1 | #ifndef AVL_TREE_H |
---|
2 | #define AVL_TREE_H |
---|
3 | |
---|
4 | extern "C" { |
---|
5 | #define NULL 0 |
---|
6 | #define assert(cond) if (! (cond)) { printf("Assertion failed: (%s) at %s:%d\n", #cond, __FILE__, __LINE__); abort(); } |
---|
7 | } |
---|
8 | |
---|
9 | // #include <types.h> |
---|
10 | // #include <lib.h> |
---|
11 | |
---|
12 | trait Comparable(otype T) { |
---|
13 | int ?<?(T, T); |
---|
14 | }; |
---|
15 | |
---|
16 | forall(otype T | Comparable(T)) |
---|
17 | int ?==?(T t1, T t2); |
---|
18 | |
---|
19 | forall(otype T | Comparable(T)) |
---|
20 | int ?>?(T t1, T t2); |
---|
21 | |
---|
22 | forall(dtype T | { void ^?{}(T *); }) |
---|
23 | void delete(T * x); |
---|
24 | |
---|
25 | // To-do: properly use height or balance factor |
---|
26 | // Right now I'm recomputing the height for each |
---|
27 | // node multiple times. It's Theta-log(n), but still.. |
---|
28 | |
---|
29 | // Balanced Binary Search Tree of void pointers; almost an AVL tree - |
---|
30 | // just needs to make use of the balance factor properly |
---|
31 | // Operations: |
---|
32 | // ?{}, ^?{} |
---|
33 | // create - allocate a new tree. Just a wrapper around malloc which also calls the tree constructor. |
---|
34 | // find - search through the tree for the given key; return the associated value |
---|
35 | // empty - return true if the tree is empty |
---|
36 | // insert - insert node with key and value pair. Returns 0 on success |
---|
37 | // remove - remove node with the given key, returns 0 on success, 1 on failure |
---|
38 | // copy - deep copy of a tree |
---|
39 | // for_each - applies the given function to every data element in the tree |
---|
40 | // assumes that a non-zero return value is an error, will return |
---|
41 | // the error code from func |
---|
42 | |
---|
43 | // temporary: need forward decl to get around typedef problem |
---|
44 | forall(otype K | Comparable(K), otype V) |
---|
45 | struct tree; |
---|
46 | |
---|
47 | forall(otype K | Comparable(K), otype V) |
---|
48 | struct tree { |
---|
49 | K key; |
---|
50 | V value; |
---|
51 | tree(K, V) * parent; |
---|
52 | tree(K, V) * left; |
---|
53 | tree(K, V) * right; |
---|
54 | int balance; |
---|
55 | }; |
---|
56 | |
---|
57 | forall(otype K | Comparable(K), otype V) |
---|
58 | void ?{}(tree(K, V) *t, K key, V value); |
---|
59 | |
---|
60 | forall(otype K | Comparable(K), otype V) |
---|
61 | void ^?{}(tree(K, V) * t); |
---|
62 | |
---|
63 | forall(otype K | Comparable(K), otype V) |
---|
64 | tree(K, V) * create(K key, V value); |
---|
65 | |
---|
66 | forall(otype K | Comparable(K), otype V) |
---|
67 | V * find(tree(K, V) * t, K key); |
---|
68 | |
---|
69 | forall(otype K | Comparable(K), otype V) |
---|
70 | int empty(tree(K, V) * t); |
---|
71 | |
---|
72 | // returns the root of the tree |
---|
73 | forall(otype K | Comparable(K), otype V) |
---|
74 | int insert(tree(K, V) ** t, K key, V value); |
---|
75 | |
---|
76 | forall(otype K | Comparable(K), otype V) |
---|
77 | int remove(tree(K, V) ** t, K key); |
---|
78 | |
---|
79 | forall(otype K | Comparable(K), otype V) |
---|
80 | void copy(tree(K, V) * src, tree(K, V) ** ret); |
---|
81 | |
---|
82 | forall(otype K | Comparable(K), otype V) |
---|
83 | void for_each(tree(K, V) * t, void (*func)(V)); |
---|
84 | |
---|
85 | // // Helper function to print trees |
---|
86 | // forall(otype K | Comparable(K), otype V) |
---|
87 | // void printTree(tree * t, int level){ |
---|
88 | // if (empty(t)){ |
---|
89 | // return; |
---|
90 | // } |
---|
91 | |
---|
92 | // printTree(t->left, level+1); |
---|
93 | // printf("key: %d, value: %s, level: %d\n", t->key, t->value, level); |
---|
94 | // printTree(t->right, level+1); |
---|
95 | // } |
---|
96 | |
---|
97 | // // inorder traversal of t |
---|
98 | // // prints each key, followed by the value |
---|
99 | // forall(otype K | Comparable(K), otype V) |
---|
100 | // void printTree(tree(K, V) * t){ |
---|
101 | // printTree(t, 0); |
---|
102 | // } |
---|
103 | |
---|
104 | |
---|
105 | #endif |
---|