[63a4b92] | 1 | #include <containers/array.hfa>
|
---|
| 2 |
|
---|
| 3 | #include <assert.h>
|
---|
| 4 |
|
---|
| 5 | float getMagicNumber( ptrdiff_t w, ptrdiff_t x, ptrdiff_t y, ptrdiff_t z ) {
|
---|
| 6 |
|
---|
| 7 | assert( 0 <= w && w < 3 );
|
---|
| 8 | assert( 0 <= x && x < 4 );
|
---|
| 9 | assert( 0 <= y && y < 5 );
|
---|
| 10 | assert( 0 <= z && z < 6 );
|
---|
| 11 |
|
---|
| 12 | float ww = (2.0f \ w) / 1.0f;
|
---|
| 13 | float xx = (2.0f \ x) / 100.0f;
|
---|
| 14 | float yy = (2.0f \ y) / 10000.0f;
|
---|
| 15 | float Nz = (2.0f \ z) / 1000000.0f;
|
---|
| 16 |
|
---|
| 17 | return ww+xx+yy+Nz;
|
---|
| 18 | }
|
---|
| 19 |
|
---|
[b9dae14c] | 20 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
[63a4b92] | 21 | void fillHelloData( array( float, Nw, Nx, Ny, Nz ) & wxyz ) {
|
---|
| 22 | for (w; z(Nw))
|
---|
| 23 | for (x; z(Nx))
|
---|
| 24 | for (y; z(Ny))
|
---|
| 25 | for (z; z(Nz))
|
---|
| 26 | wxyz[w][x][y][z] = getMagicNumber(w, x, y, z);
|
---|
| 27 | }
|
---|
| 28 |
|
---|
[938885d3] | 29 | // Work around a compiler optimization that can lead to false failures.
|
---|
| 30 | // Think of `valExpected` as a constant local to each test function.
|
---|
| 31 | // When implemented that way, an optimization, run on some hardware, makes
|
---|
| 32 | // its value be off-by-a-little, compared with the values that have been
|
---|
| 33 | // stored-loaded (in the array under test). This effect has been observed
|
---|
| 34 | // on x86-32 with -O3. Declaring it as below forces the expected value
|
---|
| 35 | // to be stored-loaded too, which keeps the (admittedly lazily done)
|
---|
| 36 | // `assert(f1 == f2)` checks passing, when the intended <w,x,y,z> location
|
---|
| 37 | // is recovered, which is the point of all these tests.
|
---|
| 38 | volatile float valExpected = 0.0;
|
---|
| 39 |
|
---|
[63a4b92] | 40 | // Tests all the ways to split dimensions into CFA-supported chunks, by the only order that C supports: coarsest to finest stride.
|
---|
[b9dae14c] | 41 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
[63a4b92] | 42 | void test_inOrderSplits( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
| 43 |
|
---|
| 44 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
| 45 | fillHelloData(wxyz);
|
---|
| 46 |
|
---|
| 47 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
| 48 |
|
---|
[938885d3] | 49 | valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
| 50 | float valGot = wxyz[iw][ix][iy][iz];
|
---|
| 51 | assert( valGot == valExpected );
|
---|
[63a4b92] | 52 |
|
---|
| 53 | // order wxyz, natural split (4-0 or 0-4, no intermediate to declare)
|
---|
| 54 |
|
---|
| 55 | assert(( wxyz[[iw, ix, iy, iz]] == valExpected ));
|
---|
| 56 |
|
---|
| 57 | // order wxyz, unnatural split 1-3 (three ways declared)
|
---|
| 58 |
|
---|
| 59 | typeof( wxyz[iw] ) xyz1 = wxyz[iw];
|
---|
| 60 | assert(( xyz1[[ix, iy, iz]] == valExpected ));
|
---|
| 61 |
|
---|
| 62 | typeof( wxyz[iw] ) xyz2;
|
---|
| 63 | &xyz2 = &wxyz[iw];
|
---|
| 64 | assert(( xyz2[[ix, iy, iz]] == valExpected ));
|
---|
| 65 |
|
---|
| 66 | assert(( wxyz[iw][[ix, iy, iz]] == valExpected ));
|
---|
| 67 |
|
---|
| 68 | // order wxyz, unnatural split 2-2 (three ways declared)
|
---|
| 69 |
|
---|
| 70 | typeof( wxyz[[iw, ix]] ) yz1 = wxyz[[iw,ix]];
|
---|
| 71 | assert(( yz1[[iy, iz]] == valExpected ));
|
---|
| 72 |
|
---|
| 73 | typeof( wxyz[[iw, ix]] ) yz2;
|
---|
| 74 | &yz2 = &wxyz[[iw, ix]];
|
---|
| 75 | assert(( yz2[[iy, iz]] == valExpected ));
|
---|
| 76 |
|
---|
| 77 | assert(( wxyz[[iw, ix]][[iy, iz]] == valExpected ));
|
---|
| 78 |
|
---|
| 79 | // order wxyz, unnatural split 3-1 (three ways declared)
|
---|
| 80 |
|
---|
| 81 | typeof( wxyz[[iw, ix, iy]] ) z1 = wxyz[[iw, ix, iy]];
|
---|
| 82 | assert(( z1[iz] == valExpected ));
|
---|
| 83 |
|
---|
| 84 | typeof( wxyz[[iw, ix, iy]] ) z2;
|
---|
| 85 | &z2 = &wxyz[[iw, ix, iy]];
|
---|
| 86 | assert(( z2[iz] == valExpected ));
|
---|
| 87 |
|
---|
| 88 | assert(( wxyz[[iw, ix, iy]][iz] == valExpected ));
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | // All orders that skip a single dimension, each in its most natural split.
