| [55b060d] | 1 | #include <collections/array.hfa>
 | 
|---|
| [63a4b92] | 2 | 
 | 
|---|
 | 3 | #include <assert.h>
 | 
|---|
 | 4 | 
 | 
|---|
 | 5 | float getMagicNumber( ptrdiff_t w, ptrdiff_t x, ptrdiff_t y, ptrdiff_t z ) {
 | 
|---|
 | 6 | 
 | 
|---|
 | 7 |     assert( 0 <= w && w < 3 );
 | 
|---|
 | 8 |     assert( 0 <= x && x < 4 );
 | 
|---|
 | 9 |     assert( 0 <= y && y < 5 );
 | 
|---|
 | 10 |     assert( 0 <= z && z < 6 );
 | 
|---|
 | 11 | 
 | 
|---|
 | 12 |     float ww = (2.0f \ w) / 1.0f;
 | 
|---|
 | 13 |     float xx = (2.0f \ x) / 100.0f;
 | 
|---|
 | 14 |     float yy = (2.0f \ y) / 10000.0f;
 | 
|---|
 | 15 |     float Nz = (2.0f \ z) / 1000000.0f;
 | 
|---|
 | 16 | 
 | 
|---|
 | 17 |     return ww+xx+yy+Nz;
 | 
|---|
 | 18 | }
 | 
|---|
 | 19 | 
 | 
|---|
| [b9dae14c] | 20 | forall( [Nw], [Nx], [Ny], [Nz] )
 | 
|---|
| [63a4b92] | 21 | void fillHelloData( array( float, Nw, Nx, Ny, Nz ) & wxyz ) {
 | 
|---|
| [6e50a6b] | 22 |     for (w; Nw)
 | 
|---|
 | 23 |     for (x; Nx)
 | 
|---|
 | 24 |     for (y; Ny)
 | 
|---|
 | 25 |     for (z; Nz)
 | 
|---|
| [63a4b92] | 26 |         wxyz[w][x][y][z] = getMagicNumber(w, x, y, z);
 | 
|---|
 | 27 | }
 | 
|---|
 | 28 | 
 | 
|---|
| [938885d3] | 29 | // Work around a compiler optimization that can lead to false failures.
 | 
|---|
 | 30 | // Think of `valExpected` as a constant local to each test function.
 | 
|---|
 | 31 | // When implemented that way, an optimization, run on some hardware, makes
 | 
|---|
 | 32 | // its value be off-by-a-little, compared with the values that have been
 | 
|---|
 | 33 | // stored-loaded (in the array under test).  This effect has been observed
 | 
|---|
 | 34 | // on x86-32 with -O3.  Declaring it as below forces the expected value 
 | 
|---|
 | 35 | // to be stored-loaded too, which keeps the (admittedly lazily done)
 | 
|---|
 | 36 | // `assert(f1 == f2)` checks passing, when the intended <w,x,y,z> location
 | 
|---|
 | 37 | // is recovered, which is the point of all these tests.
 | 
|---|
 | 38 | volatile float valExpected = 0.0;
 | 
|---|
 | 39 | 
 | 
|---|
| [63a4b92] | 40 | // Tests all the ways to split dimensions into CFA-supported chunks, by the only order that C supports: coarsest to finest stride.
