly generate all possible interpretations of a
    13851393given expression; thinking of the set of interpretations of an expression as a
  • src/CodeGen/CodeGenerator.cc

    r3a2128f r1f44196  
    307307                                                } else {
    308308                                                        // no address-of operator, so must be a pointer - add dereference
     309                                                        // NOTE: if the assertion starts to trigger, check that the application expr isn't being shared.
     310                                                        // Since its arguments are modified here, this assertion most commonly triggers when the application
     311                                                        // is visited multiple times.
    309312                                                        UntypedExpr * newExpr = new UntypedExpr( new NameExpr( "*?" ) );
    310313                                                        newExpr->get_args().push_back( *arg );
    311                                                         assert( (*arg)->get_results().size() == 1 );
    312                                                         Type * type = InitTweak::getPointerBase( (*arg)->get_results().front() );
    313                                                         assert( type );
    314                                                         newExpr->get_results().push_back( type->clone() );
     314                                                        Type * type = InitTweak::getPointerBase( (*arg)->get_result() );
     315                                                        assertf( type, "First argument to a derefence must be a pointer. Ensure that expressions are not being shared." );
     316                                                        newExpr->set_result( type->clone() );
    315317                                                        *arg = newExpr;
    316318                                                } // if
     
    527529                extension( castExpr );
    528530                output << "(";
    529                 if ( castExpr->get_results().empty() ) {
     531                if ( castExpr->get_result()->isVoid() ) {
    530532                        output << "(void)" ;
    531                 } else if ( ! castExpr->get_results().front()->get_isLvalue() ) {
     533                } else if ( ! castExpr->get_result()->get_isLvalue() ) {
    532534                        // at least one result type of cast, but not an lvalue
    533535                        output << "(";
    534                         output << genType( castExpr->get_results().front(), "" );
     536                        output << genType( castExpr->get_result(), "" );
    535537                        output << ")";
    536538                } else {
     
    640642        }
    641643
    642         void CodeGenerator::visit( TupleExpr * tupleExpr ) {}
     644        void CodeGenerator::visit( TupleExpr * tupleExpr ) { assert( false ); }
    643645
    644646        void CodeGenerator::visit( TypeExpr * typeExpr ) {}
     
    654656                asmExpr->get_operand()->accept( *this );
    655657                output << " )";
     658        }
     659
     660        void CodeGenerator::visit( CompoundLiteralExpr *compLitExpr ) {
     661                assert( compLitExpr->get_type() && dynamic_cast< ListInit * > ( compLitExpr->get_initializer() ) );
     662                output << "(" << genType( compLitExpr->get_type(), "" ) << ")";
     663                compLitExpr->get_initializer()->accept( *this );
     664        }
     665
     666        void CodeGenerator::visit( StmtExpr * stmtExpr ) {
     667                std::list< Statement * > & stmts = stmtExpr->get_statements()->get_kids();
     668                output << "({" << std::endl;
     669                cur_indent += CodeGenerator::tabsize;
     670                unsigned int numStmts = stmts.size();
     671                unsigned int i = 0;
     672                for ( Statement * stmt : stmts ) {
     673                        output << indent << printLabels( stmt->get_labels() );
     674                        if ( i+1 == numStmts ) {
     675                                // last statement in a statement expression needs to be handled specially -
     676                                // cannot cast to void, otherwise the expression statement has no value
     677                                if ( ExprStmt * exprStmt = dynamic_cast< ExprStmt * >( stmt ) ) {
     678                                        exprStmt->get_expr()->accept( *this );
     679                                        output << ";" << endl;
     680                                        ++i;
     681                                        break;
     682                                }
     683                        }
     684                        stmt->accept( *this );
     685                        output << endl;
     686                        if ( wantSpacing( stmt ) ) {
     687                                output << endl;
     688                        } // if
     689                        ++i;
     690                }
     691                cur_indent -= CodeGenerator::tabsize;
     692                output << indent << "})";
    656693        }
    657694
  • src/CodeGen/CodeGenerator.h

    r3a2128f r1f44196  
    7070                virtual void visit( ConditionalExpr *conditionalExpr );
    7171                virtual void visit( CommaExpr *commaExpr );
     72                virtual void visit( CompoundLiteralExpr *compLitExpr );
    7273                virtual void visit( TupleExpr *tupleExpr );
    7374                virtual void visit( TypeExpr *typeExpr );
    7475                virtual void visit( AsmExpr * );
     76                virtual void visit( StmtExpr * );
    7577
    7678                //*** Statements
  • src/CodeGen/GenType.cc

    r3a2128f r1f44196  
    227227                        typeString = "_Atomic " + typeString;
    228228                } // if
    229                 if ( type->get_isAttribute() ) {
    230                         typeString = "__attribute(( )) " + typeString;
    231                 } // if
    232229        }
    233230} // namespace CodeGen
  • src/Common/utility.h

    r3a2128f r1f44196  
    148148}
    149149
     150// replace element of list with all elements of another list
    150151template< typename T >
    151152void replace( std::list< T > &org, typename std::list< T >::iterator pos, std::list< T > &with ) {
     
    158159
    159160        return;
     161}
     162
     163// replace range of a list with a single element
     164template< typename T >
     165void replace( std::list< T > &org, typename std::list< T >::iterator begin, typename std::list< T >::iterator end, const T & with ) {
     166        org.insert( begin, with );
     167        org.erase( begin, end );
    160168}
    161169
  • src/ControlStruct/Mutate.cc

    r3a2128f r1f44196  
    2323#include "MLEMutator.h"
    2424#include "ForExprMutator.h"
    25 #include "LabelTypeChecker.h"
    2625//#include "ExceptMutator.h"
    2726
     
    4140
    4241                //ExceptMutator exc;
    43                 // LabelTypeChecker lbl;
    4442
    4543                mutateAll( translationUnit, formut );
    4644                acceptAll( translationUnit, lfix );
    4745                //mutateAll( translationUnit, exc );
    48                 //acceptAll( translationUnit, lbl );
    4946        }
    5047} // namespace CodeGen
  • src/ControlStruct/module.mk

    r3a2128f r1f44196  
    66## file "LICENCE" distributed with Cforall.
    77##
    8 ## module.mk -- 
     8## module.mk --
    99##
    1010## Author           : Richard C. Bilson
     
    1919        ControlStruct/MLEMutator.cc \
    2020        ControlStruct/Mutate.cc \
    21         ControlStruct/ForExprMutator.cc \
    22         ControlStruct/LabelTypeChecker.cc
     21        ControlStruct/ForExprMutator.cc
    2322
  • src/GenPoly/Box.cc

    r3a2128f r1f44196  
    113113                        void addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars );
    114114                        /// Stores assignment operators from assertion list in local map of assignment operations
    115                         void findTypeOps( const std::list< TypeDecl *> &forall );
     115                        void findTypeOps( const Type::ForallList &forall );
    116116                        void passAdapters( ApplicationExpr *appExpr, FunctionType *functionType, const TyVarMap &exprTyVars );
    117117                        FunctionDecl *makeAdapter( FunctionType *adaptee, FunctionType *realType, const std::string &mangleName, const TyVarMap &tyVars );
     
    619619                }
    620620
    621                 void Pass1::findTypeOps( const std::list< TypeDecl *> &forall ) {
     621                void Pass1::findTypeOps( const Type::ForallList &forall ) {
    622622                        // what if a nested function uses an assignment operator?
    623623                        // assignOps.clear();
    624                         for ( std::list< TypeDecl *>::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
     624                        for ( Type::ForallList::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
    625625                                for ( std::list< DeclarationWithType *>::const_iterator assert = (*i)->get_assertions().begin(); assert != (*i)->get_assertions().end(); ++assert ) {
    626626                                        std::string typeName;
     
    687687                                std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
    688688                                std::list< FunctionType *> functions;
    689                                 for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
     689                                for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
    690690                                        for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
    691691                                                findFunction( (*assert)->get_type(), functions, scopeTyVars, needsAdapter );
     
    789789
    790790                        // add size/align for generic types to parameter list
    791                         if ( appExpr->get_function()->get_results().empty() ) return;
    792                         FunctionType *funcType = getFunctionType( appExpr->get_function()->get_results().front() );
     791                        if ( ! appExpr->get_function()->has_result() ) return;
     792                        FunctionType *funcType = getFunctionType( appExpr->get_function()->get_result() );
    793793                        assert( funcType );
    794794
     
    806806                        for ( ; fnParm != funcType->get_parameters().end() && fnArg != appExpr->get_args().end(); ++fnParm, ++fnArg ) {
    807807                                VariableExpr *fnArgBase = getBaseVar( *fnArg );
    808                                 if ( ! fnArgBase || fnArgBase->get_results().empty() ) continue;
    809                                 passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_results().front(), arg, exprTyVars, seenTypes );
     808                                if ( ! fnArgBase ) continue; // xxx - previously had check for non-empty fnArgBase results
     809                                passArgTypeVars( appExpr, (*fnParm)->get_type(), fnArgBase->get_result(), arg, exprTyVars, seenTypes );
    810810                        }
    811811                }
     
    897897                        Type * adapteeType = new PointerType( Type::Qualifiers(), new FunctionType( Type::Qualifiers(), true ) );
    898898                        appExpr->get_args().push_front( new CastExpr( appExpr->get_function(), adapteeType ) );
    899                         appExpr->set_function( new NameExpr( adapterName ) );
     899                        appExpr->set_function( new NameExpr( adapterName ) ); // xxx - result is never set on NameExpr
    900900
    901901                        return ret;
     
    903903
    904904                void Pass1::boxParam( Type *param, Expression *&arg, const TyVarMap &exprTyVars ) {
    905                         assert( ! arg->get_results().empty() );
     905                        assert( arg->has_result() );
    906906                        if ( isPolyType( param, exprTyVars ) ) {
    907                                 if ( isPolyType( arg->get_results().front() ) ) {
     907                                if ( isPolyType( arg->get_result() ) ) {
    908908                                        // if the argument's type is polymorphic, we don't need to box again!
    909909                                        return;
    910                                 } else if ( arg->get_results().front()->get_isLvalue() ) {
     910                                } else if ( arg->get_result()->get_isLvalue() ) {
    911911                                        // VariableExpr and MemberExpr are lvalues; need to check this isn't coming from the second arg of a comma expression though (not an lvalue)
    912912                                        // xxx - need to test that this code is still reachable
     
    953953                void Pass1::addInferredParams( ApplicationExpr *appExpr, FunctionType *functionType, std::list< Expression *>::iterator &arg, const TyVarMap &tyVars ) {
    954954                        std::list< Expression *>::iterator cur = arg;
    955                         for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
     955                        for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
    956956                                for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
    957957                                        InferredParams::const_iterator inferParam = appExpr->get_inferParams().find( (*assert)->get_uniqueId() );
     
    994994                                        UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
    995995                                        deref->get_args().push_back( new CastExpr( new VariableExpr( param ), new PointerType( Type::Qualifiers(), arg->get_type()->clone() ) ) );
    996                                         deref->get_results().push_back( arg->get_type()->clone() );
     996                                        deref->set_result( arg->get_type()->clone() );
    997997                                        return deref;
    998998                                } // if
     
    10201020                        Statement *bodyStmt;
    10211021
    1022                         std::list< TypeDecl *>::iterator tyArg = realType->get_forall().begin();
    1023                         std::list< TypeDecl *>::iterator tyParam = adapterType->get_forall().begin();
    1024                         std::list< TypeDecl *>::iterator realTyParam = adaptee->get_forall().begin();
     1022                        Type::ForallList::iterator tyArg = realType->get_forall().begin();
     1023                        Type::ForallList::iterator tyParam = adapterType->get_forall().begin();
     1024                        Type::ForallList::iterator realTyParam = adaptee->get_forall().begin();
    10251025                        for ( ; tyParam != adapterType->get_forall().end(); ++tyArg, ++tyParam, ++realTyParam ) {
    10261026                                assert( tyArg != realType->get_forall().end() );
     
    10711071                        std::list< DeclarationWithType *> &paramList = functionType->get_parameters();
    10721072                        std::list< FunctionType *> functions;
    1073                         for ( std::list< TypeDecl *>::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
     1073                        for ( Type::ForallList::iterator tyVar = functionType->get_forall().begin(); tyVar != functionType->get_forall().end(); ++tyVar ) {
    10741074                                for ( std::list< DeclarationWithType *>::iterator assert = (*tyVar)->get_assertions().begin(); assert != (*tyVar)->get_assertions().end(); ++assert ) {
    10751075                                        findFunction( (*assert)->get_type(), functions, exprTyVars, needsAdapter );
     
    11311131                        } // if
    11321132                        addAssign->get_args().push_back( new NameExpr( sizeofName( mangleType( polyType ) ) ) );
    1133                         addAssign->get_results().front() = appExpr->get_results().front()->clone();
     1133                        addAssign->set_result( appExpr->get_result()->clone() );
    11341134                        if ( appExpr->get_env() ) {
    11351135                                addAssign->set_env( appExpr->get_env() );
     
    11451145                                if ( varExpr->get_var()->get_linkage() == LinkageSpec::Intrinsic ) {
    11461146                                        if ( varExpr->get_var()->get_name() == "?[?]" ) {
    1147                                                 assert( ! appExpr->get_results().empty() );
     1147                                                assert( appExpr->has_result() );
    11481148                                                assert( appExpr->get_args().size() == 2 );
    1149                                                 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
    1150                                                 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
     1149                                                Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
     1150                                                Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
    11511151                                                assert( ! baseType1 || ! baseType2 ); // the arguments cannot both be polymorphic pointers
    11521152                                                UntypedExpr *ret = 0;
     
    11681168                                                } // if
    11691169                                                if ( baseType1 || baseType2 ) {
    1170                                                         ret->get_results().push_front( appExpr->get_results().front()->clone() );
     1170                                                        ret->set_result( appExpr->get_result()->clone() );
    11711171                                                        if ( appExpr->get_env() ) {
    11721172                                                                ret->set_env( appExpr->get_env() );
     
    11781178                                                } // if
    11791179                                        } else if ( varExpr->get_var()->get_name() == "*?" ) {
    1180                                                 assert( ! appExpr->get_results().empty() );
     1180                                                assert( appExpr->has_result() );
    11811181                                                assert( ! appExpr->get_args().empty() );
    1182                                                 if ( isPolyType( appExpr->get_results().front(), scopeTyVars, env ) ) {
     1182                                                if ( isPolyType( appExpr->get_result(), scopeTyVars, env ) ) {
    11831183                                                        Expression *ret = appExpr->get_args().front();
    1184                                                         delete ret->get_results().front();
    1185                                                         ret->get_results().front() = appExpr->get_results().front()->clone();
     1184                                                        delete ret->get_result();
     1185                                                        ret->set_result( appExpr->get_result()->clone() );
    11861186                                                        if ( appExpr->get_env() ) {
    11871187                                                                ret->set_env( appExpr->get_env() );
     
    11931193                                                } // if
    11941194                                        } else if ( varExpr->get_var()->get_name() == "?++" || varExpr->get_var()->get_name() == "?--" ) {
    1195                                                 assert( ! appExpr->get_results().empty() );
     1195                                                assert( appExpr->has_result() );
    11961196                                                assert( appExpr->get_args().size() == 1 );
    1197                                                 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
    1198                                                         Type *tempType = appExpr->get_results().front()->clone();
     1197                                                if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
     1198                                                        Type *tempType = appExpr->get_result()->clone();
    11991199                                                        if ( env ) {
    12001200                                                                env->apply( tempType );
     
    12131213                                                } // if
    12141214                                        } else if ( varExpr->get_var()->get_name() == "++?" || varExpr->get_var()->get_name() == "--?" ) {
    1215                                                 assert( ! appExpr->get_results().empty() );
     1215                                                assert( appExpr->has_result() );
    12161216                                                assert( appExpr->get_args().size() == 1 );
    1217                                                 if ( Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env ) ) {
     1217                                                if ( Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env ) ) {
    12181218                                                        return makeIncrDecrExpr( appExpr, baseType, varExpr->get_var()->get_name() == "++?" );
    12191219                                                } // if
    12201220                                        } else if ( varExpr->get_var()->get_name() == "?+?" || varExpr->get_var()->get_name() == "?-?" ) {
    1221                                                 assert( ! appExpr->get_results().empty() );
     1221                                                assert( appExpr->has_result() );
    12221222                                                assert( appExpr->get_args().size() == 2 );
    1223                                                 Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_results().front(), scopeTyVars, env );
    1224                                                 Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_results().front(), scopeTyVars, env );
     1223                                                Type *baseType1 = isPolyPtr( appExpr->get_args().front()->get_result(), scopeTyVars, env );
     1224                                                Type *baseType2 = isPolyPtr( appExpr->get_args().back()->get_result(), scopeTyVars, env );
    12251225                                                if ( baseType1 && baseType2 ) {
    12261226                                                        UntypedExpr *divide = new UntypedExpr( new NameExpr( "?/?" ) );
    12271227                                                        divide->get_args().push_back( appExpr );
    12281228                                                        divide->get_args().push_back( new SizeofExpr( baseType1->clone() ) );
    1229                                                         divide->get_results().push_front( appExpr->get_results().front()->clone() );
     1229                                                        divide->set_result( appExpr->get_result()->clone() );
    12301230                                                        if ( appExpr->get_env() ) {
    12311231                                                                divide->set_env( appExpr->get_env() );
     
    12451245                                                } // if
    12461246                                        } else if ( varExpr->get_var()->get_name() == "?+=?" || varExpr->get_var()->get_name() == "?-=?" ) {
    1247                                                 assert( ! appExpr->get_results().empty() );
     1247                                                assert( appExpr->has_result() );
    12481248                                                assert( appExpr->get_args().size() == 2 );
    1249                                                 Type *baseType = isPolyPtr( appExpr->get_results().front(), scopeTyVars, env );
     1249                                                Type *baseType = isPolyPtr( appExpr->get_result(), scopeTyVars, env );
    12501250                                                if ( baseType ) {
    12511251                                                        UntypedExpr *multiply = new UntypedExpr( new NameExpr( "?*?" ) );
     
    12731273                        useRetval = oldUseRetval;
    12741274
    1275                         assert( ! appExpr->get_function()->get_results().empty() );
    1276                         PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
    1277                         assert( pointer );
    1278                         FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
    1279                         assert( function );
     1275                        assert( appExpr->get_function()->has_result() );
     1276                        PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
     1277                        FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
    12801278
    12811279                        if ( Expression *newExpr = handleIntrinsics( appExpr ) ) {
     
    13151313
    13161314                Expression *Pass1::mutate( UntypedExpr *expr ) {
    1317                         if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
     1315                        if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
    13181316                                if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
    13191317                                        if ( name->get_name() == "*?" ) {
     
    13291327
    13301328                Expression *Pass1::mutate( AddressExpr *addrExpr ) {
    1331                         assert( ! addrExpr->get_arg()->get_results().empty() );
     1329                        assert( addrExpr->get_arg()->has_result() && ! addrExpr->get_arg()->get_result()->isVoid() );
    13321330
    13331331                        bool needs = false;
    13341332                        if ( UntypedExpr *expr = dynamic_cast< UntypedExpr *>( addrExpr->get_arg() ) ) {
    1335                                 if ( ! expr->get_results().empty() && isPolyType( expr->get_results().front(), scopeTyVars, env ) ) {
     1333                                if ( expr->has_result() && isPolyType( expr->get_result(), scopeTyVars, env ) ) {
    13361334                                        if ( NameExpr *name = dynamic_cast< NameExpr *>( expr->get_function() ) ) {
    13371335                                                if ( name->get_name() == "*?" ) {
    13381336                                                        if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( expr->get_args().front() ) ) {
    1339                                                                 assert( ! appExpr->get_function()->get_results().empty() );
    1340                                                                 PointerType *pointer = dynamic_cast< PointerType *>( appExpr->get_function()->get_results().front() );
    1341                                                                 assert( pointer );
    1342                                                                 FunctionType *function = dynamic_cast< FunctionType *>( pointer->get_base() );
    1343                                                                 assert( function );
     1337                                                                assert( appExpr->get_function()->has_result() );
     1338                                                                PointerType *pointer = safe_dynamic_cast< PointerType *>( appExpr->get_function()->get_result() );
     1339                                                                FunctionType *function = safe_dynamic_cast< FunctionType *>( pointer->get_base() );
    13441340                                                                needs = needsAdapter( function, scopeTyVars );
    13451341                                                        } // if
     
    13501346                        // isPolyType check needs to happen before mutating addrExpr arg, so pull it forward
    13511347                        // out of the if condition.
    1352                         bool polytype = isPolyType( addrExpr->get_arg()->get_results().front(), scopeTyVars, env );
     1348                        bool polytype = isPolyType( addrExpr->get_arg()->get_result(), scopeTyVars, env );
    13531349                        addrExpr->set_arg( mutateExpression( addrExpr->get_arg() ) );
    13541350                        if ( polytype || needs ) {
    13551351                                Expression *ret = addrExpr->get_arg();
    1356                                 delete ret->get_results().front();
    1357                                 ret->get_results().front() = addrExpr->get_results().front()->clone();
     1352                                delete ret->get_result();
     1353                                ret->set_result( addrExpr->get_result()->clone() );
    13581354                                addrExpr->set_arg( 0 );
    13591355                                delete addrExpr;
     
