1 | #!/usr/bin/python3
|
---|
2 |
|
---|
3 | import argparse, json, math, os, sys, re
|
---|
4 | from PIL import Image
|
---|
5 | import numpy as np
|
---|
6 |
|
---|
7 | def dir_path(string):
|
---|
8 | if os.path.isdir(string):
|
---|
9 | return string
|
---|
10 | else:
|
---|
11 | raise NotADirectoryError(string)
|
---|
12 |
|
---|
13 | parser = argparse.ArgumentParser()
|
---|
14 | parser.add_argument('--path', type=dir_path, default=".cfadata", help= 'paste path to biog.txt file')
|
---|
15 | parser.add_argument('--out', type=argparse.FileType('w'), default=sys.stdout)
|
---|
16 |
|
---|
17 | try :
|
---|
18 | args = parser.parse_args()
|
---|
19 | except NotADirectoryError:
|
---|
20 | print("Must use option --path to existing directory or have .cfadata in current directory", file=sys.stderr)
|
---|
21 | sys.exit(1)
|
---|
22 |
|
---|
23 | root, _, filenames = next(os.walk(args.path))
|
---|
24 |
|
---|
25 | merged = []
|
---|
26 | counters = {}
|
---|
27 |
|
---|
28 | max_cpu = 0
|
---|
29 | min_cpu = 1000000
|
---|
30 | max_tsc = 0
|
---|
31 | min_tsc = 18446744073709551615
|
---|
32 |
|
---|
33 | #open the files
|
---|
34 | for filename in filenames:
|
---|
35 | try:
|
---|
36 | m = re.search('[A-z]+0x([0-9a-f]+)\.data', filename)
|
---|
37 | me = m.group(1)
|
---|
38 | counters[me] = 0
|
---|
39 | with open(os.path.join(root, filename), 'r') as file:
|
---|
40 | for line in file:
|
---|
41 | raw = [int(x.strip()) for x in line.split(',')]
|
---|
42 |
|
---|
43 | ## from/to
|
---|
44 | high = (raw[1] >> 32)
|
---|
45 | low = (raw[1] & 0xffffffff)
|
---|
46 | data = [me, raw[0], high, low]
|
---|
47 | max_cpu = max(max_cpu, high, low)
|
---|
48 | min_cpu = min(min_cpu, high, low)
|
---|
49 |
|
---|
50 | ## number
|
---|
51 | # high = (raw[1] >> 8)
|
---|
52 | # low = (raw[1] & 0xff)
|
---|
53 | # data = [me, raw[0], high, low]
|
---|
54 | # max_cpu = max(max_cpu, low)
|
---|
55 | # min_cpu = min(min_cpu, low)
|
---|
56 |
|
---|
57 |
|
---|
58 | max_tsc = max(max_tsc, raw[0])
|
---|
59 | min_tsc = min(min_tsc, raw[0])
|
---|
60 | merged.append(data)
|
---|
61 |
|
---|
62 | except Exception as e:
|
---|
63 | print(e)
|
---|
64 | pass
|
---|
65 |
|
---|
66 |
|
---|
67 | print({"max-cpu": max_cpu, "min-cpu": min_cpu, "max-tsc": max_tsc, "min-tsc": min_tsc})
|
---|
68 |
|
---|
69 | # Sort by timestamp (the second element)
|
---|
70 | # take second element for sort
|
---|
71 | def takeSecond(elem):
|
---|
72 | return elem[1]
|
---|
73 |
|
---|
74 | merged.sort(key=takeSecond)
|
---|
75 |
|
---|
76 | json.dump({"values":merged, "max-cpu": max_cpu, "min-cpu": min_cpu, "max-tsc": max_tsc, "min-tsc": min_tsc}, args.out)
|
---|
77 |
|
---|
78 | # vmin = merged[ 0][1]
|
---|
79 | # vmax = float(merged[-1][1] - vmin) / 2500000000.0
|
---|
80 | # # print(vmax)
|
---|
81 |
|
---|
82 | # bins = []
|
---|
83 | # for _ in range(0, int(math.ceil(vmax * 10))):
|
---|
84 | # bins.append([0] * (32 * 32))
|
---|
85 |
|
---|
86 | # # print(len(bins))
|
---|
87 | # bins = np.array(bins)
|
---|
88 |
|
---|
89 | # rejected = 0
|
---|
90 | # highest = 0
|
---|
91 |
|
---|
92 | # for x in merged:
|
---|
93 | # b = int(float(x[1] - vmin) / 250000000.0)