 | 
|---|
| [b9dae14c] | 41 | forall( [Nw], [Nx], [Ny], [Nz] )
 | 
|---|
| [63a4b92] | 42 | void test_inOrderSplits( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
 | 
|---|
 | 43 | 
 | 
|---|
 | 44 |     array( float, Nw, Nx, Ny, Nz ) wxyz;
 | 
|---|
 | 45 |     fillHelloData(wxyz);
 | 
|---|
 | 46 | 
 | 
|---|
 | 47 |     ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
 | 
|---|
 | 48 | 
 | 
|---|
| [938885d3] | 49 |     valExpected = getMagicNumber(iw, ix, iy, iz);
 | 
|---|
 | 50 |     float valGot = wxyz[iw][ix][iy][iz];
 | 
|---|
 | 51 |     assert( valGot == valExpected );
 | 
|---|
| [63a4b92] | 52 | 
 | 
|---|
 | 53 |     // order wxyz, natural split (4-0 or 0-4, no intermediate to declare)
 | 
|---|
 | 54 | 
 | 
|---|
| [1d71208] | 55 |     assert(( wxyz[iw, ix, iy, iz] == valExpected ));
 | 
|---|
| [63a4b92] | 56 | 
 | 
|---|
 | 57 |     // order wxyz, unnatural split 1-3  (three ways declared)
 | 
|---|
 | 58 | 
 | 
|---|
 | 59 |     typeof( wxyz[iw] ) xyz1 = wxyz[iw];
 | 
|---|
| [1d71208] | 60 |     assert(( xyz1[ix, iy, iz]  == valExpected ));
 | 
|---|
| [63a4b92] | 61 | 
 | 
|---|
 | 62 |     typeof( wxyz[iw] ) xyz2;
 | 
|---|
 | 63 |     &xyz2 = &wxyz[iw];
 | 
|---|
| [1d71208] | 64 |     assert(( xyz2[ix, iy, iz] == valExpected ));
 | 
|---|
| [63a4b92] | 65 | 
 | 
|---|
| [1d71208] | 66 |     assert(( wxyz[iw][ix, iy, iz] == valExpected ));
 | 
|---|
| [63a4b92] | 67 | 
 | 
|---|
 | 68 |     // order wxyz, unnatural split 2-2  (three ways declared)
 | 
|---|
 | 69 | 
 | 
|---|
| [1d71208] | 70 |     typeof( wxyz[iw, ix] ) yz1 = wxyz[iw,ix];
 | 
|---|
 | 71 |     assert(( yz1[iy, iz]  == valExpected ));
 | 
|---|
| [63a4b92] | 72 | 
 | 
|---|
| [1d71208] | 73 |     typeof( wxyz[iw, ix] ) yz2;
 | 
|---|
 | 74 |     &yz2 = &wxyz[iw, ix];
 | 
|---|
 | 75 |     assert(( yz2[iy, iz]  == valExpected ));
 | 
|---|
| [63a4b92] | 76 | 
 | 
|---|
| [1d71208] | 77 |     assert(( wxyz[iw, ix][iy, iz] == valExpected ));
 | 
|---|
| [63a4b92] | 78 | 
 | 
|---|
 | 79 |     // order wxyz, unnatural split 3-1  (three ways declared)
 | 
|---|
 | 80 | 
 | 
|---|
| [1d71208] | 81 |     typeof( wxyz[iw, ix, iy] ) z1 = wxyz[iw, ix, iy];
 | 
|---|
| [63a4b92] | 82 |     assert(( z1[iz]  == valExpected ));
 | 
|---|
 | 83 | 
 | 
|---|
| [1d71208] | 84 |     typeof( wxyz[iw, ix, iy] ) z2;
 | 
|---|
 | 85 |     &z2 = &wxyz[iw, ix, iy];
 | 
|---|
| [63a4b92] | 86 |     assert(( z2[iz] == valExpected ));
 | 
|---|
 | 87 | 
 | 
|---|
| [1d71208] | 88 |     assert(( wxyz[iw, ix, iy][iz] == valExpected ));
 | 
|---|
| [63a4b92] | 89 | }
 | 
|---|
 | 90 | 
 | 
|---|
 | 91 | // All orders that skip a single dimension, each in its most natural split.