    13931389                Statement * Pass1::mutate( ReturnStmt *returnStmt ) {
    13941390                        if ( retval && returnStmt->get_expr() ) {
    1395                                 assert( ! returnStmt->get_expr()->get_results().empty() );
     1391                                assert( returnStmt->get_expr()->has_result() && ! returnStmt->get_expr()->get_result()->isVoid() );
    13961392                                // ***** Code Removal ***** After introducing a temporary variable for all return expressions, the following code appears superfluous.
    13971393                                // if ( returnStmt->get_expr()->get_results().front()->get_isLvalue() ) {
     
    14271423                                        // find each of its needed secondary assignment operators
    14281424                                        std::list< Expression* > &tyParams = refType->get_parameters();
    1429                                         std::list< TypeDecl* > &forallParams = functionDecl->get_type()->get_forall();
     1425                                        Type::ForallList &forallParams = functionDecl->get_type()->get_forall();
    14301426                                        std::list< Expression* >::const_iterator tyIt = tyParams.begin();
    1431                                         std::list< TypeDecl* >::const_iterator forallIt = forallParams.begin();
     1427                                        Type::ForallList::const_iterator forallIt = forallParams.begin();
    14321428                                        for ( ; tyIt != tyParams.end() && forallIt != forallParams.end(); ++tyIt, ++forallIt ) {
    14331429                                                // Add appropriate mapping to assignment expression environment
     
    14731469                                // replace return statement with appropriate assignment to out parameter
    14741470                                Expression *retParm = new NameExpr( retval->get_name() );
    1475                                 retParm->get_results().push_back( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
     1471                                retParm->set_result( new PointerType( Type::Qualifiers(), retval->get_type()->clone() ) );
    14761472                                assignExpr->get_args().push_back( retParm );
    14771473                                assignExpr->get_args().push_back( returnStmt->get_expr() );
     
    16031599                        ObjectDecl newPtr( "", DeclarationNode::NoStorageClass, LinkageSpec::C, 0,
    16041600                                           new PointerType( Type::Qualifiers(), new BasicType( Type::Qualifiers(), BasicType::LongUnsignedInt ) ), 0 );
    1605                         for ( std::list< TypeDecl *>::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
     1601                        for ( Type::ForallList::const_iterator tyParm = funcType->get_forall().begin(); tyParm != funcType->get_forall().end(); ++tyParm ) {
    16061602                                ObjectDecl *sizeParm, *alignParm;
    16071603                                // add all size and alignment parameters to parameter list
  • src/GenPoly/CopyParams.cc

    r3a2128f r1f44196  
    5454                                std::map< std::string, DeclarationWithType* > assignOps;
    5555                                // assume the assignment operator is the first assert param after any "type" parameter
    56                                 for ( std::list< TypeDecl* >::const_iterator tyVar = funcDecl->get_functionType()->get_forall().begin(); tyVar != funcDecl->get_functionType()->get_forall().end(); ++tyVar ) {
     56                                for ( Type::ForallList::const_iterator tyVar = funcDecl->get_functionType()->get_forall().begin(); tyVar != funcDecl->get_functionType()->get_forall().end(); ++tyVar ) {
    5757                                        if ( (*tyVar)->get_kind() == TypeDecl::Any ) {
    5858                                                assert( !(*tyVar)->get_assertions().empty() );
  • src/GenPoly/FindFunction.cc

    r3a2128f r1f44196  
    2929                virtual Type *mutate( PointerType *pointerType );
    3030          private:
    31                 void handleForall( const std::list< TypeDecl* > &forall );
     31                void handleForall( const Type::ForallList &forall );
    3232
    3333                std::list< FunctionType* > &functions;
     
    5151        }
    5252
    53         void FindFunction::handleForall( const std::list< TypeDecl* > &forall ) {
    54                 for ( std::list< TypeDecl* >::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
     53        void FindFunction::handleForall( const Type::ForallList &forall ) {
     54                for ( Type::ForallList::const_iterator i = forall.begin(); i != forall.end(); ++i ) {
    5555                        TyVarMap::iterator var = tyVars.find( (*i)->get_name() );
    5656                        if ( var != tyVars.end() ) {
  • src/GenPoly/GenPoly.cc

    r3a2128f r1f44196  
    110110        ReferenceToType *isDynRet( FunctionType *function, const TyVarMap &forallTypes ) {
    111111                if ( function->get_returnVals().empty() ) return 0;
    112                
     112
    113113                return (ReferenceToType*)isDynType( function->get_returnVals().front()->get_type(), forallTypes );
    114114        }
     
    127127//              } // if
    128128                if ( isDynRet( adaptee, tyVars ) ) return true;
    129                
     129
    130130                for ( std::list< DeclarationWithType* >::const_iterator innerArg = adaptee->get_parameters().begin(); innerArg != adaptee->get_parameters().end(); ++innerArg ) {
    131131//                      if ( isPolyType( (*innerArg)->get_type(), tyVars ) ) {
     
    228228
    229229        void makeTyVarMap( Type *type, TyVarMap &tyVarMap ) {
    230                 for ( std::list< TypeDecl* >::const_iterator tyVar = type->get_forall().begin(); tyVar != type->get_forall().end(); ++tyVar ) {
     230                for ( Type::ForallList::const_iterator tyVar = type->get_forall().begin(); tyVar != type->get_forall().end(); ++tyVar ) {
    231231                        assert( *tyVar );
    232232                        tyVarMap[ (*tyVar)->get_name() ] = (*tyVar)->get_kind();
  • src/GenPoly/Lvalue.cc

    r3a2128f r1f44196  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // Lvalue.cc -- 
     7// Lvalue.cc --
    88//
    99// Author           : Richard C. Bilson
     
    4141                  public:
    4242                        Pass1();
    43  
     43
    4444                        virtual Expression *mutate( ApplicationExpr *appExpr );
    4545                        virtual Statement *mutate( ReturnStmt *appExpr );
     
    5555                  private:
    5656                };
     57
     58                /// GCC-like Generalized Lvalues (which have since been removed from GCC)
     59                /// https://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/Lvalues.html#Lvalues
     60                /// Replaces &(a,b) with (a, &b), &(a ? b : c) with (a ? &b : &c)
     61                class GeneralizedLvalue : public Mutator {
     62                        typedef Mutator Parent;
     63
     64                        virtual Expression * mutate( AddressExpr * addressExpr );
     65                };
    5766        } // namespace
    5867
     
    6069                Pass1 p1;
    6170                Pass2 p2;
     71                GeneralizedLvalue genLval;
    6272                mutateAll( translationUnit, p1 );
    6373                acceptAll( translationUnit, p2 );
     74                mutateAll( translationUnit, genLval );
    6475        }
    6576
     
    99110                        appExpr->get_function()->acceptMutator( *this );
    100111                        mutateAll( appExpr->get_args(), *this );
    101  
    102                         assert( ! appExpr->get_function()->get_results().empty() );
    103112
    104                         PointerType *pointer = dynamic_cast< PointerType* >( appExpr->get_function()->get_results().front() );
    105                         assert( pointer );
    106                         FunctionType *function = dynamic_cast< FunctionType* >( pointer->get_base() );
    107                         assert( function );
     113                        PointerType *pointer = safe_dynamic_cast< PointerType* >( appExpr->get_function()->get_result() );
     114                        FunctionType *function = safe_dynamic_cast< FunctionType* >( pointer->get_base() );
    108115
    109116                        Type *funType = isLvalueRet( function );
    110117                        if ( funType && ! isIntrinsicApp( appExpr ) ) {
    111118                                Expression *expr = appExpr;
    112                                 Type *appType = appExpr->get_results().front();
     119                                Type *appType = appExpr->get_result();
    113120                                if ( isPolyType( funType ) && ! isPolyType( appType ) ) {
    114121                                        // make sure cast for polymorphic type is inside dereference
     
    116123                                }
    117124                                UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
    118                                 deref->get_results().push_back( appType->clone() );
    119                                 appExpr->get_results().front() = new PointerType( Type::Qualifiers(), appType );
     125                                deref->set_result( appType->clone() );
     126                                appExpr->set_result( new PointerType( Type::Qualifiers(), appType ) );
    120127                                deref->get_args().push_back( expr );
    121128                                return deref;
     
    127134                Statement * Pass1::mutate(ReturnStmt *retStmt) {
    128135                        if ( retval && retStmt->get_expr() ) {
    129                                 assert( ! retStmt->get_expr()->get_results().empty() );
    130                                 if ( retStmt->get_expr()->get_results().front()->get_isLvalue() ) {
     136                                if ( retStmt->get_expr()->get_result()->get_isLvalue() ) {
    131137                                        // ***** Code Removal ***** because casts may be stripped already
    132138
     
    155161                                retParm->set_type( new PointerType( Type::Qualifiers(), retParm->get_type() ) );
    156162                        } // if
    157  
     163
    158164                        Visitor::visit( funType );
     165                }
     166
     167                Expression * GeneralizedLvalue::mutate( AddressExpr * addrExpr ) {
     168                        addrExpr = safe_dynamic_cast< AddressExpr * >( Parent::mutate( addrExpr ) );
     169                        if ( CommaExpr * commaExpr = dynamic_cast< CommaExpr * >( addrExpr->get_arg() ) ) {
     170                                Expression * arg1 = commaExpr->get_arg1()->clone();
     171                                Expression * arg2 = commaExpr->get_arg2()->clone();
     172                                delete addrExpr;
     173                                return new CommaExpr( arg1, new AddressExpr( arg2 ) );
     174                        } else if ( ConditionalExpr * condExpr = dynamic_cast< ConditionalExpr * >( addrExpr->get_arg() ) ) {
     175                                Expression * arg1 = condExpr->get_arg1()->clone();
     176                                Expression * arg2 = condExpr->get_arg2()->clone();
     177                                Expression * arg3 = condExpr->get_arg3()->clone();
     178                                delete addrExpr;
     179                                return new ConditionalExpr( arg1, new AddressExpr( arg2 ), new AddressExpr( arg3 ) );
     180                        }
     181                        return addrExpr;
    159182                }
    160183        } // namespace
  • src/GenPoly/Specialize.cc

    r3a2128f r1f44196  
    148148
    149149        Expression * Specialize::doSpecialization( Type *formalType, Expression *actual, InferredParams *inferParams ) {
    150                 assert( ! actual->get_results().empty() ); // using front, should have this assert
    151                 if ( needsSpecialization( formalType, actual->get_results().front(), env ) ) {
     150                assertf( actual->has_result(), "attempting to specialize an untyped expression" );
     151                if ( needsSpecialization( formalType, actual->get_result(), env ) ) {
    152152                        FunctionType *funType;
    153153                        if ( ( funType = getFunctionType( formalType ) ) ) {
     
    172172        void Specialize::handleExplicitParams( ApplicationExpr *appExpr ) {
    173173                // create thunks for the explicit parameters
    174                 assert( ! appExpr->get_function()->get_results().empty() );
    175                 FunctionType *function = getFunctionType( appExpr->get_function()->get_results().front() );
     174                assert( appExpr->get_function()->has_result() );
     175                FunctionType *function = getFunctionType( appExpr->get_function()->get_result() );
    176176                assert( function );
    177177                std::list< DeclarationWithType* >::iterator formal;
     
    201201        Expression * Specialize::mutate( AddressExpr *addrExpr ) {
    202202                addrExpr->get_arg()->acceptMutator( *this );
    203                 assert( ! addrExpr->get_results().empty() );
    204                 addrExpr->set_arg( doSpecialization( addrExpr->get_results().front(), addrExpr->get_arg() ) );
     203                assert( addrExpr->has_result() );
     204                addrExpr->set_arg( doSpecialization( addrExpr->get_result(), addrExpr->get_arg() ) );
    205205                return addrExpr;
    206206        }
     
    208208        Expression * Specialize::mutate( CastExpr *castExpr ) {
    209209                castExpr->get_arg()->acceptMutator( *this );
    210                 if ( castExpr->get_results().empty() ) {
     210                if ( castExpr->get_result()->isVoid() ) {
    211211                        // can't specialize if we don't have a return value
    212212                        return castExpr;
    213213                }
    214                 Expression *specialized = doSpecialization( castExpr->get_results().front(), castExpr->get_arg() );
     214                Expression *specialized = doSpecialization( castExpr->get_result(), castExpr->get_arg() );
    215215                if ( specialized != castExpr->get_arg() ) {
    216216                        // assume here that the specialization incorporates the cast
  • src/InitTweak/FixInit.cc

    r3a2128f r1f44196  
    1818#include <iterator>
    1919#include <algorithm>
     20#include <unordered_map>
     21#include <unordered_set>
    2022#include "InitTweak.h"
    2123#include "FixInit.h"
     
    3537#include "GenPoly/DeclMutator.h"
    3638#include "SynTree/AddStmtVisitor.h"
    37 #include "CodeGen/GenType.h"  // for warnings
    38 
    39 bool ctordtorp = false;
    40 bool ctorp = false;
    41 bool cpctorp = false;
    42 bool dtorp = false;
     39#include "CodeGen/GenType.h"  // for warning/error messages
     40
     41bool ctordtorp = false; // print all debug
     42bool ctorp = false; // print ctor debug
     43bool cpctorp = false; // print copy ctor debug
     44bool dtorp = false; // print dtor debug
    4345#define PRINT( text ) if ( ctordtorp ) { text }
    4446#define CP_CTOR_PRINT( text ) if ( ctordtorp || cpctorp ) { text }
     
    4749namespace InitTweak {
    4850        namespace {
    49                 const std::list<Label> noLabels;
    50                 const std::list<Expression*> noDesignators;
    51 
    5251                class InsertImplicitCalls final : public GenPoly::PolyMutator {
    5352                public:
     
    6766                        static void resolveImplicitCalls( std::list< Declaration * > & translationUnit );
    6867
    69                         using SymTab::Indexer::visit;
     68                        typedef SymTab::Indexer Parent;
     69                        using Parent::visit;
     70
    7071                        virtual void visit( ImplicitCopyCtorExpr * impCpCtorExpr ) override;
     72                        virtual void visit( UniqueExpr * unqExpr );
    7173
    7274                        /// create and resolve ctor/dtor expression: fname(var, [cpArg])
    73                         ApplicationExpr * makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg = NULL );
     75                        Expression * makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg = NULL );
     76                        Expression * makeCtorDtor( const std::string & fname, Expression * thisArg, Expression * cpArg = NULL );
    7477                        /// true if type does not need to be copy constructed to ensure correctness
    75                         bool skipCopyConstruct( Type * );
     78                        bool skipCopyConstruct( Type * type );
     79                        void copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr );
     80                        void destructRet( Expression * ret, ImplicitCopyCtorExpr * impCpCtorExpr );
    7681                private:
    7782                        TypeSubstitution * env;
     
    183188                        using GenPoly::PolyMutator::mutate;
    184189                        virtual Expression * mutate( ImplicitCopyCtorExpr * impCpCtorExpr ) override;
     190                        virtual Expression * mutate( UniqueExpr * unqExpr ) override;
    185191                };
    186192
     
    368374                }
    369375
    370                 ApplicationExpr * ResolveCopyCtors::makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg ) {
     376                Expression * ResolveCopyCtors::makeCtorDtor( const std::string & fname, ObjectDecl * var, Expression * cpArg ) {
    371377                        assert( var );
     378                        return makeCtorDtor( fname, new AddressExpr( new VariableExpr( var ) ), cpArg );
     379                }
     380
     381                Expression * ResolveCopyCtors::makeCtorDtor( const std::string & fname, Expression * thisArg, Expression * cpArg ) {
     382                        assert( thisArg );
    372383                        UntypedExpr * untyped = new UntypedExpr( new NameExpr( fname ) );
    373                         untyped->get_args().push_back( new AddressExpr( new VariableExpr( var ) ) );
     384                        untyped->get_args().push_back( thisArg );
    374385                        if (cpArg) untyped->get_args().push_back( cpArg->clone() );
    375386
     
    378389                        // (VariableExpr and already resolved expression)
    379390                        CP_CTOR_PRINT( std::cerr << "ResolvingCtorDtor " << untyped << std::endl; )
    380                         ApplicationExpr * resolved = dynamic_cast< ApplicationExpr * >( ResolvExpr::findVoidExpression( untyped, *this ) );
     391                        Expression * resolved = ResolvExpr::findVoidExpression( untyped, *this );
     392                        assert( resolved );
    381393                        if ( resolved->get_env() ) {
    382394                                env->add( *resolved->get_env() );
    383395                        } // if
    384396
    385                         assert( resolved );
    386397                        delete untyped;
    387398                        return resolved;
    388399                }
    389400
     401                void ResolveCopyCtors::copyConstructArg( Expression *& arg, ImplicitCopyCtorExpr * impCpCtorExpr ) {
     402                        static UniqueName tempNamer("_tmp_cp");
     403                        CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *impCpCtorExpr->get_env() << std::endl; )
     404                        assert( arg->has_result() );
     405                        Type * result = arg->get_result();
     406                        if ( skipCopyConstruct( result ) ) return; // skip certain non-copyable types
     407
     408                        // type may involve type variables, so apply type substitution to get temporary variable's actual type
     409                        result = result->clone();
     410                        impCpCtorExpr->get_env()->apply( result );
     411                        ObjectDecl * tmp = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, result, 0 );
     412                        tmp->get_type()->set_isConst( false );
     413
     414                        // create and resolve copy constructor
     415                        CP_CTOR_PRINT( std::cerr << "makeCtorDtor for an argument" << std::endl; )
     416                        Expression * cpCtor = makeCtorDtor( "?{}", tmp, arg );
     417
     418                        if ( ApplicationExpr * appExpr = dynamic_cast< ApplicationExpr * >( cpCtor ) ) {
     419                                // if the chosen constructor is intrinsic, the copy is unnecessary, so
     420                                // don't create the temporary and don't call the copy constructor
     421                                VariableExpr * function = dynamic_cast< VariableExpr * >( appExpr->get_function() );
     422                                assert( function );
     423                                if ( function->get_var()->get_linkage() == LinkageSpec::Intrinsic ) return;
     424                        }
     425
     426                        // replace argument to function call with temporary
     427                        arg = new CommaExpr( cpCtor, new VariableExpr( tmp ) );
     428                        impCpCtorExpr->get_tempDecls().push_back( tmp );
     429                        impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", tmp ) );
     430                }
     431
     432                void ResolveCopyCtors::destructRet( Expression * ret, ImplicitCopyCtorExpr * impCpCtorExpr ) {
     433                        impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", new AddressExpr( ret ) ) );
     434                }
     435
    390436                void ResolveCopyCtors::visit( ImplicitCopyCtorExpr *impCpCtorExpr ) {
    391                         static UniqueName tempNamer("_tmp_cp");
    392                         static UniqueName retNamer("_tmp_cp_ret");
    393 
    394437                        CP_CTOR_PRINT( std::cerr << "ResolveCopyCtors: " << impCpCtorExpr << std::endl; )
    395                         Visitor::visit( impCpCtorExpr );
     438                        Parent::visit( impCpCtorExpr );
    396439                        env = impCpCtorExpr->get_env(); // xxx - maybe we really should just have a PolyIndexer...
    397440
     
    400443                        // take each argument and attempt to copy construct it.
    401444                        for ( Expression * & arg : appExpr->get_args() ) {
    402                                 CP_CTOR_PRINT( std::cerr << "Type Substitution: " << *impCpCtorExpr->get_env() << std::endl; )
    403                                 // xxx - need to handle tuple arguments
    404                                 assert( ! arg->get_results().empty() );
    405                                 Type * result = arg->get_results().front();
    406                                 if ( skipCopyConstruct( result ) ) continue; // skip certain non-copyable types
    407                                 // type may involve type variables, so apply type substitution to get temporary variable's actual type
    408                                 result = result->clone();
    409                                 impCpCtorExpr->get_env()->apply( result );
    410                                 ObjectDecl * tmp = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, result, 0 );
    411                                 tmp->get_type()->set_isConst( false );
    412 
    413                                 // create and resolve copy constructor
    414                                 CP_CTOR_PRINT( std::cerr << "makeCtorDtor for an argument" << std::endl; )
    415                                 ApplicationExpr * cpCtor = makeCtorDtor( "?{}", tmp, arg );
    416 
    417                                 // if the chosen constructor is intrinsic, the copy is unnecessary, so
    418                                 // don't create the temporary and don't call the copy constructor
    419                                 VariableExpr * function = dynamic_cast< VariableExpr * >( cpCtor->get_function() );
    420                                 assert( function );
    421                                 if ( function->get_var()->get_linkage() != LinkageSpec::Intrinsic ) {
    422                                         // replace argument to function call with temporary
    423                                         arg = new CommaExpr( cpCtor, new VariableExpr( tmp ) );
    424                                         impCpCtorExpr->get_tempDecls().push_back( tmp );
    425                                         impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", tmp ) );
    426                                 } // if
     445                                copyConstructArg( arg, impCpCtorExpr );
    427446                        } // for
    428447
     
