1 | #include <containers/array.hfa> |
---|
2 | |
---|
3 | #include <assert.h> |
---|
4 | |
---|
5 | float getMagicNumber( ptrdiff_t w, ptrdiff_t x, ptrdiff_t y, ptrdiff_t z ) { |
---|
6 | |
---|
7 | assert( 0 <= w && w < 3 ); |
---|
8 | assert( 0 <= x && x < 4 ); |
---|
9 | assert( 0 <= y && y < 5 ); |
---|
10 | assert( 0 <= z && z < 6 ); |
---|
11 | |
---|
12 | float ww = (2.0f \ w) / 1.0f; |
---|
13 | float xx = (2.0f \ x) / 100.0f; |
---|
14 | float yy = (2.0f \ y) / 10000.0f; |
---|
15 | float Nz = (2.0f \ z) / 1000000.0f; |
---|
16 | |
---|
17 | return ww+xx+yy+Nz; |
---|
18 | } |
---|
19 | |
---|
20 | forall( [Nw], [Nx], [Ny], [Nz] ) |
---|
21 | void fillHelloData( array( float, Nw, Nx, Ny, Nz ) & wxyz ) { |
---|
22 | for (w; z(Nw)) |
---|
23 | for (x; z(Nx)) |
---|
24 | for (y; z(Ny)) |
---|
25 | for (z; z(Nz)) |
---|
26 | wxyz[w][x][y][z] = getMagicNumber(w, x, y, z); |
---|
27 | } |
---|
28 | |
---|
29 | // Work around a compiler optimization that can lead to false failures. |
---|
30 | // Think of `valExpected` as a constant local to each test function. |
---|
31 | // When implemented that way, an optimization, run on some hardware, makes |
---|
32 | // its value be off-by-a-little, compared with the values that have been |
---|
33 | // stored-loaded (in the array under test). This effect has been observed |
---|
34 | // on x86-32 with -O3. Declaring it as below forces the expected value |
---|
35 | // to be stored-loaded too, which keeps the (admittedly lazily done) |
---|
36 | // `assert(f1 == f2)` checks passing, when the intended <w,x,y,z> location |
---|
37 | // is recovered, which is the point of all these tests. |
---|
38 | volatile float valExpected = 0.0; |
---|
39 | |
---|
40 | // Tests all the ways to split dimensions into CFA-supported chunks, by the only order that C supports: coarsest to finest stride. |
---|
41 | forall( [Nw], [Nx], [Ny], [Nz] ) |
---|
42 | void test_inOrderSplits( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { |
---|
43 | |
---|
44 | array( float, Nw, Nx, Ny, Nz ) wxyz; |
---|
45 | fillHelloData(wxyz); |
---|
46 | |
---|
47 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5; |
---|
48 | |
---|
49 | valExpected = getMagicNumber(iw, ix, iy, iz); |
---|
50 | float valGot = wxyz[iw][ix][iy][iz]; |
---|
51 | assert( valGot == valExpected ); |
---|
52 | |
---|
53 | // order wxyz, natural split (4-0 or 0-4, no intermediate to declare) |
---|
54 | |
---|
55 | assert(( wxyz[[iw, ix, iy, iz]] == valExpected )); |
---|
56 | |
---|
57 | // order wxyz, unnatural split 1-3 (three ways declared) |
---|
58 | |
---|
59 | typeof( wxyz[iw] ) xyz1 = wxyz[iw]; |
---|
60 | assert(( xyz1[[ix, iy, iz]] == valExpected )); |
---|
61 | |
---|
62 | typeof( wxyz[iw] ) xyz2; |
---|
63 | &xyz2 = &wxyz[iw]; |
---|
64 | assert(( xyz2[[ix, iy, iz]] == valExpected )); |
---|
65 | |
---|
66 | assert(( wxyz[iw][[ix, iy, iz]] == valExpected )); |
---|
67 | |
---|
68 | // order wxyz, unnatural split 2-2 (three ways declared) |
---|
69 | |
---|
70 | typeof( wxyz[[iw, ix]] ) yz1 = wxyz[[iw,ix]]; |