 | 
|---|
| [b9dae14c] | 92 | forall( [Nw], [Nx], [Ny], [Nz] )
 | 
|---|
| [63a4b92] | 93 | void test_skipSingle( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
 | 
|---|
 | 94 | 
 | 
|---|
 | 95 |     array( float, Nw, Nx, Ny, Nz ) wxyz;
 | 
|---|
 | 96 |     fillHelloData(wxyz);
 | 
|---|
 | 97 | 
 | 
|---|
 | 98 |     ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
 | 
|---|
 | 99 | 
 | 
|---|
| [938885d3] | 100 |     valExpected = getMagicNumber(iw, ix, iy, iz);
 | 
|---|
| [63a4b92] | 101 |     assert( wxyz[iw][ix][iy][iz] == valExpected );
 | 
|---|
 | 102 | 
 | 
|---|
 | 103 | 
 | 
|---|
 | 104 |     // order wxyz (no intermediates to declare)
 | 
|---|
 | 105 | 
 | 
|---|
| [1d71208] | 106 |     assert(( wxyz[iw  , ix  , iy  , iz  ]       == valExpected ));
 | 
|---|
 | 107 |     assert(( wxyz[iw-1, ix  , iy  , iz  ]       != valExpected ));
 | 
|---|
| [63a4b92] | 108 | 
 | 
|---|
 | 109 |     // order xyzw: *xyz, w
 | 
|---|
 | 110 | 
 | 
|---|
| [1d71208] | 111 |     assert(( wxyz[all , ix  , iy  , iz  ][iw  ] == valExpected ));
 | 
|---|
 | 112 |     assert(( wxyz[all , ix-1, iy  , iz  ][iw  ] != valExpected ));
 | 
|---|
 | 113 |     assert(( wxyz[all , ix  , iy  , iz  ][iw-1] != valExpected ));
 | 
|---|
| [63a4b92] | 114 | 
 | 
|---|
 | 115 |     // order wyzx: w*yz, x
 | 
|---|
 | 116 | 
 | 
|---|
| [1d71208] | 117 |     assert(( wxyz[iw  , all , iy  , iz  ][ix  ] == valExpected ));
 | 
|---|
 | 118 |     assert(( wxyz[iw  , all , iy-1, iz  ][ix  ] != valExpected ));
 | 
|---|
 | 119 |     assert(( wxyz[iw  , all , iy  , iz  ][ix-1] != valExpected ));
 | 
|---|
| [63a4b92] | 120 | 
 | 
|---|
 | 121 |     // order wxzy: wx*z, y
 | 
|---|
| [d653faf] | 122 |   #if 0
 | 
|---|
 | 123 |     // not working on 32-bit
 | 
|---|
| [1d71208] | 124 |     assert(( wxyz[iw  , ix  , all , iz  ][iy  ] == valExpected ));
 | 
|---|
 | 125 |     assert(( wxyz[iw  , ix  , all , iz-1][iy  ] != valExpected ));
 | 
|---|
 | 126 |     assert(( wxyz[iw  , ix  , all , iz  ][iy-1] != valExpected ));
 | 
|---|
| [d653faf] | 127 |   #endif
 | 
|---|
| [63a4b92] | 128 | }
 | 
|---|
 | 129 | 
 | 
|---|
 | 130 | 
 | 
|---|
 | 131 | // The comments specify a covering set of orders, each in its most natural split.
 | 
|---|
 | 132 | // Covering means that each edge on the lattice of dimesnions-provided is used.
 | 
|---|
| [1d71208] | 133 | // Natural split means the arity of every -[-,...] tuple equals the dimensionality of its "this" operand, then that the fewest "all" subscripts are given.
 | 
|---|
| [63a4b92] | 134 | // The commented-out test code shows cases that don't work.  We wish all the comment-coverd cases worked.