    434453                        // level. Trying to pass that environment along.
    435454                        callExpr->set_env( impCpCtorExpr->get_env()->clone() );
    436                         for ( Type * result : appExpr->get_results() ) {
     455                        Type * result = appExpr->get_result();
     456                        if ( ! result->isVoid() ) {
     457                                static UniqueName retNamer("_tmp_cp_ret");
    437458                                result = result->clone();
    438459                                impCpCtorExpr->get_env()->apply( result );
     
    441462                                impCpCtorExpr->get_returnDecls().push_back( ret );
    442463                                CP_CTOR_PRINT( std::cerr << "makeCtorDtor for a return" << std::endl; )
    443                                 impCpCtorExpr->get_dtors().push_front( makeCtorDtor( "^?{}", ret ) );
     464                                if ( ! result->get_isLvalue() ) {
     465                                        // destructing lvalue returns is bad because it can cause multiple destructor calls to the same object - the returned object is not a temporary
     466                                        destructRet( new VariableExpr( ret ), impCpCtorExpr );
     467                                }
    444468                        } // for
    445469                        CP_CTOR_PRINT( std::cerr << "after Resolving: " << impCpCtorExpr << std::endl; )
     470                }
     471
     472                void ResolveCopyCtors::visit( UniqueExpr * unqExpr ) {
     473                        static std::unordered_set< int > vars;
     474                        if ( vars.count( unqExpr->get_id() ) ) {
     475                                // xxx - hack to prevent double-handling of unique exprs, otherwise too many temporary variables and destructors are generated
     476                                return;
     477                        }
     478
     479                        Parent::visit( unqExpr );
     480                        // it should never be necessary to wrap a void-returning expression in a UniqueExpr - if this assumption changes, this needs to be rethought
     481                        assert( unqExpr->get_result() );
     482                        if ( ImplicitCopyCtorExpr * impCpCtorExpr = dynamic_cast<ImplicitCopyCtorExpr*>( unqExpr->get_expr() ) ) {
     483                                // note the variable used as the result from the call
     484                                assert( impCpCtorExpr->get_result() && impCpCtorExpr->get_returnDecls().size() == 1 );
     485                                unqExpr->set_var( new VariableExpr( impCpCtorExpr->get_returnDecls().front() ) );
     486                        } else {
     487                                // expr isn't a call expr, so create a new temporary variable to use to hold the value of the unique expression
     488                                unqExpr->set_object( new ObjectDecl( toString("_unq_expr_", unqExpr->get_id()), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, unqExpr->get_result()->clone(), nullptr ) );
     489                                unqExpr->set_var( new VariableExpr( unqExpr->get_object() ) );
     490                        }
     491                        vars.insert( unqExpr->get_id() );
    446492                }
    447493
     
    490536                                // know the result type of the assignment is the type of the LHS (minus the pointer), so
    491537                                // add that onto the assignment expression so that later steps have the necessary information
    492                                 assign->add_result( returnDecl->get_type()->clone() );
     538                                assign->set_result( returnDecl->get_type()->clone() );
    493539
    494540                                Expression * retExpr = new CommaExpr( assign, new VariableExpr( returnDecl ) );
    495                                 if ( callExpr->get_results().front()->get_isLvalue() ) {
     541                                if ( callExpr->get_result()->get_isLvalue() ) {
    496542                                        // lvalue returning functions are funny. Lvalue.cc inserts a *? in front of any lvalue returning
    497543                                        // non-intrinsic function. Add an AddressExpr to the call to negate the derefence and change the
     
    500546                                        // an AddressExpr.  Effectively, this turns
    501547                                        //   lvalue T f();
    502                                         //   &*f()
     548                                        //   &*f();
    503549                                        // into
     550                                        //   T * f();
    504551                                        //   T * tmp_cp_retN;
    505                                         //   tmp_cp_ret_N = &*(tmp_cp_ret_N = &*f(), tmp_cp_ret);
     552                                        //   &*(tmp_cp_retN = &*f(), tmp_cp_retN);              // the first * and second & are generated here
    506553                                        // which work out in terms of types, but is pretty messy. It would be nice to find a better way.
    507554                                        assign->get_args().back() = new AddressExpr( assign->get_args().back() );
    508555
    509                                         Type * resultType = returnDecl->get_type()->clone();
    510556                                        returnDecl->set_type( new PointerType( Type::Qualifiers(), returnDecl->get_type() ) );
    511                                         UntypedExpr * deref = new UntypedExpr( new NameExpr( "*?" ) );
    512                                         deref->get_args().push_back( retExpr );
    513                                         deref->add_result( resultType );
    514                                         retExpr = deref;
     557                                        retExpr->set_result( new PointerType( Type::Qualifiers(), retExpr->get_result() ) );
     558                                        retExpr = UntypedExpr::createDeref( retExpr );
    515559                                } // if
    516560                                retExpr->set_env( env->clone() );
     
    519563                                return callExpr;
    520564                        } // if
     565                }
     566
     567                Expression * FixCopyCtors::mutate( UniqueExpr * unqExpr ) {
     568                        static std::unordered_map< int, UniqueExpr * > unqMap;
     569                        static std::unordered_set< int > addDeref;
     570                        // has to be done to clean up ImplicitCopyCtorExpr nodes, even when this node was skipped in previous passes
     571                        unqExpr = safe_dynamic_cast< UniqueExpr * >( Parent::mutate( unqExpr ) );
     572                        if ( unqMap.count( unqExpr->get_id() ) ) {
     573                                // take data from other UniqueExpr to ensure consistency
     574                                delete unqExpr->get_expr();
     575                                unqExpr->set_expr( unqMap[unqExpr->get_id()]->get_expr()->clone() );
     576                                delete unqExpr->get_result();
     577                                unqExpr->set_result( maybeClone( unqExpr->get_expr()->get_result() ) );
     578                                if ( addDeref.count( unqExpr->get_id() ) ) {
     579                                        // other UniqueExpr was dereferenced because it was an lvalue return, so this one should be too
     580                                        return UntypedExpr::createDeref( unqExpr );
     581                                }
     582                                return unqExpr;
     583                        }
     584                        unqMap[unqExpr->get_id()] = unqExpr;
     585                        if ( UntypedExpr * deref = dynamic_cast< UntypedExpr * >( unqExpr->get_expr() ) ) {
     586                                // unique expression is now a dereference, because the inner expression is an lvalue returning function call.
     587                                // Normalize the expression by dereferencing the unique expression, rather than the inner expression
     588                                // (i.e. move the dereference out a level)
     589                                assert( getFunctionName( deref ) == "*?" );
     590                                unqExpr->set_expr( getCallArg( deref, 0 ) );
     591                                getCallArg( deref, 0 ) = unqExpr;
     592                                addDeref.insert( unqExpr->get_id() );
     593                                return deref;
     594                        }
     595                        return unqExpr;
    521596                }
    522597
     
    9501025                Expression * FixCtorExprs::mutate( ConstructorExpr * ctorExpr ) {
    9511026                        static UniqueName tempNamer( "_tmp_ctor_expr" );
    952                         assert( ctorExpr->get_results().size() == 1 );
    953                         ObjectDecl * tmp = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, ctorExpr->get_results().front()->clone(), nullptr );
     1027                        // xxx - is the size check necessary?
     1028                        assert( ctorExpr->has_result() && ctorExpr->get_result()->size() == 1 );
     1029                        ObjectDecl * tmp = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, nullptr, ctorExpr->get_result()->clone(), nullptr );
    9541030                        addDeclaration( tmp );
    9551031
     
    9631039                        assign->get_args().push_back( new VariableExpr( tmp ) );
    9641040                        assign->get_args().push_back( firstArg );
    965                         cloneAll( ctorExpr->get_results(), assign->get_results() );
     1041                        assign->set_result( ctorExpr->get_result()->clone() );
    9661042                        firstArg = assign;
    9671043
  • src/InitTweak/GenInit.cc

    r3a2128f r1f44196  
    2929#include "GenPoly/DeclMutator.h"
    3030#include "GenPoly/ScopedSet.h"
     31#include "ResolvExpr/typeops.h"
    3132
    3233namespace InitTweak {
     
    5051
    5152          protected:
    52                 std::list<DeclarationWithType*> returnVals;
     53                FunctionType * ftype;
    5354                UniqueName tempNamer;
    5455                std::string funcName;
     
    8687
    8788                bool isManaged( ObjectDecl * objDecl ) const ; // determine if object is managed
     89                bool isManaged( Type * type ) const; // determine if type is managed
    8890                void handleDWT( DeclarationWithType * dwt ); // add type to managed if ctor/dtor
    8991                GenPoly::ScopedSet< std::string > managedTypes;
     
    136138
    137139        Statement *ReturnFixer::mutate( ReturnStmt *returnStmt ) {
    138                 // update for multiple return values
     140                std::list< DeclarationWithType * > & returnVals = ftype->get_returnVals();
    139141                assert( returnVals.size() == 0 || returnVals.size() == 1 );
    140142                // hands off if the function returns an lvalue - we don't want to allocate a temporary if a variable's address
     
    158160
    159161        DeclarationWithType* ReturnFixer::mutate( FunctionDecl *functionDecl ) {
    160                 ValueGuard< std::list<DeclarationWithType*> > oldReturnVals( returnVals );
     162                // xxx - need to handle named return values - this pass may need to happen
     163                // after resolution? the ordering is tricky because return statements must be
     164                // constructed - the simplest way to do that (while also handling multiple
     165                // returns) is to structure the returnVals into a tuple, as done here.
     166                // however, if the tuple return value is structured before resolution,
     167                // it's difficult to resolve named return values, since the name is lost
     168                // in conversion to a tuple. this might be easiest to deal with
     169                // after reference types are added, as it may then be possible to
     170                // uniformly move named return values to the parameter list directly
     171                ValueGuard< FunctionType * > oldFtype( ftype );
    161172                ValueGuard< std::string > oldFuncName( funcName );
    162173
    163                 FunctionType * type = functionDecl->get_functionType();
    164                 returnVals = type->get_returnVals();
     174                ftype = functionDecl->get_functionType();
     175                std::list< DeclarationWithType * > & retVals = ftype->get_returnVals();
     176                if ( retVals.size() > 1 ) {
     177                        TupleType * tupleType = safe_dynamic_cast< TupleType * >( ResolvExpr::extractResultType( ftype ) );
     178                        ObjectDecl * newRet = new ObjectDecl( tempNamer.newName(), DeclarationNode::NoStorageClass, LinkageSpec::C, 0, tupleType, new ListInit( std::list<Initializer*>(), noDesignators, false ) );
     179                        retVals.clear();
     180                        retVals.push_back( newRet );
     181                }
    165182                funcName = functionDecl->get_name();
    166183                DeclarationWithType * decl = Mutator::mutate( functionDecl );
     
    222239        }
    223240
     241        bool CtorDtor::isManaged( Type * type ) const {
     242                if ( TupleType * tupleType = dynamic_cast< TupleType * > ( type ) ) {
     243                        // tuple is also managed if any of its components are managed
     244                        if ( std::any_of( tupleType->get_types().begin(), tupleType->get_types().end(), [&](Type * type) { return isManaged( type ); }) ) {
     245                                return true;
     246                        }
     247                }
     248                return managedTypes.find( SymTab::Mangler::mangle( type ) ) != managedTypes.end();
     249        }
     250
    224251        bool CtorDtor::isManaged( ObjectDecl * objDecl ) const {
    225252                Type * type = objDecl->get_type();
     
    227254                        type = at->get_base();
    228255                }
    229                 return managedTypes.find( SymTab::Mangler::mangle( type ) ) != managedTypes.end();
     256                return isManaged( type );
    230257        }
    231258
     
    238265                        managedTypes.insert( SymTab::Mangler::mangle( type->get_base() ) );
    239266                }
     267        }
     268
     269        ConstructorInit * genCtorInit( ObjectDecl * objDecl ) {
     270                // call into genImplicitCall from Autogen.h to generate calls to ctor/dtor
     271                // for each constructable object
     272                std::list< Statement * > ctor;
     273                std::list< Statement * > dtor;
     274
     275                InitExpander srcParam( objDecl->get_init() );
     276                InitExpander nullParam( (Initializer *)NULL );
     277                SymTab::genImplicitCall( srcParam, new VariableExpr( objDecl ), "?{}", back_inserter( ctor ), objDecl );
     278                SymTab::genImplicitCall( nullParam, new VariableExpr( objDecl ), "^?{}", front_inserter( dtor ), objDecl, false );
     279
     280                // Currently genImplicitCall produces a single Statement - a CompoundStmt
     281                // which  wraps everything that needs to happen. As such, it's technically
     282                // possible to use a Statement ** in the above calls, but this is inherently
     283                // unsafe, so instead we take the slightly less efficient route, but will be
     284                // immediately informed if somehow the above assumption is broken. In this case,
     285                // we could always wrap the list of statements at this point with a CompoundStmt,
     286                // but it seems reasonable at the moment for this to be done by genImplicitCall
     287                // itself. It is possible that genImplicitCall produces no statements (e.g. if
     288                // an array type does not have a dimension). In this case, it's fine to ignore
     289                // the object for the purposes of construction.
     290                assert( ctor.size() == dtor.size() && ctor.size() <= 1 );
     291                if ( ctor.size() == 1 ) {
     292                        // need to remember init expression, in case no ctors exist
     293                        // if ctor does exist, want to use ctor expression instead of init
     294                        // push this decision to the resolver
     295                        assert( dynamic_cast< ImplicitCtorDtorStmt * > ( ctor.front() ) && dynamic_cast< ImplicitCtorDtorStmt * > ( dtor.front() ) );
     296                        return new ConstructorInit( ctor.front(), dtor.front(), objDecl->get_init() );
     297                }
     298                return nullptr;
    240299        }
    241300
     
    250309                        if ( ! checkInitDepth( objDecl ) ) throw SemanticError( "Managed object's initializer is too deep ", objDecl );
    251310
    252                         // call into genImplicitCall from Autogen.h to generate calls to ctor/dtor
    253                         // for each constructable object
    254                         std::list< Statement * > ctor;
    255                         std::list< Statement * > dtor;
    256 
    257                         InitExpander srcParam( objDecl->get_init() );
    258                         InitExpander nullParam( (Initializer *)NULL );
    259                         SymTab::genImplicitCall( srcParam, new VariableExpr( objDecl ), "?{}", back_inserter( ctor ), objDecl );
    260                         SymTab::genImplicitCall( nullParam, new VariableExpr( objDecl ), "^?{}", front_inserter( dtor ), objDecl, false );
    261 
    262                         // Currently genImplicitCall produces a single Statement - a CompoundStmt
    263                         // which  wraps everything that needs to happen. As such, it's technically
    264                         // possible to use a Statement ** in the above calls, but this is inherently
    265                         // unsafe, so instead we take the slightly less efficient route, but will be
    266                         // immediately informed if somehow the above assumption is broken. In this case,
    267                         // we could always wrap the list of statements at this point with a CompoundStmt,
    268                         // but it seems reasonable at the moment for this to be done by genImplicitCall
    269                         // itself. It is possible that genImplicitCall produces no statements (e.g. if
    270                         // an array type does not have a dimension). In this case, it's fine to ignore
    271                         // the object for the purposes of construction.
    272                         assert( ctor.size() == dtor.size() && ctor.size() <= 1 );
    273                         if ( ctor.size() == 1 ) {
    274                                 // need to remember init expression, in case no ctors exist
    275                                 // if ctor does exist, want to use ctor expression instead of init
    276                                 // push this decision to the resolver
    277                                 assert( dynamic_cast< ImplicitCtorDtorStmt * > ( ctor.front() ) && dynamic_cast< ImplicitCtorDtorStmt * > ( dtor.front() ) );
    278                                 objDecl->set_init( new ConstructorInit( ctor.front(), dtor.front(), objDecl->get_init() ) );
    279                         }
     311                        objDecl->set_init( genCtorInit( objDecl ) );
    280312                }
    281313                return Parent::mutate( objDecl );
     
    290322                managedTypes.beginScope();
    291323                // go through assertions and recursively add seen ctor/dtors
    292                 for ( TypeDecl * tyDecl : functionDecl->get_functionType()->get_forall() ) {
     324                for ( auto & tyDecl : functionDecl->get_functionType()->get_forall() ) {
    293325                        for ( DeclarationWithType *& assertion : tyDecl->get_assertions() ) {
    294326                                assertion = assertion->acceptMutator( *this );
  • src/InitTweak/GenInit.h

    r3a2128f r1f44196  
    55// file "LICENCE" distributed with Cforall.
    66//
    7 // RemoveInit.h --
     7// GenInit.h --
    88//
    99// Author           : Rodolfo G. Esteves
     
    2727        /// Adds return value temporaries and wraps Initializers in ConstructorInit nodes
    2828        void genInit( std::list< Declaration * > & translationUnit );
     29
     30        /// creates an appropriate ConstructorInit node which contains a constructor, destructor, and C-initializer
     31        ConstructorInit * genCtorInit( ObjectDecl * objDecl );
    2932} // namespace
    3033
  • src/InitTweak/InitTweak.cc

    r3a2128f r1f44196  
    340340                return allofCtorDtor( stmt, []( Expression * callExpr ){
    341341                        if ( ApplicationExpr * appExpr = isIntrinsicCallExpr( callExpr ) ) {
    342                                 assert( ! appExpr->get_function()->get_results().empty() );
    343                                 FunctionType *funcType = GenPoly::getFunctionType( appExpr->get_function()->get_results().front() );
     342                                FunctionType *funcType = GenPoly::getFunctionType( appExpr->get_function()->get_result() );
    344343                                assert( funcType );
    345344                                return funcType->get_parameters().size() == 1;
     
    388387                                return memberExpr->get_member()->get_name();
    389388                        } else if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * > ( func ) ) {
    390                                 return memberExpr->get_member();
     389                                return funcName( memberExpr->get_member() );
    391390                        } else {
    392391                                assertf( false, "Unexpected expression type being called as a function in call expression" );
     
    451450                // virtual void visit( LogicalExpr *logicalExpr );
    452451                // virtual void visit( ConditionalExpr *conditionalExpr );
    453                 virtual void visit( TupleExpr *tupleExpr ) { isConstExpr = false; }
    454                 virtual void visit( SolvedTupleExpr *tupleExpr ) { isConstExpr = false; }
    455452                virtual void visit( TypeExpr *typeExpr ) { isConstExpr = false; }
    456453                virtual void visit( AsmExpr *asmExpr ) { isConstExpr = false; }
    457454                virtual void visit( UntypedValofExpr *valofExpr ) { isConstExpr = false; }
    458455                virtual void visit( CompoundLiteralExpr *compLitExpr ) { isConstExpr = false; }
     456                virtual void visit( TupleExpr *tupleExpr ) { isConstExpr = false; }
     457                virtual void visit( TupleAssignExpr *tupleExpr ) { isConstExpr = false; }
    459458
    460459                bool isConstExpr;
  • src/Makefile.in

    r3a2128f r1f44196  
    105105        ControlStruct/driver_cfa_cpp-Mutate.$(OBJEXT) \
    106106        ControlStruct/driver_cfa_cpp-ForExprMutator.$(OBJEXT) \
    107         ControlStruct/driver_cfa_cpp-LabelTypeChecker.$(OBJEXT) \
    108107        GenPoly/driver_cfa_cpp-Box.$(OBJEXT) \
    109108        GenPoly/driver_cfa_cpp-GenPoly.$(OBJEXT) \
     
    190189        SynTree/driver_cfa_cpp-TypeSubstitution.$(OBJEXT) \
    191190        SynTree/driver_cfa_cpp-Attribute.$(OBJEXT) \
     191        SynTree/driver_cfa_cpp-VarExprReplacer.$(OBJEXT) \
    192192        Tuples/driver_cfa_cpp-TupleAssignment.$(OBJEXT) \
    193         Tuples/driver_cfa_cpp-NameMatcher.$(OBJEXT)
     193        Tuples/driver_cfa_cpp-TupleExpansion.$(OBJEXT) \
     194        Tuples/driver_cfa_cpp-Explode.$(OBJEXT)
    194195am_driver_cfa_cpp_OBJECTS = $(am__objects_1)
    195196driver_cfa_cpp_OBJECTS = $(am_driver_cfa_cpp_OBJECTS)
     
    364365        ControlStruct/LabelGenerator.cc ControlStruct/LabelFixer.cc \
    365366        ControlStruct/MLEMutator.cc ControlStruct/Mutate.cc \
    366         ControlStruct/ForExprMutator.cc \
    367         ControlStruct/LabelTypeChecker.cc GenPoly/Box.cc \
     367        ControlStruct/ForExprMutator.cc GenPoly/Box.cc \
    368368        GenPoly/GenPoly.cc GenPoly/PolyMutator.cc \
    369369        GenPoly/ScrubTyVars.cc GenPoly/Lvalue.cc GenPoly/Specialize.cc \
     
