| 1 | #include <containers/array.hfa> | 
|---|
| 2 |  | 
|---|
| 3 | #include <assert.h> | 
|---|
| 4 |  | 
|---|
| 5 | float getMagicNumber( ptrdiff_t w, ptrdiff_t x, ptrdiff_t y, ptrdiff_t z ) { | 
|---|
| 6 |  | 
|---|
| 7 | assert( 0 <= w && w < 3 ); | 
|---|
| 8 | assert( 0 <= x && x < 4 ); | 
|---|
| 9 | assert( 0 <= y && y < 5 ); | 
|---|
| 10 | assert( 0 <= z && z < 6 ); | 
|---|
| 11 |  | 
|---|
| 12 | float ww = (2.0f \ w) / 1.0f; | 
|---|
| 13 | float xx = (2.0f \ x) / 100.0f; | 
|---|
| 14 | float yy = (2.0f \ y) / 10000.0f; | 
|---|
| 15 | float Nz = (2.0f \ z) / 1000000.0f; | 
|---|
| 16 |  | 
|---|
| 17 | return ww+xx+yy+Nz; | 
|---|
| 18 | } | 
|---|
| 19 |  | 
|---|
| 20 | forall( [Nw], [Nx], [Ny], [Nz] ) | 
|---|
| 21 | void fillHelloData( array( float, Nw, Nx, Ny, Nz ) & wxyz ) { | 
|---|
| 22 | for (w; Nw) | 
|---|
| 23 | for (x; Nx) | 
|---|
| 24 | for (y; Ny) | 
|---|
| 25 | for (z; Nz) | 
|---|
| 26 | wxyz[w][x][y][z] = getMagicNumber(w, x, y, z); | 
|---|
| 27 | } | 
|---|
| 28 |  | 
|---|
| 29 | // Work around a compiler optimization that can lead to false failures. | 
|---|
| 30 | // Think of `valExpected` as a constant local to each test function. | 
|---|
| 31 | // When implemented that way, an optimization, run on some hardware, makes | 
|---|
| 32 | // its value be off-by-a-little, compared with the values that have been | 
|---|
| 33 | // stored-loaded (in the array under test).  This effect has been observed | 
|---|
| 34 | // on x86-32 with -O3.  Declaring it as below forces the expected value | 
|---|
| 35 | // to be stored-loaded too, which keeps the (admittedly lazily done) | 
|---|
| 36 | // `assert(f1 == f2)` checks passing, when the intended <w,x,y,z> location | 
|---|
| 37 | // is recovered, which is the point of all these tests. | 
|---|
| 38 | volatile float valExpected = 0.0; | 
|---|
| 39 |  | 
|---|
| 40 | // Tests all the ways to split dimensions into CFA-supported chunks, by the only order that C supports: coarsest to finest stride. | 
|---|
| 41 | forall( [Nw], [Nx], [Ny], [Nz] ) | 
|---|
| 42 | void test_inOrderSplits( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { | 
|---|
| 43 |  | 
|---|
| 44 | array( float, Nw, Nx, Ny, Nz ) wxyz; | 
|---|
| 45 | fillHelloData(wxyz); | 
|---|
| 46 |  | 
|---|
| 47 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5; | 
|---|
| 48 |  | 
|---|
| 49 | valExpected = getMagicNumber(iw, ix, iy, iz); | 
|---|
| 50 | float valGot = wxyz[iw][ix][iy][iz]; | 
|---|
| 51 | assert( valGot == valExpected ); | 
|---|
| 52 |  | 
|---|
| 53 | // order wxyz, natural split (4-0 or 0-4, no intermediate to declare) | 
|---|
| 54 |  | 
|---|