 | 
|---|
| [b9dae14c] | 135 | forall( [Nw], [Nx], [Ny], [Nz] )
 | 
|---|
| [63a4b92] | 136 | void test_latticeCoverage( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
 | 
|---|
 | 137 | 
 | 
|---|
 | 138 |     array( float, Nw, Nx, Ny, Nz ) wxyz;
 | 
|---|
 | 139 |     fillHelloData(wxyz);
 | 
|---|
 | 140 | 
 | 
|---|
 | 141 |     ptrdiff_t iw = 2, ix = 3, iy=4, iz=5;
 | 
|---|
 | 142 | 
 | 
|---|
| [938885d3] | 143 |     valExpected = getMagicNumber(iw, ix, iy, iz);
 | 
|---|
| [63a4b92] | 144 |     assert( wxyz[iw][ix][iy][iz] == valExpected );
 | 
|---|
 | 145 | 
 | 
|---|
 | 146 | 
 | 
|---|
 | 147 |     // order wxyz (no intermediates to declare)
 | 
|---|
 | 148 | 
 | 
|---|
| [1d71208] | 149 |     assert(( wxyz[iw, ix, iy, iz] == valExpected ));
 | 
|---|
| [63a4b92] | 150 | 
 | 
|---|
 | 151 |     {
 | 
|---|
 | 152 |         // order wyxz: w*y*, xz
 | 
|---|
 | 153 |         assert( wxyz[iw][all][iy][all] [ix][iz] == valExpected );
 | 
|---|
 | 154 | 
 | 
|---|
| [1d71208] | 155 |         typeof( wxyz[iw, all, iy, all] ) xz1 = wxyz[iw, all, iy, all];
 | 
|---|
 | 156 |         assert(( xz1[ix, iz]  == valExpected ));
 | 
|---|
| [63a4b92] | 157 | 
 | 
|---|
| [1d71208] | 158 |         typeof( wxyz[iw, all, iy, all] ) xz2;
 | 
|---|
 | 159 |         &xz2 = &wxyz[iw, all, iy, all];
 | 
|---|
 | 160 |         assert(( xz2[ix, iz]  == valExpected ));
 | 
|---|
| [63a4b92] | 161 | 
 | 
|---|
| [1d71208] | 162 |         assert(( wxyz[iw  , all, iy  , all][ix  , iz  ] == valExpected ));
 | 
|---|
 | 163 |         assert(( wxyz[iw-1, all, iy  , all][ix  , iz  ] != valExpected ));
 | 
|---|
 | 164 |         assert(( wxyz[iw  , all, iy-1, all][ix  , iz  ] != valExpected ));
 | 
|---|
 | 165 |         assert(( wxyz[iw  , all, iy  , all][ix-1, iz  ] != valExpected ));
 | 
|---|
 | 166 |         assert(( wxyz[iw  , all, iy  , all][ix  , iz-1] != valExpected ));
 | 
|---|
| [63a4b92] | 167 |     }
 | 
|---|
 | 168 |     {
 | 
|---|
 | 169 |         // order wzxy: w**z, xy
 | 
|---|
 | 170 |         assert( wxyz[iw][all][all][iz] [ix][iy] == valExpected );
 | 
|---|
 | 171 | 
 | 
|---|
| [1d71208] | 172 |         // typeof( wxyz[iw, all, all, iz] ) xy1 = wxyz[iw, all, all, iz];
 | 
|---|
 | 173 |         // assert(( xy1[ix, iy]  == valExpected ));
 | 
|---|
| [63a4b92] | 174 | 
 | 
|---|
| [1d71208] | 175 |         // typeof(  wxyz[iw, all, all, iz] ) xy2;
 | 
|---|
 | 176 |         // &xy2 = &wxyz[iw, all, all, iz];
 | 
|---|
 | 177 |         // assert(( xy2[ix, iy]  == valExpected ));
 | 
|---|
| [63a4b92] | 178 | 
 | 
|---|
| [1d71208] | 179 |         // assert(( wxyz[iw  , all, all, iz  ][ix  , iy  ] == valExpected ));
 | 
|---|
 | 180 |         // assert(( wxyz[iw-1, all, all, iz  ][ix  , iy  ] != valExpected ));
 | 
|---|
