1 | #include <containers/array.hfa>
|
---|
2 |
|
---|
3 | #include <assert.h>
|
---|
4 |
|
---|
5 | float getMagicNumber( ptrdiff_t w, ptrdiff_t x, ptrdiff_t y, ptrdiff_t z ) {
|
---|
6 |
|
---|
7 | assert( 0 <= w && w < 3 );
|
---|
8 | assert( 0 <= x && x < 4 );
|
---|
9 | assert( 0 <= y && y < 5 );
|
---|
10 | assert( 0 <= z && z < 6 );
|
---|
11 |
|
---|
12 | float ww = (2.0f \ w) / 1.0f;
|
---|
13 | float xx = (2.0f \ x) / 100.0f;
|
---|
14 | float yy = (2.0f \ y) / 10000.0f;
|
---|
15 | float Nz = (2.0f \ z) / 1000000.0f;
|
---|
16 |
|
---|
17 | return ww+xx+yy+Nz;
|
---|
18 | }
|
---|
19 |
|
---|
20 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
21 | void fillHelloData( array( float, Nw, Nx, Ny, Nz ) & wxyz ) {
|
---|
22 | for (w; z(Nw))
|
---|
23 | for (x; z(Nx))
|
---|
24 | for (y; z(Ny))
|
---|
25 | for (z; z(Nz))
|
---|
26 | wxyz[w][x][y][z] = getMagicNumber(w, x, y, z);
|
---|
27 | }
|
---|
28 |
|
---|
29 | // Tests all the ways to split dimensions into CFA-supported chunks, by the only order that C supports: coarsest to finest stride.
|
---|
30 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
31 | void test_inOrderSplits( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
32 |
|
---|
33 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
34 | fillHelloData(wxyz);
|
---|
35 |
|
---|
36 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
37 |
|
---|
38 | const float valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
39 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
40 |
|
---|
41 | // order wxyz, natural split (4-0 or 0-4, no intermediate to declare)
|
---|
42 |
|
---|
43 | assert(( wxyz[[iw, ix, iy, iz]] == valExpected ));
|
---|
44 |
|
---|
45 | // order wxyz, unnatural split 1-3 (three ways declared)
|
---|
46 |
|
---|
47 | typeof( wxyz[iw] ) xyz1 = wxyz[iw];
|
---|
48 | assert(( xyz1[[ix, iy, iz]] == valExpected ));
|
---|
49 |
|
---|
50 | typeof( wxyz[iw] ) xyz2;
|
---|
51 | &xyz2 = &wxyz[iw];
|
---|
52 | assert(( xyz2[[ix, iy, iz]] == valExpected ));
|
---|
53 |
|
---|
54 | assert(( wxyz[iw][[ix, iy, iz]] == valExpected ));
|
---|
55 |
|
---|
56 | // order wxyz, unnatural split 2-2 (three ways declared)
|
---|
57 |
|
---|
58 | typeof( wxyz[[iw, ix]] ) yz1 = wxyz[[iw,ix]];
|
---|
59 | assert(( yz1[[iy, iz]] == valExpected ));
|
---|
60 |
|
---|
61 | typeof( wxyz[[iw, ix]] ) yz2;
|
---|
62 | &yz2 = &wxyz[[iw, ix]];
|
---|
63 | assert(( yz2[[iy, iz]] == valExpected ));
|
---|
64 |
|
---|
65 | assert(( wxyz[[iw, ix]][[iy, iz]] == valExpected ));
|
---|
66 |
|
---|
67 | // order wxyz, unnatural split 3-1 (three ways declared)
|
---|
68 |
|
---|
69 | typeof( wxyz[[iw, ix, iy]] ) z1 = wxyz[[iw, ix, iy]];
|
---|
70 | assert(( z1[iz] == valExpected ));
|
---|
71 |
|
---|
72 | typeof( wxyz[[iw, ix, iy]] ) z2;
|
---|
73 | &z2 = &wxyz[[iw, ix, iy]];
|
---|
74 | assert(( z2[iz] == valExpected ));
|
---|
75 |
|
---|
76 | assert(( wxyz[[iw, ix, iy]][iz] == valExpected ));
|
---|
77 | }
|
---|
78 |
|
---|
79 | // All orders that skip a single dimension, each in its most natural split.
