| [1cc7689] | 1 | #!/usr/bin/python3 | 
|---|
|  | 2 |  | 
|---|
|  | 3 | import argparse, json, math, sys, time | 
|---|
|  | 4 | import multiprocessing | 
|---|
|  | 5 | from PIL import Image | 
|---|
|  | 6 | import numpy as np | 
|---|
|  | 7 |  | 
|---|
|  | 8 | class Timed: | 
|---|
|  | 9 | def __init__(self, text): | 
|---|
|  | 10 | print(text, end='', flush=True) | 
|---|
|  | 11 |  | 
|---|
|  | 12 | def pretty(self, durr): | 
|---|
|  | 13 | seconds = int(durr) | 
|---|
|  | 14 | days, seconds = divmod(seconds, 86400) | 
|---|
|  | 15 | hours, seconds = divmod(seconds, 3600) | 
|---|
|  | 16 | minutes, seconds = divmod(seconds, 60) | 
|---|
|  | 17 | if days > 0: | 
|---|
|  | 18 | return '%dd%dh%dm%ds' % (days, hours, minutes, seconds) | 
|---|
|  | 19 | elif hours > 0: | 
|---|
|  | 20 | return '%dh%dm%ds' % (hours, minutes, seconds) | 
|---|
|  | 21 | elif minutes > 0: | 
|---|
|  | 22 | return '%dm%ds' % (minutes, seconds) | 
|---|
|  | 23 | else: | 
|---|
|  | 24 | return '%ds' % (seconds,) | 
|---|
|  | 25 |  | 
|---|
|  | 26 | def __enter__(self): | 
|---|
|  | 27 | self.start = time.time() | 
|---|
|  | 28 | return self | 
|---|
|  | 29 |  | 
|---|
|  | 30 | def __exit__(self, *args): | 
|---|
|  | 31 | self.end = time.time() | 
|---|
|  | 32 | print(self.pretty(self.end - self.start)) | 
|---|
|  | 33 |  | 
|---|
|  | 34 |  | 
|---|
|  | 35 |  | 
|---|
|  | 36 | parser = argparse.ArgumentParser() | 
|---|
|  | 37 | parser.add_argument('--infile', type=argparse.FileType('r'), default=sys.stdin) | 
|---|
|  | 38 | parser.add_argument('--outfile', type=str, default='out.png') | 
|---|
|  | 39 |  | 
|---|
|  | 40 | args = parser.parse_args() | 
|---|
|  | 41 |  | 
|---|
|  | 42 | pool = multiprocessing.Pool() | 
|---|
|  | 43 |  | 
|---|
|  | 44 | with Timed("Loading json..."): | 
|---|
|  | 45 | obj = json.load(args.infile) | 
|---|
|  | 46 |  | 
|---|
|  | 47 | min_tsc = int(obj['min-tsc']) | 
|---|
|  | 48 | max_tsc = int(obj['max-tsc']) | 
|---|
|  | 49 |  | 
|---|
|  | 50 | def tsc_to_s(tsc): | 
|---|
|  | 51 | return float(tsc - min_tsc)  / 2500000000.0 | 
|---|
|  | 52 |  | 
|---|
|  | 53 | max_sec = tsc_to_s(max_tsc) | 
|---|
|  | 54 | print([min_tsc, max_tsc, max_sec]) | 
|---|
|  | 55 |  | 
|---|
|  | 56 | min_cpu = int(obj['min-cpu']) | 
|---|
|  | 57 | max_cpu = int(obj['max-cpu']) | 
|---|
|  | 58 | cnt_cpu = max_cpu - min_cpu + 1 | 
|---|
|  | 59 | nbins = math.ceil(max_sec * 10) | 
|---|
|  | 60 |  | 
|---|
|  | 61 | class Bar: | 
|---|
|  | 62 | def __init__(self): | 
|---|
|  | 63 | pass | 
|---|
|  | 64 |  | 
|---|
|  | 65 | with Timed("Creating bins..."): | 
|---|
|  | 66 | bins = [] | 
|---|
|  | 67 | for _ in range(0, int(nbins)): | 
|---|
|  | 68 | bar = Bar() | 
|---|
|  | 69 | bins.append([bar, *[*([0] * cnt_cpu), bar] * cnt_cpu]) | 
|---|
|  | 70 | # bins.append([0] * cnt_cpu) | 
|---|
|  | 71 |  | 
|---|
|  | 72 | bins = np.array(bins) | 
|---|
|  | 73 |  | 
|---|
|  | 74 |  | 
|---|
|  | 75 |  | 
|---|
|  | 76 | def flatten(val): | 
|---|
|  | 77 | secs = tsc_to_s(val[1]) | 
|---|
|  | 78 | ratio = secs / max_sec | 
|---|
|  | 79 | b = int(ratio * (nbins - 1)) | 
|---|
|  | 80 | ## from/to | 
|---|
|  | 81 | from_ = val[2] - min_cpu | 
|---|
|  | 82 | to_   = val[3] - min_cpu | 
|---|
|  | 83 | idx = int(1 + ((cnt_cpu + 1) * to_) + from_) | 
|---|
|  | 84 | return [b, idx, 1] | 
|---|
|  | 85 | ## val per cpu | 
|---|
|  | 86 | # cnt = val[2] | 
|---|
|  | 87 | # idx = val[3] - min_cpu | 
|---|
|  | 88 | # # idx = from_ | 
|---|
|  | 89 | # return [b, idx, cnt] | 
|---|
|  | 90 |  | 
|---|
|  | 91 |  | 
|---|
|  | 92 | with Timed("Compressing data..."): | 
|---|
|  | 93 | compress = map(flatten, obj['values']) | 
|---|
|  | 94 |  | 
|---|
|  | 95 | highest  = 1 | 
|---|
|  | 96 | with Timed("Grouping data..."): | 
|---|
|  | 97 | for x in compress: | 
|---|
|  | 98 | bins[x[0]][x[1]] += x[2] | 
|---|
|  | 99 | highest = max(highest, bins[x[0]][x[1]]) | 
|---|
|  | 100 |  | 
|---|
|  | 101 | print(highest) | 
|---|
|  | 102 | # highest  = 10000000000 | 
|---|
|  | 103 |  | 
|---|
|  | 104 | with Timed("Normalizing data..."): | 
|---|
|  | 105 | def normalize(v): | 
|---|
|  | 106 | if type(v) is Bar: | 
|---|
|  | 107 | return np.uint32(0xff008000) | 
|---|
|  | 108 | v = v * 255 / float(highest) | 
|---|
|  | 109 | if v > 256: | 
|---|
|  | 110 | v = 255 | 
|---|
|  | 111 | u8 = np.uint8(v) | 
|---|
|  | 112 | u32 = np.uint32(u8) | 
|---|
|  | 113 |  | 
|---|
|  | 114 | return (0xff << 24) | (u32 << 16) | (u32 << 8) | (u32 << 0) | 
|---|
|  | 115 | normalizef = np.vectorize(normalize, [np.uint32]) | 
|---|
|  | 116 |  | 
|---|
|  | 117 | bins = normalizef(bins) | 
|---|
|  | 118 |  | 
|---|
|  | 119 | print(bins.shape) | 
|---|
|  | 120 | with Timed("Saving image..."): | 
|---|
|  | 121 | im = Image.fromarray(bins, mode='RGBA') | 
|---|
|  | 122 | im.show() | 
|---|
|  | 123 | im.save(args.outfile) | 
|---|