1 | #include <containers/array.hfa>
|
---|
2 |
|
---|
3 | #include <assert.h>
|
---|
4 |
|
---|
5 | float getMagicNumber( ptrdiff_t w, ptrdiff_t x, ptrdiff_t y, ptrdiff_t z ) {
|
---|
6 |
|
---|
7 | assert( 0 <= w && w < 3 );
|
---|
8 | assert( 0 <= x && x < 4 );
|
---|
9 | assert( 0 <= y && y < 5 );
|
---|
10 | assert( 0 <= z && z < 6 );
|
---|
11 |
|
---|
12 | float ww = (2.0f \ w) / 1.0f;
|
---|
13 | float xx = (2.0f \ x) / 100.0f;
|
---|
14 | float yy = (2.0f \ y) / 10000.0f;
|
---|
15 | float Nz = (2.0f \ z) / 1000000.0f;
|
---|
16 |
|
---|
17 | return ww+xx+yy+Nz;
|
---|
18 | }
|
---|
19 |
|
---|
20 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
21 | void fillHelloData( array( float, Nw, Nx, Ny, Nz ) & wxyz ) {
|
---|
22 | for (w; Nw)
|
---|
23 | for (x; Nx)
|
---|
24 | for (y; Ny)
|
---|
25 | for (z; Nz)
|
---|
26 | wxyz[w][x][y][z] = getMagicNumber(w, x, y, z);
|
---|
27 | }
|
---|
28 |
|
---|
29 | // Work around a compiler optimization that can lead to false failures.
|
---|
30 | // Think of `valExpected` as a constant local to each test function.
|
---|
31 | // When implemented that way, an optimization, run on some hardware, makes
|
---|
32 | // its value be off-by-a-little, compared with the values that have been
|
---|
33 | // stored-loaded (in the array under test). This effect has been observed
|
---|
34 | // on x86-32 with -O3. Declaring it as below forces the expected value
|
---|
35 | // to be stored-loaded too, which keeps the (admittedly lazily done)
|
---|
36 | // `assert(f1 == f2)` checks passing, when the intended <w,x,y,z> location
|
---|
37 | // is recovered, which is the point of all these tests.
|
---|
38 | volatile float valExpected = 0.0;
|
---|
39 |
|
---|
40 | // Tests all the ways to split dimensions into CFA-supported chunks, by the only order that C supports: coarsest to finest stride.
|
---|
41 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
42 | void test_inOrderSplits( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
43 |
|
---|
44 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
45 | fillHelloData(wxyz);
|
---|
46 |
|
---|
47 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
48 |
|
---|
49 | valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
50 | float valGot = wxyz[iw][ix][iy][iz];
|
---|
51 | assert( valGot == valExpected );
|
---|
52 |
|
---|
53 | // order wxyz, natural split (4-0 or 0-4, no intermediate to declare)
|
---|
54 |
|
---|
55 | assert(( wxyz[iw, ix, iy, iz] == valExpected ));
|
---|
56 |
|
---|
57 | // order wxyz, unnatural split 1-3 (three ways declared)
|
---|
58 |
|
---|
59 | typeof( wxyz[iw] ) xyz1 = wxyz[iw];
|
---|
60 | assert(( xyz1[ix, iy, iz] == valExpected ));
|
---|
61 |
|
---|
62 | typeof( wxyz[iw] ) xyz2;
|
---|
63 | &xyz2 = &wxyz[iw];
|
---|
64 | assert(( xyz2[ix, iy, iz] == valExpected ));
|
---|
65 |
|
---|
66 | assert(( wxyz[iw][ix, iy, iz] == valExpected ));
|
---|
67 |
|
---|
68 | // order wxyz, unnatural split 2-2 (three ways declared)
|
---|
69 |
|
---|
70 | typeof( wxyz[iw, ix] ) yz1 = wxyz[iw,ix];
|
---|
71 | assert(( yz1[iy, iz] == valExpected ));
|
---|
72 |
|
---|
73 | typeof( wxyz[iw, ix] ) yz2;
|
---|
74 | &yz2 = &wxyz[iw, ix];
|
---|
75 | assert(( yz2[iy, iz] == valExpected ));
|
---|
76 |
|
---|
77 | assert(( wxyz[iw, ix][iy, iz] == valExpected ));
|
---|
78 |
|
---|
79 | // order wxyz, unnatural split 3-1 (three ways declared)
|
---|
80 |
|
---|
81 | typeof( wxyz[iw, ix, iy] ) z1 = wxyz[iw, ix, iy];
|
---|
82 | assert(( z1[iz] == valExpected ));
|
---|
83 |
|
---|
84 | typeof( wxyz[iw, ix, iy] ) z2;
|
---|
85 | &z2 = &wxyz[iw, ix, iy];
|
---|
86 | assert(( z2[iz] == valExpected ));
|
---|
87 |
|
---|
88 | assert(( wxyz[iw, ix, iy][iz] == valExpected ));
|
---|
89 | }
|
---|
90 |
|
---|
91 | // All orders that skip a single dimension, each in its most natural split.
