1 | #!/usr/bin/python3 |
---|
2 | |
---|
3 | import argparse, json, math, os, sys, re |
---|
4 | from PIL import Image |
---|
5 | import numpy as np |
---|
6 | |
---|
7 | def dir_path(string): |
---|
8 | if os.path.isdir(string): |
---|
9 | return string |
---|
10 | else: |
---|
11 | raise NotADirectoryError(string) |
---|
12 | |
---|
13 | parser = argparse.ArgumentParser() |
---|
14 | parser.add_argument('--path', type=dir_path, default=".cfadata", help= 'paste path to biog.txt file') |
---|
15 | parser.add_argument('--out', type=argparse.FileType('w'), default=sys.stdout) |
---|
16 | |
---|
17 | try : |
---|
18 | args = parser.parse_args() |
---|
19 | except NotADirectoryError: |
---|
20 | print("Must use option --path to existing directory or have .cfadata in current directory", file=sys.stderr) |
---|
21 | sys.exit(1) |
---|
22 | |
---|
23 | root, _, filenames = next(os.walk(args.path)) |
---|
24 | |
---|
25 | merged = [] |
---|
26 | counters = {} |
---|
27 | |
---|
28 | max_cpu = 0 |
---|
29 | min_cpu = 1000000 |
---|
30 | max_tsc = 0 |
---|
31 | min_tsc = 18446744073709551615 |
---|
32 | |
---|
33 | #open the files |
---|
34 | for filename in filenames: |
---|
35 | try: |
---|
36 | m = re.search('[A-z]+0x([0-9a-f]+)\.data', filename) |
---|
37 | me = m.group(1) |
---|
38 | counters[me] = 0 |
---|
39 | with open(os.path.join(root, filename), 'r') as file: |
---|
40 | for line in file: |
---|
41 | raw = [int(x.strip()) for x in line.split(',')] |
---|
42 | |
---|
43 | ## from/to |
---|
44 | high = (raw[1] >> 32) |
---|
45 | low = (raw[1] & 0xffffffff) |
---|
46 | data = [me, raw[0], high, low] |
---|
47 | max_cpu = max(max_cpu, high, low) |
---|
48 | min_cpu = min(min_cpu, high, low) |
---|
49 | |
---|
50 | ## number |
---|
51 | # high = (raw[1] >> 8) |
---|
52 | # low = (raw[1] & 0xff) |
---|
53 | # data = [me, raw[0], high, low] |
---|
54 | # max_cpu = max(max_cpu, low) |
---|
55 | # min_cpu = min(min_cpu, low) |
---|
56 | |
---|
57 | |
---|
58 | max_tsc = max(max_tsc, raw[0]) |
---|
59 | min_tsc = min(min_tsc, raw[0]) |
---|
60 | merged.append(data) |
---|
61 | |
---|
62 | except Exception as e: |
---|
63 | print(e) |
---|
64 | pass |
---|
65 | |
---|
66 | |
---|
67 | print({"max-cpu": max_cpu, "min-cpu": min_cpu, "max-tsc": max_tsc, "min-tsc": min_tsc}) |
---|
68 | |
---|
69 | # Sort by timestamp (the second element) |
---|
70 | # take second element for sort |
---|
71 | def takeSecond(elem): |
---|
72 | return elem[1] |
---|
73 | |
---|
74 | merged.sort(key=takeSecond) |
---|
75 | |
---|
76 | json.dump({"values":merged, "max-cpu": max_cpu, "min-cpu": min_cpu, "max-tsc": max_tsc, "min-tsc": min_tsc}, args.out) |
---|
77 | |
---|
78 | # vmin = merged[ 0][1] |
---|
79 | # vmax = float(merged[-1][1] - vmin) / 2500000000.0 |
---|
80 | # # print(vmax) |
---|
81 | |
---|
82 | # bins = [] |
---|
83 | # for _ in range(0, int(math.ceil(vmax * 10))): |
---|
84 | # bins.append([0] * (32 * 32)) |
---|
85 | |
---|
86 | # # print(len(bins)) |
---|
87 | # bins = np.array(bins) |
---|
88 | |
---|
89 | # rejected = 0 |
---|
90 | # highest = 0 |
---|
91 | |
---|
92 | # for x in merged: |
---|
93 | # b = int(float(x[1] - vmin) / 250000000.0) |
