[fd4df379] | 1 | // |
---|
| 2 | // Cforall Version 1.0.0 Copyright (C) 2023 University of Waterloo |
---|
| 3 | // |
---|
| 4 | // The contents of this file are covered under the licence agreement in the |
---|
| 5 | // file "LICENCE" distributed with Cforall. |
---|
| 6 | // |
---|
| 7 | // boxed.main.cfa -- core logic of the "array boxed" test |
---|
| 8 | // |
---|
| 9 | // Author : Mike Brooks |
---|
| 10 | // Created On : Thu Jul 25 17:00:00 2024 |
---|
| 11 | // Last Modified By : |
---|
| 12 | // Last Modified On : |
---|
| 13 | // Update Count : |
---|
| 14 | // |
---|
| 15 | |
---|
| 16 | // See abbreviation definitions in boxed.cases.hfa. |
---|
| 17 | |
---|
| 18 | /* |
---|
| 19 | The "array boxed" test deals with an array of T's, when T is dynamically sized. |
---|
| 20 | |
---|
| 21 | All cases generate a VLA, because even a sinlge (dynamically sized) T would be |
---|
| 22 | backed by a VLA. All cases generate pointer arithmetic on, and casts from, |
---|
| 23 | void*, because (dynamically sized) T has no correspondig type in generated C. |
---|
| 24 | These facts are true about boxing in general. The test ensures that the VLA |
---|
| 25 | is big enough and that accessed elements are spaced by the correct amounts, |
---|
| 26 | specifically for cases where the user declares an array of T's, i.e. demands |
---|
| 27 | several adjacent char-buffer-implemented T's. |
---|
| 28 | |
---|
| 29 | The core test logic occurs in the functions named allocAndAccess, below. It |
---|
| 30 | allocates an array of T's, then accesses them. In some cases, the access is |
---|
| 31 | within the allocAndAccess function, in others, it's within a called helper |
---|
| 32 | function. The access logic prints information about the spacing of the |
---|
| 33 | elements (as it sees them) and it stores the array-edge addreses for |
---|
| 34 | subsequent validation. |
---|
| 35 | |
---|
| 36 | The access output uses n, rather than (n-1), as its "end" address, just to |
---|
| 37 | keep expectation arithmetic simple. So the output does discuss addresses of |
---|
| 38 | elements that do not exist. |
---|
| 39 | |
---|
| 40 | The access output uses an expectedElemSz parameter, and calculations from it. |
---|
| 41 | Care is taken to ensure that we are not merely comparing two executions of the |
---|
| 42 | same, possibly flawed, math. First, the value of expectedElemSz is always |
---|
| 43 | calculated using concrete types, e.g. sizeof(float), while the SUT-produced |
---|
| 44 | value is from (implied use of) literally sizeof(T), just in a case where we |
---|
| 45 | have T=float. Second, the details within the calculation are not the main |
---|
| 46 | feature of interest, rather, it's _whether_ this calcuation is being applied |
---|
| 47 | in the cases where it should be, instead of, for example, seeming to assume |
---|
| 48 | sizeof(T)==1 or sizeof(T)==sizeof(size_t), both being bugs that actually |
---|
| 49 | occurred. |
---|
| 50 | |
---|
| 51 | An allocAndAccess function runs in an instrumentation context that observes |
---|
| 52 | the stack frame that allocAndAccess gets. This instrumentation verifies that |
---|
| 53 | the recorded array-edge addresses are within the stack frame. If the SUT has |
---|