| 55 | assert(( wxyz[iw, ix, iy, iz] == valExpected )); | 
|---|
| 56 |  | 
|---|
| 57 | // order wxyz, unnatural split 1-3  (three ways declared) | 
|---|
| 58 |  | 
|---|
| 59 | typeof( wxyz[iw] ) xyz1 = wxyz[iw]; | 
|---|
| 60 | assert(( xyz1[ix, iy, iz]  == valExpected )); | 
|---|
| 61 |  | 
|---|
| 62 | typeof( wxyz[iw] ) xyz2; | 
|---|
| 63 | &xyz2 = &wxyz[iw]; | 
|---|
| 64 | assert(( xyz2[ix, iy, iz] == valExpected )); | 
|---|
| 65 |  | 
|---|
| 66 | assert(( wxyz[iw][ix, iy, iz] == valExpected )); | 
|---|
| 67 |  | 
|---|
| 68 | // order wxyz, unnatural split 2-2  (three ways declared) | 
|---|
| 69 |  | 
|---|
| 70 | typeof( wxyz[iw, ix] ) yz1 = wxyz[iw,ix]; | 
|---|
| 71 | assert(( yz1[iy, iz]  == valExpected )); | 
|---|
| 72 |  | 
|---|
| 73 | typeof( wxyz[iw, ix] ) yz2; | 
|---|
| 74 | &yz2 = &wxyz[iw, ix]; | 
|---|
| 75 | assert(( yz2[iy, iz]  == valExpected )); | 
|---|
| 76 |  | 
|---|
| 77 | assert(( wxyz[iw, ix][iy, iz] == valExpected )); | 
|---|
| 78 |  | 
|---|
| 79 | // order wxyz, unnatural split 3-1  (three ways declared) | 
|---|
| 80 |  | 
|---|
| 81 | typeof( wxyz[iw, ix, iy] ) z1 = wxyz[iw, ix, iy]; | 
|---|
| 82 | assert(( z1[iz]  == valExpected )); | 
|---|
| 83 |  | 
|---|
| 84 | typeof( wxyz[iw, ix, iy] ) z2; | 
|---|
| 85 | &z2 = &wxyz[iw, ix, iy]; | 
|---|
| 86 | assert(( z2[iz] == valExpected )); | 
|---|
| 87 |  | 
|---|
| 88 | assert(( wxyz[iw, ix, iy][iz] == valExpected )); | 
|---|
| 89 | } | 
|---|
| 90 |  | 
|---|
| 91 | // All orders that skip a single dimension, each in its most natural split. | 
|---|
| 92 | forall( [Nw], [Nx], [Ny], [Nz] ) | 
|---|
| 93 | void test_skipSingle( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { | 
|---|
| 94 |  | 
|---|
| 95 | array( float, Nw, Nx, Ny, Nz ) wxyz; | 
|---|
| 96 | fillHelloData(wxyz); | 
|---|
| 97 |  | 
|---|
| 98 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5; | 
|---|
| 99 |  | 
|---|
| 100 | valExpected = getMagicNumber(iw, ix, iy, iz); | 
|---|
| 101 | assert( wxyz[iw][ix][iy][iz] == valExpected ); | 
|---|
| 102 |  | 
|---|
| 103 |  | 
|---|
| 104 | // order wxyz (no intermediates to declare) | 
|---|
| 105 |  | 
|---|
| 106 | assert(( wxyz[iw  , ix  , iy  , iz  ]       == valExpected )); | 
|---|
| 107 | assert(( wxyz[iw-1, ix  , iy  , iz  ]       != valExpected )); | 
|---|
| 108 |  | 
|---|
| 109 | // order xyzw: *xyz, w | 
|---|
| 110 |  | 
|---|
| 111 | assert(( wxyz[all , ix  , iy  , iz  ][iw  ] == valExpected )); | 
|---|
| 112 | assert(( wxyz[all , ix-1, iy  , iz  ][iw  ] != valExpected )); | 
|---|
| 113 | assert(( wxyz[all , ix  , iy  , iz  ][iw-1] != valExpected )); | 
|---|
| 114 |  | 
|---|
| 115 | // order wyzx: w*yz, x | 
|---|
