| 1 | #!/usr/bin/python3 | 
|---|
| 2 |  | 
|---|
| 3 | import argparse, json, math, sys, time | 
|---|
| 4 | import multiprocessing | 
|---|
| 5 | from PIL import Image | 
|---|
| 6 | import numpy as np | 
|---|
| 7 |  | 
|---|
| 8 | class Timed: | 
|---|
| 9 | def __init__(self, text): | 
|---|
| 10 | print(text, end='', flush=True) | 
|---|
| 11 |  | 
|---|
| 12 | def pretty(self, durr): | 
|---|
| 13 | seconds = int(durr) | 
|---|
| 14 | days, seconds = divmod(seconds, 86400) | 
|---|
| 15 | hours, seconds = divmod(seconds, 3600) | 
|---|
| 16 | minutes, seconds = divmod(seconds, 60) | 
|---|
| 17 | if days > 0: | 
|---|
| 18 | return '%dd%dh%dm%ds' % (days, hours, minutes, seconds) | 
|---|
| 19 | elif hours > 0: | 
|---|
| 20 | return '%dh%dm%ds' % (hours, minutes, seconds) | 
|---|
| 21 | elif minutes > 0: | 
|---|
| 22 | return '%dm%ds' % (minutes, seconds) | 
|---|
| 23 | else: | 
|---|
| 24 | return '%ds' % (seconds,) | 
|---|
| 25 |  | 
|---|
| 26 | def __enter__(self): | 
|---|
| 27 | self.start = time.time() | 
|---|
| 28 | return self | 
|---|
| 29 |  | 
|---|
| 30 | def __exit__(self, *args): | 
|---|
| 31 | self.end = time.time() | 
|---|
| 32 | print(self.pretty(self.end - self.start)) | 
|---|
| 33 |  | 
|---|
| 34 |  | 
|---|
| 35 |  | 
|---|
| 36 | parser = argparse.ArgumentParser() | 
|---|
| 37 | parser.add_argument('--infile', type=argparse.FileType('r'), default=sys.stdin) | 
|---|
| 38 | parser.add_argument('--outfile', type=str, default='out.png') | 
|---|
| 39 |  | 
|---|
| 40 | args = parser.parse_args() | 
|---|
| 41 |  | 
|---|
| 42 | pool = multiprocessing.Pool() | 
|---|
| 43 |  | 
|---|
| 44 | with Timed("Loading json..."): | 
|---|
| 45 | obj = json.load(args.infile) | 
|---|
| 46 |  | 
|---|
| 47 | min_tsc = int(obj['min-tsc']) | 
|---|
| 48 | max_tsc = int(obj['max-tsc']) | 
|---|
| 49 |  | 
|---|
| 50 | def tsc_to_s(tsc): | 
|---|
| 51 | return float(tsc - min_tsc)  / 2500000000.0 | 
|---|
| 52 |  | 
|---|
| 53 | max_sec = tsc_to_s(max_tsc) | 
|---|
| 54 | print([min_tsc, max_tsc, max_sec]) | 
|---|
| 55 |  | 
|---|
| 56 | min_cpu = int(obj['min-cpu']) | 
|---|
| 57 | max_cpu = int(obj['max-cpu']) | 
|---|
| 58 | cnt_cpu = max_cpu - min_cpu + 1 | 
|---|
| 59 | nbins = math.ceil(max_sec * 10) | 
|---|
| 60 |  | 
|---|
| 61 | class Bar: | 
|---|
| 62 | def __init__(self): | 
|---|
| 63 | pass | 
|---|
| 64 |  | 
|---|
| 65 | with Timed("Creating bins..."): | 
|---|
| 66 | bins = [] | 
|---|
| 67 | for _ in range(0, int(nbins)): | 
|---|
| 68 | bar = Bar() | 
|---|
| 69 | bins.append([bar, *[*([0] * cnt_cpu), bar] * cnt_cpu]) | 
|---|
| 70 | # bins.append([0] * cnt_cpu) | 
|---|
| 71 |  | 
|---|
| 72 | bins = np.array(bins) | 
|---|
| 73 |  | 
|---|
| 74 |  | 
|---|
| 75 |  | 
|---|
| 76 | def flatten(val): | 
|---|
| 77 | secs = tsc_to_s(val[1]) | 
|---|
| 78 | ratio = secs / max_sec | 
|---|
| 79 | b = int(ratio * (nbins - 1)) | 
|---|
| 80 | ## from/to | 
|---|
| 81 | from_ = val[2] - min_cpu | 
|---|
| 82 | to_   = val[3] - min_cpu | 
|---|
| 83 | idx = int(1 + ((cnt_cpu + 1) * to_) + from_) | 
|---|
| 84 | return [b, idx, 1] | 
|---|
| 85 | ## val per cpu | 
|---|
| 86 | # cnt = val[2] | 
|---|
| 87 | # idx = val[3] - min_cpu | 
|---|
| 88 | # # idx = from_ | 
|---|
| 89 | # return [b, idx, cnt] | 
|---|
| 90 |  | 
|---|
| 91 |  | 
|---|
| 92 | with Timed("Compressing data..."): | 
|---|
| 93 | compress = map(flatten, obj['values']) | 
|---|
| 94 |  | 
|---|
| 95 | highest  = 1 | 
|---|
| 96 | with Timed("Grouping data..."): | 
|---|
| 97 | for x in compress: | 
|---|
| 98 | bins[x[0]][x[1]] += x[2] | 
|---|
| 99 | highest = max(highest, bins[x[0]][x[1]]) | 
|---|
| 100 |  | 
|---|
| 101 | print(highest) | 
|---|
| 102 | # highest  = 10000000000 | 
|---|
| 103 |  | 
|---|
| 104 | with Timed("Normalizing data..."): | 
|---|
| 105 | def normalize(v): | 
|---|
| 106 | if type(v) is Bar: | 
|---|
| 107 | return np.uint32(0xff008000) | 
|---|
| 108 | v = v * 255 / float(highest) | 
|---|
| 109 | if v > 256: | 
|---|
| 110 | v = 255 | 
|---|
| 111 | u8 = np.uint8(v) | 
|---|
| 112 | u32 = np.uint32(u8) | 
|---|
| 113 |  | 
|---|
| 114 | return (0xff << 24) | (u32 << 16) | (u32 << 8) | (u32 << 0) | 
|---|
| 115 | normalizef = np.vectorize(normalize, [np.uint32]) | 
|---|
| 116 |  | 
|---|
| 117 | bins = normalizef(bins) | 
|---|
| 118 |  | 
|---|
| 119 | print(bins.shape) | 
|---|
| 120 | with Timed("Saving image..."): | 
|---|
| 121 | im = Image.fromarray(bins, mode='RGBA') | 
|---|
| 122 | im.show() | 
|---|
| 123 | im.save(args.outfile) | 
|---|