| 54 | a bug due to a mistake in the box-pass's generated buffer declaration causes |
---|
| 55 | a function (like allocAndAccess) that declares an array of T's to get an |
---|
| 56 | incorrectly sized stack frame. This test was created along with a fix of such |
---|
| 57 | a bug. |
---|
| 58 | |
---|
| 59 | Including the instrumentation context, the call graph is: |
---|
| 60 | main |
---|
| 61 | run_X |
---|
| 62 | bookendOuter_X |
---|
| 63 | allocAndAccess_X |
---|
| 64 | bookendInner |
---|
| 65 | reportBookends |
---|
| 66 | The outer and inner "bookend" functions record the addresses of a local |
---|
| 67 | variable within their respective stack frames, thus giving a lenient |
---|
| 68 | approximation of the extent of the allocAndAccess stack frame, and |
---|
| 69 | thereby, of its VLA. Requiring a sufficiently large VLA, and seeing the |
---|
| 70 | resulting access stay in bounds (with constant overhead shown under verbose |
---|
| 71 | output) gives confidence in the actual VLA being of the right size. |
---|
| 72 | |
---|
| 73 | For this instrumentation to work, separate compilation (optimization) units |
---|
| 74 | are required: outer and inner "bookend" functions in one, allocAndAccess in the |
---|
| 75 | other. Otherwise, the optimizer sees the full call chain and compresses its |
---|
| 76 | use of frame pointers / VLA zones, into one ABI frame. Then, the outer and |
---|
| 77 | inner reference local varaibles no longer span the VLA. So, the "bookend" |
---|
| 78 | routines are in boxed.bookend.cfa, while everything else is here. |
---|
| 79 | |
---|
| 80 | These code elements are boilerplate, and are realized with macros driven by the |
---|
| 81 | tables in boxed.cases.hfa: |
---|
| 82 | boxed.main.cfa main calls run_X |
---|
| 83 | boxed.main.cfa declaration and definition of run_X, including |
---|
| 84 | calling bookendOuter_X |
---|
| 85 | calling reportBookends |
---|
| 86 | boxed.hfa declaration of bookendOuter_X |
---|
| 87 | boxed.bookend.cfa definition of bookendOuter_X, including |
---|
| 88 | calling allocAndAccess_X |
---|
| 89 | boxed.hfa declaration of allocAndAccess_X |
---|
| 90 | The definition of allocAndAcces_X is kept bespoke, to keep the actual test |
---|
| 91 | details readable. As a result, the list of allocAndAccess_X definition in |
---|
| 92 | boxed.main.cfa must be kept aligned with the tables in boxed.cases.hfa. |
---|
| 93 | A common definition of bookendInner is used acress all test cases, so its |
---|
| 94 | declaration and definition are not table driven. |
---|
| 95 | |
---|
| 96 | */ |
---|
| 97 | |
---|
| 98 | #include "boxed.hfa" |
---|
| 99 | |
---|
| 100 | #define SHOW_ACCESS_1D( N_ELEMS ) \ |
---|
| 101 | char * e0 = (char *) & x[0]; \ |
---|
| 102 | char * e1 = (char *) & x[1]; \ |
---|
| 103 | char * e2 = (char *) & x[2]; \ |
---|
| 104 | char * en = (char *) & x[N_ELEMS]; \ |
---|
| 105 | \ |
---|
| 106 | ptrdiff_t d01 = e1 - e0; \ |
---|
| 107 | ptrdiff_t d12 = e2 - e1; \ |
---|
| 108 | ptrdiff_t d02 = e2 - e0; \ |
---|
| 109 | ptrdiff_t d0n = en - e0; \ |
---|
| 110 | \ |
---|
| 111 | printf("Delta 0--1 expected %zd bytes, actual %zd bytes\n", 1 * expectedElmSz, d01); \ |
---|
| 112 | printf("Delta 1--2 expected %zd bytes, actual %zd bytes\n", 1 * expectedElmSz, d12); \ |
---|