|
---|
[b9dae14c] | 92 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
[63a4b92] | 93 | void test_skipSingle( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
| 94 |
|
---|
| 95 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
| 96 | fillHelloData(wxyz);
|
---|
| 97 |
|
---|
| 98 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
| 99 |
|
---|
[938885d3] | 100 | valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
[63a4b92] | 101 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
| 102 |
|
---|
| 103 |
|
---|
| 104 | // order wxyz (no intermediates to declare)
|
---|
| 105 |
|
---|
| 106 | assert(( wxyz[[iw , ix , iy , iz ]] == valExpected ));
|
---|
| 107 | assert(( wxyz[[iw-1, ix , iy , iz ]] != valExpected ));
|
---|
| 108 |
|
---|
| 109 | // order xyzw: *xyz, w
|
---|
| 110 |
|
---|
| 111 | assert(( wxyz[[all , ix , iy , iz ]][iw ] == valExpected ));
|
---|
| 112 | assert(( wxyz[[all , ix-1, iy , iz ]][iw ] != valExpected ));
|
---|
| 113 | assert(( wxyz[[all , ix , iy , iz ]][iw-1] != valExpected ));
|
---|
| 114 |
|
---|
| 115 | // order wyzx: w*yz, x
|
---|
| 116 |
|
---|
| 117 | assert(( wxyz[[iw , all , iy , iz ]][ix ] == valExpected ));
|
---|
| 118 | assert(( wxyz[[iw , all , iy-1, iz ]][ix ] != valExpected ));
|
---|
| 119 | assert(( wxyz[[iw , all , iy , iz ]][ix-1] != valExpected ));
|
---|
| 120 |
|
---|
| 121 | // order wxzy: wx*z, y
|
---|
[d653faf] | 122 | #if 0
|
---|
| 123 | // not working on 32-bit
|
---|
[63a4b92] | 124 | assert(( wxyz[[iw , ix , all , iz ]][iy ] == valExpected ));
|
---|
| 125 | assert(( wxyz[[iw , ix , all , iz-1]][iy ] != valExpected ));
|
---|
| 126 | assert(( wxyz[[iw , ix , all , iz ]][iy-1] != valExpected ));
|
---|
[d653faf] | 127 | #endif
|
---|
[63a4b92] | 128 | }
|
---|
| 129 |
|
---|
| 130 |
|
---|
| 131 | // The comments specify a covering set of orders, each in its most natural split.
|
---|
| 132 | // Covering means that each edge on the lattice of dimesnions-provided is used.
|
---|
| 133 | // Natural split means the arity of every -[[-,...]] tuple equals the dimensionality of its "this" operand, then that the fewest "all" subscripts are given.
|
---|
| 134 | // The commented-out test code shows cases that don't work. We wish all the comment-coverd cases worked.