    404404        SynTree/Initializer.cc SynTree/Visitor.cc SynTree/Mutator.cc \
    405405        SynTree/AddStmtVisitor.cc SynTree/TypeSubstitution.cc \
    406         SynTree/Attribute.cc Tuples/TupleAssignment.cc \
    407         Tuples/NameMatcher.cc
     406        SynTree/Attribute.cc SynTree/VarExprReplacer.cc \
     407        Tuples/TupleAssignment.cc Tuples/TupleExpansion.cc \
     408        Tuples/Explode.cc
    408409MAINTAINERCLEANFILES = Parser/parser.output ${libdir}/${notdir \
    409410        ${cfa_cpplib_PROGRAMS}}
     
    541542        ControlStruct/$(DEPDIR)/$(am__dirstamp)
    542543ControlStruct/driver_cfa_cpp-ForExprMutator.$(OBJEXT):  \
    543         ControlStruct/$(am__dirstamp) \
    544         ControlStruct/$(DEPDIR)/$(am__dirstamp)
    545 ControlStruct/driver_cfa_cpp-LabelTypeChecker.$(OBJEXT):  \
    546544        ControlStruct/$(am__dirstamp) \
    547545        ControlStruct/$(DEPDIR)/$(am__dirstamp)
     
    769767SynTree/driver_cfa_cpp-Attribute.$(OBJEXT): SynTree/$(am__dirstamp) \
    770768        SynTree/$(DEPDIR)/$(am__dirstamp)
     769SynTree/driver_cfa_cpp-VarExprReplacer.$(OBJEXT):  \
     770        SynTree/$(am__dirstamp) SynTree/$(DEPDIR)/$(am__dirstamp)
    771771Tuples/$(am__dirstamp):
    772772        @$(MKDIR_P) Tuples
     
    777777Tuples/driver_cfa_cpp-TupleAssignment.$(OBJEXT):  \
    778778        Tuples/$(am__dirstamp) Tuples/$(DEPDIR)/$(am__dirstamp)
    779 Tuples/driver_cfa_cpp-NameMatcher.$(OBJEXT): Tuples/$(am__dirstamp) \
     779Tuples/driver_cfa_cpp-TupleExpansion.$(OBJEXT):  \
     780        Tuples/$(am__dirstamp) Tuples/$(DEPDIR)/$(am__dirstamp)
     781Tuples/driver_cfa_cpp-Explode.$(OBJEXT): Tuples/$(am__dirstamp) \
    780782        Tuples/$(DEPDIR)/$(am__dirstamp)
    781783driver/$(am__dirstamp):
     
    800802        -rm -f ControlStruct/driver_cfa_cpp-LabelFixer.$(OBJEXT)
    801803        -rm -f ControlStruct/driver_cfa_cpp-LabelGenerator.$(OBJEXT)
    802         -rm -f ControlStruct/driver_cfa_cpp-LabelTypeChecker.$(OBJEXT)
    803804        -rm -f ControlStruct/driver_cfa_cpp-MLEMutator.$(OBJEXT)
    804805        -rm -f ControlStruct/driver_cfa_cpp-Mutate.$(OBJEXT)
     
    884885        -rm -f SynTree/driver_cfa_cpp-TypeofType.$(OBJEXT)
    885886        -rm -f SynTree/driver_cfa_cpp-VarArgsType.$(OBJEXT)
     887        -rm -f SynTree/driver_cfa_cpp-VarExprReplacer.$(OBJEXT)
    886888        -rm -f SynTree/driver_cfa_cpp-Visitor.$(OBJEXT)
    887889        -rm -f SynTree/driver_cfa_cpp-VoidType.$(OBJEXT)
    888890        -rm -f SynTree/driver_cfa_cpp-ZeroOneType.$(OBJEXT)
    889         -rm -f Tuples/driver_cfa_cpp-NameMatcher.$(OBJEXT)
     891        -rm -f Tuples/driver_cfa_cpp-Explode.$(OBJEXT)
    890892        -rm -f Tuples/driver_cfa_cpp-TupleAssignment.$(OBJEXT)
     893        -rm -f Tuples/driver_cfa_cpp-TupleExpansion.$(OBJEXT)
    891894
    892895distclean-compile:
     
    907910@AMDEP_TRUE@@am__include@ @am__quote@ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelFixer.Po@am__quote@
    908911@AMDEP_TRUE@@am__include@ @am__quote@ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelGenerator.Po@am__quote@
    909 @AMDEP_TRUE@@am__include@ @am__quote@ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Po@am__quote@
    910912@AMDEP_TRUE@@am__include@ @am__quote@ControlStruct/$(DEPDIR)/driver_cfa_cpp-MLEMutator.Po@am__quote@
    911913@AMDEP_TRUE@@am__include@ @am__quote@ControlStruct/$(DEPDIR)/driver_cfa_cpp-Mutate.Po@am__quote@
     
    991993@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-TypeofType.Po@am__quote@
    992994@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-VarArgsType.Po@am__quote@
     995@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Po@am__quote@
    993996@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-Visitor.Po@am__quote@
    994997@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-VoidType.Po@am__quote@
    995998@AMDEP_TRUE@@am__include@ @am__quote@SynTree/$(DEPDIR)/driver_cfa_cpp-ZeroOneType.Po@am__quote@
    996 @AMDEP_TRUE@@am__include@ @am__quote@Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Po@am__quote@
     999@AMDEP_TRUE@@am__include@ @am__quote@Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Po@am__quote@
    9971000@AMDEP_TRUE@@am__include@ @am__quote@Tuples/$(DEPDIR)/driver_cfa_cpp-TupleAssignment.Po@am__quote@
     1001@AMDEP_TRUE@@am__include@ @am__quote@Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Po@am__quote@
    9981002
    9991003.cc.o:
     
    12371241@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o ControlStruct/driver_cfa_cpp-ForExprMutator.obj `if test -f 'ControlStruct/ForExprMutator.cc'; then $(CYGPATH_W) 'ControlStruct/ForExprMutator.cc'; else $(CYGPATH_W) '$(srcdir)/ControlStruct/ForExprMutator.cc'; fi`
    12381242
    1239 ControlStruct/driver_cfa_cpp-LabelTypeChecker.o: ControlStruct/LabelTypeChecker.cc
    1240 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT ControlStruct/driver_cfa_cpp-LabelTypeChecker.o -MD -MP -MF ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Tpo -c -o ControlStruct/driver_cfa_cpp-LabelTypeChecker.o `test -f 'ControlStruct/LabelTypeChecker.cc' || echo '$(srcdir)/'`ControlStruct/LabelTypeChecker.cc
    1241 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Tpo ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Po
    1242 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='ControlStruct/LabelTypeChecker.cc' object='ControlStruct/driver_cfa_cpp-LabelTypeChecker.o' libtool=no @AMDEPBACKSLASH@
    1243 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    1244 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o ControlStruct/driver_cfa_cpp-LabelTypeChecker.o `test -f 'ControlStruct/LabelTypeChecker.cc' || echo '$(srcdir)/'`ControlStruct/LabelTypeChecker.cc
    1245 
    1246 ControlStruct/driver_cfa_cpp-LabelTypeChecker.obj: ControlStruct/LabelTypeChecker.cc
    1247 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT ControlStruct/driver_cfa_cpp-LabelTypeChecker.obj -MD -MP -MF ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Tpo -c -o ControlStruct/driver_cfa_cpp-LabelTypeChecker.obj `if test -f 'ControlStruct/LabelTypeChecker.cc'; then $(CYGPATH_W) 'ControlStruct/LabelTypeChecker.cc'; else $(CYGPATH_W) '$(srcdir)/ControlStruct/LabelTypeChecker.cc'; fi`
    1248 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Tpo ControlStruct/$(DEPDIR)/driver_cfa_cpp-LabelTypeChecker.Po
    1249 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='ControlStruct/LabelTypeChecker.cc' object='ControlStruct/driver_cfa_cpp-LabelTypeChecker.obj' libtool=no @AMDEPBACKSLASH@
    1250 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    1251 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o ControlStruct/driver_cfa_cpp-LabelTypeChecker.obj `if test -f 'ControlStruct/LabelTypeChecker.cc'; then $(CYGPATH_W) 'ControlStruct/LabelTypeChecker.cc'; else $(CYGPATH_W) '$(srcdir)/ControlStruct/LabelTypeChecker.cc'; fi`
    1252 
    12531243GenPoly/driver_cfa_cpp-Box.o: GenPoly/Box.cc
    12541244@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT GenPoly/driver_cfa_cpp-Box.o -MD -MP -MF GenPoly/$(DEPDIR)/driver_cfa_cpp-Box.Tpo -c -o GenPoly/driver_cfa_cpp-Box.o `test -f 'GenPoly/Box.cc' || echo '$(srcdir)/'`GenPoly/Box.cc
     
    24272417@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp-Attribute.obj `if test -f 'SynTree/Attribute.cc'; then $(CYGPATH_W) 'SynTree/Attribute.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/Attribute.cc'; fi`
    24282418
     2419SynTree/driver_cfa_cpp-VarExprReplacer.o: SynTree/VarExprReplacer.cc
     2420@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SynTree/driver_cfa_cpp-VarExprReplacer.o -MD -MP -MF SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Tpo -c -o SynTree/driver_cfa_cpp-VarExprReplacer.o `test -f 'SynTree/VarExprReplacer.cc' || echo '$(srcdir)/'`SynTree/VarExprReplacer.cc
     2421@am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Tpo SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Po
     2422@AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='SynTree/VarExprReplacer.cc' object='SynTree/driver_cfa_cpp-VarExprReplacer.o' libtool=no @AMDEPBACKSLASH@
     2423@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     2424@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp-VarExprReplacer.o `test -f 'SynTree/VarExprReplacer.cc' || echo '$(srcdir)/'`SynTree/VarExprReplacer.cc
     2425
     2426SynTree/driver_cfa_cpp-VarExprReplacer.obj: SynTree/VarExprReplacer.cc
     2427@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT SynTree/driver_cfa_cpp-VarExprReplacer.obj -MD -MP -MF SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Tpo -c -o SynTree/driver_cfa_cpp-VarExprReplacer.obj `if test -f 'SynTree/VarExprReplacer.cc'; then $(CYGPATH_W) 'SynTree/VarExprReplacer.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/VarExprReplacer.cc'; fi`
     2428@am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Tpo SynTree/$(DEPDIR)/driver_cfa_cpp-VarExprReplacer.Po
     2429@AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='SynTree/VarExprReplacer.cc' object='SynTree/driver_cfa_cpp-VarExprReplacer.obj' libtool=no @AMDEPBACKSLASH@
     2430@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     2431@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o SynTree/driver_cfa_cpp-VarExprReplacer.obj `if test -f 'SynTree/VarExprReplacer.cc'; then $(CYGPATH_W) 'SynTree/VarExprReplacer.cc'; else $(CYGPATH_W) '$(srcdir)/SynTree/VarExprReplacer.cc'; fi`
     2432
    24292433Tuples/driver_cfa_cpp-TupleAssignment.o: Tuples/TupleAssignment.cc
    24302434@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-TupleAssignment.o -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-TupleAssignment.Tpo -c -o Tuples/driver_cfa_cpp-TupleAssignment.o `test -f 'Tuples/TupleAssignment.cc' || echo '$(srcdir)/'`Tuples/TupleAssignment.cc
     
    24412445@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-TupleAssignment.obj `if test -f 'Tuples/TupleAssignment.cc'; then $(CYGPATH_W) 'Tuples/TupleAssignment.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/TupleAssignment.cc'; fi`
    24422446
    2443 Tuples/driver_cfa_cpp-NameMatcher.o: Tuples/NameMatcher.cc
    2444 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-NameMatcher.o -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Tpo -c -o Tuples/driver_cfa_cpp-NameMatcher.o `test -f 'Tuples/NameMatcher.cc' || echo '$(srcdir)/'`Tuples/NameMatcher.cc
    2445 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Tpo Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Po
    2446 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='Tuples/NameMatcher.cc' object='Tuples/driver_cfa_cpp-NameMatcher.o' libtool=no @AMDEPBACKSLASH@
    2447 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    2448 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-NameMatcher.o `test -f 'Tuples/NameMatcher.cc' || echo '$(srcdir)/'`Tuples/NameMatcher.cc
    2449 
    2450 Tuples/driver_cfa_cpp-NameMatcher.obj: Tuples/NameMatcher.cc
    2451 @am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-NameMatcher.obj -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Tpo -c -o Tuples/driver_cfa_cpp-NameMatcher.obj `if test -f 'Tuples/NameMatcher.cc'; then $(CYGPATH_W) 'Tuples/NameMatcher.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/NameMatcher.cc'; fi`
    2452 @am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Tpo Tuples/$(DEPDIR)/driver_cfa_cpp-NameMatcher.Po
    2453 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='Tuples/NameMatcher.cc' object='Tuples/driver_cfa_cpp-NameMatcher.obj' libtool=no @AMDEPBACKSLASH@
    2454 @AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
    2455 @am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-NameMatcher.obj `if test -f 'Tuples/NameMatcher.cc'; then $(CYGPATH_W) 'Tuples/NameMatcher.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/NameMatcher.cc'; fi`
     2447Tuples/driver_cfa_cpp-TupleExpansion.o: Tuples/TupleExpansion.cc
     2448@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-TupleExpansion.o -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Tpo -c -o Tuples/driver_cfa_cpp-TupleExpansion.o `test -f 'Tuples/TupleExpansion.cc' || echo '$(srcdir)/'`Tuples/TupleExpansion.cc
     2449@am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Tpo Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Po
     2450@AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='Tuples/TupleExpansion.cc' object='Tuples/driver_cfa_cpp-TupleExpansion.o' libtool=no @AMDEPBACKSLASH@
     2451@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     2452@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-TupleExpansion.o `test -f 'Tuples/TupleExpansion.cc' || echo '$(srcdir)/'`Tuples/TupleExpansion.cc
     2453
     2454Tuples/driver_cfa_cpp-TupleExpansion.obj: Tuples/TupleExpansion.cc
     2455@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-TupleExpansion.obj -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Tpo -c -o Tuples/driver_cfa_cpp-TupleExpansion.obj `if test -f 'Tuples/TupleExpansion.cc'; then $(CYGPATH_W) 'Tuples/TupleExpansion.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/TupleExpansion.cc'; fi`
     2456@am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Tpo Tuples/$(DEPDIR)/driver_cfa_cpp-TupleExpansion.Po
     2457@AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='Tuples/TupleExpansion.cc' object='Tuples/driver_cfa_cpp-TupleExpansion.obj' libtool=no @AMDEPBACKSLASH@
     2458@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     2459@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-TupleExpansion.obj `if test -f 'Tuples/TupleExpansion.cc'; then $(CYGPATH_W) 'Tuples/TupleExpansion.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/TupleExpansion.cc'; fi`
     2460
     2461Tuples/driver_cfa_cpp-Explode.o: Tuples/Explode.cc
     2462@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-Explode.o -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Tpo -c -o Tuples/driver_cfa_cpp-Explode.o `test -f 'Tuples/Explode.cc' || echo '$(srcdir)/'`Tuples/Explode.cc
     2463@am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Tpo Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Po
     2464@AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='Tuples/Explode.cc' object='Tuples/driver_cfa_cpp-Explode.o' libtool=no @AMDEPBACKSLASH@
     2465@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     2466@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-Explode.o `test -f 'Tuples/Explode.cc' || echo '$(srcdir)/'`Tuples/Explode.cc
     2467
     2468Tuples/driver_cfa_cpp-Explode.obj: Tuples/Explode.cc
     2469@am__fastdepCXX_TRUE@   $(AM_V_CXX)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -MT Tuples/driver_cfa_cpp-Explode.obj -MD -MP -MF Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Tpo -c -o Tuples/driver_cfa_cpp-Explode.obj `if test -f 'Tuples/Explode.cc'; then $(CYGPATH_W) 'Tuples/Explode.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/Explode.cc'; fi`
     2470@am__fastdepCXX_TRUE@   $(AM_V_at)$(am__mv) Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Tpo Tuples/$(DEPDIR)/driver_cfa_cpp-Explode.Po
     2471@AMDEP_TRUE@@am__fastdepCXX_FALSE@      $(AM_V_CXX)source='Tuples/Explode.cc' object='Tuples/driver_cfa_cpp-Explode.obj' libtool=no @AMDEPBACKSLASH@
     2472@AMDEP_TRUE@@am__fastdepCXX_FALSE@      DEPDIR=$(DEPDIR) $(CXXDEPMODE) $(depcomp) @AMDEPBACKSLASH@
     2473@am__fastdepCXX_FALSE@  $(AM_V_CXX@am__nodep@)$(CXX) $(DEFS) $(DEFAULT_INCLUDES) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(driver_cfa_cpp_CXXFLAGS) $(CXXFLAGS) -c -o Tuples/driver_cfa_cpp-Explode.obj `if test -f 'Tuples/Explode.cc'; then $(CYGPATH_W) 'Tuples/Explode.cc'; else $(CYGPATH_W) '$(srcdir)/Tuples/Explode.cc'; fi`
    24562474
    24572475.ll.cc:
  • src/Parser/ExpressionNode.cc

    r3a2128f r1f44196  
    172172} // build_constantStr
    173173
     174Expression * build_field_name_FLOATINGconstant( const std::string & str ) {
     175        // str is of the form A.B -> separate at the . and return member expression
     176        int a, b;
     177        char dot;
     178        std::stringstream ss( str );
     179        ss >> a >> dot >> b;
     180        UntypedMemberExpr * ret = new UntypedMemberExpr(
     181                new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::SignedInt ), toString( b ) ) ),
     182                new ConstantExpr( Constant( new BasicType( emptyQualifiers, BasicType::SignedInt ), toString( a ) ) ) );
     183        delete &str;
     184        return ret;
     185} // build_field_name_FLOATINGconstant
     186
     187Expression * make_field_name_fraction_constants( Expression * fieldName, Expression * fracts ) {
     188        if ( fracts ) {
     189                if ( UntypedMemberExpr * memberExpr = dynamic_cast< UntypedMemberExpr * >( fracts ) ) {
     190                        memberExpr->set_member( make_field_name_fraction_constants( fieldName, memberExpr->get_aggregate() ) );
     191                        return memberExpr;
     192                } else {
     193                        return new UntypedMemberExpr( fracts, fieldName );
     194                }
     195        }
     196        return fieldName;
     197} // make_field_name_fraction_constants
     198
     199Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts ) {
     200        return make_field_name_fraction_constants( fieldName, maybeMoveBuild< Expression >( fracts ) );
     201} // build_field_name_fraction_constants
     202
     203Expression * build_field_name_REALFRACTIONconstant( const std::string & str ) {
     204        assert( str[0] == '.' );
     205        Expression * ret = build_constantInteger( *new std::string( str.substr(1) ) );
     206        delete &str;
     207        return ret;
     208} // build_field_name_REALFRACTIONconstant
     209
     210Expression * build_field_name_REALDECIMALconstant( const std::string & str ) {
     211        assert( str[str.size()-1] == '.' );
     212        Expression * ret = build_constantInteger( *new std::string( str.substr( 0, str.size()-1 ) ) );
     213        delete &str;
     214        return ret;
     215} // build_field_name_REALDECIMALconstant
     216
    174217NameExpr * build_varref( const string *name, bool labelp ) {
    175218        NameExpr *expr = new NameExpr( *name, nullptr );
     
    198241}
    199242
    200 Expression *build_fieldSel( ExpressionNode *expr_node, NameExpr *member ) {
    201         UntypedMemberExpr *ret = new UntypedMemberExpr( member->get_name(), maybeMoveBuild< Expression >(expr_node) );
    202         delete member;
    203         return ret;
    204 }
    205 
    206 Expression *build_pfieldSel( ExpressionNode *expr_node, NameExpr *member ) {
     243Expression *build_fieldSel( ExpressionNode *expr_node, Expression *member ) {
     244        UntypedMemberExpr *ret = new UntypedMemberExpr( member, maybeMoveBuild< Expression >(expr_node) );
     245        return ret;
     246}
     247
     248Expression *build_pfieldSel( ExpressionNode *expr_node, Expression *member ) {
    207249        UntypedExpr *deref = new UntypedExpr( new NameExpr( "*?" ) );
    208250        deref->get_args().push_back( maybeMoveBuild< Expression >(expr_node) );
    209         UntypedMemberExpr *ret = new UntypedMemberExpr( member->get_name(), deref );
    210         delete member;
     251        UntypedMemberExpr *ret = new UntypedMemberExpr( member, deref );
    211252        return ret;
    212253}
  • src/Parser/ParseNode.h

    r3a2128f r1f44196  
    155155Expression * build_constantChar( const std::string &str );
    156156ConstantExpr * build_constantStr( const std::string &str );
     157Expression * build_field_name_FLOATINGconstant( const std::string & str );
     158Expression * build_field_name_fraction_constants( Expression * fieldName, ExpressionNode * fracts );
     159Expression * build_field_name_REALFRACTIONconstant( const std::string & str );
     160Expression * build_field_name_REALDECIMALconstant( const std::string & str );
    157161
    158162NameExpr * build_varref( const std::string * name, bool labelp = false );
     