| 113 | printf("Delta 0--2 expected %zd bytes, actual %zd bytes\n", 2 * expectedElmSz, d02); \ |
---|
| 114 | printf("Delta 0--n expected %zd bytes, actual %zd bytes\n", N_ELEMS * expectedElmSz, d0n); \ |
---|
| 115 | \ |
---|
| 116 | VPRT( "Array start %p end %p\n", e0, en ); \ |
---|
| 117 | \ |
---|
| 118 | ar_lo = e0; \ |
---|
| 119 | ar_hi = en; |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | #define SHOW_ACCESS_2D( N_ELEMS ) \ |
---|
| 123 | char * e00 = (char *) & x[0][0]; \ |
---|
| 124 | char * e01 = (char *) & x[0][1]; \ |
---|
| 125 | char * e02 = (char *) & x[0][2]; \ |
---|
| 126 | char * e0n = (char *) & x[0][N_ELEMS]; \ |
---|
| 127 | \ |
---|
| 128 | char * e10 = (char *) & x[1][0]; \ |
---|
| 129 | char * e20 = (char *) & x[2][0]; \ |
---|
| 130 | char * en0 = (char *) & x[N_ELEMS][0]; \ |
---|
| 131 | \ |
---|
| 132 | char * enn = (char *) & x[N_ELEMS][N_ELEMS]; \ |
---|
| 133 | \ |
---|
| 134 | ptrdiff_t d_00_01 = e01 - e00; \ |
---|
| 135 | ptrdiff_t d_01_02 = e02 - e01; \ |
---|
| 136 | ptrdiff_t d_00_02 = e02 - e00; \ |
---|
| 137 | ptrdiff_t d_00_0n = e0n - e00; \ |
---|
| 138 | \ |
---|
| 139 | ptrdiff_t d_00_10 = e10 - e00; \ |
---|
| 140 | ptrdiff_t d_10_20 = e20 - e10; \ |
---|
| 141 | ptrdiff_t d_00_20 = e20 - e00; \ |
---|
| 142 | ptrdiff_t d_00_n0 = en0 - e00; \ |
---|
| 143 | \ |
---|
| 144 | ptrdiff_t d_00_nn = enn - e00; \ |
---|
| 145 | \ |
---|
| 146 | printf("Delta 0,0--0,1 expected %zd bytes, actual %zd bytes\n", 1 * 1 * expectedElmSz, d_00_01); \ |
---|
| 147 | printf("Delta 0,1--0,2 expected %zd bytes, actual %zd bytes\n", 1 * 1 * expectedElmSz, d_01_02); \ |
---|
| 148 | printf("Delta 0,0--0,2 expected %zd bytes, actual %zd bytes\n", 1 * 2 * expectedElmSz, d_00_02); \ |
---|
| 149 | printf("Delta 0,0--0,n expected %zd bytes, actual %zd bytes\n", 1 * N_ELEMS * expectedElmSz, d_00_0n); \ |
---|
| 150 | \ |
---|
| 151 | printf("Delta 0,0--1,0 expected %zd bytes, actual %zd bytes\n", N_ELEMS * 1 * expectedElmSz, d_00_10); \ |
---|
| 152 | printf("Delta 1,0--2,0 expected %zd bytes, actual %zd bytes\n", N_ELEMS * 1 * expectedElmSz, d_10_20); \ |
---|
| 153 | printf("Delta 0,0--2,0 expected %zd bytes, actual %zd bytes\n", N_ELEMS * 2 * expectedElmSz, d_00_20); \ |
---|
| 154 | printf("Delta 0,0--n,0 expected %zd bytes, actual %zd bytes\n", N_ELEMS * N_ELEMS * expectedElmSz, d_00_n0); \ |
---|
| 155 | \ |
---|
| 156 | printf("Delta 0,0--n,n expected %zd bytes, actual %zd bytes\n", N_ELEMS * N_ELEMS * expectedElmSz + \ |
---|
| 157 | 1 * N_ELEMS * expectedElmSz, d_00_nn); \ |
---|
| 158 | \ |
---|
| 159 | VPRT( "Array start %p end %p\n", e00, enn ); \ |
---|
| 160 | \ |
---|
| 161 | ar_lo = e00; \ |
---|
| 162 | ar_hi = en0; /* first byte past the end is not after the first row that does not exist */ |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | // ---------- 1, singleton |
---|
| 169 | |
---|
| 170 | forall( T ) T * allocAndAccess_1 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 171 | printf("------- 1%s (singleton): T x[1], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 172 | T x[ 1 ] INITARR; |
---|
| 173 | bookendInner(); |
---|
| 174 | SHOW_ACCESS_1D( 1 ) |
---|
| 175 | return 0p; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | // ---------- 2, general |
---|
| 179 | |
---|