|
---|
92 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
93 | void test_skipSingle( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
94 |
|
---|
95 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
96 | fillHelloData(wxyz);
|
---|
97 |
|
---|
98 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
99 |
|
---|
100 | valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
101 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
102 |
|
---|
103 |
|
---|
104 | // order wxyz (no intermediates to declare)
|
---|
105 |
|
---|
106 | assert(( wxyz[iw , ix , iy , iz ] == valExpected ));
|
---|
107 | assert(( wxyz[iw-1, ix , iy , iz ] != valExpected ));
|
---|
108 |
|
---|
109 | // order xyzw: *xyz, w
|
---|
110 |
|
---|
111 | assert(( wxyz[all , ix , iy , iz ][iw ] == valExpected ));
|
---|
112 | assert(( wxyz[all , ix-1, iy , iz ][iw ] != valExpected ));
|
---|
113 | assert(( wxyz[all , ix , iy , iz ][iw-1] != valExpected ));
|
---|
114 |
|
---|
115 | // order wyzx: w*yz, x
|
---|
116 |
|
---|
117 | assert(( wxyz[iw , all , iy , iz ][ix ] == valExpected ));
|
---|
118 | assert(( wxyz[iw , all , iy-1, iz ][ix ] != valExpected ));
|
---|
119 | assert(( wxyz[iw , all , iy , iz ][ix-1] != valExpected ));
|
---|
120 |
|
---|
121 | // order wxzy: wx*z, y
|
---|
122 | #if 0
|
---|
123 | // not working on 32-bit
|
---|
124 | assert(( wxyz[iw , ix , all , iz ][iy ] == valExpected ));
|
---|
125 | assert(( wxyz[iw , ix , all , iz-1][iy ] != valExpected ));
|
---|
126 | assert(( wxyz[iw , ix , all , iz ][iy-1] != valExpected ));
|
---|
127 | #endif
|
---|
128 | }
|
---|
129 |
|
---|
130 |
|
---|
131 | // The comments specify a covering set of orders, each in its most natural split.
|
---|
132 | // Covering means that each edge on the lattice of dimesnions-provided is used.
|
---|
133 | // Natural split means the arity of every -[-,...] tuple equals the dimensionality of its "this" operand, then that the fewest "all" subscripts are given.
|
---|
134 | // The commented-out test code shows cases that don't work. We wish all the comment-coverd cases worked.