---|
71 | assert(( yz1[[iy, iz]] == valExpected )); |
---|
72 | |
---|
73 | typeof( wxyz[[iw, ix]] ) yz2; |
---|
74 | &yz2 = &wxyz[[iw, ix]]; |
---|
75 | assert(( yz2[[iy, iz]] == valExpected )); |
---|
76 | |
---|
77 | assert(( wxyz[[iw, ix]][[iy, iz]] == valExpected )); |
---|
78 | |
---|
79 | // order wxyz, unnatural split 3-1 (three ways declared) |
---|
80 | |
---|
81 | typeof( wxyz[[iw, ix, iy]] ) z1 = wxyz[[iw, ix, iy]]; |
---|
82 | assert(( z1[iz] == valExpected )); |
---|
83 | |
---|
84 | typeof( wxyz[[iw, ix, iy]] ) z2; |
---|
85 | &z2 = &wxyz[[iw, ix, iy]]; |
---|
86 | assert(( z2[iz] == valExpected )); |
---|
87 | |
---|
88 | assert(( wxyz[[iw, ix, iy]][iz] == valExpected )); |
---|
89 | } |
---|
90 | |
---|
91 | // All orders that skip a single dimension, each in its most natural split. |
---|
92 | forall( [Nw], [Nx], [Ny], [Nz] ) |
---|
93 | void test_skipSingle( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { |
---|
94 | |
---|
95 | array( float, Nw, Nx, Ny, Nz ) wxyz; |
---|
96 | fillHelloData(wxyz); |
---|
97 | |
---|
98 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5; |
---|
99 | |
---|
100 | valExpected = getMagicNumber(iw, ix, iy, iz); |
---|
101 | assert( wxyz[iw][ix][iy][iz] == valExpected ); |
---|
102 | |
---|
103 | |
---|
104 | // order wxyz (no intermediates to declare) |
---|
105 | |
---|
106 | assert(( wxyz[[iw , ix , iy , iz ]] == valExpected )); |
---|
107 | assert(( wxyz[[iw-1, ix , iy , iz ]] != valExpected )); |
---|
108 | |
---|
109 | // order xyzw: *xyz, w |
---|
110 | |
---|
111 | assert(( wxyz[[all , ix , iy , iz ]][iw ] == valExpected )); |
---|
112 | assert(( wxyz[[all , ix-1, iy , iz ]][iw ] != valExpected )); |
---|
113 | assert(( wxyz[[all , ix , iy , iz ]][iw-1] != valExpected )); |
---|
114 | |
---|
115 | // order wyzx: w*yz, x |
---|
116 | |
---|
117 | assert(( wxyz[[iw , all , iy , iz ]][ix ] == valExpected )); |
---|
118 | assert(( wxyz[[iw , all , iy-1, iz ]][ix ] != valExpected )); |
---|
119 | assert(( wxyz[[iw , all , iy , iz ]][ix-1] != valExpected )); |
---|
120 | |
---|
121 | // order wxzy: wx*z, y |
---|
122 | #if 0 |
---|
123 | // not working on 32-bit |
---|
124 | assert(( wxyz[[iw , ix , all , iz ]][iy ] == valExpected )); |
---|
125 | assert(( wxyz[[iw , ix , all , iz-1]][iy ] != valExpected )); |
---|
126 | assert(( wxyz[[iw , ix , all , iz ]][iy-1] != valExpected )); |
---|
127 | #endif |
---|
128 | } |
---|
129 | |
---|
130 | |
---|
131 | // The comments specify a covering set of orders, each in its most natural split. |
---|
132 | // Covering means that each edge on the lattice of dimesnions-provided is used. |
---|
133 | // Natural split means the arity of every -[[-,...]] tuple equals the dimensionality of its "this" operand, then that the fewest "all" subscripts are given. |
---|
134 | // The commented-out test code shows cases that don't work. We wish all the comment-coverd cases worked. |
---|
135 | forall( [Nw], [Nx], [Ny], [Nz] ) |
---|
136 | void test_latticeCoverage( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { |
---|
137 | |