| 180 | forall( T ) T * allocAndAccess_2 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 181 | printf("------- 2%s (general): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 182 | T x[ 42 ] INITARR; |
---|
| 183 | bookendInner(); |
---|
| 184 | SHOW_ACCESS_1D( 42 ) |
---|
| 185 | return 0p; |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | // ---------- 3, user VLA |
---|
| 189 | |
---|
| 190 | forall( T ) T * allocAndAccess_3 ( size_t expectedElmSz, const char * tcid, const char * vart, size_t n ) { |
---|
| 191 | printf("------- 3%s (user VLA): T x[n], got n=%zd, expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, n, vart, sizeof(T), expectedElmSz); |
---|
| 192 | T x[ n ] INITARR; |
---|
| 193 | bookendInner(); |
---|
| 194 | SHOW_ACCESS_1D( n ) |
---|
| 195 | return 0p; |
---|
| 196 | } |
---|
| 197 | |
---|
| 198 | // ---------- 4, 2-dimensional |
---|
| 199 | |
---|
| 200 | forall( T ) T * allocAndAccess_4 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 201 | printf("------- 4%s (2-dimensional): T x[42][42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte atoms\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 202 | T x[ 42 ][ 42 ] INITARR; |
---|
| 203 | bookendInner(); |
---|
| 204 | SHOW_ACCESS_2D( 42 ) |
---|
| 205 | return 0p; |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | // ---------- 5, pair |
---|
| 209 | |
---|
| 210 | forall( T ) T * allocAndAccess_5 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 211 | printf("------- 5%s (pair): pair(T,T) x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte atoms\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 212 | pair(T,T) x[ 42 ] INITARR; |
---|
| 213 | bookendInner(); |
---|
| 214 | SHOW_ACCESS_1D( 42 ) |
---|
| 215 | return 0p; |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | // ---------- 6, raii |
---|
| 219 | |
---|
| 220 | struct my_mgd_t { |
---|
| 221 | float x; |
---|
| 222 | }; |
---|
| 223 | |
---|
| 224 | // Auxiliary state used in the RAII rig only. Only to format/excerpt output. Reset per TC. |
---|
| 225 | static struct { |
---|
| 226 | size_t total_elems; // size of array being managed |
---|
| 227 | size_t ctor_calls; // number of ctor calls seen so far |
---|
| 228 | size_t dtor_calls; // ^dtor |
---|
| 229 | char * ctor_first; // argument of first ctor call |
---|
| 230 | char * dtor_first; // ^dtor |
---|
| 231 | char * dtor_lo; // lowest dtor argument seen yet |
---|
| 232 | char * dtor_hi; // ^highest |
---|
| 233 | } raii; |
---|
| 234 | |
---|
| 235 | void ?{}( my_mgd_t & this ) { |
---|
| 236 | if (raii.ctor_first == 0p) raii.ctor_first = (char *) & this; |
---|
| 237 | VPRT( "ctor call %zd targets %p\n", raii.ctor_calls, &this ); |
---|
| 238 | if (raii.ctor_calls < 2 || raii.total_elems - raii.ctor_calls <= 2) |
---|
| 239 | printf( "ctor call %zd targets first + %zd bytes\n", raii.ctor_calls, ((char*)&this - raii.ctor_first) ); |
---|
| 240 | // ctor call locations fill the conformed ar_lo/hi |
---|
| 241 | if ( (char *) & this < ar_lo ) ar_lo = (char *) & this; |
---|
| 242 | if ( (char *) & this > ar_hi ) ar_hi = (char *) & this; |
---|
| 243 | raii.ctor_calls += 1; |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | void ^?{}( my_mgd_t & this ) { |
---|