|
---|
80 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
81 | void test_skipSingle( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
82 |
|
---|
83 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
84 | fillHelloData(wxyz);
|
---|
85 |
|
---|
86 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
87 |
|
---|
88 | const float valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
89 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
90 |
|
---|
91 |
|
---|
92 | // order wxyz (no intermediates to declare)
|
---|
93 |
|
---|
94 | assert(( wxyz[[iw , ix , iy , iz ]] == valExpected ));
|
---|
95 | assert(( wxyz[[iw-1, ix , iy , iz ]] != valExpected ));
|
---|
96 |
|
---|
97 | // order xyzw: *xyz, w
|
---|
98 |
|
---|
99 | assert(( wxyz[[all , ix , iy , iz ]][iw ] == valExpected ));
|
---|
100 | assert(( wxyz[[all , ix-1, iy , iz ]][iw ] != valExpected ));
|
---|
101 | assert(( wxyz[[all , ix , iy , iz ]][iw-1] != valExpected ));
|
---|
102 |
|
---|
103 | // order wyzx: w*yz, x
|
---|
104 |
|
---|
105 | assert(( wxyz[[iw , all , iy , iz ]][ix ] == valExpected ));
|
---|
106 | assert(( wxyz[[iw , all , iy-1, iz ]][ix ] != valExpected ));
|
---|
107 | assert(( wxyz[[iw , all , iy , iz ]][ix-1] != valExpected ));
|
---|
108 |
|
---|
109 | // order wxzy: wx*z, y
|
---|
110 |
|
---|
111 | assert(( wxyz[[iw , ix , all , iz ]][iy ] == valExpected ));
|
---|
112 | assert(( wxyz[[iw , ix , all , iz-1]][iy ] != valExpected ));
|
---|
113 | assert(( wxyz[[iw , ix , all , iz ]][iy-1] != valExpected ));
|
---|
114 | }
|
---|
115 |
|
---|
116 |
|
---|
117 | // The comments specify a covering set of orders, each in its most natural split.
|
---|
118 | // Covering means that each edge on the lattice of dimesnions-provided is used.
|
---|
119 | // Natural split means the arity of every -[[-,...]] tuple equals the dimensionality of its "this" operand, then that the fewest "all" subscripts are given.
|
---|
120 | // The commented-out test code shows cases that don't work. We wish all the comment-coverd cases worked.
|
---|
121 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
122 | void test_latticeCoverage( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
123 |
|
---|
124 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
125 | fillHelloData(wxyz);
|
---|
126 |
|
---|
127 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
128 |
|
---|
129 | const float valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
130 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
131 |
|
---|
132 |
|
---|
133 | // order wxyz (no intermediates to declare)
|
---|
134 |
|
---|
135 | assert(( wxyz[[iw, ix, iy, iz]] == valExpected ));
|
---|
136 |
|
---|
137 | {
|
---|
138 | // order wyxz: w*y*, xz
|
---|
139 | assert( wxyz[iw][all][iy][all] [ix][iz] == valExpected );
|
---|
140 |
|
---|
141 | typeof( wxyz[[iw, all, iy, all]] ) xz1 = wxyz[[iw, all, iy, all]];
|
---|
142 | assert(( xz1[[ix, iz]] == valExpected ));
|
---|
143 |
|
---|
144 | typeof( wxyz[[iw, all, iy, all]] ) xz2;
|
---|
145 | &xz2 = &wxyz[[iw, all, iy, all]];
|
---|
146 | assert(( xz2[[ix, iz]] == valExpected ));
|
---|
147 |
|
---|
148 | assert(( wxyz[[iw , all, iy , all]][[ix , iz ]] == valExpected ));
|
---|
149 | assert(( wxyz[[iw-1, all, iy , all]][[ix , iz ]] != valExpected ));
|
---|
150 | assert(( wxyz[[iw , all, iy-1, all]][[ix , iz ]] != valExpected ));
|
---|
151 | assert(( wxyz[[iw , all, iy , all]][[ix-1, iz ]] != valExpected ));
|
---|
152 | assert(( wxyz[[iw , all, iy , all]][[ix , iz-1]] != valExpected ));
|
---|
153 | }
|
---|
154 | {
|
---|
155 | // order wzxy: w**z, xy
|
---|
156 | assert( wxyz[iw][all][all][iz] [ix][iy] == valExpected );
|
---|
157 |
|
---|
158 | // typeof( wxyz[[iw, all, all, iz]] ) xy1 = wxyz[[iw, all, all, iz]];
|
---|
159 | // assert(( xy1[[ix, iy]] == valExpected ));
|
---|
160 |
|
---|
161 | // typeof( wxyz[[iw, all, all, iz]] ) xy2;
|
---|
162 | // &xy2 = &wxyz[[iw, all, all, iz]];
|
---|
163 | // assert(( xy2[[ix, iy]] == valExpected ));
|
---|
164 |
|
---|
165 | // assert(( wxyz[[iw , all, all, iz ]][[ix , iy ]] == valExpected ));
|
---|
166 | // assert(( wxyz[[iw-1, all, all, iz ]][[ix , iy ]] != valExpected ));