    160164
    161165Expression * build_cast( DeclarationNode * decl_node, ExpressionNode * expr_node );
    162 Expression * build_fieldSel( ExpressionNode * expr_node, NameExpr * member );
    163 Expression * build_pfieldSel( ExpressionNode * expr_node, NameExpr * member );
     166Expression * build_fieldSel( ExpressionNode * expr_node, Expression * member );
     167Expression * build_pfieldSel( ExpressionNode * expr_node, Expression * member );
    164168Expression * build_addressOf( ExpressionNode * expr_node );
    165169Expression * build_sizeOfexpr( ExpressionNode * expr_node );
     
    383387//##############################################################################
    384388
    385 template< typename SynTreeType, typename NodeType >
    386 void buildList( const NodeType * firstNode, std::list< SynTreeType * > &outputList ) {
     389template< typename SynTreeType, typename NodeType, template< typename, typename...> class Container, typename... Args >
     390void buildList( const NodeType * firstNode, Container< SynTreeType *, Args... > &outputList ) {
    387391        SemanticError errors;
    388         std::back_insert_iterator< std::list< SynTreeType * > > out( outputList );
     392        std::back_insert_iterator< Container< SynTreeType *, Args... > > out( outputList );
    389393        const NodeType * cur = firstNode;
    390394
  • src/Parser/TypeData.cc

    r3a2128f r1f44196  
    385385} // TypeData::print
    386386
    387 void buildForall( const DeclarationNode * firstNode, list< TypeDecl* > &outputList ) {
     387template< typename ForallList >
     388void buildForall( const DeclarationNode * firstNode, ForallList &outputList ) {
    388389        buildList( firstNode, outputList );
    389         for ( list< TypeDecl* >::iterator i = outputList.begin(); i != outputList.end(); ++i ) {
    390                 if ( (*i)->get_kind() == TypeDecl::Any ) {
     390        for ( typename ForallList::iterator i = outputList.begin(); i != outputList.end(); ++i ) {
     391                TypeDecl * td = static_cast<TypeDecl*>(*i);
     392                if ( td->get_kind() == TypeDecl::Any ) {
    391393                        // add assertion parameters to `type' tyvars in reverse order
    392394                        // add dtor:  void ^?{}(T *)
    393395                        FunctionType * dtorType = new FunctionType( Type::Qualifiers(), false );
    394                         dtorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ) ), nullptr ) );
    395                         (*i)->get_assertions().push_front( new FunctionDecl( "^?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, dtorType, nullptr, false, false ) );
     396                        dtorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) );
     397                        td->get_assertions().push_front( new FunctionDecl( "^?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, dtorType, nullptr, false, false ) );
    396398
    397399                        // add copy ctor:  void ?{}(T *, T)
    398400                        FunctionType * copyCtorType = new FunctionType( Type::Qualifiers(), false );
    399                         copyCtorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ) ), nullptr ) );
    400                         copyCtorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ), nullptr ) );
    401                         (*i)->get_assertions().push_front( new FunctionDecl( "?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, copyCtorType, nullptr, false, false ) );
     401                        copyCtorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) );
     402                        copyCtorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), td->get_name(), *i ), nullptr ) );
     403                        td->get_assertions().push_front( new FunctionDecl( "?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, copyCtorType, nullptr, false, false ) );
    402404
    403405                        // add default ctor:  void ?{}(T *)
    404406                        FunctionType * ctorType = new FunctionType( Type::Qualifiers(), false );
    405                         ctorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ) ), nullptr ) );
    406                         (*i)->get_assertions().push_front( new FunctionDecl( "?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, ctorType, nullptr, false, false ) );
     407                        ctorType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) );
     408                        td->get_assertions().push_front( new FunctionDecl( "?{}", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, ctorType, nullptr, false, false ) );
    407409
    408410                        // add assignment operator:  T * ?=?(T *, T)
    409411                        FunctionType * assignType = new FunctionType( Type::Qualifiers(), false );
    410                         assignType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ) ), nullptr ) );
    411                         assignType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ), nullptr ) );
    412                         assignType->get_returnVals().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), (*i)->get_name(), *i ), nullptr ) );
    413                         (*i)->get_assertions().push_front( new FunctionDecl( "?=?", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, assignType, nullptr, false, false ) );
     412                        assignType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new PointerType( Type::Qualifiers(), new TypeInstType( Type::Qualifiers(), td->get_name(), *i ) ), nullptr ) );
     413                        assignType->get_parameters().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), td->get_name(), *i ), nullptr ) );
     414                        assignType->get_returnVals().push_back( new ObjectDecl( "", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, nullptr, new TypeInstType( Type::Qualifiers(), td->get_name(), *i ), nullptr ) );
     415                        td->get_assertions().push_front( new FunctionDecl( "?=?", DeclarationNode::NoStorageClass, LinkageSpec::Cforall, assignType, nullptr, false, false ) );
    414416                } // if
    415417        } // for
     
    515517                // character types. The implementation shall define char to have the same range, representation, and behavior as
    516518                // either signed char or unsigned char.
    517                 static BasicType::Kind chartype[] = { BasicType::SignedChar, BasicType::UnsignedChar, BasicType::Char }; 
     519                static BasicType::Kind chartype[] = { BasicType::SignedChar, BasicType::UnsignedChar, BasicType::Char };
    518520
    519521                if ( td->length != DeclarationNode::NoLength ) {
  • src/Parser/parser.cc

    r3a2128f r1f44196  
    10301030static const yytype_uint16 yyrline[] =
    10311031{
    1032        0,   306,   306,   310,   317,   318,   319,   320,   321,   325,
    1033      326,   327,   331,   332,   336,   337,   341,   342,   346,   350,
    1034      351,   362,   364,   366,   367,   369,   374,   375,   381,   383,
    1035      385,   386,   387,   389,   390,   392,   394,   396,   405,   406,
    1036      412,   413,   417,   418,   422,   424,   426,   428,   430,   432,
    1037      434,   439,   441,   443,   447,   449,   453,   456,   458,   460,
    1038      465,   478,   480,   482,   484,   486,   488,   490,   492,   494,
    1039      496,   498,   505,   506,   512,   513,   514,   515,   519,   520,
    1040      527,   528,   530,   532,   537,   538,   540,   545,   546,   548,
    1041      553,   554,   556,   558,   560,   565,   566,   568,   573,   574,
    1042      579,   580,   585,   586,   591,   592,   597,   598,   603,   604,
    1043      607,   614,   619,   620,   628,   629,   633,   634,   635,   636,
    1044      637,   638,   639,   640,   641,   642,   643,   644,   654,   656,
    1045      661,   662,   667,   668,   674,   675,   681,   682,   683,   684,
    1046      685,   686,   687,   688,   689,   699,   706,   708,   718,   719,
    1047      724,   726,   732,   734,   738,   739,   744,   749,   752,   754,
    1048      756,   766,   768,   779,   780,   782,   786,   788,   792,   793,
    1049      798,   799,   803,   808,   809,   813,   815,   821,   822,   826,
    1050      828,   830,   832,   838,   839,   843,   845,   850,   852,   854,
    1051      859,   861,   866,   868,   872,   875,   879,   882,   886,   888,
    1052      890,   892,   897,   899,   901,   906,   908,   910,   912,   914,
    1053      919,   921,   923,   925,   930,   942,   943,   948,   950,   955,
    1054      959,   961,   963,   965,   967,   973,   974,   980,   981,   985,
    1055      986,   991,   993,   999,  1000,  1002,  1007,  1012,  1022,  1024,
    1056     1028,  1029,  1034,  1036,  1040,  1041,  1045,  1047,  1051,  1052,
    1057     1056,  1057,  1061,  1062,  1077,  1078,  1079,  1080,  1081,  1085,
    1058     1090,  1097,  1107,  1112,  1117,  1125,  1130,  1135,  1140,  1145,
    1059     1175,  1180,  1187,  1189,  1196,  1201,  1206,  1217,  1222,  1227,
    1060     1232,  1237,  1246,  1251,  1259,  1260,  1261,  1262,  1268,  1273,
    1061     1281,  1282,  1283,  1284,  1288,  1289,  1290,  1291,  1296,  1297,
    1062     1306,  1307,  1312,  1313,  1318,  1320,  1322,  1324,  1326,  1329,
    1063     1328,  1340,  1341,  1343,  1353,  1354,  1359,  1361,  1363,  1365,
    1064     1367,  1370,  1372,  1375,  1380,  1382,  1384,  1386,  1388,  1390,
    1065     1392,  1394,  1396,  1398,  1400,  1402,  1404,  1406,  1408,  1414,
    1066     1415,  1417,  1419,  1421,  1426,  1427,  1433,  1434,  1436,  1438,
    1067     1443,  1445,  1447,  1449,  1454,  1455,  1457,  1459,  1464,  1465,
    1068     1467,  1472,  1473,  1475,  1477,  1482,  1484,  1486,  1491,  1492,
    1069     1496,  1498,  1504,  1503,  1507,  1509,  1514,  1516,  1522,  1523,
    1070     1528,  1529,  1531,  1532,  1541,  1542,  1544,  1546,  1551,  1553,
    1071     1559,  1560,  1562,  1565,  1568,  1573,  1574,  1579,  1584,  1588,
    1072     1590,  1596,  1595,  1602,  1604,  1610,  1611,  1619,  1620,  1624,
    1073     1625,  1626,  1628,  1630,  1637,  1638,  1640,  1642,  1647,  1648,
    1074     1654,  1655,  1659,  1660,  1665,  1666,  1667,  1669,  1677,  1678,
    1075     1680,  1683,  1685,  1689,  1690,  1691,  1693,  1695,  1699,  1704,
    1076     1712,  1713,  1722,  1724,  1729,  1730,  1731,  1735,  1736,  1737,
    1077     1741,  1742,  1743,  1747,  1748,  1749,  1754,  1755,  1756,  1757,
    1078     1763,  1764,  1766,  1771,  1772,  1777,  1778,  1779,  1780,  1781,
    1079     1796,  1797,  1802,  1803,  1809,  1811,  1814,  1816,  1818,  1841,
    1080     1842,  1844,  1846,  1851,  1852,  1854,  1859,  1864,  1865,  1871,
    1081     1870,  1874,  1878,  1880,  1882,  1888,  1889,  1894,  1899,  1901,
    1082     1906,  1908,  1909,  1911,  1916,  1918,  1920,  1925,  1927,  1932,
    1083     1937,  1945,  1951,  1950,  1964,  1965,  1970,  1971,  1975,  1980,
    1084     1985,  1993,  1998,  2009,  2010,  2015,  2016,  2022,  2023,  2027,
    1085     2028,  2029,  2032,  2031,  2042,  2051,  2057,  2063,  2072,  2078,
    1086     2084,  2090,  2096,  2104,  2110,  2118,  2124,  2133,  2134,  2135,
    1087     2139,  2143,  2145,  2150,  2151,  2155,  2156,  2161,  2167,  2168,
    1088     2171,  2173,  2174,  2178,  2179,  2180,  2181,  2215,  2217,  2218,
    1089     2220,  2225,  2230,  2235,  2237,  2239,  2244,  2246,  2248,  2250,
    1090     2255,  2257,  2266,  2268,  2269,  2274,  2276,  2278,  2283,  2285,
    1091     2287,  2292,  2294,  2296,  2305,  2306,  2307,  2311,  2313,  2315,
    1092     2320,  2322,  2324,  2329,  2331,  2333,  2348,  2350,  2351,  2353,
    1093     2358,  2359,  2364,  2366,  2368,  2373,  2375,  2377,  2379,  2384,
    1094     2386,  2388,  2398,  2400,  2401,  2403,  2408,  2410,  2412,  2417,
    1095     2419,  2421,  2423,  2428,  2430,  2432,  2463,  2465,  2466,  2468,
    1096     2473,  2478,  2486,  2488,  2490,  2495,  2497,  2502,  2504,  2518,
    1097     2519,  2521,  2526,  2528,  2530,  2532,  2534,  2539,  2540,  2542,
    1098     2544,  2549,  2551,  2553,  2559,  2561,  2563,  2567,  2569,  2571,
    1099     2573,  2587,  2588,  2590,  2595,  2597,  2599,  2601,  2603,  2608,
    1100     2609,  2611,  2613,  2618,  2620,  2622,  2628,  2629,  2631,  2640,
    1101     2643,  2645,  2648,  2650,  2652,  2665,  2666,  2668,  2673,  2675,
    1102     2677,  2679,  2681,  2686,  2687,  2689,  2691,  2696,  2698,  2706,
    1103     2707,  2708,  2713,  2714,  2718,  2720,  2722,  2724,  2726,  2728,
    1104     2735,  2737,  2739,  2741,  2743,  2746,  2748,  2750,  2752,  2754,
    1105     2759,  2761,  2763,  2768,  2794,  2795,  2797,  2801,  2802,  2806,
    1106     2808,  2810,  2812,  2814,  2816,  2823,  2825,  2827,  2829,  2831,
    1107     2833,  2838,  2845,  2847,  2865,  2867,  2872,  2873
     1032       0,   305,   305,   309,   316,   317,   318,   319,   320,   324,
     1033     325,   326,   330,   331,   335,   336,   340,   341,   345,   349,
     1034     350,   361,   363,   365,   366,   368,   373,   374,   380,   382,
     1035     384,   386,   388,   390,   392,   394,   396,   398,   407,   408,
     1036     414,   415,   419,   420,   424,   425,   427,   429,   431,   433,
     1037     435,   440,   442,   444,   450,   451,   459,   462,   464,   466,
     1038     471,   484,   486,   488,   490,   492,   494,   496,   498,   500,
     1039     502,   504,   511,   512,   518,   519,   520,   521,   525,   526,
     1040     533,   534,   536,   538,   543,   544,   546,   551,   552,   554,
     1041     559,   560,   562,   564,   566,   571,   572,   574,   579,   580,
     1042     585,   586,   591,   592,   597,   598,   603,   604,   609,   610,
     1043     613,   620,   625,   626,   634,   635,   639,   640,   641,   642,
     1044     643,   644,   645,   646,   647,   648,   649,   650,   660,   662,
     1045     667,   668,   673,   674,   680,   681,   687,   688,   689,   690,
     1046     691,   692,   693,   694,   695,   705,   712,   714,   724,   725,
     1047     730,   732,   738,   740,   744,   745,   750,   755,   758,   760,
     1048     762,   772,   774,   785,   786,   788,   792,   794,   798,   799,
     1049     804,   805,   809,   814,   815,   819,   821,   827,   828,   832,
     1050     834,   836,   838,   844,   845,   849,   851,   856,   858,   860,
     1051     865,   867,   872,   874,   878,   881,   885,   888,   892,   894,
     1052     896,   898,   903,   905,   907,   912,   914,   916,   918,   920,
     1053     925,   927,   929,   931,   936,   948,   949,   954,   956,   961,
     1054     965,   967,   969,   971,   973,   979,   980,   986,   987,   991,
     1055     992,   997,   999,  1005,  1006,  1008,  1013,  1018,  1028,  1030,
     1056    1034,  1035,  1040,  1042,  1046,  1047,  1051,  1053,  1057,  1058,
     1057    1062,  1063,  1067,  1068,  1083,  1084,  1085,  1086,  1087,  1091,
     1058    1096,  1103,  1113,  1118,  1123,  1131,  1136,  1141,  1146,  1151,
     1059    1181,  1186,  1193,  1195,  1202,  1207,  1212,  1223,  1228,  1233,
     1060    1238,  1243,  1252,  1257,  1265,  1266,  1267,  1268,  1274,  1279,
     1061    1287,  1288,  1289,  1290,  1294,  1295,  1296,  1297,  1302,  1303,
     1062    1312,  1313,  1318,  1319,  1324,  1326,  1328,  1330,  1332,  1335,
     1063    1334,  1346,  1347,  1349,  1359,  1360,  1365,  1367,  1369,  1371,
     1064    1373,  1376,  1378,  1381,  1386,  1388,  1390,  1392,  1394,  1396,
     1065    1398,  1400,  1402,  1404,  1406,  1408,  1410,  1412,  1414,  1420,
     1066    1421,  1423,  1425,  1427,  1432,  1433,  1439,  1440,  1442,  1444,
     1067    1449,  1451,  1453,  1455,  1460,  1461,  1463,  1465,  1470,  1471,
     1068    1473,  1478,  1479,  1481,  1483,  1488,  1490,  1492,  1497,  1498,
     1069    1502,  1504,  1510,  1509,  1513,  1515,  1520,  1522,  1528,  1529,
     1070    1534,  1535,  1537,  1538,  1547,  1548,  1550,  1552,  1557,  1559,
     1071    1565,  1566,  1568,  1571,  1574,  1579,  1580,  1585,  1590,  1594,
     1072    1596,  1602,  1601,  1608,  1610,  1616,  1617,  1625,  1626,  1630,
     1073    1631,  1632,  1634,  1636,  1643,  1644,  1646,  1648,  1653,  1654,
     1074    1660,  1661,  1665,  1666,  1671,  1672,  1673,  1675,  1683,  1684,
     1075    1686,  1689,  1691,  1695,  1696,  1697,  1699,  1701,  1705,  1710,
     1076    1718,  1719,  1728,  1730,  1735,  1736,  1737,  1741,  1742,  1743,
     1077    1747,  1748,  1749,  1753,  1754,  1755,  1760,  1761,  1762,  1763,
     1078    1769,  1770,  1772,  1777,  1778,  1783,  1784,  1785,  1786,  1787,
     1079    1802,  1803,  1808,  1809,  1815,  1817,  1820,  1822,  1824,  1847,
     1080    1848,  1850,  1852,  1857,  1858,  1860,  1865,  1870,  1871,  1877,
     1081    1876,  1880,  1884,  1886,  1888,  1894,  1895,  1900,  1905,  1907,
     1082    1912,  1914,  1915,  1917,  1922,  1924,  1926,  1931,  1933,  1938,
     1083    1943,  1951,  1957,  1956,  1970,  1971,  1976,  1977,  1981,  1986,
     1084    1991,  1999,  2004,  2015,  2016,  2021,  2022,  2028,  2029,  2033,
     1085    2034,  2035,  2038,  2037,  2048,  2057,  2063,  2069,  2078,  2084,
     1086    2090,  2096,  2102,  2110,  2116,  2124,  2130,  2139,  2140,  2141,
     1087    2145,  2149,  2151,  2156,  2157,  2161,  2162,  2167,  2173,  2174,
     1088    2177,  2179,  2180,  2184,  2185,  2186,  2187,  2221,  2223,  2224,
     1089    2226,  2231,  2236,  2241,  2243,  2245,  2250,  2252,  2254,  2256,
     1090    2261,  2263,  2272,  2274,  2275,  2280,  2282,  2284,  2289,  2291,
     1091    2293,  2298,  2300,  2302,  2311,  2312,  2313,  2317,  2319,  2321,
     1092    2326,  2328,  2330,  2335,  2337,  2339,  2354,  2356,  2357,  2359,
     1093    2364,  2365,  2370,  2372,  2374,  2379,  2381,  2383,  2385,  2390,
     1094    2392,  2394,  2404,  2406,  2407,  2409,  2414,  2416,  2418,  2423,
     1095    2425,  2427,  2429,  2434,  2436,  2438,  2469,  2471,  2472,  2474,
     1096    2479,  2484,  2492,  2494,  2496,  2501,  2503,  2508,  2510,  2524,
     1097    2525,  2527,  2532,  2534,  2536,  2538,  2540,  2545,  2546,  2548,
     1098    2550,  2555,  2557,  2559,  2565,  2567,  2569,  2573,  2575,  2577,
     1099    2579,  2593,  2594,  2596,  2601,  2603,  2605,  2607,  2609,  2614,
     1100    2615,  2617,  2619,  2624,  2626,  2628,  2634,  2635,  2637,  2646,
     1101    2649,  2651,  2654,  2656,  2658,  2671,  2672,  2674,  2679,  2681,
     1102    2683,  2685,  2687,  2692,  2693,  2695,  2697,  2702,  2704,  2712,
     1103    2713,  2714,  2719,  2720,  2724,  2726,  2728,  2730,  2732,  2734,
     1104    2741,  2743,  2745,  2747,  2749,  2752,  2754,  2756,  2758,  2760,
     1105    2765,  2767,  2769,  2774,  2800,  2801,  2803,  2807,  2808,  2812,
     1106    2814,  2816,  2818,  2820,  2822,  2829,  2831,  2833,  2835,  2837,
     1107    2839,  2844,  2851,  2853,  2871,  2873,  2878,  2879
    11081108};
    11091109#endif
     
    49284928
    49294929/* Line 1806 of yacc.c  */
    4930 #line 306 "parser.yy"
     4930#line 305 "parser.yy"
    49314931    { typedefTable.enterScope(); }
    49324932    break;
     
    49354935
    49364936/* Line 1806 of yacc.c  */
    4937 #line 310 "parser.yy"
     4937#line 309 "parser.yy"
    49384938    { typedefTable.leaveScope(); }
    49394939    break;
     