| 247 | // dtor calls count backward |
---|
| 248 | if (raii.dtor_first == 0p) raii.dtor_first = (char *) & this; |
---|
| 249 | VPRT( "dtor call %zd targets %p\n", raii.dtor_calls, &this ); |
---|
| 250 | if (raii.dtor_calls < 2 || raii.total_elems - raii.dtor_calls <= 2) |
---|
| 251 | printf( "dtor call %zd targets first - %zd bytes\n", raii.dtor_calls, (raii.dtor_first - (char*)&this) ); |
---|
| 252 | // dtor call locations fill auxiliary state; reconciled with the conformed ones on last call |
---|
| 253 | if ( (char *) & this < raii.dtor_lo ) raii.dtor_lo = (char *) & this; |
---|
| 254 | if ( (char *) & this > raii.dtor_hi ) raii.dtor_hi = (char *) & this; |
---|
| 255 | raii.dtor_calls += 1; |
---|
| 256 | if (raii.dtor_calls >= raii.total_elems) |
---|
| 257 | printf( "dtor lo off by %zd bytes, hi off by %zd bytes\n", (ar_lo - raii.dtor_lo), (ar_hi - raii.dtor_hi) ); |
---|
| 258 | } |
---|
| 259 | |
---|
| 260 | forall( T ) T * allocAndAccess_6 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 261 | raii.total_elems = 42; |
---|
| 262 | raii.ctor_calls = 0; |
---|
| 263 | raii.dtor_calls = 0; |
---|
| 264 | raii.ctor_first = 0p; |
---|
| 265 | raii.dtor_first = 0p; |
---|
| 266 | raii.dtor_lo = (char*)-1; |
---|
| 267 | raii.dtor_hi = 0p; |
---|
| 268 | printf("------- 6%s (raii): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 269 | T x[ 42 ] INITARR; |
---|
| 270 | bookendInner(); |
---|
| 271 | // no SHOW_ACCESS: it happens in the cdtors |
---|
| 272 | return 0p; |
---|
| 273 | } |
---|
| 274 | |
---|
| 275 | // ---------- 7, comm, PPD, PFST |
---|
| 276 | |
---|
| 277 | forall( T* ) void access_7 ( size_t expectedElmSz, T x[] ) { |
---|
| 278 | SHOW_ACCESS_1D(42) |
---|
| 279 | } |
---|
| 280 | forall( T ) T * allocAndAccess_7 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 281 | printf("------- 7%s (communication, poly-poly direct, by param T[]): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 282 | T x[ 42 ] INITARR; |
---|
| 283 | bookendInner(); |
---|
| 284 | access_7( expectedElmSz, x ); |
---|
| 285 | return 0p; |
---|
| 286 | } |
---|
| 287 | |
---|
| 288 | // ---------- 8, comm, PPD, PARR |
---|
| 289 | |
---|
| 290 | forall( T* ) void access_8 ( size_t expectedElmSz, T (*temp)[42] ) { |
---|
| 291 | T * x = *temp; |
---|
| 292 | SHOW_ACCESS_1D(42) |
---|
| 293 | } |
---|
| 294 | forall( T ) T * allocAndAccess_8 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 295 | printf("------- 8%s (communication, poly-poly direct, by param T(*)[*]): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 296 | T x[ 42 ] INITARR; |
---|
| 297 | bookendInner(); |
---|
| 298 | access_8( expectedElmSz, &x ); |
---|
| 299 | return 0p; |
---|
| 300 | } |
---|
| 301 | |
---|
| 302 | // ---------- 9, comm, PPA, PFST |
---|
| 303 | |
---|
| 304 | forall( T | { void access_9 ( size_t, T x[] ); } ) |
---|
| 305 | T * allocAndAccess_9 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 306 | printf("------- 9%s (communication, poly-poly assertion, by param T[]): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 307 | T x[ 42 ] INITARR; |
---|
| 308 | bookendInner(); |
---|
| 309 | access_9( expectedElmSz, x ); |
---|
| 310 | return 0p; |
---|
| 311 | } |
---|
| 312 | forall( T* ) void access_9 ( size_t expectedElmSz, T x[] ) { |