| 116 |  | 
|---|
| 117 | assert(( wxyz[iw  , all , iy  , iz  ][ix  ] == valExpected )); | 
|---|
| 118 | assert(( wxyz[iw  , all , iy-1, iz  ][ix  ] != valExpected )); | 
|---|
| 119 | assert(( wxyz[iw  , all , iy  , iz  ][ix-1] != valExpected )); | 
|---|
| 120 |  | 
|---|
| 121 | // order wxzy: wx*z, y | 
|---|
| 122 | #if 0 | 
|---|
| 123 | // not working on 32-bit | 
|---|
| 124 | assert(( wxyz[iw  , ix  , all , iz  ][iy  ] == valExpected )); | 
|---|
| 125 | assert(( wxyz[iw  , ix  , all , iz-1][iy  ] != valExpected )); | 
|---|
| 126 | assert(( wxyz[iw  , ix  , all , iz  ][iy-1] != valExpected )); | 
|---|
| 127 | #endif | 
|---|
| 128 | } | 
|---|
| 129 |  | 
|---|
| 130 |  | 
|---|
| 131 | // The comments specify a covering set of orders, each in its most natural split. | 
|---|
| 132 | // Covering means that each edge on the lattice of dimesnions-provided is used. | 
|---|
| 133 | // Natural split means the arity of every -[-,...] tuple equals the dimensionality of its "this" operand, then that the fewest "all" subscripts are given. | 
|---|
| 134 | // The commented-out test code shows cases that don't work.  We wish all the comment-coverd cases worked. | 
|---|
| 135 | forall( [Nw], [Nx], [Ny], [Nz] ) | 
|---|
| 136 | void test_latticeCoverage( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { | 
|---|
| 137 |  | 
|---|
| 138 | array( float, Nw, Nx, Ny, Nz ) wxyz; | 
|---|
| 139 | fillHelloData(wxyz); | 
|---|
| 140 |  | 
|---|
| 141 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5; | 
|---|
| 142 |  | 
|---|
| 143 | valExpected = getMagicNumber(iw, ix, iy, iz); | 
|---|
| 144 | assert( wxyz[iw][ix][iy][iz] == valExpected ); | 
|---|
| 145 |  | 
|---|
| 146 |  | 
|---|
| 147 | // order wxyz (no intermediates to declare) | 
|---|
| 148 |  | 
|---|
| 149 | assert(( wxyz[iw, ix, iy, iz] == valExpected )); | 
|---|
| 150 |  | 
|---|
| 151 | { | 
|---|
| 152 | // order wyxz: w*y*, xz | 
|---|
| 153 | assert( wxyz[iw][all][iy][all] [ix][iz] == valExpected ); | 
|---|
| 154 |  | 
|---|
| 155 | typeof( wxyz[iw, all, iy, all] ) xz1 = wxyz[iw, all, iy, all]; | 
|---|
| 156 | assert(( xz1[ix, iz]  == valExpected )); | 
|---|
| 157 |  | 
|---|
| 158 | typeof( wxyz[iw, all, iy, all] ) xz2; | 
|---|
| 159 | &xz2 = &wxyz[iw, all, iy, all]; | 
|---|
| 160 | assert(( xz2[ix, iz]  == valExpected )); | 
|---|
| 161 |  | 
|---|
| 162 | assert(( wxyz[iw  , all, iy  , all][ix  , iz  ] == valExpected )); | 
|---|
| 163 | assert(( wxyz[iw-1, all, iy  , all][ix  , iz  ] != valExpected )); | 
|---|
| 164 | assert(( wxyz[iw  , all, iy-1, all][ix  , iz  ] != valExpected )); | 
|---|
| 165 | assert(( wxyz[iw  , all, iy  , all][ix-1, iz  ] != valExpected )); | 
