1 | #!/usr/bin/python3
|
---|
2 |
|
---|
3 | import argparse, json, math, sys, time
|
---|
4 | import multiprocessing
|
---|
5 | from PIL import Image
|
---|
6 | import numpy as np
|
---|
7 |
|
---|
8 | class Timed:
|
---|
9 | def __init__(self, text):
|
---|
10 | print(text, end='', flush=True)
|
---|
11 |
|
---|
12 | def pretty(self, durr):
|
---|
13 | seconds = int(durr)
|
---|
14 | days, seconds = divmod(seconds, 86400)
|
---|
15 | hours, seconds = divmod(seconds, 3600)
|
---|
16 | minutes, seconds = divmod(seconds, 60)
|
---|
17 | if days > 0:
|
---|
18 | return '%dd%dh%dm%ds' % (days, hours, minutes, seconds)
|
---|
19 | elif hours > 0:
|
---|
20 | return '%dh%dm%ds' % (hours, minutes, seconds)
|
---|
21 | elif minutes > 0:
|
---|
22 | return '%dm%ds' % (minutes, seconds)
|
---|
23 | else:
|
---|
24 | return '%ds' % (seconds,)
|
---|
25 |
|
---|
26 | def __enter__(self):
|
---|
27 | self.start = time.time()
|
---|
28 | return self
|
---|
29 |
|
---|
30 | def __exit__(self, *args):
|
---|
31 | self.end = time.time()
|
---|
32 | print(self.pretty(self.end - self.start))
|
---|
33 |
|
---|
34 |
|
---|
35 |
|
---|
36 | parser = argparse.ArgumentParser()
|
---|
37 | parser.add_argument('--infile', type=argparse.FileType('r'), default=sys.stdin)
|
---|
38 | parser.add_argument('--outfile', type=str, default='out.png')
|
---|
39 |
|
---|
40 | args = parser.parse_args()
|
---|
41 |
|
---|
42 | pool = multiprocessing.Pool()
|
---|
43 |
|
---|
44 | with Timed("Loading json..."):
|
---|
45 | obj = json.load(args.infile)
|
---|
46 |
|
---|
47 | min_tsc = int(obj['min-tsc'])
|
---|
48 | max_tsc = int(obj['max-tsc'])
|
---|
49 |
|
---|
50 | def tsc_to_s(tsc):
|
---|
51 | return float(tsc - min_tsc) / 2500000000.0
|
---|
52 |
|
---|
53 | max_sec = tsc_to_s(max_tsc)
|
---|
54 | print([min_tsc, max_tsc, max_sec])
|
---|
55 |
|
---|
56 | min_cpu = int(obj['min-cpu'])
|
---|
57 | max_cpu = int(obj['max-cpu'])
|
---|
58 | cnt_cpu = max_cpu - min_cpu + 1
|
---|
59 | nbins = math.ceil(max_sec * 10)
|
---|
60 |
|
---|
61 | class Bar:
|
---|
62 | def __init__(self):
|
---|
63 | pass
|
---|
64 |
|
---|
65 | with Timed("Creating bins..."):
|
---|
66 | bins = []
|
---|
67 | for _ in range(0, int(nbins)):
|
---|
68 | bar = Bar()
|
---|
69 | bins.append([bar, *[*([0] * cnt_cpu), bar] * cnt_cpu])
|
---|
70 | # bins.append([0] * cnt_cpu)
|
---|
71 |
|
---|
72 | bins = np.array(bins)
|
---|
73 |
|
---|
74 |
|
---|
75 |
|
---|
76 | def flatten(val):
|
---|
77 | secs = tsc_to_s(val[1])
|
---|
78 | ratio = secs / max_sec
|
---|
79 | b = int(ratio * (nbins - 1))
|
---|
80 | ## from/to
|
---|
81 | from_ = val[2] - min_cpu
|
---|
82 | to_ = val[3] - min_cpu
|
---|
83 | idx = int(1 + ((cnt_cpu + 1) * to_) + from_)
|
---|
84 | return [b, idx, 1]
|
---|
85 | ## val per cpu
|
---|
86 | # cnt = val[2]
|
---|
87 | # idx = val[3] - min_cpu
|
---|
88 | # # idx = from_
|
---|
89 | # return [b, idx, cnt]
|
---|
90 |
|
---|
91 |
|
---|
92 | with Timed("Compressing data..."):
|
---|
93 | compress = map(flatten, obj['values'])
|
---|
94 |
|
---|
95 | highest = 1
|
---|
96 | with Timed("Grouping data..."):
|
---|
97 | for x in compress:
|
---|
98 | bins[x[0]][x[1]] += x[2]
|
---|
99 | highest = max(highest, bins[x[0]][x[1]])
|
---|
100 |
|
---|
101 | print(highest)
|
---|
102 | # highest = 10000000000
|
---|
103 |
|
---|
104 | with Timed("Normalizing data..."):
|
---|
105 | def normalize(v):
|
---|
106 | if type(v) is Bar:
|
---|
107 | return np.uint32(0xff008000)
|
---|
108 | v = v * 255 / float(highest)
|
---|
109 | if v > 256:
|
---|
110 | v = 255
|
---|
111 | u8 = np.uint8(v)
|
---|
112 | u32 = np.uint32(u8)
|
---|
113 |
|
---|
114 | return (0xff << 24) | (u32 << 16) | (u32 << 8) | (u32 << 0)
|
---|
115 | normalizef = np.vectorize(normalize, [np.uint32])
|
---|
116 |
|
---|
117 | bins = normalizef(bins)
|
---|
118 |
|
---|
119 | print(bins.shape)
|
---|
120 | with Timed("Saving image..."):
|
---|
121 | im = Image.fromarray(bins, mode='RGBA')
|
---|
122 | im.show()
|
---|
123 | im.save(args.outfile)
|
---|