|
---|
135 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
136 | void test_latticeCoverage( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
137 |
|
---|
138 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
139 | fillHelloData(wxyz);
|
---|
140 |
|
---|
141 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
142 |
|
---|
143 | valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
144 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
145 |
|
---|
146 |
|
---|
147 | // order wxyz (no intermediates to declare)
|
---|
148 |
|
---|
149 | assert(( wxyz[iw, ix, iy, iz] == valExpected ));
|
---|
150 |
|
---|
151 | {
|
---|
152 | // order wyxz: w*y*, xz
|
---|
153 | assert( wxyz[iw][all][iy][all] [ix][iz] == valExpected );
|
---|
154 |
|
---|
155 | typeof( wxyz[iw, all, iy, all] ) xz1 = wxyz[iw, all, iy, all];
|
---|
156 | assert(( xz1[ix, iz] == valExpected ));
|
---|
157 |
|
---|
158 | typeof( wxyz[iw, all, iy, all] ) xz2;
|
---|
159 | &xz2 = &wxyz[iw, all, iy, all];
|
---|
160 | assert(( xz2[ix, iz] == valExpected ));
|
---|
161 |
|
---|
162 | assert(( wxyz[iw , all, iy , all][ix , iz ] == valExpected ));
|
---|
163 | assert(( wxyz[iw-1, all, iy , all][ix , iz ] != valExpected ));
|
---|
164 | assert(( wxyz[iw , all, iy-1, all][ix , iz ] != valExpected ));
|
---|
165 | assert(( wxyz[iw , all, iy , all][ix-1, iz ] != valExpected ));
|
---|
166 | assert(( wxyz[iw , all, iy , all][ix , iz-1] != valExpected ));
|
---|
167 | }
|
---|
168 | {
|
---|
169 | // order wzxy: w**z, xy
|
---|
170 | assert( wxyz[iw][all][all][iz] [ix][iy] == valExpected );
|
---|
171 |
|
---|
172 | // typeof( wxyz[iw, all, all, iz] ) xy1 = wxyz[iw, all, all, iz];
|
---|
173 | // assert(( xy1[ix, iy] == valExpected ));
|
---|
174 |
|
---|
175 | // typeof( wxyz[iw, all, all, iz] ) xy2;
|
---|
176 | // &xy2 = &wxyz[iw, all, all, iz];
|
---|
177 | // assert(( xy2[ix, iy] == valExpected ));
|
---|
178 |
|
---|
179 | // assert(( wxyz[iw , all, all, iz ][ix , iy ] == valExpected ));
|
---|
180 | // assert(( wxyz[iw-1, all, all, iz ][ix , iy ] != valExpected ));
|
---|
181 | // assert(( wxyz[iw , all, all, iz-1][ix , iy ] != valExpected ));
|
---|
182 | // assert(( wxyz[iw , all, all, iz ][ix-1, iy ] != valExpected ));
|
---|
183 | // assert(( wxyz[iw , all, all, iz ][ix , iy-1] != valExpected ));
|
---|
184 | }
|
---|
185 | {
|
---|
186 | // order xywz: *xy*, wz
|
---|
187 | assert( wxyz[all][ix][iy][all] [iw][iz] == valExpected );
|
---|
188 |
|
---|
189 | typeof( wxyz[all, ix, iy, all] ) wz1 = wxyz[all, ix, iy, all];
|
---|
190 | assert(( wz1[iw, iz] == valExpected ));
|
---|
191 |
|
---|
192 | assert(( wxyz[all , ix, iy , all][iw , iz ] == valExpected ));
|
---|
193 | }
|
---|
194 | {
|
---|
195 | // order xzwy: *x*z, wy
|
---|
196 | assert( wxyz[all][ix][all][iz] [iw][iy] == valExpected );
|
---|
197 |
|
---|
198 | // assert(( wxyz[all , ix , all , iz ][iw , iy ] == valExpected ));
|
---|
199 | }
|
---|
200 | {
|
---|
201 | // order yzwx: **yz, wx
|
---|
202 | assert( wxyz[all][all][iy][iz] [iw][ix] == valExpected );