    49424942
    49434943/* Line 1806 of yacc.c  */
     4944#line 316 "parser.yy"
     4945    { (yyval.en) = new ExpressionNode( build_constantInteger( *(yyvsp[(1) - (1)].tok) ) ); }
     4946    break;
     4947
     4948  case 5:
     4949
     4950/* Line 1806 of yacc.c  */
    49444951#line 317 "parser.yy"
    4945     { (yyval.en) = new ExpressionNode( build_constantInteger( *(yyvsp[(1) - (1)].tok) ) ); }
    4946     break;
    4947 
    4948   case 5:
     4952    { (yyval.en) = new ExpressionNode( build_constantFloat( *(yyvsp[(1) - (1)].tok) ) ); }
     4953    break;
     4954
     4955  case 6:
    49494956
    49504957/* Line 1806 of yacc.c  */
     
    49534960    break;
    49544961
    4955   case 6:
     4962  case 7:
    49564963
    49574964/* Line 1806 of yacc.c  */
     
    49604967    break;
    49614968
    4962   case 7:
     4969  case 8:
    49634970
    49644971/* Line 1806 of yacc.c  */
    49654972#line 320 "parser.yy"
    4966     { (yyval.en) = new ExpressionNode( build_constantFloat( *(yyvsp[(1) - (1)].tok) ) ); }
    4967     break;
    4968 
    4969   case 8:
    4970 
    4971 /* Line 1806 of yacc.c  */
    4972 #line 321 "parser.yy"
    49734973    { (yyval.en) = new ExpressionNode( build_constantChar( *(yyvsp[(1) - (1)].tok) ) ); }
    49744974    break;
     
    49774977
    49784978/* Line 1806 of yacc.c  */
    4979 #line 346 "parser.yy"
     4979#line 345 "parser.yy"
    49804980    { (yyval.constant) = build_constantStr( *(yyvsp[(1) - (1)].str) ); }
    49814981    break;
     
    49844984
    49854985/* Line 1806 of yacc.c  */
    4986 #line 350 "parser.yy"
     4986#line 349 "parser.yy"
    49874987    { (yyval.str) = (yyvsp[(1) - (1)].tok); }
    49884988    break;
     
    49914991
    49924992/* Line 1806 of yacc.c  */
    4993 #line 352 "parser.yy"
     4993#line 351 "parser.yy"
    49944994    {
    49954995                        appendStr( (yyvsp[(1) - (2)].str), (yyvsp[(2) - (2)].tok) );                                            // append 2nd juxtaposed string to 1st
     
    50025002
    50035003/* Line 1806 of yacc.c  */
    5004 #line 363 "parser.yy"
     5004#line 362 "parser.yy"
    50055005    { (yyval.en) = new ExpressionNode( build_varref( (yyvsp[(1) - (1)].tok) ) ); }
    50065006    break;
     
    50095009
    50105010/* Line 1806 of yacc.c  */
    5011 #line 365 "parser.yy"
     5011#line 364 "parser.yy"
    50125012    { (yyval.en) = new ExpressionNode( build_varref( (yyvsp[(1) - (1)].tok) ) ); }
    50135013    break;
     
    50165016
    50175017/* Line 1806 of yacc.c  */
    5018 #line 368 "parser.yy"
     5018#line 367 "parser.yy"
    50195019    { (yyval.en) = (yyvsp[(2) - (3)].en); }
    50205020    break;
     
    50235023
    50245024/* Line 1806 of yacc.c  */
    5025 #line 370 "parser.yy"
     5025#line 369 "parser.yy"
    50265026    { (yyval.en) = new ExpressionNode( build_valexpr( (yyvsp[(2) - (3)].sn) ) ); }
    50275027    break;
     
    50305030
    50315031/* Line 1806 of yacc.c  */
    5032 #line 380 "parser.yy"
     5032#line 379 "parser.yy"
    50335033    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Index, (yyvsp[(1) - (6)].en), (yyvsp[(4) - (6)].en) ) ); }
    50345034    break;
     
    50375037
    50385038/* Line 1806 of yacc.c  */
    5039 #line 382 "parser.yy"
     5039#line 381 "parser.yy"
    50405040    { (yyval.en) = new ExpressionNode( build_func( (yyvsp[(1) - (4)].en), (yyvsp[(3) - (4)].en) ) ); }
    50415041    break;
     
    50445044
    50455045/* Line 1806 of yacc.c  */
    5046 #line 384 "parser.yy"
     5046#line 383 "parser.yy"
    50475047    { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(1) - (3)].en), build_varref( (yyvsp[(3) - (3)].tok) ) ) ); }
    50485048    break;
    50495049
     5050  case 30:
     5051
     5052/* Line 1806 of yacc.c  */
     5053#line 385 "parser.yy"
     5054    { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(1) - (7)].en), build_tuple( (yyvsp[(5) - (7)].en) ) ) ); }
     5055    break;
     5056
     5057  case 31:
     5058
     5059/* Line 1806 of yacc.c  */
     5060#line 387 "parser.yy"
     5061    { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(1) - (2)].en), build_field_name_REALFRACTIONconstant( *(yyvsp[(2) - (2)].tok) ) ) ); }
     5062    break;
     5063
    50505064  case 32:
    50515065
    50525066/* Line 1806 of yacc.c  */
    5053 #line 388 "parser.yy"
     5067#line 389 "parser.yy"
    50545068    { (yyval.en) = new ExpressionNode( build_pfieldSel( (yyvsp[(1) - (3)].en), build_varref( (yyvsp[(3) - (3)].tok) ) ) ); }
    50555069    break;
    50565070
     5071  case 33:
     5072
     5073/* Line 1806 of yacc.c  */
     5074#line 391 "parser.yy"
     5075    { (yyval.en) = new ExpressionNode( build_pfieldSel( (yyvsp[(1) - (7)].en), build_tuple( (yyvsp[(5) - (7)].en) ) ) ); }
     5076    break;
     5077
    50575078  case 34:
    50585079
    50595080/* Line 1806 of yacc.c  */
    5060 #line 391 "parser.yy"
     5081#line 393 "parser.yy"
    50615082    { (yyval.en) = new ExpressionNode( build_unary_ptr( OperKinds::IncrPost, (yyvsp[(1) - (2)].en) ) ); }
    50625083    break;
     
    50655086
    50665087/* Line 1806 of yacc.c  */
    5067 #line 393 "parser.yy"
     5088#line 395 "parser.yy"
    50685089    { (yyval.en) = new ExpressionNode( build_unary_ptr( OperKinds::DecrPost, (yyvsp[(1) - (2)].en) ) ); }
    50695090    break;
     
    50725093
    50735094/* Line 1806 of yacc.c  */
    5074 #line 395 "parser.yy"
     5095#line 397 "parser.yy"
    50755096    { (yyval.en) = new ExpressionNode( build_compoundLiteral( (yyvsp[(2) - (7)].decl), new InitializerNode( (yyvsp[(5) - (7)].in), true ) ) ); }
    50765097    break;
     
    50795100
    50805101/* Line 1806 of yacc.c  */
    5081 #line 397 "parser.yy"
     5102#line 399 "parser.yy"
    50825103    {
    50835104                        Token fn;
     
    50905111
    50915112/* Line 1806 of yacc.c  */
    5092 #line 407 "parser.yy"
     5113#line 409 "parser.yy"
    50935114    { (yyval.en) = (ExpressionNode *)( (yyvsp[(1) - (3)].en)->set_last( (yyvsp[(3) - (3)].en) )); }
    50945115    break;
     
    50975118
    50985119/* Line 1806 of yacc.c  */
    5099 #line 412 "parser.yy"
     5120#line 414 "parser.yy"
    51005121    { (yyval.en) = 0; }
    51015122    break;
     
    51045125
    51055126/* Line 1806 of yacc.c  */
    5106 #line 418 "parser.yy"
     5127#line 420 "parser.yy"
    51075128    { (yyval.en) = (ExpressionNode *)(yyvsp[(1) - (3)].en)->set_last( (yyvsp[(3) - (3)].en) ); }
    51085129    break;
    51095130
    5110   case 44:
    5111 
    5112 /* Line 1806 of yacc.c  */
    5113 #line 423 "parser.yy"
    5114     { (yyval.en) = new ExpressionNode( build_varref( (yyvsp[(1) - (1)].tok) ) ); }
    5115     break;
    5116 
    51175131  case 45:
    51185132
    51195133/* Line 1806 of yacc.c  */
    5120 #line 425 "parser.yy"
    5121     { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(2) - (2)].en), build_varref( (yyvsp[(1) - (2)].tok) ) ) ); }
     5134#line 426 "parser.yy"
     5135    { (yyval.en) = new ExpressionNode( build_fieldSel( new ExpressionNode( build_field_name_REALDECIMALconstant( *(yyvsp[(1) - (2)].tok) ) ), maybeMoveBuild<Expression>( (yyvsp[(2) - (2)].en) ) ) ); }
    51225136    break;
    51235137
     
    51255139
    51265140/* Line 1806 of yacc.c  */
    5127 #line 427 "parser.yy"
    5128     { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(4) - (6)].en), build_varref( (yyvsp[(1) - (6)].tok) ) ) ); }
     5141#line 428 "parser.yy"
     5142    { (yyval.en) = new ExpressionNode( build_fieldSel( new ExpressionNode( build_field_name_REALDECIMALconstant( *(yyvsp[(1) - (6)].tok) ) ), build_tuple( (yyvsp[(4) - (6)].en) ) ) ); }
    51295143    break;
    51305144
     
    51325146
    51335147/* Line 1806 of yacc.c  */
    5134 #line 429 "parser.yy"
    5135     { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(3) - (3)].en), build_varref( (yyvsp[(1) - (3)].tok) ) ) ); }
     5148#line 430 "parser.yy"
     5149    { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(1) - (3)].en), maybeMoveBuild<Expression>( (yyvsp[(3) - (3)].en) ) ) ); }
    51365150    break;
    51375151
     
    51395153
    51405154/* Line 1806 of yacc.c  */
    5141 #line 431 "parser.yy"
    5142     { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(5) - (7)].en), build_varref( (yyvsp[(1) - (7)].tok) ) ) ); }
     5155#line 432 "parser.yy"
     5156    { (yyval.en) = new ExpressionNode( build_fieldSel( (yyvsp[(1) - (7)].en), build_tuple( (yyvsp[(5) - (7)].en) ) ) ); }
    51435157    break;
    51445158
     
    51465160
    51475161/* Line 1806 of yacc.c  */
    5148 #line 433 "parser.yy"
    5149     { (yyval.en) = new ExpressionNode( build_pfieldSel( (yyvsp[(3) - (3)].en), build_varref( (yyvsp[(1) - (3)].tok) ) ) ); }
     5162#line 434 "parser.yy"
     5163    { (yyval.en) = new ExpressionNode( build_pfieldSel( (yyvsp[(1) - (3)].en), maybeMoveBuild<Expression>( (yyvsp[(3) - (3)].en) ) ) ); }
    51505164    break;
    51515165
     
    51535167
    51545168/* Line 1806 of yacc.c  */
    5155 #line 435 "parser.yy"
    5156     { (yyval.en) = new ExpressionNode( build_pfieldSel( (yyvsp[(5) - (7)].en), build_varref( (yyvsp[(1) - (7)].tok) ) ) ); }
     5169#line 436 "parser.yy"
     5170    { (yyval.en) = new ExpressionNode( build_pfieldSel( (yyvsp[(1) - (7)].en), build_tuple( (yyvsp[(5) - (7)].en) ) ) ); }
    51575171    break;
    51585172
     
    51605174
    51615175/* Line 1806 of yacc.c  */
    5162 #line 440 "parser.yy"
    5163     { (yyval.tok) = (yyvsp[(1) - (2)].tok); }
     5176#line 441 "parser.yy"
     5177    { (yyval.en) = new ExpressionNode( build_field_name_fraction_constants( build_constantInteger( *(yyvsp[(1) - (2)].tok) ), (yyvsp[(2) - (2)].en) ) ); }
    51645178    break;
    51655179
     
    51675181
    51685182/* Line 1806 of yacc.c  */
    5169 #line 442 "parser.yy"
    5170     { (yyval.tok) = (yyvsp[(1) - (2)].tok); }
     5183#line 443 "parser.yy"
     5184    { (yyval.en) = new ExpressionNode( build_field_name_fraction_constants( build_field_name_FLOATINGconstant( *(yyvsp[(1) - (2)].tok) ), (yyvsp[(2) - (2)].en) ) ); }
    51715185    break;
    51725186
     
    51745188
    51755189/* Line 1806 of yacc.c  */
    5176 #line 444 "parser.yy"
    5177     { (yyval.tok) = (yyvsp[(1) - (2)].tok); }
     5190#line 445 "parser.yy"
     5191    { (yyval.en) = new ExpressionNode( build_field_name_fraction_constants( build_varref( (yyvsp[(1) - (2)].tok) ), (yyvsp[(2) - (2)].en) ) ); }
     5192    break;
     5193
     5194  case 54:
     5195
     5196/* Line 1806 of yacc.c  */
     5197#line 450 "parser.yy"
     5198    { (yyval.en) = nullptr; }
     5199    break;
     5200
     5201  case 55:
     5202
     5203/* Line 1806 of yacc.c  */
     5204#line 452 "parser.yy"
     5205    {
     5206                        Expression * constant = build_field_name_REALFRACTIONconstant( *(yyvsp[(2) - (2)].tok) );
     5207                        (yyval.en) = (yyvsp[(1) - (2)].en) != nullptr ? new ExpressionNode( build_fieldSel( (yyvsp[(1) - (2)].en),  constant ) ) : new ExpressionNode( constant );
     5208                }
    51785209    break;
    51795210
     
    51815212
    51825213/* Line 1806 of yacc.c  */
    5183 #line 457 "parser.yy"
     5214#line 463 "parser.yy"
    51845215    { (yyval.en) = (yyvsp[(1) - (1)].en); }
    51855216    break;
     
    51885219
    51895220/* Line 1806 of yacc.c  */
    5190 #line 459 "parser.yy"
     5221#line 465 "parser.yy"
    51915222    { (yyval.en) = new ExpressionNode( (yyvsp[(1) - (1)].constant) ); }
    51925223    break;
     
    51955226
    51965227/* Line 1806 of yacc.c  */
    5197 #line 461 "parser.yy"
     5228#line 467 "parser.yy"
    51985229    { (yyval.en) = (yyvsp[(2) - (2)].en)->set_extension( true ); }
    51995230    break;
     
    52025233
    52035234/* Line 1806 of yacc.c  */
    5204 #line 466 "parser.yy"
     5235#line 472 "parser.yy"
    52055236    {
    52065237                        switch ( (yyvsp[(1) - (2)].op) ) {
     
    52205251
    52215252/* Line 1806 of yacc.c  */
    5222 #line 479 "parser.yy"
     5253#line 485 "parser.yy"
    52235254    { (yyval.en) = new ExpressionNode( build_unary_val( (yyvsp[(1) - (2)].op), (yyvsp[(2) - (2)].en) ) ); }
    52245255    break;
     
    52275258
    52285259/* Line 1806 of yacc.c  */
    5229 #line 481 "parser.yy"
     5260#line 487 "parser.yy"
    52305261    { (yyval.en) = new ExpressionNode( build_unary_ptr( OperKinds::Incr, (yyvsp[(2) - (2)].en) ) ); }
    52315262    break;
     
    52345265
    52355266/* Line 1806 of yacc.c  */
    5236 #line 483 "parser.yy"
     5267#line 489 "parser.yy"
    52375268    { (yyval.en) = new ExpressionNode( build_unary_ptr( OperKinds::Decr, (yyvsp[(2) - (2)].en) ) ); }
    52385269    break;
     
    52415272
    52425273/* Line 1806 of yacc.c  */
    5243 #line 485 "parser.yy"
     5274#line 491 "parser.yy"
    52445275    { (yyval.en) = new ExpressionNode( build_sizeOfexpr( (yyvsp[(2) - (2)].en) ) ); }
    52455276    break;
     
    52485279
    52495280/* Line 1806 of yacc.c  */
    5250 #line 487 "parser.yy"
     5281#line 493 "parser.yy"
    52515282    { (yyval.en) = new ExpressionNode( build_sizeOftype( (yyvsp[(3) - (4)].decl) ) ); }
    52525283    break;
     
    52555286
    52565287/* Line 1806 of yacc.c  */
    5257 #line 489 "parser.yy"
     5288#line 495 "parser.yy"
    52585289    { (yyval.en) = new ExpressionNode( build_alignOfexpr( (yyvsp[(2) - (2)].en) ) ); }
    52595290    break;
     
    52625293
    52635294/* Line 1806 of yacc.c  */
    5264 #line 491 "parser.yy"
     5295#line 497 "parser.yy"
    52655296    { (yyval.en) = new ExpressionNode( build_alignOftype( (yyvsp[(3) - (4)].decl) ) ); }
    52665297    break;
     
    52695300
    52705301/* Line 1806 of yacc.c  */
    5271 #line 493 "parser.yy"
     5302#line 499 "parser.yy"
    52725303    { (yyval.en) = new ExpressionNode( build_offsetOf( (yyvsp[(3) - (6)].decl), build_varref( (yyvsp[(5) - (6)].tok) ) ) ); }
    52735304    break;
     
    52765307
    52775308/* Line 1806 of yacc.c  */
    5278 #line 495 "parser.yy"
     5309#line 501 "parser.yy"
    52795310    { (yyval.en) = new ExpressionNode( build_attrexpr( build_varref( (yyvsp[(1) - (1)].tok) ), nullptr ) ); }
    52805311    break;
     
    52835314
    52845315/* Line 1806 of yacc.c  */
    5285 #line 497 "parser.yy"
     5316#line 503 "parser.yy"
    52865317    { (yyval.en) = new ExpressionNode( build_attrexpr( build_varref( (yyvsp[(1) - (4)].tok) ), (yyvsp[(3) - (4)].en) ) ); }
    52875318    break;
     
    52905321
    52915322/* Line 1806 of yacc.c  */
    5292 #line 499 "parser.yy"
     5323#line 505 "parser.yy"
    52935324    { (yyval.en) = new ExpressionNode( build_attrtype( build_varref( (yyvsp[(1) - (4)].tok) ), (yyvsp[(3) - (4)].decl) ) ); }
    52945325    break;
     
    52975328
    52985329/* Line 1806 of yacc.c  */
    5299 #line 505 "parser.yy"
     5330#line 511 "parser.yy"
    53005331    { (yyval.op) = OperKinds::PointTo; }
    53015332    break;
     
    53045335
    53055336/* Line 1806 of yacc.c  */
    5306 #line 506 "parser.yy"
     5337#line 512 "parser.yy"
    53075338    { (yyval.op) = OperKinds::AddressOf; }
    53085339    break;
     
    53115342
    53125343/* Line 1806 of yacc.c  */
    5313 #line 512 "parser.yy"
     5344#line 518 "parser.yy"
    53145345    { (yyval.op) = OperKinds::UnPlus; }
    53155346    break;
     
    53185349
    53195350/* Line 1806 of yacc.c  */
    5320 #line 513 "parser.yy"
     5351#line 519 "parser.yy"
    53215352    { (yyval.op) = OperKinds::UnMinus; }
    53225353    break;
     
    53255356
    53265357/* Line 1806 of yacc.c  */
    5327 #line 514 "parser.yy"
     5358#line 520 "parser.yy"
    53285359    { (yyval.op) = OperKinds::Neg; }
    53295360    break;
     
    53325363
    53335364/* Line 1806 of yacc.c  */
    5334 #line 515 "parser.yy"
     5365#line 521 "parser.yy"
    53355366    { (yyval.op) = OperKinds::BitNeg; }
    53365367    break;
     
    53395370
    53405371/* Line 1806 of yacc.c  */
    5341 #line 521 "parser.yy"
     5372#line 527 "parser.yy"
    53425373    { (yyval.en) = new ExpressionNode( build_cast( (yyvsp[(2) - (4)].decl), (yyvsp[(4) - (4)].en) ) ); }
    53435374    break;
     
    53465377
    53475378/* Line 1806 of yacc.c  */
    5348 #line 529 "parser.yy"
     5379#line 535 "parser.yy"
    53495380    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Mul, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53505381    break;
     
    53535384
    53545385/* Line 1806 of yacc.c  */
    5355 #line 531 "parser.yy"
     5386#line 537 "parser.yy"
    53565387    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Div, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53575388    break;
     
    53605391
    53615392/* Line 1806 of yacc.c  */
    5362 #line 533 "parser.yy"
     5393#line 539 "parser.yy"
    53635394    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Mod, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53645395    break;
     
    53675398
    53685399/* Line 1806 of yacc.c  */
    5369 #line 539 "parser.yy"
     5400#line 545 "parser.yy"
    53705401    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Plus, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53715402    break;
     
    53745405
    53755406/* Line 1806 of yacc.c  */
    5376 #line 541 "parser.yy"
     5407#line 547 "parser.yy"
    53775408    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Minus, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53785409    break;
     