---|
138 | array( float, Nw, Nx, Ny, Nz ) wxyz; |
---|
139 | fillHelloData(wxyz); |
---|
140 | |
---|
141 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5; |
---|
142 | |
---|
143 | valExpected = getMagicNumber(iw, ix, iy, iz); |
---|
144 | assert( wxyz[iw][ix][iy][iz] == valExpected ); |
---|
145 | |
---|
146 | |
---|
147 | // order wxyz (no intermediates to declare) |
---|
148 | |
---|
149 | assert(( wxyz[[iw, ix, iy, iz]] == valExpected )); |
---|
150 | |
---|
151 | { |
---|
152 | // order wyxz: w*y*, xz |
---|
153 | assert( wxyz[iw][all][iy][all] [ix][iz] == valExpected ); |
---|
154 | |
---|
155 | typeof( wxyz[[iw, all, iy, all]] ) xz1 = wxyz[[iw, all, iy, all]]; |
---|
156 | assert(( xz1[[ix, iz]] == valExpected )); |
---|
157 | |
---|
158 | typeof( wxyz[[iw, all, iy, all]] ) xz2; |
---|
159 | &xz2 = &wxyz[[iw, all, iy, all]]; |
---|
160 | assert(( xz2[[ix, iz]] == valExpected )); |
---|
161 | |
---|
162 | assert(( wxyz[[iw , all, iy , all]][[ix , iz ]] == valExpected )); |
---|
163 | assert(( wxyz[[iw-1, all, iy , all]][[ix , iz ]] != valExpected )); |
---|
164 | assert(( wxyz[[iw , all, iy-1, all]][[ix , iz ]] != valExpected )); |
---|
165 | assert(( wxyz[[iw , all, iy , all]][[ix-1, iz ]] != valExpected )); |
---|
166 | assert(( wxyz[[iw , all, iy , all]][[ix , iz-1]] != valExpected )); |
---|
167 | } |
---|
168 | { |
---|
169 | // order wzxy: w**z, xy |
---|
170 | assert( wxyz[iw][all][all][iz] [ix][iy] == valExpected ); |
---|
171 | |
---|
172 | // typeof( wxyz[[iw, all, all, iz]] ) xy1 = wxyz[[iw, all, all, iz]]; |
---|
173 | // assert(( xy1[[ix, iy]] == valExpected )); |
---|
174 | |
---|
175 | // typeof( wxyz[[iw, all, all, iz]] ) xy2; |
---|
176 | // &xy2 = &wxyz[[iw, all, all, iz]]; |
---|
177 | // assert(( xy2[[ix, iy]] == valExpected )); |
---|
178 | |
---|
179 | // assert(( wxyz[[iw , all, all, iz ]][[ix , iy ]] == valExpected )); |
---|
180 | // assert(( wxyz[[iw-1, all, all, iz ]][[ix , iy ]] != valExpected )); |
---|
181 | // assert(( wxyz[[iw , all, all, iz-1]][[ix , iy ]] != valExpected )); |
---|
182 | // assert(( wxyz[[iw , all, all, iz ]][[ix-1, iy ]] != valExpected )); |
---|
183 | // assert(( wxyz[[iw , all, all, iz ]][[ix , iy-1]] != valExpected )); |
---|
184 | } |
---|
185 | { |
---|
186 | // order xywz: *xy*, wz |
---|
187 | assert( wxyz[all][ix][iy][all] [iw][iz] == valExpected ); |
---|
188 | |
---|
189 | typeof( wxyz[[all, ix, iy, all]] ) wz1 = wxyz[[all, ix, iy, all]]; |
---|
190 | assert(( wz1[[iw, iz]] == valExpected )); |
---|
191 | |
---|
192 | assert(( wxyz[[all , ix, iy , all]][[iw , iz ]] == valExpected )); |
---|
193 | } |
---|
194 | { |
---|
195 | // order xzwy: *x*z, wy |
---|
196 | assert( wxyz[all][ix][all][iz] [iw][iy] == valExpected ); |
---|
197 | |
---|
198 | // assert(( wxyz[[all , ix , all , iz ]][[iw , iy ]] == valExpected )); |
---|
199 | } |
---|
200 | { |
---|
201 | // order yzwx: **yz, wx |
---|
202 | assert( wxyz[all][all][iy][iz] [iw][ix] == valExpected ); |
---|
203 | |
---|
204 | // assert(( wxyz[[all , all , iy , iz ]][[iw , ix ]] == valExpected )); |