 | 181 |         // assert(( wxyz[iw  , all, all, iz-1][ix  , iy  ] != valExpected ));
 | 
|---|
 | 182 |         // assert(( wxyz[iw  , all, all, iz  ][ix-1, iy  ] != valExpected ));
 | 
|---|
 | 183 |         // assert(( wxyz[iw  , all, all, iz  ][ix  , iy-1] != valExpected ));
 | 
|---|
| [63a4b92] | 184 |     }
 | 
|---|
 | 185 |     {
 | 
|---|
 | 186 |         // order xywz: *xy*, wz
 | 
|---|
 | 187 |         assert( wxyz[all][ix][iy][all] [iw][iz] == valExpected );
 | 
|---|
 | 188 | 
 | 
|---|
| [1d71208] | 189 |         typeof( wxyz[all, ix, iy, all] ) wz1 = wxyz[all, ix, iy, all];
 | 
|---|
 | 190 |         assert(( wz1[iw, iz]  == valExpected ));
 | 
|---|
| [63a4b92] | 191 | 
 | 
|---|
| [1d71208] | 192 |         assert(( wxyz[all  , ix, iy  , all][iw  , iz  ] == valExpected ));
 | 
|---|
| [63a4b92] | 193 |     }
 | 
|---|
 | 194 |     {
 | 
|---|
 | 195 |         // order xzwy: *x*z, wy
 | 
|---|
 | 196 |         assert( wxyz[all][ix][all][iz] [iw][iy] == valExpected );
 | 
|---|
 | 197 | 
 | 
|---|
| [1d71208] | 198 |         // assert(( wxyz[all , ix  , all , iz  ][iw  , iy  ] == valExpected ));
 | 
|---|
| [63a4b92] | 199 |     }
 | 
|---|
 | 200 |     {
 | 
|---|
 | 201 |         // order yzwx: **yz, wx
 | 
|---|
 | 202 |         assert( wxyz[all][all][iy][iz] [iw][ix] == valExpected );
 | 
|---|
 | 203 | 
 | 
|---|
| [1d71208] | 204 |         // assert(( wxyz[all , all , iy  , iz  ][iw  , ix  ] == valExpected ));
 | 
|---|
| [63a4b92] | 205 |     }
 | 
|---|
 | 206 |     {
 | 
|---|
 | 207 |         // order xwzy: *x**, w*z, y
 | 
|---|
 | 208 |         assert( wxyz[all][ix][all][all] [iw][all][iz] [iy] == valExpected );
 | 
|---|
 | 209 | 
 | 
|---|
| [1d71208] | 210 |         typeof( wxyz[all][ix][all][all] ) wyz_workaround = wxyz[all , ix , all  , all  ];
 | 
|---|
 | 211 |         typeof( wyz_workaround[iw][all][iz] ) y_workaround = wyz_workaround[iw , all , iz  ];
 | 
|---|
| [63a4b92] | 212 |         assert( y_workaround[iy] == valExpected );
 | 
|---|
 | 213 | 
 | 
|---|
| [1d71208] | 214 |         // assert(( wxyz[all , ix , all  , all  ][iw  , all , iz  ][iy  ] == valExpected ));
 | 
|---|
| [63a4b92] | 215 |     }
 | 
|---|
 | 216 |     {
 | 
|---|
 | 217 |         // order ywzx: **y*, w*z, x
 | 
|---|
 | 218 |     }
 | 
|---|
 | 219 |     {
 | 
|---|
 | 220 |         // order zwyx: ***z, w*y, x
 | 
|---|
 | 221 |     }
 | 
|---|
 | 222 |     {
 | 
|---|
 | 223 |         // order yxzw: **y*, *xz, w
 | 
|---|
 | 224 |     }
 | 
|---|
 | 225 |     {
 | 
|---|
 | 226 |         // order zxyw: ***z, *xy, w
 | 
|---|
 | 227 |     }
 | 
|---|
 | 228 |     {
 | 
|---|
 | 229 |         // order zyxw: ***z, **y, *x, w
 | 
|---|
 | 230 |     }
 | 
|---|
 | 231 | }
 | 
|---|
 | 232 | 
 | 
|---|
| [b9dae14c] | 233 | forall( [Nw], [Nx], [Ny], [Nz] )