    53815412
    53825413/* Line 1806 of yacc.c  */
    5383 #line 547 "parser.yy"
     5414#line 553 "parser.yy"
    53845415    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::LShift, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53855416    break;
     
    53885419
    53895420/* Line 1806 of yacc.c  */
    5390 #line 549 "parser.yy"
     5421#line 555 "parser.yy"
    53915422    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::RShift, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53925423    break;
     
    53955426
    53965427/* Line 1806 of yacc.c  */
    5397 #line 555 "parser.yy"
     5428#line 561 "parser.yy"
    53985429    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::LThan, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    53995430    break;
     
    54025433
    54035434/* Line 1806 of yacc.c  */
    5404 #line 557 "parser.yy"
     5435#line 563 "parser.yy"
    54055436    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::GThan, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54065437    break;
     
    54095440
    54105441/* Line 1806 of yacc.c  */
    5411 #line 559 "parser.yy"
     5442#line 565 "parser.yy"
    54125443    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::LEThan, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54135444    break;
     
    54165447
    54175448/* Line 1806 of yacc.c  */
    5418 #line 561 "parser.yy"
     5449#line 567 "parser.yy"
    54195450    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::GEThan, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54205451    break;
     
    54235454
    54245455/* Line 1806 of yacc.c  */
    5425 #line 567 "parser.yy"
     5456#line 573 "parser.yy"
    54265457    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Eq, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54275458    break;
     
    54305461
    54315462/* Line 1806 of yacc.c  */
    5432 #line 569 "parser.yy"
     5463#line 575 "parser.yy"
    54335464    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Neq, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54345465    break;
     
    54375468
    54385469/* Line 1806 of yacc.c  */
    5439 #line 575 "parser.yy"
     5470#line 581 "parser.yy"
    54405471    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::BitAnd, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54415472    break;
     
    54445475
    54455476/* Line 1806 of yacc.c  */
    5446 #line 581 "parser.yy"
     5477#line 587 "parser.yy"
    54475478    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::Xor, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54485479    break;
     
    54515482
    54525483/* Line 1806 of yacc.c  */
    5453 #line 587 "parser.yy"
     5484#line 593 "parser.yy"
    54545485    { (yyval.en) = new ExpressionNode( build_binary_val( OperKinds::BitOr, (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54555486    break;
     
    54585489
    54595490/* Line 1806 of yacc.c  */
    5460 #line 593 "parser.yy"
     5491#line 599 "parser.yy"
    54615492    { (yyval.en) = new ExpressionNode( build_and_or( (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en), true ) ); }
    54625493    break;
     
    54655496
    54665497/* Line 1806 of yacc.c  */
    5467 #line 599 "parser.yy"
     5498#line 605 "parser.yy"
    54685499    { (yyval.en) = new ExpressionNode( build_and_or( (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en), false ) ); }
    54695500    break;
     
    54725503
    54735504/* Line 1806 of yacc.c  */
    5474 #line 605 "parser.yy"
     5505#line 611 "parser.yy"
    54755506    { (yyval.en) = new ExpressionNode( build_cond( (yyvsp[(1) - (5)].en), (yyvsp[(3) - (5)].en), (yyvsp[(5) - (5)].en) ) ); }
    54765507    break;
     
    54795510
    54805511/* Line 1806 of yacc.c  */
    5481 #line 608 "parser.yy"
     5512#line 614 "parser.yy"
    54825513    { (yyval.en) = new ExpressionNode( build_cond( (yyvsp[(1) - (4)].en), (yyvsp[(1) - (4)].en), (yyvsp[(4) - (4)].en) ) ); }
    54835514    break;
     
    54865517
    54875518/* Line 1806 of yacc.c  */
    5488 #line 621 "parser.yy"
     5519#line 627 "parser.yy"
    54895520    { (yyval.en) = new ExpressionNode( build_binary_ptr( (yyvsp[(2) - (3)].op), (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    54905521    break;
     
    54935524
    54945525/* Line 1806 of yacc.c  */
    5495 #line 628 "parser.yy"
     5526#line 634 "parser.yy"
    54965527    { (yyval.en) = nullptr; }
    54975528    break;
     
    55005531
    55015532/* Line 1806 of yacc.c  */
    5502 #line 633 "parser.yy"
     5533#line 639 "parser.yy"
    55035534    { (yyval.op) = OperKinds::Assign; }
    55045535    break;
     
    55075538
    55085539/* Line 1806 of yacc.c  */
    5509 #line 634 "parser.yy"
     5540#line 640 "parser.yy"
    55105541    { (yyval.op) = OperKinds::AtAssn; }
    55115542    break;
     
    55145545
    55155546/* Line 1806 of yacc.c  */
    5516 #line 635 "parser.yy"
     5547#line 641 "parser.yy"
    55175548    { (yyval.op) = OperKinds::MulAssn; }
    55185549    break;
     
    55215552
    55225553/* Line 1806 of yacc.c  */
    5523 #line 636 "parser.yy"
     5554#line 642 "parser.yy"
    55245555    { (yyval.op) = OperKinds::DivAssn; }
    55255556    break;
     
    55285559
    55295560/* Line 1806 of yacc.c  */
    5530 #line 637 "parser.yy"
     5561#line 643 "parser.yy"
    55315562    { (yyval.op) = OperKinds::ModAssn; }
    55325563    break;
     
    55355566
    55365567/* Line 1806 of yacc.c  */
    5537 #line 638 "parser.yy"
     5568#line 644 "parser.yy"
    55385569    { (yyval.op) = OperKinds::PlusAssn; }
    55395570    break;
     
    55425573
    55435574/* Line 1806 of yacc.c  */
    5544 #line 639 "parser.yy"
     5575#line 645 "parser.yy"
    55455576    { (yyval.op) = OperKinds::MinusAssn; }
    55465577    break;
     
    55495580
    55505581/* Line 1806 of yacc.c  */
    5551 #line 640 "parser.yy"
     5582#line 646 "parser.yy"
    55525583    { (yyval.op) = OperKinds::LSAssn; }
    55535584    break;
     
    55565587
    55575588/* Line 1806 of yacc.c  */
    5558 #line 641 "parser.yy"
     5589#line 647 "parser.yy"
    55595590    { (yyval.op) = OperKinds::RSAssn; }
    55605591    break;
     
    55635594
    55645595/* Line 1806 of yacc.c  */
    5565 #line 642 "parser.yy"
     5596#line 648 "parser.yy"
    55665597    { (yyval.op) = OperKinds::AndAssn; }
    55675598    break;
     
    55705601
    55715602/* Line 1806 of yacc.c  */
    5572 #line 643 "parser.yy"
     5603#line 649 "parser.yy"
    55735604    { (yyval.op) = OperKinds::ERAssn; }
    55745605    break;
     
    55775608
    55785609/* Line 1806 of yacc.c  */
    5579 #line 644 "parser.yy"
     5610#line 650 "parser.yy"
    55805611    { (yyval.op) = OperKinds::OrAssn; }
    55815612    break;
     
    55845615
    55855616/* Line 1806 of yacc.c  */
    5586 #line 655 "parser.yy"
     5617#line 661 "parser.yy"
    55875618    { (yyval.en) = new ExpressionNode( build_tuple( (ExpressionNode *)(new ExpressionNode( nullptr ) )->set_last( (yyvsp[(4) - (6)].en) ) ) ); }
    55885619    break;
     
    55915622
    55925623/* Line 1806 of yacc.c  */
    5593 #line 657 "parser.yy"
     5624#line 663 "parser.yy"
    55945625    { (yyval.en) = new ExpressionNode( build_tuple( (ExpressionNode *)(yyvsp[(3) - (7)].en)->set_last( (yyvsp[(5) - (7)].en) ) ) ); }
    55955626    break;
     
    55985629
    55995630/* Line 1806 of yacc.c  */
    5600 #line 663 "parser.yy"
     5631#line 669 "parser.yy"
    56015632    { (yyval.en) = (ExpressionNode *)(yyvsp[(1) - (3)].en)->set_last( (yyvsp[(3) - (3)].en) ); }
    56025633    break;
     
    56055636
    56065637/* Line 1806 of yacc.c  */
    5607 #line 669 "parser.yy"
     5638#line 675 "parser.yy"
    56085639    { (yyval.en) = new ExpressionNode( build_comma( (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    56095640    break;
     
    56125643
    56135644/* Line 1806 of yacc.c  */
    5614 #line 674 "parser.yy"
     5645#line 680 "parser.yy"
    56155646    { (yyval.en) = 0; }
    56165647    break;
     
    56195650
    56205651/* Line 1806 of yacc.c  */
    5621 #line 683 "parser.yy"
     5652#line 689 "parser.yy"
    56225653    { (yyval.sn) = (yyvsp[(1) - (1)].sn); }
    56235654    break;
     
    56265657
    56275658/* Line 1806 of yacc.c  */
    5628 #line 690 "parser.yy"
     5659#line 696 "parser.yy"
    56295660    {
    56305661                        Token fn;
     
    56375668
    56385669/* Line 1806 of yacc.c  */
    5639 #line 700 "parser.yy"
     5670#line 706 "parser.yy"
    56405671    {
    56415672                        (yyval.sn) = (yyvsp[(4) - (4)].sn)->add_label( (yyvsp[(1) - (4)].tok) );
     
    56465677
    56475678/* Line 1806 of yacc.c  */
    5648 #line 707 "parser.yy"
     5679#line 713 "parser.yy"
    56495680    { (yyval.sn) = new StatementNode( build_compound( (StatementNode *)0 ) ); }
    56505681    break;
     
    56535684
    56545685/* Line 1806 of yacc.c  */
    5655 #line 714 "parser.yy"
     5686#line 720 "parser.yy"
    56565687    { (yyval.sn) = new StatementNode( build_compound( (yyvsp[(5) - (7)].sn) ) ); }
    56575688    break;
     
    56605691
    56615692/* Line 1806 of yacc.c  */
    5662 #line 720 "parser.yy"
     5693#line 726 "parser.yy"
    56635694    { if ( (yyvsp[(1) - (3)].sn) != 0 ) { (yyvsp[(1) - (3)].sn)->set_last( (yyvsp[(3) - (3)].sn) ); (yyval.sn) = (yyvsp[(1) - (3)].sn); } }
    56645695    break;
     
    56675698
    56685699/* Line 1806 of yacc.c  */
    5669 #line 725 "parser.yy"
     5700#line 731 "parser.yy"
    56705701    { (yyval.sn) = new StatementNode( (yyvsp[(1) - (1)].decl) ); }
    56715702    break;
     
    56745705
    56755706/* Line 1806 of yacc.c  */
    5676 #line 727 "parser.yy"
     5707#line 733 "parser.yy"
    56775708    {   // mark all fields in list
    56785709                        for ( DeclarationNode *iter = (yyvsp[(2) - (2)].decl); iter != nullptr; iter = (DeclarationNode *)iter->get_next() )
     
    56855716
    56865717/* Line 1806 of yacc.c  */
    5687 #line 733 "parser.yy"
     5718#line 739 "parser.yy"
    56885719    { (yyval.sn) = new StatementNode( (yyvsp[(1) - (1)].decl) ); }
    56895720    break;
     
    56925723
    56935724/* Line 1806 of yacc.c  */
    5694 #line 740 "parser.yy"
     5725#line 746 "parser.yy"
    56955726    { if ( (yyvsp[(1) - (2)].sn) != 0 ) { (yyvsp[(1) - (2)].sn)->set_last( (yyvsp[(2) - (2)].sn) ); (yyval.sn) = (yyvsp[(1) - (2)].sn); } }
    56965727    break;
     
    56995730
    57005731/* Line 1806 of yacc.c  */
    5701 #line 745 "parser.yy"
     5732#line 751 "parser.yy"
    57025733    { (yyval.sn) = new StatementNode( build_expr( (yyvsp[(1) - (2)].en) ) ); }
    57035734    break;
     
    57065737
    57075738/* Line 1806 of yacc.c  */
    5708 #line 751 "parser.yy"
     5739#line 757 "parser.yy"
    57095740    { (yyval.sn) = new StatementNode( build_if( (yyvsp[(3) - (5)].en), (yyvsp[(5) - (5)].sn), nullptr ) ); }
    57105741    break;
     
    57135744
    57145745/* Line 1806 of yacc.c  */
    5715 #line 753 "parser.yy"
     5746#line 759 "parser.yy"
    57165747    { (yyval.sn) = new StatementNode( build_if( (yyvsp[(3) - (7)].en), (yyvsp[(5) - (7)].sn), (yyvsp[(7) - (7)].sn) ) ); }
    57175748    break;
     
    57205751
    57215752/* Line 1806 of yacc.c  */
    5722 #line 755 "parser.yy"
     5753#line 761 "parser.yy"
    57235754    { (yyval.sn) = new StatementNode( build_switch( (yyvsp[(3) - (5)].en), (yyvsp[(5) - (5)].sn) ) ); }
    57245755    break;
     
    57275758
    57285759/* Line 1806 of yacc.c  */
    5729 #line 757 "parser.yy"
     5760#line 763 "parser.yy"
    57305761    {
    57315762                        StatementNode *sw = new StatementNode( build_switch( (yyvsp[(3) - (9)].en), (yyvsp[(8) - (9)].sn) ) );
     
    57425773
    57435774/* Line 1806 of yacc.c  */
    5744 #line 767 "parser.yy"
     5775#line 773 "parser.yy"
    57455776    { (yyval.sn) = new StatementNode( build_switch( (yyvsp[(3) - (5)].en), (yyvsp[(5) - (5)].sn) ) ); }
    57465777    break;
     
    57495780
    57505781/* Line 1806 of yacc.c  */
    5751 #line 769 "parser.yy"
     5782#line 775 "parser.yy"
    57525783    {
    57535784                        StatementNode *sw = new StatementNode( build_switch( (yyvsp[(3) - (9)].en), (yyvsp[(8) - (9)].sn) ) );
     
    57595790
    57605791/* Line 1806 of yacc.c  */
    5761 #line 779 "parser.yy"
     5792#line 785 "parser.yy"
    57625793    { (yyval.en) = (yyvsp[(1) - (1)].en); }
    57635794    break;
     
    57665797
    57675798/* Line 1806 of yacc.c  */
    5768 #line 781 "parser.yy"
     5799#line 787 "parser.yy"
    57695800    { (yyval.en) = new ExpressionNode( build_range( (yyvsp[(1) - (3)].en), (yyvsp[(3) - (3)].en) ) ); }
    57705801    break;
     
    57735804
    57745805/* Line 1806 of yacc.c  */
    5775 #line 786 "parser.yy"
     5806#line 792 "parser.yy"
    57765807    { (yyval.sn) = new StatementNode( build_case( (yyvsp[(1) - (1)].en) ) ); }
    57775808    break;
     
    57805811
    57815812/* Line 1806 of yacc.c  */
    5782 #line 788 "parser.yy"
     5813#line 794 "parser.yy"
    57835814    { (yyval.sn) = (StatementNode *)((yyvsp[(1) - (3)].sn)->set_last( new StatementNode( build_case( (yyvsp[(3) - (3)].en) ) ) ) ); }
    57845815    break;
     
    57875818
    57885819/* Line 1806 of yacc.c  */
    5789 #line 792 "parser.yy"
     5820#line 798 "parser.yy"
    57905821    { (yyval.sn) = (yyvsp[(2) - (3)].sn); }
    57915822    break;
     
    57945825
    57955826/* Line 1806 of yacc.c  */
    5796 #line 793 "parser.yy"
     5827#line 799 "parser.yy"
    57975828    { (yyval.sn) = new StatementNode( build_default() ); }
    57985829    break;
     
    58015832
    58025833/* Line 1806 of yacc.c  */
    5803 #line 799 "parser.yy"
     5834#line 805 "parser.yy"
    58045835    { (yyval.sn) = (StatementNode *)( (yyvsp[(1) - (2)].sn)->set_last( (yyvsp[(2) - (2)].sn) )); }
    58055836    break;
     
    58085839
    58095840/* Line 1806 of yacc.c  */
    5810 #line 803 "parser.yy"
     5841#line 809 "parser.yy"
    58115842    { (yyval.sn) = (yyvsp[(1) - (2)].sn)->append_last_case( new StatementNode( build_compound( (yyvsp[(2) - (2)].sn) ) ) ); }
    58125843    break;
     
    58155846
    58165847/* Line 1806 of yacc.c  */
    5817 #line 808 "parser.yy"
     5848#line 814 "parser.yy"
    58185849    { (yyval.sn) = 0; }
    58195850    break;
     
    58225853
    58235854/* Line 1806 of yacc.c  */
    5824 #line 814 "parser.yy"
     5855#line 820 "parser.yy"
    58255856    { (yyval.sn) = (yyvsp[(1) - (2)].sn)->append_last_case( new StatementNode( build_compound( (yyvsp[(2) - (2)].sn) ) ) ); }
    58265857    break;
     
    58295860
    58305861/* Line 1806 of yacc.c  */
    5831 #line 816 "parser.yy"
     5862#line 822 "parser.yy"
    58325863    { (yyval.sn) = (StatementNode *)( (yyvsp[(1) - (3)].sn)->set_last( (yyvsp[(2) - (3)].sn)->append_last_case( new StatementNode( build_compound( (yyvsp[(3) - (3)].sn) ) ) ) ) ); }
    58335864    break;
     
    58365867
    58375868/* Line 1806 of yacc.c  */
    5838 #line 821 "parser.yy"
     5869#line 827 "parser.yy"
    58395870    { (yyval.sn) = 0; }
    58405871    break;
     
    58435874
    58445875/* Line 1806 of yacc.c  */
    5845 #line 827 "parser.yy"
     5876#line 833 "parser.yy"
    58465877    { (yyval.sn) = (yyvsp[(1) - (2)].sn)->append_last_case( (yyvsp[(2) - (2)].sn) ); }
    58475878    break;
     
    58505881
    58515882/* Line 1806 of yacc.c  */
    5852 #line 829 "parser.yy"
     5883#line 835 "parser.yy"
    58535884    { (yyval.sn) = (yyvsp[(1) - (3)].sn)->append_last_case( new StatementNode( build_compound( (StatementNode *)(yyvsp[(2) - (3)].sn)->set_last( (yyvsp[(3) - (3)].sn) ) ) ) ); }
    58545885    break;
     
    58575888
    58585889/* Line 1806 of yacc.c  */
    5859 #line 831 "parser.yy"
     5890#line 837 "parser.yy"
    58605891    { (yyval.sn) = (StatementNode *)( (yyvsp[(1) - (3)].sn)->set_last( (yyvsp[(2) - (3)].sn)->append_last_case( (yyvsp[(3) - (3)].sn) ))); }
    58615892    break;
     
    58645895
    58655896/* Line 1806 of yacc.c  */
    5866 #line 833 "parser.yy"
     5897#line 839 "parser.yy"
    58675898    { (yyval.sn) = (StatementNode *)( (yyvsp[(1) - (4)].sn)->set_last( (yyvsp[(2) - (4)].sn)->append_last_case( new StatementNode( build_compound( (StatementNode *)(yyvsp[(3) - (4)].sn)->set_last( (yyvsp[(4) - (4)].sn) ) ) ) ) ) ); }
    58685899    break;
     
    58715902
    58725903/* Line 1806 of yacc.c  */
    5873 #line 838 "parser.yy"
     5904#line 844 "parser.yy"
    58745905    { (yyval.sn) = new StatementNode( build_branch( BranchStmt::Break ) ); }
    58755906    break;
     
    58785909
    58795910/* Line 1806 of yacc.c  */
    5880 #line 844 "parser.yy"
     5911#line 850 "parser.yy"
    58815912    { (yyval.sn) = 0; }
    58825913    break;
     
    58855916
    58865917/* Line 1806 of yacc.c  */
    5887 #line 846 "parser.yy"
     5918#line 852 "parser.yy"
    58885919    { (yyval.sn) = 0; }
    58895920    break;
     
    58925923
    58935924/* Line 1806 of yacc.c  */
    5894 #line 851 "parser.yy"
     5925#line 857 "parser.yy"
    58955926    { (yyval.sn) = new StatementNode( build_while( (yyvsp[(3) - (5)].en), (yyvsp[(5) - (5)].sn) ) ); }
    58965927    break;
     
    58995930
    59005931/* Line 1806 of yacc.c  */
    5901 #line 853 "parser.yy"
     5932#line 859 "parser.yy"
    59025933    { (yyval.sn) = new StatementNode( build_while( (yyvsp[(5) - (7)].en), (yyvsp[(2) - (7)].sn), true ) ); }
    59035934    break;
     
    59065937
    59075938/* Line 1806 of yacc.c  */
    5908 #line 855 "parser.yy"
     5939#line 861 "parser.yy"
    59095940    { (yyval.sn) = new StatementNode( build_for( (yyvsp[(4) - (6)].fctl), (yyvsp[(6) - (6)].sn) ) ); }
    59105941    break;
     
