[1cc7689] | 1 | #!/usr/bin/python3
|
---|
| 2 |
|
---|
| 3 | import argparse, json, math, sys, time
|
---|
| 4 | import multiprocessing
|
---|
| 5 | from PIL import Image
|
---|
| 6 | import numpy as np
|
---|
| 7 |
|
---|
| 8 | class Timed:
|
---|
| 9 | def __init__(self, text):
|
---|
| 10 | print(text, end='', flush=True)
|
---|
| 11 |
|
---|
| 12 | def pretty(self, durr):
|
---|
| 13 | seconds = int(durr)
|
---|
| 14 | days, seconds = divmod(seconds, 86400)
|
---|
| 15 | hours, seconds = divmod(seconds, 3600)
|
---|
| 16 | minutes, seconds = divmod(seconds, 60)
|
---|
| 17 | if days > 0:
|
---|
| 18 | return '%dd%dh%dm%ds' % (days, hours, minutes, seconds)
|
---|
| 19 | elif hours > 0:
|
---|
| 20 | return '%dh%dm%ds' % (hours, minutes, seconds)
|
---|
| 21 | elif minutes > 0:
|
---|
| 22 | return '%dm%ds' % (minutes, seconds)
|
---|
| 23 | else:
|
---|
| 24 | return '%ds' % (seconds,)
|
---|
| 25 |
|
---|
| 26 | def __enter__(self):
|
---|
| 27 | self.start = time.time()
|
---|
| 28 | return self
|
---|
| 29 |
|
---|
| 30 | def __exit__(self, *args):
|
---|
| 31 | self.end = time.time()
|
---|
| 32 | print(self.pretty(self.end - self.start))
|
---|
| 33 |
|
---|
| 34 |
|
---|
| 35 |
|
---|
| 36 | parser = argparse.ArgumentParser()
|
---|
| 37 | parser.add_argument('--infile', type=argparse.FileType('r'), default=sys.stdin)
|
---|
| 38 | parser.add_argument('--outfile', type=str, default='out.png')
|
---|
| 39 |
|
---|
| 40 | args = parser.parse_args()
|
---|
| 41 |
|
---|
| 42 | pool = multiprocessing.Pool()
|
---|
| 43 |
|
---|
| 44 | with Timed("Loading json..."):
|
---|
| 45 | obj = json.load(args.infile)
|
---|
| 46 |
|
---|
| 47 | min_tsc = int(obj['min-tsc'])
|
---|
| 48 | max_tsc = int(obj['max-tsc'])
|
---|
| 49 |
|
---|
| 50 | def tsc_to_s(tsc):
|
---|
| 51 | return float(tsc - min_tsc) / 2500000000.0
|
---|
| 52 |
|
---|
| 53 | max_sec = tsc_to_s(max_tsc)
|
---|
| 54 | print([min_tsc, max_tsc, max_sec])
|
---|
| 55 |
|
---|
| 56 | min_cpu = int(obj['min-cpu'])
|
---|
| 57 | max_cpu = int(obj['max-cpu'])
|
---|
| 58 | cnt_cpu = max_cpu - min_cpu + 1
|
---|
| 59 | nbins = math.ceil(max_sec * 10)
|
---|
| 60 |
|
---|
| 61 | class Bar:
|
---|
| 62 | def __init__(self):
|
---|
| 63 | pass
|
---|
| 64 |
|
---|
| 65 | with Timed("Creating bins..."):
|
---|
| 66 | bins = []
|
---|
| 67 | for _ in range(0, int(nbins)):
|
---|
| 68 | bar = Bar()
|
---|
| 69 | bins.append([bar, *[*([0] * cnt_cpu), bar] * cnt_cpu])
|
---|
| 70 | # bins.append([0] * cnt_cpu)
|
---|
| 71 |
|
---|
| 72 | bins = np.array(bins)
|
---|
| 73 |
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 | def flatten(val):
|
---|
| 77 | secs = tsc_to_s(val[1])
|
---|
| 78 | ratio = secs / max_sec
|
---|
| 79 | b = int(ratio * (nbins - 1))
|
---|
| 80 | ## from/to
|
---|
| 81 | from_ = val[2] - min_cpu
|
---|
| 82 | to_ = val[3] - min_cpu
|
---|
| 83 | idx = int(1 + ((cnt_cpu + 1) * to_) + from_)
|
---|
| 84 | return [b, idx, 1]
|
---|
| 85 | ## val per cpu
|
---|
| 86 | # cnt = val[2]
|
---|
| 87 | # idx = val[3] - min_cpu
|
---|
| 88 | # # idx = from_
|
---|
| 89 | # return [b, idx, cnt]
|
---|
| 90 |
|
---|
| 91 |
|
---|
| 92 | with Timed("Compressing data..."):
|
---|
| 93 | compress = map(flatten, obj['values'])
|
---|
| 94 |
|
---|
| 95 | highest = 1
|
---|
| 96 | with Timed("Grouping data..."):
|
---|
| 97 | for x in compress:
|
---|
| 98 | bins[x[0]][x[1]] += x[2]
|
---|
| 99 | highest = max(highest, bins[x[0]][x[1]])
|
---|
| 100 |
|
---|
| 101 | print(highest)
|
---|
| 102 | # highest = 10000000000
|
---|
| 103 |
|
---|
| 104 | with Timed("Normalizing data..."):
|
---|
| 105 | def normalize(v):
|
---|
| 106 | if type(v) is Bar:
|
---|
| 107 | return np.uint32(0xff008000)
|
---|
| 108 | v = v * 255 / float(highest)
|
---|
| 109 | if v > 256:
|
---|
| 110 | v = 255
|
---|
| 111 | u8 = np.uint8(v)
|
---|
| 112 | u32 = np.uint32(u8)
|
---|
| 113 |
|
---|
| 114 | return (0xff << 24) | (u32 << 16) | (u32 << 8) | (u32 << 0)
|
---|
| 115 | normalizef = np.vectorize(normalize, [np.uint32])
|
---|
| 116 |
|
---|
| 117 | bins = normalizef(bins)
|
---|
| 118 |
|
---|
| 119 | print(bins.shape)
|
---|
| 120 | with Timed("Saving image..."):
|
---|
| 121 | im = Image.fromarray(bins, mode='RGBA')
|
---|
| 122 | im.show()
|
---|
| 123 | im.save(args.outfile)
|
---|