1 | // |
---|
2 | // Cforall Version 1.0.0 Copyright (C) 2016 University of Waterloo |
---|
3 | // |
---|
4 | // The contents of this file are covered under the licence agreement in the |
---|
5 | // file "LICENCE" distributed with Cforall. |
---|
6 | // |
---|
7 | // rational -- Rational numbers are numbers written as a ratio, i.e., as a fraction, where the numerator (top number) |
---|
8 | // and the denominator (bottom number) are whole numbers. When creating and computing with rational numbers, results |
---|
9 | // are constantly reduced to keep the numerator and denominator as small as possible. |
---|
10 | // |
---|
11 | // Author : Peter A. Buhr |
---|
12 | // Created On : Wed Apr 6 17:56:25 2016 |
---|
13 | // Last Modified By : Peter A. Buhr |
---|
14 | // Last Modified On : Mon May 1 08:25:06 2017 |
---|
15 | // Update Count : 33 |
---|
16 | // |
---|
17 | |
---|
18 | #ifndef RATIONAL_H |
---|
19 | #define RATIONAL_H |
---|
20 | |
---|
21 | #include "iostream" |
---|
22 | |
---|
23 | // implementation |
---|
24 | typedef long int RationalImpl; |
---|
25 | struct Rational { |
---|
26 | RationalImpl numerator, denominator; // invariant: denominator > 0 |
---|
27 | }; // Rational |
---|
28 | |
---|
29 | // constants |
---|
30 | extern struct Rational 0; |
---|
31 | extern struct Rational 1; |
---|
32 | |
---|
33 | // constructors |
---|
34 | void ?{}( Rational * r ); |
---|
35 | void ?{}( Rational * r, RationalImpl n ); |
---|
36 | void ?{}( Rational * r, RationalImpl n, RationalImpl d ); |
---|
37 | |
---|
38 | // getter for numerator/denominator |
---|
39 | RationalImpl numerator( Rational r ); |
---|
40 | RationalImpl denominator( Rational r ); |
---|
41 | [ RationalImpl, RationalImpl ] ?=?( * [ RationalImpl, RationalImpl ] dest, Rational src ); |
---|
42 | // setter for numerator/denominator |
---|
43 | RationalImpl numerator( Rational r, RationalImpl n ); |
---|
44 | RationalImpl denominator( Rational r, RationalImpl d ); |
---|
45 | |
---|
46 | // comparison |
---|
47 | int ?==?( Rational l, Rational r ); |
---|
48 | int ?!=?( Rational l, Rational r ); |
---|
49 | int ?<?( Rational l, Rational r ); |
---|
50 | int ?<=?( Rational l, Rational r ); |
---|
51 | int ?>?( Rational l, Rational r ); |
---|
52 | int ?>=?( Rational l, Rational r ); |
---|
53 | |
---|
54 | // arithmetic |
---|
55 | Rational -?( Rational r ); |
---|
56 | Rational ?+?( Rational l, Rational r ); |
---|
57 | Rational ?-?( Rational l, Rational r ); |
---|
58 | Rational ?*?( Rational l, Rational r ); |
---|
59 | Rational ?/?( Rational l, Rational r ); |
---|
60 | |
---|
61 | // conversion |
---|
62 | double widen( Rational r ); |
---|
63 | Rational narrow( double f, RationalImpl md ); |
---|
64 | |
---|
65 | // I/O |
---|
66 | forall( dtype istype | istream( istype ) ) istype * ?|?( istype *, Rational * ); |
---|
67 | forall( dtype ostype | ostream( ostype ) ) ostype * ?|?( ostype *, Rational ); |
---|
68 | |
---|
69 | #endif // RATIONAL_H |
---|
70 | |
---|
71 | // Local Variables: // |
---|
72 | // mode: c // |
---|
73 | // tab-width: 4 // |
---|
74 | // End: // |
---|