    59135944
    59145945/* Line 1806 of yacc.c  */
    5915 #line 860 "parser.yy"
     5946#line 866 "parser.yy"
    59165947    { (yyval.fctl) = new ForCtl( (yyvsp[(1) - (6)].en), (yyvsp[(4) - (6)].en), (yyvsp[(6) - (6)].en) ); }
    59175948    break;
     
    59205951
    59215952/* Line 1806 of yacc.c  */
    5922 #line 862 "parser.yy"
     5953#line 868 "parser.yy"
    59235954    { (yyval.fctl) = new ForCtl( (yyvsp[(1) - (4)].decl), (yyvsp[(2) - (4)].en), (yyvsp[(4) - (4)].en) ); }
    59245955    break;
     
    59275958
    59285959/* Line 1806 of yacc.c  */
    5929 #line 867 "parser.yy"
     5960#line 873 "parser.yy"
    59305961    { (yyval.sn) = new StatementNode( build_branch( (yyvsp[(2) - (3)].tok), BranchStmt::Goto ) ); }
    59315962    break;
     
    59345965
    59355966/* Line 1806 of yacc.c  */
    5936 #line 871 "parser.yy"
     5967#line 877 "parser.yy"
    59375968    { (yyval.sn) = new StatementNode( build_computedgoto( (yyvsp[(3) - (4)].en) ) ); }
    59385969    break;
     
    59415972
    59425973/* Line 1806 of yacc.c  */
    5943 #line 874 "parser.yy"
     5974#line 880 "parser.yy"
    59445975    { (yyval.sn) = new StatementNode( build_branch( BranchStmt::Continue ) ); }
    59455976    break;
     
    59485979
    59495980/* Line 1806 of yacc.c  */
    5950 #line 878 "parser.yy"
     5981#line 884 "parser.yy"
    59515982    { (yyval.sn) = new StatementNode( build_branch( (yyvsp[(2) - (3)].tok), BranchStmt::Continue ) ); }
    59525983    break;
     
    59555986
    59565987/* Line 1806 of yacc.c  */
    5957 #line 881 "parser.yy"
     5988#line 887 "parser.yy"
    59585989    { (yyval.sn) = new StatementNode( build_branch( BranchStmt::Break ) ); }
    59595990    break;
     
    59625993
    59635994/* Line 1806 of yacc.c  */
    5964 #line 885 "parser.yy"
     5995#line 891 "parser.yy"
    59655996    { (yyval.sn) = new StatementNode( build_branch( (yyvsp[(2) - (3)].tok), BranchStmt::Break ) ); }
    59665997    break;
     
    59696000
    59706001/* Line 1806 of yacc.c  */
    5971 #line 887 "parser.yy"
     6002#line 893 "parser.yy"
    59726003    { (yyval.sn) = new StatementNode( build_return( (yyvsp[(2) - (3)].en) ) ); }
    59736004    break;
     
    59766007
    59776008/* Line 1806 of yacc.c  */
    5978 #line 889 "parser.yy"
     6009#line 895 "parser.yy"
    59796010    { (yyval.sn) = new StatementNode( build_throw( (yyvsp[(2) - (3)].en) ) ); }
    59806011    break;
     
    59836014
    59846015/* Line 1806 of yacc.c  */
    5985 #line 891 "parser.yy"
     6016#line 897 "parser.yy"
    59866017    { (yyval.sn) = new StatementNode( build_throw( (yyvsp[(2) - (3)].en) ) ); }
    59876018    break;
     
    59906021
    59916022/* Line 1806 of yacc.c  */
    5992 #line 893 "parser.yy"
     6023#line 899 "parser.yy"
    59936024    { (yyval.sn) = new StatementNode( build_throw( (yyvsp[(2) - (5)].en) ) ); }
    59946025    break;
     
    59976028
    59986029/* Line 1806 of yacc.c  */
    5999 #line 898 "parser.yy"
     6030#line 904 "parser.yy"
    60006031    { (yyval.sn) = new StatementNode( build_try( (yyvsp[(2) - (3)].sn), (yyvsp[(3) - (3)].sn), 0 ) ); }
    60016032    break;
     
    60046035
    60056036/* Line 1806 of yacc.c  */
    6006 #line 900 "parser.yy"
     6037#line 906 "parser.yy"
    60076038    { (yyval.sn) = new StatementNode( build_try( (yyvsp[(2) - (3)].sn), 0, (yyvsp[(3) - (3)].sn) ) ); }
    60086039    break;
     
    60116042
    60126043/* Line 1806 of yacc.c  */
    6013 #line 902 "parser.yy"
     6044#line 908 "parser.yy"
    60146045    { (yyval.sn) = new StatementNode( build_try( (yyvsp[(2) - (4)].sn), (yyvsp[(3) - (4)].sn), (yyvsp[(4) - (4)].sn) ) ); }
    60156046    break;
     
    60186049
    60196050/* Line 1806 of yacc.c  */
    6020 #line 909 "parser.yy"
     6051#line 915 "parser.yy"
    60216052    { (yyval.sn) = new StatementNode( build_catch( 0, (yyvsp[(5) - (5)].sn), true ) ); }
    60226053    break;
     
    60256056
    60266057/* Line 1806 of yacc.c  */
    6027 #line 911 "parser.yy"
     6058#line 917 "parser.yy"
    60286059    { (yyval.sn) = (StatementNode *)(yyvsp[(1) - (6)].sn)->set_last( new StatementNode( build_catch( 0, (yyvsp[(6) - (6)].sn), true ) ) ); }
    60296060    break;
     
    60326063
    60336064/* Line 1806 of yacc.c  */
    6034 #line 913 "parser.yy"
     6065#line 919 "parser.yy"
    60356066    { (yyval.sn) = new StatementNode( build_catch( 0, (yyvsp[(5) - (5)].sn), true ) ); }
    60366067    break;
     
    60396070
    60406071/* Line 1806 of yacc.c  */
    6041 #line 915 "parser.yy"
     6072#line 921 "parser.yy"
    60426073    { (yyval.sn) = (StatementNode *)(yyvsp[(1) - (6)].sn)->set_last( new StatementNode( build_catch( 0, (yyvsp[(6) - (6)].sn), true ) ) ); }
    60436074    break;
     
    60466077
    60476078/* Line 1806 of yacc.c  */
    6048 #line 920 "parser.yy"
     6079#line 926 "parser.yy"
    60496080    { (yyval.sn) = new StatementNode( build_catch( (yyvsp[(5) - (9)].decl), (yyvsp[(8) - (9)].sn) ) ); }
    60506081    break;
     
    60536084
    60546085/* Line 1806 of yacc.c  */
    6055 #line 922 "parser.yy"
     6086#line 928 "parser.yy"
    60566087    { (yyval.sn) = (StatementNode *)(yyvsp[(1) - (10)].sn)->set_last( new StatementNode( build_catch( (yyvsp[(6) - (10)].decl), (yyvsp[(9) - (10)].sn) ) ) ); }
    60576088    break;
     
    60606091
    60616092/* Line 1806 of yacc.c  */
    6062 #line 924 "parser.yy"
     6093#line 930 "parser.yy"
    60636094    { (yyval.sn) = new StatementNode( build_catch( (yyvsp[(5) - (9)].decl), (yyvsp[(8) - (9)].sn) ) ); }
    60646095    break;
     
    60676098
    60686099/* Line 1806 of yacc.c  */
    6069 #line 926 "parser.yy"
     6100#line 932 "parser.yy"
    60706101    { (yyval.sn) = (StatementNode *)(yyvsp[(1) - (10)].sn)->set_last( new StatementNode( build_catch( (yyvsp[(6) - (10)].decl), (yyvsp[(9) - (10)].sn) ) ) ); }
    60716102    break;
     
    60746105
    60756106/* Line 1806 of yacc.c  */
    6076 #line 931 "parser.yy"
     6107#line 937 "parser.yy"
    60776108    {
    60786109                        (yyval.sn) = new StatementNode( build_finally( (yyvsp[(2) - (2)].sn) ) );
     
    60836114
    60846115/* Line 1806 of yacc.c  */
    6085 #line 944 "parser.yy"
     6116#line 950 "parser.yy"
    60866117    {
    60876118                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    60936124
    60946125/* Line 1806 of yacc.c  */
    6095 #line 949 "parser.yy"
     6126#line 955 "parser.yy"
    60966127    { (yyval.decl) = (yyvsp[(2) - (2)].decl)->addType( (yyvsp[(1) - (2)].decl) ); }
    60976128    break;
     
    61006131
    61016132/* Line 1806 of yacc.c  */
    6102 #line 951 "parser.yy"
     6133#line 957 "parser.yy"
    61036134    {
    61046135                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    61106141
    61116142/* Line 1806 of yacc.c  */
    6112 #line 960 "parser.yy"
     6143#line 966 "parser.yy"
    61136144    { (yyval.sn) = new StatementNode( build_asmstmt( (yyvsp[(2) - (6)].flag), (yyvsp[(4) - (6)].constant), 0 ) ); }
    61146145    break;
     
    61176148
    61186149/* Line 1806 of yacc.c  */
    6119 #line 962 "parser.yy"
     6150#line 968 "parser.yy"
    61206151    { (yyval.sn) = new StatementNode( build_asmstmt( (yyvsp[(2) - (8)].flag), (yyvsp[(4) - (8)].constant), (yyvsp[(6) - (8)].en) ) ); }
    61216152    break;
     
    61246155
    61256156/* Line 1806 of yacc.c  */
    6126 #line 964 "parser.yy"
     6157#line 970 "parser.yy"
    61276158    { (yyval.sn) = new StatementNode( build_asmstmt( (yyvsp[(2) - (10)].flag), (yyvsp[(4) - (10)].constant), (yyvsp[(6) - (10)].en), (yyvsp[(8) - (10)].en) ) ); }
    61286159    break;
     
    61316162
    61326163/* Line 1806 of yacc.c  */
    6133 #line 966 "parser.yy"
     6164#line 972 "parser.yy"
    61346165    { (yyval.sn) = new StatementNode( build_asmstmt( (yyvsp[(2) - (12)].flag), (yyvsp[(4) - (12)].constant), (yyvsp[(6) - (12)].en), (yyvsp[(8) - (12)].en), (yyvsp[(10) - (12)].en) ) ); }
    61356166    break;
     
    61386169
    61396170/* Line 1806 of yacc.c  */
    6140 #line 968 "parser.yy"
     6171#line 974 "parser.yy"
    61416172    { (yyval.sn) = new StatementNode( build_asmstmt( (yyvsp[(2) - (14)].flag), (yyvsp[(5) - (14)].constant), 0, (yyvsp[(8) - (14)].en), (yyvsp[(10) - (14)].en), (yyvsp[(12) - (14)].label) ) ); }
    61426173    break;
     
    61456176
    61466177/* Line 1806 of yacc.c  */
    6147 #line 973 "parser.yy"
     6178#line 979 "parser.yy"
    61486179    { (yyval.flag) = false; }
    61496180    break;
     
    61526183
    61536184/* Line 1806 of yacc.c  */
    6154 #line 975 "parser.yy"
     6185#line 981 "parser.yy"
    61556186    { (yyval.flag) = true; }
    61566187    break;
     
    61596190
    61606191/* Line 1806 of yacc.c  */
    6161 #line 980 "parser.yy"
     6192#line 986 "parser.yy"
    61626193    { (yyval.en) = 0; }
    61636194    break;
     
    61666197
    61676198/* Line 1806 of yacc.c  */
    6168 #line 987 "parser.yy"
     6199#line 993 "parser.yy"
    61696200    { (yyval.en) = (ExpressionNode *)(yyvsp[(1) - (3)].en)->set_last( (yyvsp[(3) - (3)].en) ); }
    61706201    break;
     
    61736204
    61746205/* Line 1806 of yacc.c  */
    6175 #line 992 "parser.yy"
     6206#line 998 "parser.yy"
    61766207    { (yyval.en) = new ExpressionNode( build_asmexpr( 0, (yyvsp[(1) - (4)].constant), (yyvsp[(3) - (4)].en) ) ); }
    61776208    break;
     
    61806211
    61816212/* Line 1806 of yacc.c  */
    6182 #line 994 "parser.yy"
     6213#line 1000 "parser.yy"
    61836214    { (yyval.en) = new ExpressionNode( build_asmexpr( (yyvsp[(2) - (7)].en), (yyvsp[(4) - (7)].constant), (yyvsp[(6) - (7)].en) ) ); }
    61846215    break;
     
    61876218
    61886219/* Line 1806 of yacc.c  */
    6189 #line 999 "parser.yy"
     6220#line 1005 "parser.yy"
    61906221    { (yyval.en) = 0; }
    61916222    break;
     
    61946225
    61956226/* Line 1806 of yacc.c  */
    6196 #line 1001 "parser.yy"
     6227#line 1007 "parser.yy"
    61976228    { (yyval.en) = new ExpressionNode( (yyvsp[(1) - (1)].constant) ); }
    61986229    break;
     
    62016232
    62026233/* Line 1806 of yacc.c  */
    6203 #line 1003 "parser.yy"
     6234#line 1009 "parser.yy"
    62046235    { (yyval.en) = (ExpressionNode *)(yyvsp[(1) - (3)].en)->set_last( new ExpressionNode( (yyvsp[(3) - (3)].constant) ) ); }
    62056236    break;
     
    62086239
    62096240/* Line 1806 of yacc.c  */
    6210 #line 1008 "parser.yy"
     6241#line 1014 "parser.yy"
    62116242    {
    62126243                        (yyval.label) = new LabelNode(); (yyval.label)->labels.push_back( *(yyvsp[(1) - (1)].tok) );
     
    62186249
    62196250/* Line 1806 of yacc.c  */
    6220 #line 1013 "parser.yy"
     6251#line 1019 "parser.yy"
    62216252    {
    62226253                        (yyval.label) = (yyvsp[(1) - (3)].label); (yyvsp[(1) - (3)].label)->labels.push_back( *(yyvsp[(3) - (3)].tok) );
     
    62286259
    62296260/* Line 1806 of yacc.c  */
    6230 #line 1023 "parser.yy"
     6261#line 1029 "parser.yy"
    62316262    { (yyval.decl) = 0; }
    62326263    break;
     
    62356266
    62366267/* Line 1806 of yacc.c  */
    6237 #line 1030 "parser.yy"
     6268#line 1036 "parser.yy"
    62386269    { (yyval.decl) = (yyvsp[(1) - (3)].decl)->appendList( (yyvsp[(3) - (3)].decl) ); }
    62396270    break;
     
    62426273
    62436274/* Line 1806 of yacc.c  */
    6244 #line 1035 "parser.yy"
     6275#line 1041 "parser.yy"
    62456276    { (yyval.decl) = 0; }
    62466277    break;
     
    62496280
    62506281/* Line 1806 of yacc.c  */
    6251 #line 1042 "parser.yy"
     6282#line 1048 "parser.yy"
    62526283    { (yyval.decl) = (yyvsp[(1) - (3)].decl)->appendList( (yyvsp[(3) - (3)].decl) ); }
    62536284    break;
     
    62566287
    62576288/* Line 1806 of yacc.c  */
    6258 #line 1056 "parser.yy"
     6289#line 1062 "parser.yy"
    62596290    {}
    62606291    break;
     
    62636294
    62646295/* Line 1806 of yacc.c  */
    6265 #line 1057 "parser.yy"
     6296#line 1063 "parser.yy"
    62666297    {}
    62676298    break;
     
    62706301
    62716302/* Line 1806 of yacc.c  */
    6272 #line 1086 "parser.yy"
     6303#line 1092 "parser.yy"
    62736304    {
    62746305                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    62806311
    62816312/* Line 1806 of yacc.c  */
    6282 #line 1093 "parser.yy"
     6313#line 1099 "parser.yy"
    62836314    {
    62846315                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    62906321
    62916322/* Line 1806 of yacc.c  */
    6292 #line 1098 "parser.yy"
     6323#line 1104 "parser.yy"
    62936324    {
    62946325                        typedefTable.addToEnclosingScope( *(yyvsp[(5) - (6)].tok), TypedefTable::ID );
     
    63006331
    63016332/* Line 1806 of yacc.c  */
    6302 #line 1108 "parser.yy"
     6333#line 1114 "parser.yy"
    63036334    {
    63046335                        typedefTable.setNextIdentifier( *(yyvsp[(2) - (3)].tok) );
     
    63106341
    63116342/* Line 1806 of yacc.c  */
    6312 #line 1113 "parser.yy"
     6343#line 1119 "parser.yy"
    63136344    {
    63146345                        typedefTable.setNextIdentifier( *(yyvsp[(2) - (3)].tok) );
     
    63206351
    63216352/* Line 1806 of yacc.c  */
    6322 #line 1118 "parser.yy"
     6353#line 1124 "parser.yy"
    63236354    {
    63246355                        typedefTable.setNextIdentifier( *(yyvsp[(3) - (4)].tok) );
     
    63306361
    63316362/* Line 1806 of yacc.c  */
    6332 #line 1126 "parser.yy"
     6363#line 1132 "parser.yy"
    63336364    {
    63346365                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    63406371
    63416372/* Line 1806 of yacc.c  */
    6342 #line 1131 "parser.yy"
     6373#line 1137 "parser.yy"
    63436374    {
    63446375                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    63506381
    63516382/* Line 1806 of yacc.c  */
    6352 #line 1136 "parser.yy"
     6383#line 1142 "parser.yy"
    63536384    {
    63546385                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    63606391
    63616392/* Line 1806 of yacc.c  */
    6362 #line 1141 "parser.yy"
     6393#line 1147 "parser.yy"
    63636394    {
    63646395                        typedefTable.addToEnclosingScope( TypedefTable::ID );
     
    63706401
    63716402/* Line 1806 of yacc.c  */
    6372 #line 1146 "parser.yy"
     6403#line 1152 "parser.yy"
    63736404    {
    63746405                        typedefTable.addToEnclosingScope( *(yyvsp[(5) - (5)].tok), TypedefTable::ID );
     
    63806411
    63816412/* Line 1806 of yacc.c  */
    6382 #line 1177 "parser.yy"
     6413#line 1183 "parser.yy"
    63836414    {
    63846415                        (yyval.decl) = DeclarationNode::newFunction( (yyvsp[(2) - (7)].tok), (yyvsp[(1) - (7)].decl), (yyvsp[(5) - (7)].decl), 0, true );
     
    63896420
    63906421/* Line 1806 of yacc.c  */
    6391 #line 1181 "parser.yy"
     6422#line 1187 "parser.yy"
    63926423    {
    63936424                        (yyval.decl) = DeclarationNode::newFunction( (yyvsp[(2) - (7)].tok), (yyvsp[(1) - (7)].decl), (yyvsp[(5) - (7)].decl), 0, true );
     
    63986429
    63996430/* Line 1806 of yacc.c  */
    6400 #line 1188 "parser.yy"
     6431#line 1194 "parser.yy"
    64016432    { (yyval.decl) = DeclarationNode::newTuple( (yyvsp[(3) - (5)].decl) ); }
    64026433    break;
     
    64056436
    64066437/* Line 1806 of yacc.c  */
    6407 #line 1192 "parser.yy"
     6438#line 1198 "parser.yy"
    64086439    { (yyval.decl) = DeclarationNode::newTuple( (yyvsp[(3) - (9)].decl)->appendList( (yyvsp[(7) - (9)].decl) ) ); }
    64096440    break;
     
    64126443
    64136444/* Line 1806 of yacc.c  */
    6414 #line 1197 "parser.yy"
     6445#line 1203 "parser.yy"
    64156446    {
    64166447                        typedefTable.addToEnclosingScope( TypedefTable::TD );
     
    64226453
    64236454/* Line 1806 of yacc.c  */
    6424 #line 1202 "parser.yy"
     6455#line 1208 "parser.yy"
    64256456    {
    64266457                        typedefTable.addToEnclosingScope( TypedefTable::TD );
     
    64326463
    64336464/* Line 1806 of yacc.c  */
    6434 #line 1207 "parser.yy"
     6465#line 1213 "parser.yy"
    64356466    {
    64366467                        typedefTable.addToEnclosingScope( *(yyvsp[(5) - (5)].tok), TypedefTable::TD );
     
    64426473
    64436474/* Line 1806 of yacc.c  */
    6444 #line 1218 "parser.yy"
     6475#line 1224 "parser.yy"
    64456476    {
    64466477                        typedefTable.addToEnclosingScope( TypedefTable::TD );
     
    64526483
    64536484/* Line 1806 of yacc.c  */
    6454 #line 1223 "parser.yy"
     6485#line 1229 "parser.yy"
    64556486    {
    64566487                        typedefTable.addToEnclosingScope( TypedefTable::TD );
     
    64626493
    64636494/* Line 1806 of yacc.c  */
    6464 #line 1228 "parser.yy"
     6495#line 1234 "parser.yy"
    64656496    {
    64666497                        typedefTable.addToEnclosingScope( TypedefTable::TD );
     
    64726503
    64736504/* Line 1806 of yacc.c  */
    6474 #line 1233 "parser.yy"
     6505#line 1239 "parser.yy"
    64756506    {
    64766507                        typedefTable.addToEnclosingScope( TypedefTable::TD );