---|
205 | } |
---|
206 | { |
---|
207 | // order xwzy: *x**, w*z, y |
---|
208 | assert( wxyz[all][ix][all][all] [iw][all][iz] [iy] == valExpected ); |
---|
209 | |
---|
210 | typeof( wxyz[all][ix][all][all] ) wyz_workaround = wxyz[[all , ix , all , all ]]; |
---|
211 | typeof( wyz_workaround[iw][all][iz] ) y_workaround = wyz_workaround[[iw , all , iz ]]; |
---|
212 | assert( y_workaround[iy] == valExpected ); |
---|
213 | |
---|
214 | // assert(( wxyz[[all , ix , all , all ]][[iw , all , iz ]][iy ] == valExpected )); |
---|
215 | } |
---|
216 | { |
---|
217 | // order ywzx: **y*, w*z, x |
---|
218 | } |
---|
219 | { |
---|
220 | // order zwyx: ***z, w*y, x |
---|
221 | } |
---|
222 | { |
---|
223 | // order yxzw: **y*, *xz, w |
---|
224 | } |
---|
225 | { |
---|
226 | // order zxyw: ***z, *xy, w |
---|
227 | } |
---|
228 | { |
---|
229 | // order zyxw: ***z, **y, *x, w |
---|
230 | } |
---|
231 | } |
---|
232 | |
---|
233 | forall( [Nw], [Nx], [Ny], [Nz] ) |
---|
234 | void test_numSubscrTypeCompatibility( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { |
---|
235 | |
---|
236 | array( float, Nw, Nx, Ny, Nz ) wxyz; |
---|
237 | fillHelloData(wxyz); |
---|
238 | |
---|
239 | valExpected = getMagicNumber(2, 3, 4, 5); |
---|
240 | assert(( wxyz [2] [3] [4] [5] == valExpected )); |
---|
241 | assert(( wxyz[[2, 3]][4] [5] == valExpected )); |
---|
242 | assert(( wxyz [2][[3, 4]][5] == valExpected )); |
---|
243 | assert(( wxyz [2] [3][[4, 5]] == valExpected )); |
---|
244 | assert(( wxyz[[2, 3, 4]][5] == valExpected )); |
---|
245 | assert(( wxyz [2][[3, 4, 5]] == valExpected )); |
---|
246 | assert(( wxyz[[2, 3, 4, 5]] == valExpected )); |
---|
247 | |
---|
248 | for ( i; z(Nw) ) { |
---|
249 | assert(( wxyz[[ i, 3, 4, 5 ]] == getMagicNumber(i, 3, 4, 5) )); |
---|
250 | } |
---|
251 | |
---|
252 | for ( i; z(Nx) ) { |
---|
253 | assert(( wxyz[[ 2, i, 4, 5 ]] == getMagicNumber(2, i, 4, 5) )); |
---|
254 | } |
---|
255 | |
---|
256 | for ( i; z(Ny) ) { |
---|
257 | assert(( wxyz[[ 2, 3, i, 5 ]] == getMagicNumber(2, 3, i, 5) )); |
---|
258 | } |
---|
259 | |
---|
260 | for ( i; z(Nz) ) { |
---|
261 | assert(( wxyz[[ 2, 3, 4, i ]] == getMagicNumber(2, 3, 4, i) )); |
---|
262 | } |
---|
263 | |
---|
264 | for ( i; z(Nw) ) { |
---|
265 | assert(( wxyz[[ i, all, 4, 5 ]][3] == getMagicNumber(i, 3, 4, 5) )); |
---|
266 | } |
---|
267 | |
---|
268 | for ( i; z(Nw) ) { |
---|
269 | assert(( wxyz[[ all, 3, 4, 5 ]][i] == getMagicNumber(i, 3, 4, 5) )); |
---|
270 | } |
---|
271 | } |
---|
272 | |
---|
273 | const size_t KW = 3, KX = 4, KY = 5, KZ = 6; |
---|
274 | |
---|
275 | int main() { |
---|
276 | |
---|
277 | test_inOrderSplits ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); |
---|
278 | test_skipSingle ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); |
---|
279 | test_latticeCoverage( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); |
---|
280 | test_numSubscrTypeCompatibility( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); |
---|
281 | printf("done\n"); |
---|
282 | } |
---|