 | 
|---|
| [63a4b92] | 234 | void test_numSubscrTypeCompatibility( tag(Nw), tag(Nx), tag(Ny), tag(Nz) ) {
 | 
|---|
 | 235 | 
 | 
|---|
 | 236 |     array( float, Nw, Nx, Ny, Nz ) wxyz;
 | 
|---|
 | 237 |     fillHelloData(wxyz);
 | 
|---|
 | 238 | 
 | 
|---|
| [938885d3] | 239 |     valExpected = getMagicNumber(2, 3, 4, 5);
 | 
|---|
| [63a4b92] | 240 |     assert(( wxyz [2] [3] [4] [5]  == valExpected ));
 | 
|---|
| [1d71208] | 241 |     assert(( wxyz[2,  3][4] [5]  == valExpected ));
 | 
|---|
 | 242 |     assert(( wxyz [2][3,  4][5]  == valExpected ));
 | 
|---|
 | 243 |     assert(( wxyz [2] [3][4,  5] == valExpected ));
 | 
|---|
 | 244 |     assert(( wxyz[2,  3,  4][5]  == valExpected ));
 | 
|---|
 | 245 |     assert(( wxyz [2][3,  4,  5] == valExpected ));
 | 
|---|
 | 246 |     assert(( wxyz[2,  3,  4,  5] == valExpected ));
 | 
|---|
| [63a4b92] | 247 | 
 | 
|---|
| [6e50a6b] | 248 |     for ( i; Nw ) {
 | 
|---|
| [1d71208] | 249 |         assert(( wxyz[ i, 3, 4, 5 ] == getMagicNumber(i, 3, 4, 5) ));
 | 
|---|
| [63a4b92] | 250 |     }
 | 
|---|
 | 251 | 
 | 
|---|
| [6e50a6b] | 252 |     for ( i; Nx ) {
 | 
|---|
| [1d71208] | 253 |         assert(( wxyz[ 2, i, 4, 5 ] == getMagicNumber(2, i, 4, 5) ));
 | 
|---|
| [63a4b92] | 254 |     }
 | 
|---|
 | 255 | 
 | 
|---|
| [6e50a6b] | 256 |     for ( i; Ny ) {
 | 
|---|
| [1d71208] | 257 |         assert(( wxyz[ 2, 3, i, 5 ] == getMagicNumber(2, 3, i, 5) ));
 | 
|---|
| [63a4b92] | 258 |     }
 | 
|---|
 | 259 | 
 | 
|---|
| [6e50a6b] | 260 |     for ( i; Nz ) {
 | 
|---|
| [1d71208] | 261 |         assert(( wxyz[ 2, 3, 4, i ] == getMagicNumber(2, 3, 4, i) ));
 | 
|---|
| [63a4b92] | 262 |     }
 | 
|---|
 | 263 | 
 | 
|---|
| [6e50a6b] | 264 |     for ( i; Nw ) {
 | 
|---|
| [1d71208] | 265 |         assert(( wxyz[ i, all, 4, 5 ][3] == getMagicNumber(i, 3, 4, 5) ));
 | 
|---|
| [63a4b92] | 266 |     }
 | 
|---|
 | 267 | 
 | 
|---|
| [6e50a6b] | 268 |     for ( i; Nw ) {
 | 
|---|
| [1d71208] | 269 |         assert(( wxyz[ all, 3, 4, 5 ][i] == getMagicNumber(i, 3, 4, 5) ));
 | 
|---|
| [63a4b92] | 270 |     }
 | 
|---|
 | 271 | }
 | 
|---|
 | 272 | 
 | 
|---|
 | 273 | const size_t  KW = 3,  KX = 4,  KY = 5,  KZ = 6;
 | 
|---|
 | 274 | 
 | 
|---|
 | 275 | int main() {
 | 
|---|
 | 276 | 
 | 
|---|
 | 277 |     test_inOrderSplits  ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
 | 
|---|
 | 278 |     test_skipSingle     ( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
 | 
|---|
 | 279 |     test_latticeCoverage( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
 | 
|---|
| [b9dae14c] | 280 |     test_numSubscrTypeCompatibility( ztag(KW), ztag(KX), ztag(KY), ztag(KZ) );
 | 
|---|
| [63a4b92] | 281 |     printf("done\n");
 | 
|---|
 | 282 | }
 | 
|---|