|---|
| 166 | assert(( wxyz[iw  , all, iy  , all][ix  , iz-1] != valExpected )); | 
|---|
| 167 | } | 
|---|
| 168 | { | 
|---|
| 169 | // order wzxy: w**z, xy | 
|---|
| 170 | assert( wxyz[iw][all][all][iz] [ix][iy] == valExpected ); | 
|---|
| 171 |  | 
|---|
| 172 | // typeof( wxyz[iw, all, all, iz] ) xy1 = wxyz[iw, all, all, iz]; | 
|---|
| 173 | // assert(( xy1[ix, iy]  == valExpected )); | 
|---|
| 174 |  | 
|---|
| 175 | // typeof(  wxyz[iw, all, all, iz] ) xy2; | 
|---|
| 176 | // &xy2 = &wxyz[iw, all, all, iz]; | 
|---|
| 177 | // assert(( xy2[ix, iy]  == valExpected )); | 
|---|
| 178 |  | 
|---|
| 179 | // assert(( wxyz[iw  , all, all, iz  ][ix  , iy  ] == valExpected )); | 
|---|
| 180 | // assert(( wxyz[iw-1, all, all, iz  ][ix  , iy  ] != valExpected )); | 
|---|
| 181 | // assert(( wxyz[iw  , all, all, iz-1][ix  , iy  ] != valExpected )); | 
|---|
| 182 | // assert(( wxyz[iw  , all, all, iz  ][ix-1, iy  ] != valExpected )); | 
|---|
| 183 | // assert(( wxyz[iw  , all, all, iz  ][ix  , iy-1] != valExpected )); | 
|---|
| 184 | } | 
|---|
| 185 | { | 
|---|
| 186 | // order xywz: *xy*, wz | 
|---|
| 187 | assert( wxyz[all][ix][iy][all] [iw][iz] == valExpected ); | 
|---|
| 188 |  | 
|---|
| 189 | typeof( wxyz[all, ix, iy, all] ) wz1 = wxyz[all, ix, iy, all]; | 
|---|
| 190 | assert(( wz1[iw, iz]  == valExpected )); | 
|---|
| 191 |  | 
|---|
| 192 | assert(( wxyz[all  , ix, iy  , all][iw  , iz  ] == valExpected )); | 
|---|
| 193 | } | 
|---|
| 194 | { | 
|---|
| 195 | // order xzwy: *x*z, wy | 
|---|
| 196 | assert( wxyz[all][ix][all][iz] [iw][iy] == valExpected ); | 
|---|
| 197 |  | 
|---|
| 198 | // assert(( wxyz[all , ix  , all , iz  ][iw  , iy  ] == valExpected )); | 
|---|
| 199 | } | 
|---|
| 200 | { | 
|---|
| 201 | // order yzwx: **yz, wx | 
|---|
| 202 | assert( wxyz[all][all][iy][iz] [iw][ix] == valExpected ); | 
|---|
| 203 |  | 
|---|
| 204 | // assert(( wxyz[all , all , iy  , iz  ][iw  , ix  ] == valExpected )); | 
|---|
| 205 | } | 
|---|
| 206 | { | 
|---|
| 207 | // order xwzy: *x**, w*z, y | 
|---|
| 208 | assert( wxyz[all][ix][all][all] [iw][all][iz] [iy] == valExpected ); | 
|---|
| 209 |  | 
|---|
| 210 | typeof( wxyz[all][ix][all][all] ) wyz_workaround = wxyz[all , ix , all  , all  ]; | 
|---|
| 211 | typeof( wyz_workaround[iw][all][iz] ) y_workaround = wyz_workaround[iw , all , iz  ]; | 
|---|
| 212 | assert( y_workaround[iy] == valExpected ); | 
|---|
| 213 |  | 
|---|
| 214 | // assert(( wxyz[all , ix , all  , all  ][iw  , all , iz  ][iy  ] == valExpected )); | 
|---|
| 215 | } | 
|---|
| 216 | { | 
|---|
| 217 | // order ywzx: **y*, w*z, x | 
|---|
| 218 | } | 
|---|
| 219 | { | 