---|
94 | # from_ = x[2] |
---|
95 | # if from_ < 0 or from_ > 32: |
---|
96 | # rejected += 1 |
---|
97 | # continue; |
---|
98 | # to_ = x[3] |
---|
99 | # if to_ < 0 or to_ > 32: |
---|
100 | # rejected += 1 |
---|
101 | # continue; |
---|
102 | # idx = (to_ * 32) + from_ |
---|
103 | # bins[b][idx] = bins[b][idx] + 1 |
---|
104 | # highest = max(highest, bins[b][idx]) |
---|
105 | |
---|
106 | # bins = np.array(map(lambda x: np.int8(x * 255.0 / float(highest)), bins)) |
---|
107 | |
---|
108 | # print([highest, rejected]) |
---|
109 | # print(bins.shape) |
---|
110 | |
---|
111 | # im = Image.fromarray(bins) |
---|
112 | # im.save('test.png') |
---|
113 | |
---|
114 | # vmax = merged[-1][1] |
---|
115 | |
---|
116 | # diff = float(vmax - vmin) / 2500000000.0 |
---|
117 | # print([vmin, vmax]) |
---|
118 | # print([vmax - vmin, diff]) |
---|
119 | |
---|
120 | # print(len(merged)) |
---|
121 | |
---|
122 | # for b in bins: |
---|
123 | # print(b) |
---|
124 | |
---|
125 | # single = [] |
---|
126 | # curr = 0 |
---|
127 | |
---|
128 | # # merge the data |
---|
129 | # # for (me, time, value) in merged: |
---|
130 | # for (me, value) in merged: |
---|
131 | # # check now much this changes |
---|
132 | # old = counters[me] |
---|
133 | # change = value - old |
---|
134 | # counters[me] = value |
---|
135 | |
---|
136 | # # add change to the current |
---|
137 | # curr = curr + change |
---|
138 | # single.append( value ) |
---|
139 | |
---|
140 | # pass |
---|
141 | |
---|
142 | # print(single) |
---|
143 | |
---|
144 | # single = sorted(single)[:len(single)-100] |
---|
145 | # ms = max(single) |
---|
146 | # single = [float(x) / 2500.0 for x in single] |
---|
147 | |
---|
148 | #print |
---|
149 | # for t, v in single: |
---|
150 | # print([t, v]) |
---|
151 | # print(len(single)) |
---|
152 | # print(max(single)) |
---|
153 | # print(min(single)) |
---|
154 | |
---|
155 | # bins = [0, 5.37751600e+04, 1.06903320e+05, 1.60031480e+05, 2.13159640e+05, 2.66287800e+05, 3.19415960e+05, 3.72544120e+05, 4.25672280e+05, 4.78800440e+05, 5.31928600e+05, 5.85056760e+05, 6.38184920e+05, 6.91313080e+05, 7.44441240e+05, 7.97569400e+05, 8.50697560e+05, 9.03825720e+05, 9.56953880e+05, 1.01008204e+06, 1.06321020e+06, 1.11633836e+06, 1.16946652e+06, 1.22259468e+06, 1.27572284e+06, 1.32885100e+06, 1.38197916e+06, 1.43510732e+06, 1.48823548e+06, 1.54136364e+06, 1.59449180e+06, 1.64761996e+06, 1.70074812e+06, 1.75387628e+06, 1.80700444e+06, 1.86013260e+06, 1.91326076e+06, 1.96638892e+06, 2.01951708e+06, 2.07264524e+06, 2.12577340e+06, 2.17890156e+06, 2.23202972e+06, 2.28515788e+06, 2.33828604e+06, 2.39141420e+06, 2.44454236e+06, 2.49767052e+06, 2.55079868e+06, 2.60392684e+06, 3.0e+06] |
---|
156 | # # bins = [float(x) / 2500.0 for x in bins] |
---|
157 | # # print([round(b, 2) for b in bins]) |
---|
158 | |
---|
159 | # import numpy |
---|
160 | # # hist1, _ = numpy.histogram(single, density=True, bins=50) |
---|
161 | # hist2, _ = numpy.histogram(single, density=True, bins=bins) |
---|
162 | # # print(hist1) |
---|
163 | # print([1000.0 * h for h in hist2]) |
---|
164 | # # for v in single: |
---|
165 | # # print([v]) |
---|