---|
| 313 | SHOW_ACCESS_1D(42) |
---|
| 314 | } |
---|
| 315 | |
---|
| 316 | // ---------- 10, comm, PPA, PARR |
---|
| 317 | |
---|
| 318 | forall( T | { void access_10 ( size_t, T (*)[42] ); } ) |
---|
| 319 | T * allocAndAccess_10( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 320 | printf("------- 10%s (communication, poly-poly assertion, by param T(*)[*]): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 321 | T x[ 42 ] INITARR; |
---|
| 322 | bookendInner(); |
---|
| 323 | access_10( expectedElmSz, &x ); |
---|
| 324 | return 0p; |
---|
| 325 | } |
---|
| 326 | forall( T* ) void access_10( size_t expectedElmSz, T (*temp)[42] ) { |
---|
| 327 | T * x = *temp; |
---|
| 328 | SHOW_ACCESS_1D(42) |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | // ---------- 11, comm, PMA, PFST_11 |
---|
| 332 | |
---|
| 333 | forall( T | { void access_11( size_t, T * ); } ) |
---|
| 334 | T * allocAndAccess_11 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 335 | printf("------- 11%s (communication, poly-mono assertion, by param T[]): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 336 | T x[ 42 ] INITARR; |
---|
| 337 | bookendInner(); |
---|
| 338 | access_11( expectedElmSz, x ); |
---|
| 339 | return 0p; |
---|
| 340 | } |
---|
| 341 | void access_11 ( size_t expectedElmSz, char x[] ) { |
---|
| 342 | SHOW_ACCESS_1D(42) |
---|
| 343 | } |
---|
| 344 | void access_11 ( size_t expectedElmSz, bigun x[] ) { |
---|
| 345 | SHOW_ACCESS_1D(42) |
---|
| 346 | } |
---|
| 347 | |
---|
| 348 | // ---------- 12, comm, PMA, PARR |
---|
| 349 | |
---|
| 350 | forall( T | { void access_12 ( size_t, T (*)[42] ); } ) |
---|
| 351 | T * allocAndAccess_12 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 352 | printf("------- 12%s (communication, poly-mono assertion, by param T(*)[*]): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 353 | T x[ 42 ] INITARR; |
---|
| 354 | bookendInner(); |
---|
| 355 | access_12( expectedElmSz, &x ); |
---|
| 356 | return 0p; |
---|
| 357 | } |
---|
| 358 | void access_12 ( size_t expectedElmSz, double (*temp)[42] ) { |
---|
| 359 | double * x = *temp; |
---|
| 360 | SHOW_ACCESS_1D(42) |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | // ---------- 13, comm, MPD, PFST |
---|
| 364 | |
---|
| 365 | forall( T* ) void access_13( size_t expectedElmSz, T x[] ) { |
---|
| 366 | SHOW_ACCESS_1D(42) |
---|
| 367 | } |
---|
| 368 | char * allocAndAccess_13 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 369 | printf("------- 13%s (communication, mono-poly direct, by param T[]): char x[42], expecting %zd-byte elems\n", tcid, expectedElmSz); |
---|
| 370 | char x[ 42 ] INITARR; |
---|
| 371 | bookendInner(); |
---|
| 372 | access_13( expectedElmSz, x ); |
---|
| 373 | return 0p; |
---|
| 374 | } |
---|
| 375 | bigun * allocAndAccess_13( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 376 | printf("------- 13%s (communication, mono-poly direct, by param T[]): bigun x[42], expecting %zd-byte elems\n", tcid, expectedElmSz); |
---|
| 377 | bigun x[ 42 ] INITARR; |
---|
| 378 | bookendInner(); |
---|
| 379 | access_13( expectedElmSz, x ); |
---|
| 380 | return 0p; |
---|
| 381 | } |
---|
| 382 | |
---|
| 383 | // ---------- 14, comm, MPD, PARR |
---|
| 384 | |
---|