|
---|
203 |
|
---|
204 | // assert(( wxyz[all , all , iy , iz ][iw , ix ] == valExpected ));
|
---|
205 | }
|
---|
206 | {
|
---|
207 | // order xwzy: *x**, w*z, y
|
---|
208 | assert( wxyz[all][ix][all][all] [iw][all][iz] [iy] == valExpected );
|
---|
209 |
|
---|
210 | typeof( wxyz[all][ix][all][all] ) wyz_workaround = wxyz[all , ix , all , all ];
|
---|
211 | typeof( wyz_workaround[iw][all][iz] ) y_workaround = wyz_workaround[iw , all , iz ];
|
---|
212 | assert( y_workaround[iy] == valExpected );
|
---|
213 |
|
---|
214 | // assert(( wxyz[all , ix , all , all ][iw , all , iz ][iy ] == valExpected ));
|
---|
215 | }
|
---|
216 | {
|
---|
217 | // order ywzx: **y*, w*z, x
|
---|
218 | }
|
---|
219 | {
|
---|
220 | // order zwyx: ***z, w*y, x
|
---|
221 | }
|
---|
222 | {
|
---|
223 | // order yxzw: **y*, *xz, w
|
---|
224 | }
|
---|
225 | {
|
---|
226 | // order zxyw: ***z, *xy, w
|
---|
227 | }
|
---|
228 | {
|
---|
229 | // order zyxw: ***z, **y, *x, w
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
234 | void test_numSubscrTypeCompatibility( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
235 |
|
---|
236 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
237 | fillHelloData(wxyz);
|
---|
238 |
|
---|
239 | valExpected = getMagicNumber(2, 3, 4, 5);
|
---|
240 | assert(( wxyz [2] [3] [4] [5] == valExpected ));
|
---|
241 | assert(( wxyz[2, 3][4] [5] == valExpected ));
|
---|
242 | assert(( wxyz [2][3, 4][5] == valExpected ));
|
---|
243 | assert(( wxyz [2] [3][4, 5] == valExpected ));
|
---|
244 | assert(( wxyz[2, 3, 4][5] == valExpected ));
|
---|
245 | assert(( wxyz [2][3, 4, 5] == valExpected ));
|
---|
246 | assert(( wxyz[2, 3, 4, 5] == valExpected ));
|
---|
247 |
|
---|
248 | for ( i; Nw ) {
|
---|
249 | assert(( wxyz[ i, 3, 4, 5 ] == getMagicNumber(i, 3, 4, 5) ));
|
---|
250 | }
|
---|
251 |
|
---|
252 | for ( i; Nx ) {
|
---|
253 | assert(( wxyz[ 2, i, 4, 5 ] == getMagicNumber(2, i, 4, 5) ));
|
---|
254 | }
|
---|
255 |
|
---|
256 | for ( i; Ny ) {
|
---|
257 | assert(( wxyz[ 2, 3, i, 5 ] == getMagicNumber(2, 3, i, 5) ));
|
---|
258 | }
|
---|
259 |
|
---|
260 | for ( i; Nz ) {
|
---|
261 | assert(( wxyz[ 2, 3, 4, i ] == getMagicNumber(2, 3, 4, i) ));
|
---|
262 | }
|
---|
263 |
|
---|
264 | for ( i; Nw ) {
|
---|
265 | assert(( wxyz[ i, all, 4, 5 ][3] == getMagicNumber(i, 3, 4, 5) ));
|
---|
266 | }
|
---|
267 |
|
---|
268 | for ( i; Nw ) {
|
---|
269 | assert(( wxyz[ all, 3, 4, 5 ][i] == getMagicNumber(i, 3, 4, 5) ));
|
---|
270 | }
|
---|
271 | }
|
---|
272 |
|
---|
273 | const size_t KW = 3, KX = 4, KY = 5, KZ = 6;
|
---|
274 |
|
---|
275 | int main() {
|
---|
276 |
|
---|
277 | test_inOrderSplits ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
278 | test_skipSingle ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
279 | test_latticeCoverage( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
280 | test_numSubscrTypeCompatibility( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
281 | printf("done\n");
|
---|
282 | }
|
---|