|
---|
167 | // assert(( wxyz[[iw , all, all, iz-1]][[ix , iy ]] != valExpected ));
|
---|
168 | // assert(( wxyz[[iw , all, all, iz ]][[ix-1, iy ]] != valExpected ));
|
---|
169 | // assert(( wxyz[[iw , all, all, iz ]][[ix , iy-1]] != valExpected ));
|
---|
170 | }
|
---|
171 | {
|
---|
172 | // order xywz: *xy*, wz
|
---|
173 | assert( wxyz[all][ix][iy][all] [iw][iz] == valExpected );
|
---|
174 |
|
---|
175 | typeof( wxyz[[all, ix, iy, all]] ) wz1 = wxyz[[all, ix, iy, all]];
|
---|
176 | assert(( wz1[[iw, iz]] == valExpected ));
|
---|
177 |
|
---|
178 | assert(( wxyz[[all , ix, iy , all]][[iw , iz ]] == valExpected ));
|
---|
179 | }
|
---|
180 | {
|
---|
181 | // order xzwy: *x*z, wy
|
---|
182 | assert( wxyz[all][ix][all][iz] [iw][iy] == valExpected );
|
---|
183 |
|
---|
184 | // assert(( wxyz[[all , ix , all , iz ]][[iw , iy ]] == valExpected ));
|
---|
185 | }
|
---|
186 | {
|
---|
187 | // order yzwx: **yz, wx
|
---|
188 | assert( wxyz[all][all][iy][iz] [iw][ix] == valExpected );
|
---|
189 |
|
---|
190 | // assert(( wxyz[[all , all , iy , iz ]][[iw , ix ]] == valExpected ));
|
---|
191 | }
|
---|
192 | {
|
---|
193 | // order xwzy: *x**, w*z, y
|
---|
194 | assert( wxyz[all][ix][all][all] [iw][all][iz] [iy] == valExpected );
|
---|
195 |
|
---|
196 | typeof( wxyz[all][ix][all][all] ) wyz_workaround = wxyz[[all , ix , all , all ]];
|
---|
197 | typeof( wyz_workaround[iw][all][iz] ) y_workaround = wyz_workaround[[iw , all , iz ]];
|
---|
198 | assert( y_workaround[iy] == valExpected );
|
---|
199 |
|
---|
200 | // assert(( wxyz[[all , ix , all , all ]][[iw , all , iz ]][iy ] == valExpected ));
|
---|
201 | }
|
---|
202 | {
|
---|
203 | // order ywzx: **y*, w*z, x
|
---|
204 | }
|
---|
205 | {
|
---|
206 | // order zwyx: ***z, w*y, x
|
---|
207 | }
|
---|
208 | {
|
---|
209 | // order yxzw: **y*, *xz, w
|
---|
210 | }
|
---|
211 | {
|
---|
212 | // order zxyw: ***z, *xy, w
|
---|
213 | }
|
---|
214 | {
|
---|
215 | // order zyxw: ***z, **y, *x, w
|
---|
216 | }
|
---|
217 | }
|
---|
218 |
|
---|
219 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
220 | void test_numSubscrTypeCompatibility( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
221 |
|
---|
222 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
223 | fillHelloData(wxyz);
|
---|
224 |
|
---|
225 | const float valExpected = getMagicNumber(2, 3, 4, 5);
|
---|
226 | assert(( wxyz [2] [3] [4] [5] == valExpected ));
|
---|
227 | assert(( wxyz[[2, 3]][4] [5] == valExpected ));
|
---|
228 | assert(( wxyz [2][[3, 4]][5] == valExpected ));
|
---|
229 | assert(( wxyz [2] [3][[4, 5]] == valExpected ));
|
---|
230 | assert(( wxyz[[2, 3, 4]][5] == valExpected ));
|
---|
231 | assert(( wxyz [2][[3, 4, 5]] == valExpected ));
|
---|
232 | assert(( wxyz[[2, 3, 4, 5]] == valExpected ));
|
---|
233 |
|
---|
234 | for ( i; z(Nw) ) {
|
---|
235 | assert(( wxyz[[ i, 3, 4, 5 ]] == getMagicNumber(i, 3, 4, 5) ));
|
---|
236 | }
|
---|
237 |
|
---|
238 | for ( i; z(Nx) ) {
|
---|
239 | assert(( wxyz[[ 2, i, 4, 5 ]] == getMagicNumber(2, i, 4, 5) ));
|
---|
240 | }
|
---|
241 |
|
---|
242 | for ( i; z(Ny) ) {
|
---|
243 | assert(( wxyz[[ 2, 3, i, 5 ]] == getMagicNumber(2, 3, i, 5) ));
|
---|
244 | }
|
---|
245 |
|
---|
246 | for ( i; z(Nz) ) {
|
---|
247 | assert(( wxyz[[ 2, 3, 4, i ]] == getMagicNumber(2, 3, 4, i) ));
|
---|
248 | }
|
---|
249 |
|
---|
250 | for ( i; z(Nw) ) {
|
---|
251 | assert(( wxyz[[ i, all, 4, 5 ]][3] == getMagicNumber(i, 3, 4, 5) ));
|
---|
252 | }
|
---|
253 |
|
---|
254 | for ( i; z(Nw) ) {
|
---|
255 | assert(( wxyz[[ all, 3, 4, 5 ]][i] == getMagicNumber(i, 3, 4, 5) ));
|
---|
256 | }
|
---|
257 | }
|
---|
258 |
|
---|
259 | const size_t KW = 3, KX = 4, KY = 5, KZ = 6;
|
---|
260 |
|
---|
261 | int main() {
|
---|
262 |
|
---|
263 | test_inOrderSplits ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
264 | test_skipSingle ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
265 | test_latticeCoverage( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
266 | test_numSubscrTypeCompatibility( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
267 | printf("done\n");
|
---|
268 | }
|
---|