| 385 | forall( T* ) void access_14 ( size_t expectedElmSz, T (*temp)[42] ) { |
---|
| 386 | T * x = *temp; |
---|
| 387 | SHOW_ACCESS_1D(42) |
---|
| 388 | } |
---|
| 389 | double * allocAndAccess_14 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 390 | printf("------- 13%s (communication, mono-poly direct, by param T(*)[*]): double x[42], expecting %zd-byte elems\n", tcid, expectedElmSz); |
---|
| 391 | double x[ 42 ] INITARR; |
---|
| 392 | bookendInner(); |
---|
| 393 | access_14( expectedElmSz, &x ); |
---|
| 394 | return 0p; |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | // ---------- 15, operators |
---|
| 398 | |
---|
| 399 | forall( T* ) void access_15 ( size_t expectedElmSz, T x[] ) { |
---|
| 400 | // correctness of x and ?[?] established by earlier tests |
---|
| 401 | T * x5 = & x[5]; |
---|
| 402 | |
---|
| 403 | #define SHOW( OP, ACT, EXP ) printf( #OP " off by %zd\n", ((size_t)(EXP)) - ((size_t)(ACT)) ) |
---|
| 404 | { T * xx = & 5[x]; SHOW( ?[?] rev, xx, x5 ); } |
---|
| 405 | { T * xx = x + 5; SHOW( ?+?, xx, x5 ); } |
---|
| 406 | { T * xx = 5 + x; SHOW( ?+? rev, xx, x5 ); } |
---|
| 407 | { T * xx = x; xx += 5; SHOW( ?+=?, xx, x5 ); } |
---|
| 408 | // { T * xx = x; for(5) xx++; SHOW( ?++, xx, x5 ); } |
---|
| 409 | // { T * xx = x; for(5) ++xx; SHOW( ++?, xx, x5 ); } |
---|
| 410 | { T * xx = x5; xx -= 5; SHOW( ?-=?, xx, x ); } |
---|
| 411 | // { T * xx = x5; for(5) xx--; SHOW( ?--, xx, x ); } |
---|
| 412 | // { T * xx = x5; for(5) --xx; SHOW( --?, xx, x ); } |
---|
| 413 | #undef SHOW |
---|
| 414 | |
---|
| 415 | ptrdiff_t expPos5 = x5 - x; |
---|
| 416 | ptrdiff_t expNeg5 = x - x5; |
---|
| 417 | |
---|
| 418 | printf( "?-? +ve off by %zd\n", ((ptrdiff_t) 5) - expPos5 ); |
---|
| 419 | // printf( "?-? -ve off by %zd\n", ((ptrdiff_t)-5) - expNeg5 ); |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | forall( T ) T * allocAndAccess_15 ( size_t expectedElmSz, const char * tcid, const char * vart ) { |
---|
| 423 | printf("------- 15%s (operators): T x[42], expecting T=%s, got sizeof(T)=%zd, expecting %zd-byte elems\n", tcid, vart, sizeof(T), expectedElmSz); |
---|
| 424 | T x[ 42 ] INITARR; |
---|
| 425 | // bookends unused |
---|
| 426 | access_15( expectedElmSz, x ); |
---|
| 427 | return 0p; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | |
---|
| 431 | |
---|
| 432 | |
---|
| 433 | |
---|
| 434 | #define TC(...) |
---|
| 435 | #define TR( TRID, SZS, SZV, ETG, ACCS, SPS, OVLD ) \ |
---|
| 436 | F_SIG( run, TRID, SZS, SZV, ACCS, SPS, OVLD ) { \ |
---|
| 437 | resetBookends(); \ |
---|
| 438 | OVLD * retval = CALL( bookendOuter, TRID, SZS, SZV, expectedElmSz, tcid, vart ); \ |
---|
| 439 | reportBookends(); \ |
---|
| 440 | return retval; \ |
---|
| 441 | } |
---|
| 442 | #include "boxed.cases.hfa" |
---|
| 443 | #undef TC |
---|
| 444 | #undef TR |
---|
| 445 | |
---|
| 446 | |
---|
| 447 | #define Q_(x) #x |
---|
| 448 | #define Q(x) Q_(x) |
---|
| 449 | |
---|
| 450 | int main() { |
---|
| 451 | #define TR(...) |
---|
| 452 | #define TC( TRID, TCID, SZS, SZV, ETG, VART ) \ |
---|
| 453 | { VART * ignore = CALL( run, TRID, SZS, SZV, sizeof(ETG(VART)), Q(TCID), Q(VART) ); (void) ignore; } |
---|
| 454 | #include "boxed.cases.hfa" |
---|
| 455 | #undef TR |
---|
| 456 | #undef TC |
---|
| 457 | } |
---|