|
---|
94 | # from_ = x[2]
|
---|
95 | # if from_ < 0 or from_ > 32:
|
---|
96 | # rejected += 1
|
---|
97 | # continue;
|
---|
98 | # to_ = x[3]
|
---|
99 | # if to_ < 0 or to_ > 32:
|
---|
100 | # rejected += 1
|
---|
101 | # continue;
|
---|
102 | # idx = (to_ * 32) + from_
|
---|
103 | # bins[b][idx] = bins[b][idx] + 1
|
---|
104 | # highest = max(highest, bins[b][idx])
|
---|
105 |
|
---|
106 | # bins = np.array(map(lambda x: np.int8(x * 255.0 / float(highest)), bins))
|
---|
107 |
|
---|
108 | # print([highest, rejected])
|
---|
109 | # print(bins.shape)
|
---|
110 |
|
---|
111 | # im = Image.fromarray(bins)
|
---|
112 | # im.save('test.png')
|
---|
113 |
|
---|
114 | # vmax = merged[-1][1]
|
---|
115 |
|
---|
116 | # diff = float(vmax - vmin) / 2500000000.0
|
---|
117 | # print([vmin, vmax])
|
---|
118 | # print([vmax - vmin, diff])
|
---|
119 |
|
---|
120 | # print(len(merged))
|
---|
121 |
|
---|
122 | # for b in bins:
|
---|
123 | # print(b)
|
---|
124 |
|
---|
125 | # single = []
|
---|
126 | # curr = 0
|
---|
127 |
|
---|
128 | # # merge the data
|
---|
129 | # # for (me, time, value) in merged:
|
---|
130 | # for (me, value) in merged:
|
---|
131 | # # check now much this changes
|
---|
132 | # old = counters[me]
|
---|
133 | # change = value - old
|
---|
134 | # counters[me] = value
|
---|
135 |
|
---|
136 | # # add change to the current
|
---|
137 | # curr = curr + change
|
---|
138 | # single.append( value )
|
---|
139 |
|
---|
140 | # pass
|
---|
141 |
|
---|
142 | # print(single)
|
---|
143 |
|
---|
144 | # single = sorted(single)[:len(single)-100]
|
---|
145 | # ms = max(single)
|
---|
146 | # single = [float(x) / 2500.0 for x in single]
|
---|
147 |
|
---|
148 | #print
|
---|
149 | # for t, v in single:
|
---|
150 | # print([t, v])
|
---|
151 | # print(len(single))
|
---|
152 | # print(max(single))
|
---|
153 | # print(min(single))
|
---|
154 |
|
---|
155 | # bins = [0, 5.37751600e+04, 1.06903320e+05, 1.60031480e+05, 2.13159640e+05, 2.66287800e+05, 3.19415960e+05, 3.72544120e+05, 4.25672280e+05, 4.78800440e+05, 5.31928600e+05, 5.85056760e+05, 6.38184920e+05, 6.91313080e+05, 7.44441240e+05, 7.97569400e+05, 8.50697560e+05, 9.03825720e+05, 9.56953880e+05, 1.01008204e+06, 1.06321020e+06, 1.11633836e+06, 1.16946652e+06, 1.22259468e+06, 1.27572284e+06, 1.32885100e+06, 1.38197916e+06, 1.43510732e+06, 1.48823548e+06, 1.54136364e+06, 1.59449180e+06, 1.64761996e+06, 1.70074812e+06, 1.75387628e+06, 1.80700444e+06, 1.86013260e+06, 1.91326076e+06, 1.96638892e+06, 2.01951708e+06, 2.07264524e+06, 2.12577340e+06, 2.17890156e+06, 2.23202972e+06, 2.28515788e+06, 2.33828604e+06, 2.39141420e+06, 2.44454236e+06, 2.49767052e+06, 2.55079868e+06, 2.60392684e+06, 3.0e+06]
|
---|
156 | # # bins = [float(x) / 2500.0 for x in bins]
|
---|
157 | # # print([round(b, 2) for b in bins])
|
---|
158 |
|
---|
159 | # import numpy
|
---|
160 | # # hist1, _ = numpy.histogram(single, density=True, bins=50)
|
---|
161 | # hist2, _ = numpy.histogram(single, density=True, bins=bins)
|
---|
162 | # # print(hist1)
|
---|
163 | # print([1000.0 * h for h in hist2])
|
---|
164 | # # for v in single:
|
---|
165 | # # print([v])
|
---|