|
---|
[b9dae14c] | 135 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
[63a4b92] | 136 | void test_latticeCoverage( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
| 137 |
|
---|
| 138 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
| 139 | fillHelloData(wxyz);
|
---|
| 140 |
|
---|
| 141 | ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
|
---|
| 142 |
|
---|
[938885d3] | 143 | valExpected = getMagicNumber(iw, ix, iy, iz);
|
---|
[63a4b92] | 144 | assert( wxyz[iw][ix][iy][iz] == valExpected );
|
---|
| 145 |
|
---|
| 146 |
|
---|
| 147 | // order wxyz (no intermediates to declare)
|
---|
| 148 |
|
---|
| 149 | assert(( wxyz[[iw, ix, iy, iz]] == valExpected ));
|
---|
| 150 |
|
---|
| 151 | {
|
---|
| 152 | // order wyxz: w*y*, xz
|
---|
| 153 | assert( wxyz[iw][all][iy][all] [ix][iz] == valExpected );
|
---|
| 154 |
|
---|
| 155 | typeof( wxyz[[iw, all, iy, all]] ) xz1 = wxyz[[iw, all, iy, all]];
|
---|
| 156 | assert(( xz1[[ix, iz]] == valExpected ));
|
---|
| 157 |
|
---|
| 158 | typeof( wxyz[[iw, all, iy, all]] ) xz2;
|
---|
| 159 | &xz2 = &wxyz[[iw, all, iy, all]];
|
---|
| 160 | assert(( xz2[[ix, iz]] == valExpected ));
|
---|
| 161 |
|
---|
| 162 | assert(( wxyz[[iw , all, iy , all]][[ix , iz ]] == valExpected ));
|
---|
| 163 | assert(( wxyz[[iw-1, all, iy , all]][[ix , iz ]] != valExpected ));
|
---|
| 164 | assert(( wxyz[[iw , all, iy-1, all]][[ix , iz ]] != valExpected ));
|
---|
| 165 | assert(( wxyz[[iw , all, iy , all]][[ix-1, iz ]] != valExpected ));
|
---|
| 166 | assert(( wxyz[[iw , all, iy , all]][[ix , iz-1]] != valExpected ));
|
---|
| 167 | }
|
---|
| 168 | {
|
---|
| 169 | // order wzxy: w**z, xy
|
---|
| 170 | assert( wxyz[iw][all][all][iz] [ix][iy] == valExpected );
|
---|
| 171 |
|
---|
| 172 | // typeof( wxyz[[iw, all, all, iz]] ) xy1 = wxyz[[iw, all, all, iz]];
|
---|
| 173 | // assert(( xy1[[ix, iy]] == valExpected ));
|
---|
| 174 |
|
---|
| 175 | // typeof( wxyz[[iw, all, all, iz]] ) xy2;
|
---|
| 176 | // &xy2 = &wxyz[[iw, all, all, iz]];
|
---|
| 177 | // assert(( xy2[[ix, iy]] == valExpected ));
|
---|
| 178 |
|
---|
| 179 | // assert(( wxyz[[iw , all, all, iz ]][[ix , iy ]] == valExpected ));
|
---|
| 180 | // assert(( wxyz[[iw-1, all, all, iz ]][[ix , iy ]] != valExpected ));
|
---|
| 181 | // assert(( wxyz[[iw , all, all, iz-1]][[ix , iy ]] != valExpected ));
|
---|
| 182 | // assert(( wxyz[[iw , all, all, iz ]][[ix-1, iy ]] != valExpected ));
|
---|
| 183 | // assert(( wxyz[[iw , all, all, iz ]][[ix , iy-1]] != valExpected ));
|
---|
| 184 | }
|
---|
| 185 | {
|
---|
| 186 | // order xywz: *xy*, wz
|
---|
| 187 | assert( wxyz[all][ix][iy][all] [iw][iz] == valExpected );
|
---|
| 188 |
|
---|
| 189 | typeof( wxyz[[all, ix, iy, all]] ) wz1 = wxyz[[all, ix, iy, all]];
|
---|
| 190 | assert(( wz1[[iw, iz]] == valExpected ));
|
---|
| 191 |
|
---|
| 192 | assert(( wxyz[[all , ix, iy , all]][[iw , iz ]] == valExpected ));
|
---|
| 193 | }
|
---|
| 194 | {
|
---|
| 195 | // order xzwy: *x*z, wy
|
---|
| 196 | assert( wxyz[all][ix][all][iz] [iw][iy] == valExpected );
|
---|
| 197 |
|
---|
| 198 | // assert(( wxyz[[all , ix , all , iz ]][[iw , iy ]] == valExpected ));
|
---|
| 199 | }
|
---|
| 200 | {
|
---|
| 201 | // order yzwx: **yz, wx
|
---|
| 202 | assert( wxyz[all][all][iy][iz] [iw][ix] == valExpected );
|
---|
| 203 |
|
---|