|---|
| 220 | // order zwyx: ***z, w*y, x | 
|---|
| 221 | } | 
|---|
| 222 | { | 
|---|
| 223 | // order yxzw: **y*, *xz, w | 
|---|
| 224 | } | 
|---|
| 225 | { | 
|---|
| 226 | // order zxyw: ***z, *xy, w | 
|---|
| 227 | } | 
|---|
| 228 | { | 
|---|
| 229 | // order zyxw: ***z, **y, *x, w | 
|---|
| 230 | } | 
|---|
| 231 | } | 
|---|
| 232 |  | 
|---|
| 233 | forall( [Nw], [Nx], [Ny], [Nz] ) | 
|---|
| 234 | void test_numSubscrTypeCompatibility( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) { | 
|---|
| 235 |  | 
|---|
| 236 | array( float, Nw, Nx, Ny, Nz ) wxyz; | 
|---|
| 237 | fillHelloData(wxyz); | 
|---|
| 238 |  | 
|---|
| 239 | valExpected = getMagicNumber(2, 3, 4, 5); | 
|---|
| 240 | assert(( wxyz [2] [3] [4] [5]  == valExpected )); | 
|---|
| 241 | assert(( wxyz[2,  3][4] [5]  == valExpected )); | 
|---|
| 242 | assert(( wxyz [2][3,  4][5]  == valExpected )); | 
|---|
| 243 | assert(( wxyz [2] [3][4,  5] == valExpected )); | 
|---|
| 244 | assert(( wxyz[2,  3,  4][5]  == valExpected )); | 
|---|
| 245 | assert(( wxyz [2][3,  4,  5] == valExpected )); | 
|---|
| 246 | assert(( wxyz[2,  3,  4,  5] == valExpected )); | 
|---|
| 247 |  | 
|---|
| 248 | for ( i; Nw ) { | 
|---|
| 249 | assert(( wxyz[ i, 3, 4, 5 ] == getMagicNumber(i, 3, 4, 5) )); | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | for ( i; Nx ) { | 
|---|
| 253 | assert(( wxyz[ 2, i, 4, 5 ] == getMagicNumber(2, i, 4, 5) )); | 
|---|
| 254 | } | 
|---|
| 255 |  | 
|---|
| 256 | for ( i; Ny ) { | 
|---|
| 257 | assert(( wxyz[ 2, 3, i, 5 ] == getMagicNumber(2, 3, i, 5) )); | 
|---|
| 258 | } | 
|---|
| 259 |  | 
|---|
| 260 | for ( i; Nz ) { | 
|---|
| 261 | assert(( wxyz[ 2, 3, 4, i ] == getMagicNumber(2, 3, 4, i) )); | 
|---|
| 262 | } | 
|---|
| 263 |  | 
|---|
| 264 | for ( i; Nw ) { | 
|---|
| 265 | assert(( wxyz[ i, all, 4, 5 ][3] == getMagicNumber(i, 3, 4, 5) )); | 
|---|
| 266 | } | 
|---|
| 267 |  | 
|---|
| 268 | for ( i; Nw ) { | 
|---|
| 269 | assert(( wxyz[ all, 3, 4, 5 ][i] == getMagicNumber(i, 3, 4, 5) )); | 
|---|
| 270 | } | 
|---|
| 271 | } | 
|---|
| 272 |  | 
|---|
| 273 | const size_t  KW = 3,  KX = 4,  KY = 5,  KZ = 6; | 
|---|
| 274 |  | 
|---|
| 275 | int main() { | 
|---|
| 276 |  | 
|---|
| 277 | test_inOrderSplits  ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); | 
|---|
| 278 | test_skipSingle     ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); | 
|---|
| 279 | test_latticeCoverage( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); | 
|---|
| 280 | test_numSubscrTypeCompatibility( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) ); | 
|---|
| 281 | printf("done\n"); | 
|---|
| 282 | } | 
|---|