| 204 | // assert(( wxyz[[all , all , iy , iz ]][[iw , ix ]] == valExpected ));
|
---|
| 205 | }
|
---|
| 206 | {
|
---|
| 207 | // order xwzy: *x**, w*z, y
|
---|
| 208 | assert( wxyz[all][ix][all][all] [iw][all][iz] [iy] == valExpected );
|
---|
| 209 |
|
---|
| 210 | typeof( wxyz[all][ix][all][all] ) wyz_workaround = wxyz[[all , ix , all , all ]];
|
---|
| 211 | typeof( wyz_workaround[iw][all][iz] ) y_workaround = wyz_workaround[[iw , all , iz ]];
|
---|
| 212 | assert( y_workaround[iy] == valExpected );
|
---|
| 213 |
|
---|
| 214 | // assert(( wxyz[[all , ix , all , all ]][[iw , all , iz ]][iy ] == valExpected ));
|
---|
| 215 | }
|
---|
| 216 | {
|
---|
| 217 | // order ywzx: **y*, w*z, x
|
---|
| 218 | }
|
---|
| 219 | {
|
---|
| 220 | // order zwyx: ***z, w*y, x
|
---|
| 221 | }
|
---|
| 222 | {
|
---|
| 223 | // order yxzw: **y*, *xz, w
|
---|
| 224 | }
|
---|
| 225 | {
|
---|
| 226 | // order zxyw: ***z, *xy, w
|
---|
| 227 | }
|
---|
| 228 | {
|
---|
| 229 | // order zyxw: ***z, **y, *x, w
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 |
|
---|
[b9dae14c] | 233 | forall( [Nw], [Nx], [Ny], [Nz] )
|
---|
[63a4b92] | 234 | void test_numSubscrTypeCompatibility( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
|
---|
| 235 |
|
---|
| 236 | array( float, Nw, Nx, Ny, Nz ) wxyz;
|
---|
| 237 | fillHelloData(wxyz);
|
---|
| 238 |
|
---|
[938885d3] | 239 | valExpected = getMagicNumber(2, 3, 4, 5);
|
---|
[63a4b92] | 240 | assert(( wxyz [2] [3] [4] [5] == valExpected ));
|
---|
| 241 | assert(( wxyz[[2, 3]][4] [5] == valExpected ));
|
---|
| 242 | assert(( wxyz [2][[3, 4]][5] == valExpected ));
|
---|
| 243 | assert(( wxyz [2] [3][[4, 5]] == valExpected ));
|
---|
| 244 | assert(( wxyz[[2, 3, 4]][5] == valExpected ));
|
---|
| 245 | assert(( wxyz [2][[3, 4, 5]] == valExpected ));
|
---|
| 246 | assert(( wxyz[[2, 3, 4, 5]] == valExpected ));
|
---|
| 247 |
|
---|
| 248 | for ( i; z(Nw) ) {
|
---|
| 249 | assert(( wxyz[[ i, 3, 4, 5 ]] == getMagicNumber(i, 3, 4, 5) ));
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 | for ( i; z(Nx) ) {
|
---|
| 253 | assert(( wxyz[[ 2, i, 4, 5 ]] == getMagicNumber(2, i, 4, 5) ));
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | for ( i; z(Ny) ) {
|
---|
| 257 | assert(( wxyz[[ 2, 3, i, 5 ]] == getMagicNumber(2, 3, i, 5) ));
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | for ( i; z(Nz) ) {
|
---|
| 261 | assert(( wxyz[[ 2, 3, 4, i ]] == getMagicNumber(2, 3, 4, i) ));
|
---|
| 262 | }
|
---|
| 263 |
|
---|
| 264 | for ( i; z(Nw) ) {
|
---|
| 265 | assert(( wxyz[[ i, all, 4, 5 ]][3] == getMagicNumber(i, 3, 4, 5) ));
|
---|
| 266 | }
|
---|
| 267 |
|
---|
| 268 | for ( i; z(Nw) ) {
|
---|
| 269 | assert(( wxyz[[ all, 3, 4, 5 ]][i] == getMagicNumber(i, 3, 4, 5) ));
|
---|
| 270 | }
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | const size_t KW = 3, KX = 4, KY = 5, KZ = 6;
|
---|
| 274 |
|
---|
| 275 | int main() {
|
---|
| 276 |
|
---|
| 277 | test_inOrderSplits ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
| 278 | test_skipSingle ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
| 279 | test_latticeCoverage( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
[b9dae14c] | 280 | test_numSubscrTypeCompatibility( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
|
---|
[63a4b92] | 281 | printf("done\n");
|
---|
| 282 | }
|
---|